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Abstract

High-dimensional, simultaneous recordings of neural spiking activity are often
explored, analyzed and visualized with the help of latent variable or factor mod-
els. Such models are however ill-equipped to extract structure beyond shared,
distributed aspects of firing activity across multiple cells. Here, we extend un-
structured factor models by proposing a model that discovers subpopulations or
groups of cells from the pool of recorded neurons. The model combines aspects
of mixture of factor analyzer models for capturing clustering structure, and as-
pects of latent dynamical system models for capturing temporal dependencies. In
the resulting model, we infer the subpopulations and the latent factors from data
using variational inference and model parameters are estimated by Expectation
Maximization (EM). We also address the crucial problem of initializing parame-
ters for EM by extending a sparse subspace clustering algorithm to integer-valued
spike count observations. We illustrate the merits of the proposed model by ap-
plying it to calcium-imaging data from spinal cord neurons, and we show that it
uncovers meaningful clustering structure in the data.

1 Introduction

Recent progress in large-scale techniques for recording neural activity has made it possible to study
the joint firing statistics of 102 up to 105 cells at single-neuron resolution. Such data sets grant
unprecedented insight into the temporal and spatial structure of neural activity and will hopefully
lead to an improved understanding of neural coding and computation.

These recording techniques have spurred the development of statistical analysis tools which help to
make accessible the information contained in simultaneously recorded activity time-series. Amongst
these tools, latent variable models prove to be particularly useful for analyzing such data sets [1,
2, 3, 4]. They aim to capture shared structure in activity across different neurons and therefore
provide valuable summary statistics of high-dimensional data that can be used for exploratory data
analysis as well as for visualization purposes. The majority of latent variable models, however,
being relatively general purpose tools, are not designed to extract additional structure from the data.
This leads to latent variables that can be hard to interpret biologically. Furthermore, additional
information from other sources, such as spatial structure or genetic cell type information, cannot be
readily integrated into these models.

An approach to leveraging simultaneous activity recordings that is complementary to applying un-
structured factor models, is to infer detailed circuit properties from the data. By modelling the
detailed interactions between neurons in a local micro-circuit, multiple tools aim at inferring the
existence, type, and strength of synaptic connections between neurons [5, 6]. In spite of algorithmic
progress [7], the feasibility of this approach has only been demonstrated in circuits of up to three
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neurons [8], as large scale data with ground truth connectivity is currently only rarely available.
This lack of validation data sets also makes it difficult to asses the impact of model mismatch and
unobserved, highly-correlated noise sources (“common input”).

Here, we propose a statistical tool for analyzing multi-cell recordings that offers a middle ground
between unstructured latent variable models and models for inferring detailed network connectivity.
The basic goal of the model is to cluster neurons into groups based on their joint activity statistics.
Clustering is a ubiquitous and valuable tool in statistics and machine learning as it often yields
interpretable structure (a partition of the data), and is of particular relevance in neuroscience because
neurons often can be categorized into distinct groups based on their morphology, physiology, genetic
identity or stimulus-response properties. In many experimental setups, side-information allowing for
a reliable supervised partitioning of the recorded neurons is not available. Hence, the main goal of
the paper is to develop a method for clustering neurons based on their activity recordings.

We model the firing time-series of a cluster of neurons using latent factors, assuming that different
clusters are described by disjoint sets of factors. The resulting model is similar to a mixture of factor
analyzers [9, 10] with Poisson observations, where each mixture component describes a subpopu-
lation of neurons. In contrast to a mixture of factor analyzers model which assumes independent
factors, we put a Markovian prior over the factors, capturing temporal dependencies of neural ac-
tivity as well as interactions between different clusters over time. The resulting model, which we
call mixture of Poisson linear dynamical systems (mixPLDS) model, is able to capture more struc-
ture using the cluster assignments compared to latent variable models previously applied to neural
recordings, while at the same time still providing low-dimensional latent trajectories for each cluster
for exploratory data analysis and visualization. In contrast to the lack of connectivity ground truth
for neurons from large-scale recordings, there are indeed large-scale activity recordings available
that exhibit rich and biologically interpretable clustering structure, allowing for a validation of the
mixPLDS model in practice.

2 Mixture of Poisson linear dynamical systems for modelling neural
subpopulations

2.1 Model definition

Let ykt denote the observed spike count of neuron k = 1, . . . ,K in time-bin t = 1, . . . , T . For
the mixture of Poisson linear dynamical systems (mixPLDS) model, we assume that each neuron k
belongs to exactly one ofM groups (subpopulations, clusters), indicated by the discrete (categorical)
variable sk ∈ {1, . . . ,M}. The sk are modelled as i.i.d.:

p(s) =

K∏
k=1

p(sk) =

K∏
k=1

Disc(sk|φ0), (1)

where φ0 := (φ10, . . . , φ
M
0 ) are the natural parameters of the categorical distribution. In the remain-

der of the paper we use the convention that the group-index m = 1, . . . ,M is written as superscript.
The activity of each subpopulation m at time t is modeled by a latent variable xm

t ∈ Rdm

. We
assume that these latent variables (we will also call them factors) are jointly normal and we model
interactions between different groups by a linear dynamical system (LDS) prior:

xt =

 x1
t
...

xM
t

 = Axt−1 + ηt =

A11 · · · A1M

...
...

AM1 · · · AMM


x1

t−1
...

xM
t−1

+ ηt, (2)

where the block-matrices Aml ∈ Rdm×dl

capture the interactions between groups m and l. The
innovations ηt are i.i.d. from N (0, Q) and the starting distribution is given by x1 ∼ N (µ1, Q1). If
neuron k belongs to group m, i.e. sk = m, we model its activity ykt at time t as Poisson distributed
spike count with a log-rate given by an affine combination of the factors of group m:

zkt | sk = m = Cm
k:x

m
t (3)

ykt | zkt, sk ∼ Poisson(exp(zkt + bk)), (4)
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where b ∈ RK captures the baseline of the firing rates. We denote with Cm ∈ RK×dm

the
group loading matrix with rows Cm

k: for neurons k in group m and fill in the remaining rows
with 0s for all neurons not in group m. We concatenate these into the total loading matrix
C := (C1 · · · CM ) ∈ RK×d, where d :=

∑M
m=1 d

m is the total latent dimension. If the neu-
rons are sorted with respect to their group membership, then the total loading C has block-diagonal
structure. Further, we denote with yk: := (yk,1 · · · yk,T ) the activity time series of neuron k and
use an analogous notation for xm

n := (xm
n,1 · · · xm

n,T ) ∈ R1×T for n = 1, . . . , dm. The model
parameters are θ := (A,Q,Q1, µ1, C,b); we consider the hyper-parameters φ0 to be given and
fixed.

For known clusters s, the mixPLDS model can be regarded as a special case of the Poisson linear
dynamical system (PLDS) model [3], where the loading C is block-diagonal. For unknown group
memberships s, the mixPLDS model defined above is similar to a mixture of factor analyzers (e.g.
see [9, 10]) with Poisson observations over neurons k = 1, . . . ,K. In the mixPLDS model however,
we do not restrict the factors of the mixture components to be independent but allow for interactions
over time which are modeled by a LDS.

2.2 Variational inference and parameter estimation for the mixPLDS model

When applying the mixPLDS model to data y, we are interested in inferring the group memberships
s and the latent trajectories x as well as estimating the parameters θ. For known parameters θ,
the posterior p(x, s|y, θ) (even in the special case of a single mixture component M = 1) is not
available in closed form and needs approximating. Here we propose to approximate the posterior
using variational inference with the following factorization assumption:

p(x, s|y, θ) ≈ q(x)q(s). (5)
We further restrict q(x) to be a normal distribution q(x) = N (x|m, V ) with mean m and covariance
V . Under the assumption (5), q(s) further factorizes into the product

∏
k q(sk) where q(sk) is a

categorical distribution with natural parameters φk = (φ1k, . . . , φ
M
k ). The variational parameters

m, V and φ = (φ1, . . . , φK) are obtained by maximizing the variational lower bound of the log
marginal likelihood log p(y|θ):

L(m, V, φ, θ) =
1

2

(
log |V | − tr[Σ−1V ]− (m− µ)>Σ−1(m− µ)

)
+

K∑
k=1

DKL[q(sk)‖p(sk)]

+

M∑
m=1

K∑
k=1

T∑
t=1

πm
k (ykth

m
kt − exp(hmkt + ρmkt/2)) + const (6)

hm
t := Cmmt + b, ρmt := diag(CmVtC

m>), πm
k ∝ exp(φmk ),

where Vt = Covq(x)[xt] and µ ∈ RdT , Σ ∈ RdT×dT are the mean and covariance of the LDS
prior over x. The first two terms in (6) are the Kullback-Leibler divergence between the prior
p(x, s) = p(x)p(s) and its approximation q(x)q(s), penalizing a variational posterior that is far
away from the prior. The third term in (6) is given by the expected log-likelihood of the data,
promoting a posterior approximation that explains the observed data well. We optimize L in a
coordinate ascent manner, i.e. we hold φ fixed and optimize jointly over m, V and vice versa. A
naive implementation of the optimization of L over {m, V } is prohibitively costly for data sets with
large T , as the posterior covariance V has O((dT )2) elements and has to be optimized over the set
of semi-definite matrices. Instead of solving this large program, we apply a method proposed in
[11], where the authors show that Gaussian variational inference for latent Gaussian models with
Poisson observations can be solved more efficiently using the dual problem. We generalize their
approach to the mixture of Poisson observation model (3) considered here, and we also leverage the
Markovian structure of the LDS prior to speed up computations (see below). In the supplementary
material, we derive this approach to inference in the mixPLDS model in detail. The optimization
over φ is available in closed form and is also given in the supplementary material. We iterate updates
over m, V and φ. In practice, this method converges very quickly, often requiring only two or three
iterations to reach a reasonable convergence criterion.

The most computationally intensive part of the proposed variational inference method is the update
of m, V . Using properties of the LDS prior (i.e. the prior precision Σ−1 is block-tri-diagonal),
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we can show that evaluation of L, its dual and the gradient of the latter all cost O(KTd + Td3),
which is the same complexity as Kalman smoothing in a LDS with Gaussian observations or a
single iteration of Laplace inference over x. While having the same cost as Laplace approximation,
variational inference has the advantage of a non-deceasing variational lower bound L, which can be
used for monitoring convergence as well as for model comparison.

We can also get estimates for the model parameters by maximizing the lower bound L over θ. To
this end, we interleave updates of φ and m, V with maximizations over θ. The latter corresponds to
standard parameter updates in a LDS model with Poisson observations and are discussed e.g. in [3].
This procedure implements variational Expectation Maximization (VEM) in the mixPLDS model.

2.3 Initialization by Poisson subspace clustering

In principle, for a given number of groups M with given dimensions d1, . . . , dM one can estimate
the parameters of the mixPLDS using VEM as described above. In practice we find however that
this yields poor results without having reasonable initial membership assignments s, i.e. reasonable
initial values for the variational parameters φ. Furthermore, VEM requires the a priori specification
of the latent dimensions d1, . . . , dM . Here we show that a simple extension to an existing subspace
clustering algorithm provides, given the number of groups M , a sufficiently accurate initializer for
φ and allows for an informed choice for the dimensions d1, . . . , dM .

We first illustrate the connection of the mixPLDS model to the subspace clustering problem (for
a review of the latter see e.g. [12]). Assume that we observe the log-rates zkt defined in equation
(3) directly; we denote the corresponding data matrix as Z ∈ RK×T . For unknown loading C, the
row Zk: lies on a dm-dimensional subspace spanned by the “basis-trajectories” xm

1,:, . . . ,x
m
dm,:, if

neuron k is in group m. If s and x are unobserved, we only know that the rows of Z lie on a union
of M subspaces of dimensions d1, . . . , dm in an ambient space of dimension T . Reconstructing the
subspaces and the subspace assignments is known as a subspace clustering problem and connections
to mixtures of factor analyzers have been pointed out in [13]. The authors of [13] propose to solve
the subspace clustering problem by the means of the following sparse regression problem:

min
W∈RK×K

1

2
‖Z −WZ‖2F + λ‖W‖1 (7)

s.t. diag(W ) = 0.

This optimization can be interpreted as trying to reconstruct each row Zk: by the remaining rows
Z\k: using sparse reconstruction weights W . Intuitively, a point on a subspace can be reconstructed
using the fewest reconstruction weights by points on the same subspace, i.e. Wkl = 0 if k and l lie
on different subspaces. The symmetrized, sign-less weights |W |+ |W |> are then interpreted as the
adjacency matrix of a graph and spectral clustering, with a user defined number of clusters M , is
applied to obtain a subspace clustering solution. In the noise-free case (and taking λ→ 0 in eqn 7),
under linear independence assumptions on the subspaces, [13] shows that this procedure recovers
the correct subspace assignments.

If the matrix Z is not observed directly but only through the observation model (3), the subspace
clustering approach does not directly apply. The observed data Y generated from the model (3)
is corrupted by Poisson noise and furthermore the non-linear link function transforms the union of
subspaces into a union of manifolds. We can circumvent these problems using the simple observa-
tion that not only Z but also the rows Ck: of the loading matrix C lie on a union of subspaces of
dimensions d1, . . . , dm (where the ambient space has dimension d). This can be easily seen from the
block-diagonal structure of C (if the neurons are sorted by their true cluster assignments) mentioned
in section 2.1. Hence we can use an estimate C̃ of the loading C as input to the subspace clustering
optimization (7). In order to get an initial estimate C̃ we can use a variety of dimensionality re-
duction methods with exp-Poisson observations, e.g. exponential family PCA [14], a nuclear norm
based method [15], subspace identification methods [16] and EM-based PLDS learning [16]; here
we use the nuclear norm based method [15] for reasons that will become obvious below. Because of
the non-identifiability of latent factor models, these methods only yield an estimate of C ·D with an
unknown, invertible transformationD ∈ Rd×d. Nevertheless, the rows ofC ·D still lie on a union of
subspaces (which are however not axis-aligned anymore as is the case for C), and therefore the clus-
ter assignments can still be recovered. Given these cluster assignments, we can get initial estimates
of the non-zero rows of Cm by applying nuclear norm minimization to the individual clusters. This
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method also returns a singular value spectrum associated with each subspace, which can be used to
determine the dimension dm. One can specify e.g. a threshold σmin, and determine the dimension
dm as the number of singular values > σmin.

2.4 The full parameter estimation algorithm

We briefly summarize the proposed parameter estimation algorithm for the mixPLDS model. The
procedure requires the user to define the number of groups M . This choice can either be informed
by biological prior knowledge or one can use standard model selection methods, such as cross-
validation on the variational approximation of the marginal likelihood. We first get an initial es-
timate C̃ of the total loading matrix by nuclear-norm-penalized Poisson dimensionality reduction.
Then, subspace clustering on C̃ yields initial group assignments. Based on these assignments, for
each cluster we estimate the group dimension dm and the group loading C̃m. Keeping the cluster
assignments fixed, we do a few VEM steps in the mixPLDS model with an initial estimation for the
loading matrix given by (C̃1, . . . , C̃M ). This last step provides reasonable initial parameters for the
parameters A,Q,Q1, µ1 of the dynamical system prior. Finally, we do full VEM iterations in the
mixPLDS model to refine the initial parameters. We monitor the increase of the variational lower
bound L and use its increments in a termination criterion for the VEM iterations.

2.5 Non-negativity constraints on the loading C

Each component m of the mixPLDS model, representing a subpopulation of neurons, can be a
very flexible model by itself (depending on the latent dimension dm). This flexibility can in some
situations lead to counter-intuitive clustering results. Consider the following example. Let half of
the recorded neurons oscillate in phase and the remaining neurons oscillate with a phase shift of
π relative to the first half. Depending on the context, we might be interested in clustering the first
and second half of the neurons into separate groups reflecting oscillation phase. The mixPLDS
model could however end up putting all neurons into a single cluster, by modelling them with one
oscillating latent factor that has positive loadings on the first half of neurons and negative on the
second half (or vice versa). We can prevent this behavior, by imposing element-wise non-negativity
constraints on the loading matrix C, denoted as C ≥ 0 (and by simultaneously constraining the
latent dimensions of each group). The constraints guarantee that the influence of each factor on its
group has the same sign across all neurons. The suitability of these constraints strongly depends on
the biological context. In the application of the mixPLDS model in section 3.2, we found them to
be essential for obtaining meaningful results.

We modify the subspace clustering initialization to respect the constraints C ≥ 0 in the follow-
ing way. Instead of solving the unconstrained reconstruction problem (7) with respect to W , we
add non-negativity constraints W ≥ 0. These sign constraints restrict the points that can be re-
constructed from a given set of points to the convex cone of these points (instead of the subspace
containing these points). Hence, under these assumptions, all data points in a cluster can be ap-
proximately reconstructed by a (non-negative) convex combination of some “time-series basis”. We
empirically observed that this yields initial loading matrix estimates with only very few negative
elements (after possible row-wise sign inversions). For the full mixPLDS model we enforce C ≥ 0
by the reparametrization C = exp(χ) and doing VEM updates on χ.

3 Experiments

3.1 Artificial data

Here we validate the parameter estimation procedure for the mixPLDS model on artificial data. We
generate 35 random ground truth mixPLDS models withM = 3, d1 = d2 = d3 = 2 and 20 observed
neurons per cluster. We sampled from each ground truth model a data set consisting of 4 i.i.d. trials
with T = 250 times steps each. Ground truth parameters were generated such that the resulting data
was sparse (12% of the bins non-empty). We compared the ability of different clustering methods
to recover the 3 clusters from each data set. We report the results in fig. 1A in terms of the fraction
of misclassified neurons (class labels were determined by majority vote in each cluster). We applied
K-Means with careful initialization of the cluster centers [17] to the data. For K-Means, we pre-
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Figure 1: Finding clusters of neurons in artificial data. A: Performance of different clustering
algorithms, reported in terms of frequency of misclassified neurons, on artificial data sampled from
ground truth mixPLDs models. Red bars indicate medians and blue boxes the 25% and 75% per-
centiles. Standard clustering methods (data plotted in black) such as K-Means, spectral clustering
(“specCl”), and subspace clustering (“subCl”) are substantially outperformed by the two methods
proposed here (data plotted in red). Poisson subspace clustering (“PsubCl”) yielded accurate initial
cluster estimates that were significantly improved by application of the full mixPLDs model. B:
Misclassification rate as a function of the cluster assignment uncertainty for the mixPLDS model.
This shows that the posterior over cluster assignments returned by the mixPLDS model is well cali-
brated, as neurons with low assignment uncertainty as rarely misclassified.

processed the data in a standard way by smoothing (Gaussian kernel, standard deviation 10 time-
steps), mean-centering and scaling (such that each dimension k = 1, . . . ,K has variance 1). We
found K-Means yielded reasonable clusters when all populations are one-dimensional (i.e. ∀mdm =
1, data not shown) but it fails when clustering multi-dimensional groups of neurons. An alternative
approach is to cluster the cross-correlation matrix of neurons (computed from pre-processed data as
above) with standard spectral clustering [18]. We found that this approach works well when all the
factors have small variances, as in this case the link function of the observation model is only mildly
non-linear. However, with growing variances of the factors (larger dynamic ranges of neurons)
spectral clustering performance quickly degrades. Standard sparse subspace clustering [13] on the
spike trains (pre-processed as above) yielded very similar results to spectral clustering. We found
our novel Poisson subspace clustering algorithm proposed in section 2.3 to robustly outperform the
other approaches, as long as reasonable amounts of data were available (roughly T > 100 for the
above system). The mixPLDS model initialized with the Poisson subspace clustering consistently
yielded the best results, as it is able to integrate information over time and denoise the observations.
One advantage of the mixPLDS model is that it not only returns cluster assignments for neurons
but also provides a measure of uncertainty over these assignments. However, variational inference
tends to return over-confident posteriors in general and the factorization approximation (5) might
yield posterior uncertainty that is uninformative. To show that the variational posterior uncertainty
is well-calibrated we computed the entropy of the posterior cluster assignment q(sk) for all neurons
as a measure for assignment uncertainty. We binned the neurons according to their assignment
uncertainty and report the misclassification rate for each bin in fig. 1B. 89% of the neurons have low
posterior uncertainty and reside in the first bin having a low misclassification rate of ≈ 0.1, whereas
few neurons (5%) have an assignment uncertainty larger than 0.3 nats and they are misclassified
with a rate of ≈ 0.4.

3.2 Calcium imaging of spinal cord neurons

We tested the mixPLDS model on calcium imaging data obtained from an in vitro, neonatal mouse
spinal cord that expressed the calcium indicator GCaMP3 in all motor neurons. When an isolated
spinal cord is tonically excited by a cocktail of rhythmogenic drugs (5 µM NMDA, 10 µM 5-HT,
50 µM DA), motor neurons begin to fire rhythmically. In this network state, spatially clustered en-
sembles of motor neurons fire in phase with each other [19]. Since multiple ensembles that have
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Figure 2: Application of the mixPLDS model to recordings from spinal cord neurons. A, top
panel: 500 frames of input data to the mixPLDS model. Middle panel: Same data as in upper panel,
but rows are sorted by mixPLDS clusters and factor loading. Inferred latent factors (red: cluster 1,
blue: cluster 2, solid: factor 1, dashed: factor 2) are also shown. Bottom panel: Inferred (smoothed)
firing rates. B: Loading matrix C of the mixPLDS model showing how factors 1,2 of cluster 1 and
factors 3,4 of cluster 2 influence the neurons. C: Preferred phases shown as a function of (sorted)
neuron index and colored by posterior probability of belonging to cluster 1. Clearly visible are two
clusters as well as an (approximately) increasing ordering within a cluster.

distinct phase tunings can be visualized in a single imaging field, this data represents a convenient
setting for testing our algorithm. The data (90 second long movies) were acquired at 15 Hz from
a custom two-photon microscope equipped with a resonant scanner (downsampled from 60 Hz to
boost SNR). The frequency of the rhythmic activity was typically 0.2 Hz. In addition, aggregate mo-
tor neuron activity was simultaneously acquired with each movie using a suction electrode attached
to a ventral root. This electrophysiology recording (referred to here as ephys-trace) was used as an
external phase reference point to compute phase tuning curves for imaged neurons, which we used
to validate our mixPLDS results.

A deconvolution algorithm [20] was applied to the recorded calcium time-series to estimate the
spiking activity of 70 motor neurons. The output of the deconvolution, a 70 × 1140 (neurons ×
frames) matrix of posterior expected number of spikes, was used as input to the mixPLDS model.
The non-empty bins of the the first 500 out of the 1140 frames of input data (thresholded at 0.1)
are shown in fig. 2A (upper panel). We used a mixPLDS model with M = 2 groups with two
latent dimensions each, i.e. d1 = d2 = 2. We imposed the non-negativity constraints C ≥ 0 on the
loading matrix; these were found to be crucial for finding a meaningful clustering of the neurons,
as discussed above. The mixPLDS clustering reveals two groups with strongly periodic but phase-
shifted population activities, as can be seen from the inferred latent factors shown in fig. 2A (middle
panel, factors of cluster 1 shown in red, factors of cluster 2 in blue). For each cluster, the model
learned a stronger (higher variance) latent factor (solid line) and a weaker one (dashed line); we
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interpret the former as capturing the main activity structure in a cluster and the latter as describing
deviations. Based on the estimated mixPLDS model, we sorted the neurons for visualization into
two clusters according to their most likely cluster assignment argmaxsk=1,2 q(sk). Within each
cluster, we sorted the neurons according to the ratio of the loading coefficient onto the stronger
factor over the loading onto the weaker factor. Re-plotting the spike-raster with this sorting in fig.
2A (middle panel) reveals interesting structure. First, it shows that the initial choice of two clusters
was well justified for this data set. Second, the sorting reveals that the majority of neurons tend to
fire at a preferred phase relative to the oscillation cycle, and the mixPLDS-based sorting corresponds
to an increasing ordering of preferred phases. Fig. 2B shows the loading matrix C of the mixPLDS,
which is found to be approximately block-diagonal.

On this data set we also have the opportunity to validate the unsupervised clustering by taking into
account the simultaneously recorded ephys-trace. We computed for each neuron a phase tuning
curve based on the ephys-trace history of the last 80 times steps (estimated via L2 regularized gen-
eralized linear model estimation, with an exp-Poisson observation model). For each neuron, we
extracted the peak location of this phase tuning curve, which we call the preferred phase. Fig. 2C
shows these preferred phases as a function of (sorted) neuron index, revealing that the two clusters
found by the mixPLDS model coincide well with the two modes of the bi-model distribution of pre-
ferred phases. Furthermore, within each cluster, the preferred phases are (approximately) increasing,
showing that the mixPLDS-sorting of neurons reflects the phase-relation of the neurons to the global,
oscillatory ephys-trace. We emphasize that the latter was not used for fitting the mixPLDS; i.e., this
constitutes an independent validation of our results.

We conclude that the mixPLDS model successfully uncovered clustering structure from the record-
ings that can be validated using the side information from electrophysiological tuning, and further-
more allowed for a meaningful sorting within each cluster capturing neural response properties. In
addition, the mixPLDS model leverages the temporal structure in recordings, automatically optimiz-
ing for the temporal smoothness level and revealing the main time-constants in the data (in the above
data set 1.8 and 6.5 sec) as well as main oscillation frequencies (0.2 and 0.45Hz). Furthermore, ei-
ther the latent trajectories or the inferred firing rates shown in fig. 2A can be used as smoothed
proxies for their corresponding population activities for subsequent analyses.

4 Discussion

One can generalize the mixPLDS model in several ways. Here we assumed that, given the latent fac-
tors, all neurons fire independently. This is presumably a good assumption if the recorded neurons
are spatially distant, but it might break down if neurons are densely sampled from a local population
and have strong, monosynaptic connections. This more general case can be accounted for by incor-
porating direct interaction terms between neurons into the observation model in the spirit of coupled
GLMs (see [21]); inference and parameter learning are still tractable in this model using VEM. Fur-
thermore, in addition to the activity recordings, one might have access to other covariates that are
informative about the clustering structure of the population, such as cell location, genetic markers,
or cell morphology. We can add such data as additional observations into the mixPLDS model to
facilitate clustering of the cells. An especially relevant example are stimulus-response properties of
cells. We can add a mixture model over receptive-field parameters using the cluster assignments s.
This extension would provide a clustering of neurons based on their joint activity statistics (such as
shared trial-to-trial variability) as well as on their receptive field properties.

We presented three technical contributions, that we expect to be useful outside the context of the
mixPLDS model. First, we proposed a simple extension of the sparse subspace clustering algorithm
to Poisson observations. We showed that if the dimension of the union of subspaces is much smaller
than the ambient dimension, our method substantially outperforms other approaches. Second, we
introduced a version of subspace clustering with non-negativity constraints on the reconstruction
weights, which therefore clusters points into convex cones. We expect this variant to be particularly
useful when clustering activity traces of cells, allowing for separating anti-phasic oscillations. Third,
we applied the dual variational inference approach of [11] to a model with a Markovian prior and
with mixtures of Poisson observations. The resulting inference method proved itself numerically
robust, and we expect it to be a valuable tool for analyzing time-series of sparse count variables.
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