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Today’s Class 

• An Introduction to: 
– Confirmatory Factor Analysis (CFA) 
– Structural Equation Modeling (SEM) 

 
• Placing both within the linear modeling framework  

– The return of the multivariate normal distribution 

 
• A Description of how CFA and EFA differ statistically 

 
• Showing how these methods have subsumed canonical 

correlation analysis 
 
 
 



A Brief Review of  
Exploratory Factor Analysis 

• EFA: “Determine nature and number of latent variables that 
account for observed variation and covariation among set of 
observed indicators (≈ items or variables)” 
– In other words, what causes these observed responses? 

– Summarize patterns of correlation among indicators 

– Solution is an end (i.e., is of interest) in and of itself 

 

• PCA: “Reduce multiple observed variables into fewer 
components that summarize their variance” 
– In other words, how can I abbreviate this set of variables? 

– Solution is usually a means to an end 

 



Big Conceptual Difference  
between PCA and EFA 

• In PCA, we get components that are outcomes built from 
linear combinations of the items: 
– C1 = L11X1 + L12X2 + L13X3 + L14X4 + L15X5   

– C2 = L21X1 + L22X2 + L23X3 + L24X4 + L25X5 

– … and so forth – note that C is the OUTCOME 
• This is not a testable measurement model by itself 

 

• In EFA, we get factors that are thought to be the cause of the 
observed indicators (here, 5 indicators, 2 factors): 
– X1 = L11F1 + L12F2 + e1  

– X2 = L21F1 + L22F2 + e1 

– X3 = L31F1 + L32F2 + e1 

– … and so forth… but note that F is the PREDICTOR  testable 



        PCA           vs.      EFA/CFA 

Factor 

X1 X2 X3 X4 

e1 e2 e3 e4 

Component 

X1 X2 X3 X4 

This is not a testable 
measurement model, 
because how do we know 
if we’ve combined items 
“correctly”? 

This IS a testable measurement 
model, because we are trying to 
predict the observed covariances 
between the indicators by creating a 
factor – the factor IS the reason for 
the covariance 



Big Conceptual Difference  
between PCA and EFA 

• In PCA, the component is just the sum of the parts, and there is no inherent 
reason why the parts should be correlated (they just are) 
– But it’s helpful if they are (otherwise, there’s no point in trying to build 

components to summarize the variables)  
• “component” = “variable” 

– The type of construct measured by a component is often called an ‘emergent’ 
construct – i.e., it emerges from the indicators (“formative”) 

– Examples: “Lack of Free time”, “SES”, “Support/Resources” 
 

• In EFA, the indicator responses are caused by the factors, and thus should be 
uncorrelated once controlling for the factor(s) 
– The type of construct that is measured by a factor is often called a ‘reflective’ 

construct – i.e., the indicators are a reflection of your status on the latent 
variable 

– Examples: Any other hypothetical construct 



Intermediate Summary… 

• PCA and EFA are both exploratory techniques geared loosely 
towards examining the structure underneath a series of 
continuous indicators (items or subscales): 
– PCA: How do indicators linearly combine to produce a set of 

uncorrelated linear composite outcomes? 

– EFA: What is the structure of the latent factors that produced the 
covariances among the observed indicators (factor = predictor)? 

 

• Involves sequence of sometimes ambiguous decisions: 
– Extraction method 

– Number of factors 

– And then: rotation, interpretation, and factor scores… 



Factor Scores in EFA: 
Just Say No 

• Factor Indeterminacy (e.g., Grice, 2001):  
– There is an infinite number of possible factor scores that all have the 

same mathematical characteristics 

– Different approaches can yield very different results 

• A simple, yet effective solution is simply sum the items that 
load highly on a factor…“Unit-weighting” 
– Research has suggested that this ‘simple’ solution is more effective 

when applying the results of a factor analysis to different samples – 
factor loadings don’t replicate all that well 

– Just make sure to standardize the indicators first if they are on 
different numerical scales 

• Use CFA/SEM – you don’t need the factor scores 



CONFIRMATORY FACTOR ANALYSIS 



Confirmatory Factor Analysis 

• Rather than trying to determine the number of factors, and 
subsequently, what the factors mean (as in EFA), if you already 
know (or suspect) the structure of your data, you can use a 
confirmatory approach 
 

• Confirmatory factor analysis (CFA) is a way to specify which 
variables load onto which factors 
 

• The loadings of all variables not related to a given factor are then 
set to zero 
 

• For a reasonable number of parameters, the factor correlation can 
be estimated directly from the analysis (rotations are not needed) 



EFA vs. CFA, continued 

• How we get an interpretable solution… 

– EFA: Rotation 

• All items load on all factors 

• Goal is to pick a rotation that gives closest approximation to 
simple structure (clear factors, fewest cross-loadings) 

• No way of separating ‘content’ from ‘method’ factors 

– CFA: Your job in the first place! 

• CFA must be theory-driven 

• You specify number of factors and their inter-correlations 

• You specify which items load on which factors (yes/no) 

• You specify any unique (error) relations for method variance 

 



EFA vs. CFA, continued 

• How we judge model fit… 
– EFA: Eye-balls and Opinion 

• #Factors? Scree plots, interpretability… 

• Which rotation? Whichever makes most sense… 

• Which indicators load? Cut-off of .3-.4ish 

– CFA: Inferential tests via of Maximum Likelihood 
• Global model fit test 

• Significance of item loadings 

• Significance of error variances (and covariances) 

• Ability to test appropriateness of model constraints or 
model additions via tests for change in model fit 



EFA vs. CFA, continued 
• What we do with the latent factors… 

– EFA: Don’t compute factor scores… 
• Factor indeterminacy issues 

• Inconsistency in how factor models are applied to data 
– Factor model based on common variance only 

– Summing items? That’s using total variance (component) 

– CFA: Let them be part of the model 
• Don’t need factor scores, but they are less indeterminate in 

CFA than in EFA (although still assumed perfect then) 

• Better: Test relations with latent factors directly through SEM 
– Factors can be predictors (exogenous) or outcomes (endogenous) or both 

at once as needed 

– Relationships will be disattenuated for measurement error 



CFA Model WITH Factor  
Means and Item Intercepts 

F1 

X1 X2 X3 X4 

e1 e2 e3 e4 

λ11 λ21 λ31 λ41 

F2 

X5 X6 X7 X8 

e5 e6 e7 e8 

λ52 λ62 λ72 λ82 

covF1F2 

1 

μ1 
μ2 

μ3 
μ4 μ5 μ6 

μ7 
μ8 

κ1 κ2 

 Structural Model: 

 F’s = factor variances 
Cov = factor covariances 
K’s = factor means 

Measurement Model: 

 λ’s = factor loadings 
e’s = error variances 
μ’s = item intercepts 

(But some of these 
values will have to be 
restricted for the model 
to be identified) 



2 Types of CFA Solutions 
• CFA output comes in unstandardized and standardized versions: 

 

• Unstandardized  predicts scale-sensitive original item response: 

– Xis = μi + λiFs + eis 

– Useful when comparing solutions across groups or time 

– Note the solution asymmetry: item parameters μi and λi will be given in the item metric, 
but eis will be given as the error variance across persons for that item 

– Var(Xi) = [λi
2* Var(F)] + Var(ei) 

 

• Standardized  solution transformed to Var(Yi)=1, Var(F)=1: 
– Useful when comparing items within a solution (on same scale then) 

– Standardized intercept = μi / SD(Y)  not typically reported 

– Standardized factor loading = [λi * SD(F)] / SD(Y) = item correlation with factor 

– Standardized error variance = 1 – standardized λi
2 = “variance due to not factor” 

– R2 for item = standardized λi
2 = “variance due to the factor” 



CFA Model Equations  
with Item Intercepts 

• Measurement model per item (numbered) for subject s: 
– X1s = μ1 + λ11F1s   + 0F2s    + e1s 

– X2s = μ2 + λ21F1s   + 0F2s    + e2s 

– X3s = μ3 + λ31F1s   + 0F2s    + e3s 

– X4s = μ4 + λ41F1s   + 0F2s    + e4s 

– X5s = μ5 +    0F1s  + λ52F2s  + e5s 

– X6s = μ6 +    0F1s  + λ62F2s  + e6s 

– X7s = μ7 +    0F1s  + λ72F2s  + e7s 

– X8s = μ8 +    0F1s  + λ82F2s  + e8s 

 
The equation predicting each item 
resembles a linear regression model: 

Yis = Β0i + Β1iX1s + Β2iX2s + eis 

You decide how many factors and 
whether each item loads (loading 
then estimated) or not. 

Unstandardized loadings (λ)  
are the slopes of regressing the 
response (Y) on the factor (X). 

Standardized loadings are the 
slopes in a correlation metric (and 
Std Loading2 = reliability). 

Intercepts (μ) are expected 
value of Y (item) when all 
factors (X’s) are 0 (no misfit). 



Expressing the CFA Model in Matrices: 
Factor Loadings 

• If we put our loadings into a matrix 𝚲 (size p 
items by m factors) 

𝚲 =

𝜆11 0
𝜆21 0
𝜆31 0
𝜆41 0
0 𝜆52

0 𝜆62

0 𝜆72

0 𝜆82

 



Expressing the CFA Model in Matrices: 
Unique Variances 

• If we put our unique variances into a matrix 𝚿 (size p 
items by p items) 

𝚿 =

𝜓1
2 0 0 0 0 0 0 0

0 𝜓2
2 0 0 0 0 0 0

0 0 𝜓3
2 0 0 0 0 0

0 0 0 𝜓4
2 0 0 0 0

0 0 0 0 𝜓5
2 0 0 0

0 0 0 0 0 𝜓6
2 0 0

0 0 0 0 0 0 𝜓7
2 0

0 0 0 0 0 0 0 𝜓8
2

 



Expressing the CFA Model in Matrices: 
Factor Covariances 

• If we put our factor covariances into a matrix 
𝚽 (size m factors by m factors): 

 

𝚽 =
𝜙11 𝜙12

𝜙12 𝜙22
 



The Result 

• The CFA model then predicts the observed 
covariance matrix of the items by: 

𝚺 = 𝚲𝚽𝚲′ + 𝚿 



CFA Model Predictions 
F1 BY X1-X4,  F2 BY X5-X8 

Two items from same factor (room for misfit): 
• Unstandardized solution:  Covariancex1,x4 = λ11*Var(F1)*λ41 

• Standardized solution:      Correlationx1,x4 = λ11*(1)*λ41   std loadings 

• ONLY reason for corx1,x4 is common factor (local independence, LI) 
 

Two items from different factors (room for misfit): 
• Unstandardized solution:  Covariancex1,x8 = λ11*covF1,F2*λ82 

• Standardized solution:      Correlationx1,x8 = λ11*corF1,F2*λ82 std loadings 

• ONLY reason for corx1,x8 is correlation between factors (again, LI) 
 

Variances are additive (and will be reproduced correctly): 
• Var(X1) = (λ11

2)*Var(F1) + Var(e1)  note imbalance of λ2 and e 



Assumptions of CFA Models 
• Dimensionality is assumed known (from number of latent traits) 

– Local Independence  e’s are independent after controlling for factor(s) 
 

• Linear model  a one-unit change in latent trait/factor F has same 
increase in expected item response (Y) at all points of factor (X) 

– Won’t work well for binary/ordinal data… thus, we need IRT 

– Often of questionable utility for Likert scale data (normality?) 
 

• Goal is to predict covariance between items  basis of model fit 

– Variances will always be perfectly reproduced; covariances will not be 
 

• CFA models are usually presented without μi (the item intercept) 
– μi doesn’t really matter in CFA because it doesn’t contribute to the covariance, 

but we will keep it for continuity with IRT 

– Item intercepts are also important when dealing with factor mean diffs 



CFA Model Identification: 
Create a Scale for the Latent Variable 

• The factor doesn’t exist, so it needs a 
scale (a mean and variance): 

• Two equivalent options to do so 

 

• Create a scale for the VARIANCE: 
– 1) Scale using a marker item 

• Fix one loading to 1; factor is scaled as 
reliable part of that marker item 

• Loading = .9, variance =16?  
Var(F1) = (.92)*16 = 12.96 

– 2) Fix factor variance to 1 
• Factor is interpreted as z-score 

• Can’t be used in other models  
with higher-order factors 
 

F1 = ? 

X1 X2 X3 X4 

e1 e2 e3 e4 

1 λ21 λ31 λ41 

F1 = 1 

X1 X2 X3 X4 

e1 e2 e3 e4 

λ11 λ21 λ31 λ41 

“Marker Item” 

“Z-Score” 



CFA Model Identification: 
Two Options for Scaling the Factor Mean 

F1 = 1 

X1 X2 X3 X4 

e1 e2 e3 e4 

λ11 λ21 λ31 λ41 

1 
μ1 

μ2 μ3 

μ4 Κ1 = 0 

“Z-Score”  Fix factor mean to 0,  
estimate all item intercepts 

Item intercept is expected outcome 
when factor = 0 (when item = mean) 

“Marker Item”  Fix 1 item intercept 
to 0; estimate factor mean 

Item intercept is expected outcome 
when factor = 0 (when item = 0) 

F1 = ? 

X1 X2 X3 X4 

e1 e2 e3 e4 

1 λ21 λ31 λ41 

1 
0 

μ2 μ3 

μ4 Κ1 = ? 



CFA Model Identification: 
Two Options for Scaling the Factor 

• Summary: 2 options for giving the factor a scale: 
– Marker item: Borrow a scale from one of the items 

• Fix that item’s factor loading to 1 and its intercept to 0 

• Factor variance is interpreted using the “reliable” part of that item 

– Z-score: Put factor on scale of mean=0 and variance=1 

• Then all item factor loadings and all item intercepts are estimated 

• Can’t be used in higher-order factor models 

• Most common approach is a hybrid: 
• Fix factor mean to 0, estimate all item intercepts  “z-score” 

• Estimate factor variance, fix first item factor loading to 1  “marker” 

• In reality, all methods of scaling the factor will fit equivalently 
well, so long as the marker item loads at all  



Factor Model Identification 
• Goal: Reproduce observed covariance matrix among items with as few 

estimated parameters as possible 
– Maximum likelihood usually used to estimate model parameters 

• Measurement Model: Factor loadings, item intercepts, error variances 

• Structural Model: Factor variances and covariances, factor means 

– Global model fit is evaluated as difference between model-predicted matrix 
and observed matrix (but only the covariances really contribute) 

 

• How many possible parameters can you estimate (total DF)?  
– Total DF depends on # ITEMS  p   (NOT on # people) 

– Total number of ‘unique elements’ in covariance matrix 
• Unique elements = each variance, each covariance, each mean  

• Total unique elements = (p(p+1) / 2) + p  if 4 items, then ((4*5)/2) + 4 = 14 

• Model degrees of freedom (df) 
– Model df = # possible parameters − # estimated parameters 



μ2 μ1 

Under-Identified Factor:  
2 Items 

• Model is under-identified when there are more unknowns then pieces of 
information with which to estimate them 

– Cannot be solved because there are an infinite number of different parameter 
estimates that would result in perfect fit 

– Example: Solve x + y = 7 ?? 

F1 

X1 X2 

e1 e2 

λ11 λ21 

Total possible df = unique elements = 5 

0 factor variances 
0 factor means 
2 loadings             OR    
2 item intercepts 
2 error variances  
                      df = 5 – 6 = -1 

If ry1,y2 = .64, then: 

λ11 = .800, λ21 = .800 ?? 
λ11 = .900, λ21 = .711 ??  
λ11 = .750, λ21 = .853 ?? 

1 factor variance 
1 factor mean  
1 item loading 
1 item intercept 
2 error variances 

You’d have to set 
the loadings to be 
equal for the 
model to be 
identified. 



Just-Identified Factor:  
3 Items 

• Model is just-identified when there are as many unknowns as  
pieces of information with which to estimate them 

– Parameter estimates have a unique solution that will perfectly  
reproduce the observed matrix 

– Example: Solve x + y = 7, 3x – y = 1 

Total possible df = unique elements = 9 
 
0 factor variances 
0 factor means 
3 loadings             OR    
3 item intercepts 
3 error variances  
                        df = 9 – 9 = 0 

Not really a model – more like a description 

F1 

Y1 Y2 Y3 

e1 e2 e3 

λ11 λ21 λ31 

μ1 μ2 μ3 

1 factor variance 
1 factor mean  
2 item loadings 
2 item intercepts 
3 error variances 



Solving a Just-Identified Model 

• Step 1:      ab = .595 
  ac = .448 
  bc = .544 

• Step 2: b = .595/a 
  c = .488/a 
  (.595/a)(.448/a) = .544 

• Step 3: .26656/a2 = .544 
   a = .70 

• Step 4: .70b = .595   b = .85 
  .70c = .448   c = .64  

• Step 5:  Var(e1) =  1- a2 = .51  

F1 = 1 

Y1 Y2 Y3 

e1 e2 e3 

a b c 

       Y1       Y2      Y3 

Y1   1.00 

Y2   .595   1.00 

Y3   .448   .544   1.00 



Over-Identified Factor:  
4+ Items 

• Model is over-identified when there are fewer unknowns than  
pieces of information with which to estimate them 

– Parameter estimates have a unique solution that will NOT  
perfectly reproduce the observed matrix 

– NOW we can test model fit 
Total possible df = unique elements = 14 

0 factor variances 
0 factor means 
4 loadings             OR    
4 item intercepts 
4 error variances 

          df = 14 – 12 = 2 

Did we do a ‘good enough’ job reproducing 
the matrix with 2 fewer parameters than was 
possible to use? 

F1 

Y1 Y2 Y3 Y4 

e1 e2 e3 e4 

λ11 λ21 λ31 λ41 

1 factor variance 
1 factor mean  
3 item loadings 
3 item intercepts 
4 error variances 

μ1 μ2 μ3 μ4 



Indices of Global Model Fit 

• Primary: obtained model χ2 = FML(N-1) 
– Χ2 is evaluated based on model df (# parameters left over) 

– Tests null hypothesis that Σ = S (that model is perfect), so significance 
is undesirable (smaller χ2, bigger p-value is better) 

– Just using χ2 is insufficient, however: 

• Distribution doesn’t behave like a true χ2 if sample sizes are small  
or if items are non-normally distributed  

• Obtained χ2 depends largely on sample size  

• Is unreasonable null hypothesis (perfect fit??) 

• Because of these issues, alternative measures of fit are 
usually used in conjunction with the χ2 test of model fit 
– Absolute Fit Indices (besides χ2) 

– Parsimony-Corrected; Comparative (Incremental) Fit Indices 



Indices of Global Model Fit 

• Absolute Fit: χ2 
– Don’t use ‘ratio rules’ like χ2/df > 2 or χ2/df > 3  

 

• Absolute Fit: SRMR 
– Standardized Root Mean Square Residual 

– Get difference of Σ and S  residual matrix 

– Sum the squared residuals in matrix, divide by number of residuals 
summed 

– Ranges from 0 to 1: smaller is better 

– “.08 or less”  good fit 

 

• See also: RMR (Root Mean Square Residual) 



Indices of Global Model Fit 

Parsimony-Corrected: RMSEA 
• Root Mean Square Error of Approximation 

• Relies on a non-centrality parameter (NCP) 
– Indexes how far off your model is  χ2 distribution shoved over 

– NCP  d = (χ2 – df) / (N-1)   Then, RMSEA = SQRT(d/df) 

– RMSEA ranges from 0 to 1; smaller is better 

– < .05 or .06 = “good”, .05 to .08 = “acceptable”,  
.08 to .10 = “mediocre”, and >.10 = “unacceptable” 

– In addition to point estimate, get 90% confidence interval 

– RMSEA penalizes for model complexity – it’s discrepancy in fit per df 
left in model (but not sensitive to N, although CI can be) 

– Test of “close fit”: null hypothesis that RMSEA ≤ .05 



Indices of Global Model Fit 

Comparative (Incremental) Fit Indices 
• Fit evaluated relative to a ‘null’ model (of 0 covariances) 

• Relative to that, your model should be great! 

• CFI: Comparative Fit Index 
– Also based on idea of NCP (χ2 – df) 

– CFI = 1 –  max [(χ2
T – dfT),0] 

                 max [(χ2
T – dfT), (χ2

N – dfN), 0] 

– From 0 to 1: bigger is better, > .90 = “acceptable”, > .95 = “good” 

• TLI: Tucker-Lewis Index (= Non-Normed Fit Index) 
– TLI = (χ2

N/dfN) – (χ2
T/dfT) 

         (χ2
N/dfN) – 1 

– From <0 to >1, bigger is better, >.95 = “good” 

T = target model 
N = null model 



CFA THROUGH AN EXAMPLE 



Software for CFA and SEM 

• SAS has the CALIS procedure that will estimate 
the covariance-portion of a CFA/SEM model 

– Is somewhat dated now 

 

• Instead, I recommend the use of Mplus for 
CFA and SEM 

– Has many options – fairly easy to use 

– Used in our examples 



Our Data: Teacher Ratings 

• To demonstrate CFA, we will return to the 
teacher ratings data we used last week 

– First question: does a one-factor model fit the 
data? 



One Factor Results 

 



Results Interpretation 

• Model parameters: 36 
– 12 item intercepts (means – just 𝑋 ) 
– 12 factor loadings  
– 12 unique variances 
– 0 factor variances (factor variance set to one) 

• Model fit: 
– RMSEA: 0.125 (“good” is < 0.05) 
– CFI: 0.867 (“good” > 0.95) 
– TLI: 0.837 (“good” > 0.95) 

• Conclusion:  
– One factor model does not fit data very well 



Two Factor Model 

• What happens when we use some of the 
information from last week and build a two-
factor model? 
– Competency factor: (13, 14, 15, 16, 17) 
– Friendliness factor: (18, 19, 20, 21) 

• But what about items 22, 23, and 24? 
 
 
 
 

  



Mixing Known Factors  
with Unknown Items 

• Because we more-or-less know how 9 of our 
items work, we can be less specific about the 
rest of our items 
– Allow them to load onto both factors 

– See if any loadings are significantly different from 
zero 

• There are other methods we could use to see 
how these items functioned 
– LaGrange multipliers (modification indices) 



Two Factor Model #1 

 



Factor Loadings: 

• Item 22: 
– No loading onto 

competency factor 
– Loading onto 

friendliness factor 

• Items 23 & 24: 
– Loadings about the 

same magnitude on 
both factors 

– Inconclusive results 
• Perhaps we should 

omit the items? 

 
 



Results Interpretation 

• Model parameters: 40 
– 12 item intercepts (means – just 𝑋 ) 
– 15 factor loadings  
– 12 unique variances 
– 1 factor covariance 
– 0 factor variances (factor variance set to one) 

• Model fit: 
– RMSEA: 0.093 (“good” is < 0.05) 
– CFI: 0.932 (“good” > 0.95) 
– TLI: 0.911 (“good” > 0.95) 

• Conclusion:  
– Two factor model does not fit data very well 



Perhaps Another Factor? 

• Items 23 and 24 seem to have another thing in 
common: the wording of their questions is 
very similar 

– Perhaps this indicates another factor 



Three Factor Model 

 



Results Interpretation 

• Model parameters: 39 
– 12 item intercepts (means – just 𝑋 ) 
– 12 factor loadings  
– 12 unique variances 
– 3 factor covariances 
– 0 factor variances (factor variance set to one) 

• Model fit: 
– RMSEA: 0.082 (“good” is < 0.05) – borderline  
– CFI: 0.947 (“good” > 0.95) – acceptable  
– TLI: 0.931 (“good” > 0.95) – acceptable  

• Conclusion:  
– Three factor model fits data adequately 



Three Factor Model Estimates 

 



Model Predicted Covariance Matrix 

• To show how CFA works…We can confirm in 
IML the model predicted covariances 

𝚺 = 𝚲𝚽𝚲′ + 𝚿 



SAS… 





COMPARING CFA AND EFA 



Comparing CFA and EFA 

• Although CFA and EFA are very similar, their 
results can be very different for 2 or more 
factors 

• Recall, EFA typically assumes uncorrelated 
factors 

• If we fix our factor correlation to zero, a CFA 
model becomes very similar to an EFA model 

– But…with one exception… 

 



EFA Model Constraints 

• For more than one factor, the EFA model has 
too many parameters to estimate 
– Uses identification constraints: 

𝚲′𝚿𝚲 = 𝚫 

where 𝚫 is diagonal 

 

• This constraint puts m*(m-1)/2 constraints on 
the loadings and uniquenesses 
– Multivariate constraints 

 



Model Likelihood Function 

• Under maximum likelihood estimators, both 
EFA and CFA use the same likelihood function 

– Multivariate normal 

– Mplus: full information 

– SAS: sufficient statistics (i.e., Wishart distribution 
for the covariance matrix) 

 



CFA Approaches to EFA 

• Therefore, we can approach an EFA model using a CFA  
– We just need to set the right number of constraints for 

identification 
– We set the value of factor loadings for a few items on a few of 

the factors 
• Typically to zero 
• Sometimes to one 

– We keep the factor covariance matrix as an identity 

• Benefits:  
– Our constraints remove rotational indeterminacy of factor 

loadings 
– Defines factors with potentially less ambiguity 

• Constraints are easy to see 

– For some software (SAS), we get more model fit information 

 



EFA with CFA Constraints 

• The constraints in CFA are 

– Fixed factor loadings (set to either zero or one) 

• Use “row echelon” form : 

• One item has only one factor loading estimated 

• One item has only two factor loadings estimated 

• One item has only three factor loadings estimated 

– Fixed factor covariances 

• Set to zero 



Re-Examining Our EFA of the Teacher 
Ratings Data – with CFA 

• We will fit a series of “just-identified” CFA 
models and examine our results 

 

• NOTE: the one factor model CFA model will be 
identical to the one factor EFA model 

– The loadings and unique variances in the EFA 
model are the standardized versions from the CFA 
model 

 



One Factor Results 

 



Two Factor Results 

 



Three Factor Results 

 



Four Factor Results 

 



Model Comparison 

Model AIC BIC RMSEA CFI 

1 Factor 36,747.899 36,823.019 0.125 0.867 

2 Factor 35,933.855 36,181.232 0.079 0.958 

3 Factor 35,667.586 35,967.596 0.047 0.988 

4 Factor 35,593.207 35,940.587 0.025 0.998 



Three Factor Model Results 

 



Wrapping Up 

• Today we covered an introduction CFA and SEM 

• The main point of this lecture is to show how 
each of these 
– Fits into a mixed modeling framework  

• Multivariate normal 

– Subsumes the EFA and CCA techniques used in the 
past 

• The link between CFA/SEM and mixed models is 
important to understand 
– Latent variables = random effects (broadly construed) 



Up Next 

• Tuesday: Multidimensional Scaling, Classical 
Clustering, Distance Methods 

 

• Wednesday: Latent class/finite mixture 
models 

 

• Thursday: Missing data methods 


