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Today’s Class

An Introduction to:
— Confirmatory Factor Analysis (CFA)
— Structural Equation Modeling (SEM)

Placing both within the linear modeling framework
— The return of the multivariate normal distribution

A Description of how CFA and EFA differ statistically

Showing how these methods have subsumed canonical
correlation analysis



A Brief Review of
Exploratory Factor Analysis

* EFA: “Determine nature and number of latent variables that
account for observed variation and covariation among set of
observed indicators (= items or variables)”

— In other words, what causes these observed responses?
— Summarize patterns of correlation among indicators
— Solution is an end (i.e., is of interest) in and of itself

 PCA: “Reduce multiple observed variables into fewer
components that summarize their variance”
— In other words, how can | abbreviate this set of variables?
— Solution is usually a means to an end



Big Conceptual Difference
between PCA and EFA

In PCA, we get components that are outcomes built from
linear combinations of the items:

= G =L Xy + Xy + LigXs + LKy + LysXs

= G = LpaXy + LXKy + LygXs + Ly Xy + LysXs

— ... and so forth — note that C is the OUTCOME

* This is not a testable measurement model by itself

In EFA, we get factors that are thought to be the cause of the
observed indicators (here, 5 indicators, 2 factors):

— Xy =LF+ LR+ ey

— X, =Ly + L0+ ey

— X3=L5F +L55F, e

— ... and so forth... but note that F is the PREDICTOR -> testable



PCA vs. EFA/CFA

Component
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This IS a testable measurement
model, because we are trying to
predict the observed covariances
between the indicators by creating a
factor — the factor IS the reason for
the covariance

This is not a testable
measurement model,
because how do we know
if we’ve combined items
“correctly”?



Big Conceptual Difference
between PCA and EFA

In PCA, the component is just the sum of the parts, and there is no inherent
reason why the parts should be correlated (they just are)
— But it’s helpful if they are (otherwise, there’s no point in trying to build

components to summarize the variables)
* “component” = “variable”

— The type of construct measured by a component is often called an ‘emergent’
construct —i.e., it emerges from the indicators (“formative”)

— Examples: “Lack of Free time”, “SES”, “Support/Resources”

In EFA, the indicator responses are caused by the factors, and thus should be
uncorrelated once controlling for the factor(s)

— The type of construct that is measured by a factor is often called a ‘reflective’

construct —i.e., the indicators are a reflection of your status on the latent
variable

— Examples: Any other hypothetical construct



Intermediate Summary...

PCA and EFA are both exploratory techniques geared loosely
towards examining the structure underneath a series of
continuous indicators (items or subscales):

— PCA: How do indicators linearly combine to produce a set of
uncorrelated linear composite outcomes?

— EFA: What is the structure of the latent factors that produced the
covariances among the observed indicators (factor = predictor)?

Involves sequence of sometimes ambiguous decisions:
— Extraction method

— Number of factors

— And then: rotation, interpretation, and factor scores...



Factor Scores in EFA:
Just Say No

* Factor Indeterminacy (e.g., Grice, 2001):
— There is an infinite number of possible factor scores that all have the
same mathematical characteristics
— Different approaches can yield very different results

* Asimple, yet effective solution is simply sum the items that

load highly on a factor...“Unit-weighting”

— Research has suggested that this ‘simple’ solution is more effective
when applying the results of a factor analysis to different samples —

factor loadings don’t replicate all that well
— Just make sure to standardize the indicators first if they are on
different numerical scales

* Use CFA/SEM —you don’t need the factor scores



CONFIRMATORY FACTOR ANALYSIS



Confirmatory Factor Analysis

Rather than trying to determine the number of factors, and
subsequently, what the factors mean (as in EFA), if you already
know (or suspect) the structure of your data, you can use a
confirmatory approach

Confirmatory factor analysis (CFA) is a way to specify which
variables load onto which factors

The loadings of all variables not related to a given factor are then
set to zero

For a reasonable number of parameters, the factor correlation can
be estimated directly from the analysis (rotations are not needed)



EFA vs. CFA, continued

* How we get an interpretable solution...
— EFA: Rotation

* All items load on all factors

* Goal is to pick a rotation that gives closest approximation to
simple structure (clear factors, fewest cross-loadings)

* No way of separating ‘content’ from ‘method’ factors

— CFA: Your job in the first place!
e CFA must be theory-driven
* You specify number of factors and their inter-correlations
* You specify which items load on which factors (yes/no)
* You specify any unique (error) relations for method variance



EFA vs. CFA, continued

* How we judge model fit...
— EFA: Eye-balls and Opinion

» #Factors? Scree plots, interpretability...

 Which rotation? Whichever makes most sense...
 Which indicators load? Cut-off of .3-.4ish

— CFA: Inferential tests via of Maximum Likelihood
* Global model fit test
* Significance of item loadings
» Significance of error variances (and covariances)

* Ability to test appropriateness of model constraints or
model additions via tests for change in model fit



EFA vs. CFA, continued

e What we do with the latent factors...

— EFA: Don’t compute factor scores...
e Factor indeterminacy issues

* Inconsistency in how factor models are applied to data

— Factor model based on common variance only
— Summing items? That’s using total variance (component)

— CFA: Let them be part of the model

* Don’t need factor scores, but they are less indeterminate in
CFA than in EFA (although still assumed perfect then)

* Better: Test relations with latent factors directly through SEM

— Factors can be predictors (exogenous) or outcomes (endogenous) or both
at once as needed

— Relationships will be disattenuated for measurement error



(B fth
CFA Model WITH Factor (But some of these
restricted for the model

Means and Item Intercepts oo ienited

Measurement Model: TAG 5 Alg Structural Model:
N's = factor loadings n 2 7 F’s = factor variances
e’s = error variances 1 Mg Cov = factor covariances

l's = item intercepts K’s = factor means



2 Types of CFA Solutions

* CFA output comes in unstandardized and standardized versions:

* Unstandardized = predicts scale-sensitive original item response:
— Xis =W +AF + e
— Useful when comparing solutions across groups or time

— Note the solution asymmetry: item parameters p; and A, will be given in the item metric,
but e;; will be given as the error variance across persons for that item

— Var(X;) = [N\** Var(F)] + Var(e)

« Standardized -2 solution transformed to Var(Y;)=1, Var(F)=1:

— Useful when comparing items within a solution (on same scale then)

— Standardized intercept = p; / SD(Y) = not typically reported
— Standardized factor loading = [A; * SD(F)] / SD(Y) = item correlation with factor
— Standardized error variance = 1 — standardized A2 = “variance due to not factor’

)

— R?for item = standardized A2 = “variance due to the factor”



CFA Model Equations
with Item Intercepts

Measurement model per item (numbered) for subject s:

— Xis =My + A Fyg +0F, +ey You decide how many factors and

— Xy = W, + A F;. +0F,, +e, whether each item loads (loading
then estimated) or not.

— X3 = M3 +AqFp +0F +ey )

— X4 = My ¥ Ay Fy. +0F,, +e, Unstandardized loadings (A)

— Xe,=Hs+ OF, +A,F, +e. are the slopes of regressing the
response (Y) on the factor (X).

— Xes= Mg+ OFy +AgFy +eg _ .

Standardized loadings are the

— X;o=H,+ OF, +A,F, +e : . -
7s = M7 1s 727 2s 7s slopes in a correlation metric (and

— Xgs = Mg+ OF o +AgF) +eg Std Loading? = reliability).
The equation predicting each item Intercepts (1) are expected
resembles a linear regression model: value of Y (item) when all

factors (X’s) are O (no misfit).
Yis = Bgi + By Xi + ByXys + €



Expressing the CFA Model in Matrices:
Factor Loadings

* If we put our loadings into a matrix A (size p
items by m factors)




Expressing the CFA Model in Matrices:
Unique Variances

* |f we put our unique variances into a matrix W (size p
items by p items)

Pz 0 0 0 0 0 0 0]
0 % 0 0 0 0 0 O
o 0 % 0 0 0 0 O
w_|0 0 O 2.0 0 0 0
o 0 0 0 Y& 0 0 0
0o 0 0 0 0 2 0 0
o 0 0 0 0 0 Yz 0

0 0 0O O O 0 0 i




Expressing the CFA Model in Matrices:
Factor Covariances

* |f we put our factor covariances into a matrix
® (size m factors by m factors):

b — [¢11 ¢12]

(:blZ ¢22



The Result

* The CFA model then predicts the observed

covariance matrix of the items by:
X=APAN +¥P

[ A2+ A11A21 AMi1Asr Ani@izAa2 A11@i2Ase A11@12A62
A11A21 A31 + 1o A21A31  A21d12A42  A21012A52  A21912M62
5 _ A11A31 A21A31 A+ U3 As1o12Aa2 As1d12ds2 Az1d12M62
Mi1d12Aa2 Aa1d1aha Az1d12dn Afy + Uy Ag2A52 Ag2A62
AM1@12A52  A21012A52  A31012A52 Ag2As2 A3y + s As5262
| AM1012A62  A21012A62  Az1012A62 Ag2A62 A52A62 Aey + 6|




CFA Model Predictions
F, BY X,-X,, F, BY Xc-Xq

Two items from same factor (room for misfit):
* Unstandardized solution: Covariance,, ,, = Ay;*Var(F,)*A,,

 Standardized solution:  Correlation,, ,, = A;;*(1)*A,; —>std loadings

* ONLY reason for cor,, ,, is common factor (local independence, LI)

x1,Xx

Two items from different factors (room for misfit):

H H . 1 - * *
* Unstandardized solution: Covariance,; ,g = Aj;*cov, ,*Ag,

 Standardized solution:  Correlation,, . = A;;*corg, ,*Ag, >std loadings
* ONLY reason for cor,, .4 is correlation between factors (again, LI)

Variances are additive (and will be reproduced correctly):
* Var(X,) =(A,2)*Var(F,) + Var(e,;) = note imbalance of A and e




Assumptions of CFA Models

Dimensionality is assumed known (from number of latent traits)

— Local Independence = e’s are independent after controlling for factor(s)

Linear model = a one-unit change in latent trait/factor F has same
increase in expected item response (Y) at all points of factor (X)

— Won’t work well for binary/ordinal data... thus, we need IRT
— Often of questionable utility for Likert scale data (normality?)

Goal is to predict covariance between items = basis of model fit
— Variances will always be perfectly reproduced; covariances will not be

CFA models are usually presented without p, (the item intercept)

— W; doesn’t really matter in CFA because it doesn’t contribute to the covariance,
but we will keep it for continuity with IRT

— Item intercepts are also important when dealing with factor mean diffs



CFA Model Identification:
Create a Scale for the Latent Variable

“Marker ltem”

 The factor doesn’t exist, so it needs a
scale (a mean and variance):

* Two equivalent options to do so

* Create a scale for the VARIANCE:
— 1) Scale using a marker item
@ @ * Fix one loading to 1; factor is scaled as

reliable part of that marker item
* Loading =.9, variance =167
Var(F,) = (.9%)*16 = 12.96
— 2) Fix factor variance to 1
* Factor is interpreted as z-score

e Can’t be used in other models
with higher-order factors




CFA Model Identification:

Two Options for Scaling the Factor Mean

“Marker Item” - Fix 1 item intercept “Z-Score” - Fix factor mean to O,
to 0; estimate factor mean estimate all item intercepts
ltem intercept is expected outcome ltem intercept is expected outcome

when factor = 0 (when item = 0) when factor = 0 (when item = mean)



CFA Model Identification:

Two Options for Scaling the Factor

Summary: 2 options for giving the factor a scale:

— Marker item: Borrow a scale from one of the items

e Fix that item’s factor loading to 1 and its intercept to O
* Factor variance is interpreted using the “reliable” part of that item

— Z-score: Put factor on scale of mean=0 and variance=1

* Then all item factor loadings and all item intercepts are estimated

e Can’t be used in higher-order factor models
Most common approach is a hybrid:

* Fix factor mean to 0, estimate all item intercepts = “z-score”

» Estimate factor variance, fix first item factor loading to 1 - “marker”
In reality, all methods of scaling the factor will fit equivalently
well, so long as the marker item loads at all



Factor Model Identification

Goal: Reproduce observed covariance matrix among items with as few
estimated parameters as possible

— Maximum likelihood usually used to estimate model parameters
* Measurement Model: Factor loadings, item intercepts, error variances
» Structural Model: Factor variances and covariances, factor means

— Global model fit is evaluated as difference between model-predicted matrix
and observed matrix (but only the covariances really contribute)

How many possible parameters can you estimate (total DF)?
— Total DF depends on # ITEMS = p (NOT on # people)

— Total number of ‘unique elements’ in covariance matrix
* Unique elements = each variance, each covariance, each mean
* Total unique elements = (p(p+1) / 2) + p =2 if 4 items, then ((4*5)/2) + 4 = 14

Model degrees of freedom (df)
— Model df = # possible parameters - # estimated parameters



Under-ldentified Factor:
2 ltems

 Modelis under-identified when there are more unknowns then pieces of
information with which to estimate them

— Cannot be solved because there are an infinite number of different parameter
estimates that would result in perfect fit

— Example: Solve x+y =7 ??
Total possible df = unique elements =5
You’d have to set

the loadings to be 0 factor variances 1 factor variance
equal for the 0 factor means 1 factor mean
EZ:;L;%P‘E 2 loadings OR 1 item loading
2 item intercepts 1 item intercept
2 error variances 2 error variances
p1x1 df=5-6=-1

Ifr, ,=.64, then:

(&) (& Ay = 800, )y, = 800 7

Ay, =.900, Ay, =.711 ??
Ay, =.750, A, = .853 ??



Just-ldentified Factor:
3 [tems

 Modelis just-identified when there are as many unknowns as
pieces of information with which to estimate them

— Parameter estimates have a unique solution that will perfectly
reproduce the observed matrix

— Example: Solvex+y=7,3x—-y=1

Total possible df = unique elements =9

0 factor variances 1 factor variance

0 factor means 1 factor mean

3 loadings OR 2 item loadings

3 item intercepts 2 item intercepts

3 error variances 3 error variances
df=9-9=0

Not really a model — more like a description



Solving a Just-ldentified Model

Step1: ab=.595
ac = .448
bc =.544

» Step 2: b =.595/a
c =.488/a
(.595/a)(.448/a) = .544

» Step 3: .26656/a% = .544
a=.70

e Step 4: .70b =.595 b=.85
./0c=.448 c=.64

» Step 5: Var(e,) = 1-a%=.51

Y, 1.00
Y, .595 1.00
Y, .448 544 1.00



Over-ldentified Factor:
4+ ltems

e Modelis over-identified when there are fewer unknowns than
pieces of information with which to estimate them

— Parameter estimates have a unique solution that will NOT
perfectly reproduce the observed matrix

— NOW we can test model fit

Total possible df = unique elements = 14

0 factor variances 1 factor variance

0 factor means 1 factor mean

4 loadings OR 3 item loadings

4 item intercepts 3 item intercepts

4 error variances 4 error variances
df=14-12=2

Did we do a ‘good enough’ job reproducing
the matrix with 2 fewer parameters than was
possible to use?



Indices of Global Model Fit

* Primary: obtained model x? = F,, (N-1)
— XZ%is evaluated based on model df (# parameters left over)

— Tests null hypothesis that 2 = S (that model is perfect), so significance
is undesirable (smaller x?, bigger p-value is better)

— Just using ¥? is insufficient, however:

 Distribution doesn’t behave like a true x? if sample sizes are small
or if items are non-normally distributed

* Obtained x? depends largely on sample size
* Is unreasonable null hypothesis (perfect fit??)
 Because of these issues, alternative measures of fit are
usually used in conjunction with the x? test of model fit
— Absolute Fit Indices (besides x?)
— Parsimony-Corrected; Comparative (Incremental) Fit Indices



Indices of Global Model Fit

* Absolute Fit: x2
— Don’t use ‘ratio rules’ like x?/df > 2 or x?/df > 3

e Absolute Fit: SRMR

— Standardized Root Mean Square Residual
— Get difference of 2 and S = residual matrix

— Sum the squared residuals in matrix, divide by number of residuals
summed

— Ranges from 0 to 1: smaller is better
— “.08 or less” = good fit

* See also: RMR (Root Mean Square Residual)



Indices of Global Model Fit

Parsimony-Corrected: RMSEA

* Root Mean Square Error of Approximation

* Relies on a non-centrality parameter (NCP)

Indexes how far off your model is = ¥? distribution shoved over
NCP - d = (x*>—df) /(N-1) Then, RMSEA = SQRT(d/df)
RMSEA ranges from 0 to 1; smaller is better

< .05 or .06 = “good”, .05 to .08 = “acceptable”,
.08 to .10 = “mediocre”, and >.10 = “unacceptable”

In addition to point estimate, get 90% confidence interval

RMSEA penalizes for model complexity — it’s discrepancy in fit per df
left in model (but not sensitive to N, although Cl can be)

Test of “close fit”: null hypothesis that RMSEA < .05



Indices of Global Model Fit

Comparative (Incremental) Fit Indices

* Fit evaluated relative to a ‘null’ model (of O covariances)
e Relative to that, your model should be great!
* CFl: Comparative Fit Index

— Also based on idea of NCP (x?— df)

— CFl=1- max [(x*; — df}),0] T = target model
max [(XZT - dfT); (XZN - di)r 0] N = null model
— From O to 1: bigger is better, > .90 = “acceptable”, > .95 = “good”

e TLI: Tucker-Lewis Index (= Non-Normed Fit Index)

— TLI = (XZN/di) - (XZT/dfT)
(XZN/di) -1

— From <0 to >1, bigger is better, >.95 = “good”




CFA THROUGH AN EXAMPLE



Software for CFA and SEM

* SAS has the CALIS procedure that will estimate
the covariance-portion of a CFA/SEM model

— Is somewhat dated now

* |nstead, | recommend the use of Mplus for
CFA and SEM

— Has many options — fairly easy to use
— Used in our examples



Our Data: Teacher Ratings

 To demonstrate CFA, we will return to the
teacher ratings data we used last week

— First question: does a one-factor model fit the

data?
----- Alphabetic List of Variables and Attributes=====
Variable Type Len Pos Label
ITEM13 Num 8 0 INSTRUC HWELL PREPARED
ITEM14 Num 8 8 INSTRUC SCHOLARLY GRASP
ITEMIS Num 8 16 INSTRUCTOR CONF IDENCE
ITEMI6 Num 8 24 INSTRUCTOR FOCUS LECTURES
ITEMI7 Num 8 32 INSTRUCTOR USES CLEAR BELEVANT EXAMPLES
ITEMI8 Num 8 40 INSTRUCTOR SENSITIVE TO STUDENTS
ITEMIS Num 8 48 INSTRUCTOR ALLOWS ME TO ASK QUESTIONS
ITEM20 Num 8 56 INSTRUCTOR IS ACCESSIBLE TO STUDENTS OUTSIDE CLASS
ITEM21 Num 8 64 INSTRUCTOR AWARE OF STUDENTS UNDERSTAND ING
ITEM22 Num 8 72 I AM SATISFIED WITH STUDENT PERFORMANCE EVALUAT ION
ITEM23 Num 8 80 COMPARED TO OTHER INSTRUCTORS, THIS INSTRUCTOR 1S
ITEM24 Num 8 88 COMPARED TO OTHER COURSES THIS COURSE WAS



One Factor Results

¥ Mplus - [teacherlinp]

5 File Edit View Mplus

N & || & @

Graph

Window

TITLE:
teachers
DATR:
FILE
VARTLEBLE :
HAMES = ITEM13-ITEMZ4:;
MISSTHG = LLL(29);

teachers.csv;

MODEL:

Fl by ITEM13* ITEM14-TTEMZ24

F1@1;
OUTEUT :
RESIDUAL MODINDICES STAMND:

MODEL FIT INFORMATION

Humber of Free Parameters 36
Loglikelihood
HO Value -18337.949
H1 Value -17707.861

Information Criteria

Akaike (RIC) 36747.829

Bayesian (BIC) 36937.37%

Sample-Size Adjusted BIC 38823.019
[m* = (n + 2} / 24)

Chi-Sguare Test of Model Fit

Value 1260.178
Degree= of Freedom LS4
BE-Value 0.0000

RMSERA (Root Mean Square Error Of Approximation)

Estimate 0.125

90 Percent C.I. 0.119

Probability BMSER <= .05 0.000
CFI/TLI

CFI 0.867

TLI 0.837

Chi-Sguare Test of Model Fit for the Baseline Model

Value 9132.568
Degree= of Freedom 1
BE-Value 0.0000

S5BME (5tandardized Root Mean Sguare Residual)

Value 0.0680

0.131



Results Interpretation

* Model parameters: 36

— 12 item intercepts (means — just X)

— 12 factor loadings

— 12 unique variances

— 0 factor variances (factor variance set to one)
* Model fit:

— RMSEA: 0.125 (“good” is < 0.05)

— CFI: 0.867 (“good” > 0.95)

— TLI: 0.837 (“good” > 0.95)
* Conclusion:

— One factor model does not fit data very well



Two Factor Model

* What happens when we use some of the
information from last week and build a two-
factor model?

— Competency factor: (13, 14, 15, 16, 17)
— Friendliness factor: (18, 19, 20, 21)

 But what about items 22, 23, and 247

Variable Type Len Pos Label

ITEM13 Num 8 0 INSTRUC HWELL PREPARED

ITEM14 Num 8 8 INSTRUC SCHOLARLY GRASP

ITEMIS Num 8 16 INSTRUCTOR CONF IDENCE

ITEMI6 Num 8 24 INSTRUCTOR FOCUS LECTURES

ITEMI7 Num 8 32 INSTRUCTOR USES CLEAR BELEVANT EXAMPLES

ITEMI8 Num 8 40 INSTRUCTOR SENSITIVE TO STUDENTS

ITEMIS Num 8 48 INSTRUCTOR ALLOWS ME TO ASK QUESTIONS

ITEM20 Num 8 56 INSTRUCTOR IS ACCESSIBLE TO STUDENTS OUTSIDE CLASS
ITEM21 Num 8 64 INSTRUCTOR AWARE OF STUDENTS UNDERSTAND ING

ITEM22 Num 8 72 I AM SATISFIED WITH STUDENT PERFORMANCE EVALUAT ION
ITEM23 Num 8 80 COMPARED TO OTHER INSTRUCTORS, THIS INSTRUCTOR 1S
ITEM24 Num 8 88 COMPARED TO OTHER COURSES THIS COURSE WAS



Mixing Known Factors
with Unknown Items

e Because we more-or-less know how 9 of our
items work, we can be less specific about the
rest of our items

— Allow them to load onto both factors

— See if any loadings are significantly different from
Zero

e There are other methods we could use to see
how these items functioned

— LaGrange multipliers (modification indices)



Two Factor Model

5 | teacher2a.inp

TITLE:
teachers
DATR:
FILE = teachers.csv;
VARTABLE:
HAMES = ITEM13-ITEMZ24:
MIS5ING = ALL(99):

MCODEL:
Fl by ITEM13* ITEM14-ITEM17 ITEMZZ-TTEMZ4:
F2 by ITEM1S8+* ITEM1S-ITEMZ]1 ITEMZZ-TTEMZ4:
Fl with F2:;
F181; F2@1:

CUOTEUT :
RESIDUAL MOCDINDICES STAND:

MODEL FIT INFORMATION

Number of Free Parameters 40
Loglikelihood
HO Value -18039.160
H1l Value -17707.861

Information Criteria

Rkaike (RIC) 36158.321

Bayesian (BIC) 36368.854

Sample-5Size Rdjusted BIC 36241.788
[n* = (n + 2) / 24)

Chi-Square Test of Model Fit

Value 662 .600
Degree=s of Freedom 50
E-Value 0.0000

EMSEL (Root Mean Square Error Of Approximation)

Esztimate 0.083

90 Percent C.I. 0.08&

Probability BRMSER <= .05 0.000
CFI/TLI

CFI 0.932

TLI 0.911

Chi-Sqguare Test of Model Fit for the Baseline Model

Value 9132.568
Degrees of Freedom 66
B-Value 0.0000

SBEME (S5tandardized Boot Mean Sguare BResidual)

Value 0.042

0.08%



Factor Loadings:

MODEL RESULTS
Iwo-Tailed
Estimate 5.E. Est./5.E. F-Value

F1l BY
ITEM13 0.574 0.017 33.658 0.000
ITEM14 0.552 D.01& 33.607 0.000
ITEMI1G 0.584 0.017 33.951 0.000
ITEM1& 0.569 0D.021 27.734 0.000
ITEM17 0.703 0.021 33.687 0.000
ITEMZZ -0.065 0.051 -1.280 0.201
ITEMZ3 0.433 0.037 11.823 0.000
ITEMZ4 0.310 0.041 T.553 0.000

F2 BY
ITEM1S8 0.820 0.0249 33.681 0.000
ITEM1S 0.672 0D.024 27.742 0.000
ITEM2ZO 0.552 0.024 23.423 0.000
TITEMZ 1 0,735 0. 023 31,3068 0,000
ITEMZ2Z2 0.814 0.052 15.609 0.000
ITEMZ3 0.394 0.037 10.745 0.000
ITEMZ4 0.373 0.042 8.9%& 0.000

F1l WITH

F2 a.7&0 0.017 43.8923 0.000

ltem 22:

— No loading onto
competency factor

— Loading onto
friendliness factor

ltems 23 & 24:

— Loadings about the
same magnitude on
both factors

— Inconclusive results

* Perhaps we should
omit the items?



Results Interpretation

 Model parameters: 40
— 12 item intercepts (means — just X)
— 15 factor loadings
— 12 unique variances
— 1 factor covariance
— 0 factor variances (factor variance set to one)

* Model fit:
— RMSEA: 0.093 (“good” is < 0.05)
— CFI: 0.932 (“good” > 0.95)
— TLI: 0.911 (“good” > 0.95)
* Conclusion:
— Two factor model does not fit data very well



Perhaps Another Factor?

* |tems 23 and 24 seem to have another thing in
common: the wording of their questions is
very similar

— Perhaps this indicates another factor

Variable Type Len Pos Label

ITEM13 Num 8 0 INSTRUC HWELL PREPARED

ITEM14 Num 8 8 INSTRUC SCHOLARLY GRASP

ITEMIS Num 8 16 INSTRUCTOR CONF IDENCE

ITEMI6 Num 8 24 INSTRUCTOR FOCUS LECTURES

ITEMI7 Num 8 32 INSTRUCTOR USES CLEAR BELEVANT EXAMPLES

ITEMI8 Num 8 40 INSTRUCTOR SENSITIVE TO STUDENTS

ITEMIS Num 8 48 INSTRUCTOR ALLOWS ME TO ASK QUESTIONS

ITEM20 Num 8 56 INSTRUCTOR IS ACCESSIBLE TO STUDENTS OUTSIDE CLASS
ITEM21 Num 8 64 INSTRUCTOR AWARE OF STUDENTS UNDERSTAND ING

ITEM22 Num 8 72 I AM SATISFIED WITH STUDENT PERFORMANCE EVALUAT ION
ITEM23 Num 8 80 COMPARED TO OTHER INSTRUCTORS, THIS INSTRUCTOR 1S
ITEM24 Num 8 88 COMPARED TO OTHER COURSES THIS COURSE WAS



Three Factor Model

TITLE:
teachers
DATA:
FILE = teachers.csv;
VLRIABLE:
HAMES = ITEM13-ITEMZ4;
MISSING = ALL(99):

MODEL:
Fl by ITEM13* ITEM14-ITEMIlé&:;
F2 by ITEM18+* ITEM17 ITEM1S-ITEM2]1 ITEM2Z;
F3 by ITEM23* ITEMZ4;
Fl with F2; Fl with F3; F2 with F3;
F1@1; F2@1; F3@1;
CUTPUT :
RESIDUAL MODINDICES STAND:

MCODEL FIT INFCRMATICHN
Humker of Free Parameters
Loglikelihood

HO Value
H1 Value

Information Criteria

Akaike (BIC)

Bayesian (BIC)

Sample-5ize Adjusted BIC
[n* = (n + 2) J 24)

Chi-S5quare Test of Model Fit
Value

Degrees of Freedom
E-Value

39

-17975.
=-17707.

LS I
[ et

36028.3607
36233.637
36109.747

534.845
31
0.0000

BMSEL (Root Mean Sguare Error Of Approximation)

Ezstimate
90 Percent C.I.
Probability RMSEA <= .05

CFI/TLI

CFI
TLI

Chi-Square Test of Model Fit for the Baseline Model

Value
Degrees of Freedom
E-Value

0.082
0.075
0.000

0.947
0.9831

9132.568
1]
0.0000

SBEME (Standardized Root Mean Square Residual)

Value

0.044



Results Interpretation

 Model parameters: 39
— 12 item intercepts (means — just X)
— 12 factor loadings
— 12 unique variances
— 3 factor covariances
— 0 factor variances (factor variance set to one)

* Model fit:
— RMSEA: 0.082 (“good” is < 0.05) — borderline
— CFI: 0.947 (“good” > 0.95) — acceptable
— TLI: 0.931 (“good” > 0.95) — acceptable
* Conclusion:
— Three factor model fits data adequately



Three Factor Model Estimates

MODEL RESULTS

Variances
Fo-Tailed F1 1.000 0.000 999.000 999.000
Estimate S.E. Est./S.E. E-Value Fe 1.000 9.000 595.000 599.000
F3 1.000 0.000 999.000 999.000
Fi BY
ITEM13 0.588 0.017 34.547 0.ggp FResidual Variances
ITEM14 0.572 0.016 35.144 0.000 ITEMIS 0.187 @.010 20.156 0.000
ITEM1S 0.593 0.017 34.350 0.000 LrEMig g.176 9.008 19.913 0.000
ITEM16 0.559 0.021 26.819 0.000 ITEMIS 0.207 0.010 20.45%3 0.000
ITEM16 0.393 0.017 23.733 0.000
F2 — ITEM17 0.338 0.016 21.482 0.000
ITEMI1E 0.803 0.024 33.205 0.000 ITEM18 0.423 0.020 21.038 0.000
TTEM17 0.68 0.021 32263 0.000 ITEM19 0.515 0.022 23.464 0.000
ITEM19 0.651 0.024 26.969 0.000 ITEMZ0O 0.540 0.022 24 582 0.000
ITEM20 0.544 0.023 23,196 0.000 ITEM21 0.415 0.018 22.258 0.000
ITEM21 0.745 0.023 32,272 0.000 ITEMZ2Z 0.717 0.030 24.046 0.000
ITEM22 0.738 0.028 26.506 0.000 ITEM23 0.141 0.017 £.409 0.000
ITEM24 0.355 0.017 21.098 0.000
F3 BY
ITEM23 0.890 0.021 41.523 0.000
ITEM24 0.715 0.022 32.600 0.000
F1 WITH
F2 0.774 0.016 48.402 0.000
F3 0.776 0.016 43,570 0.000
F2 WITH

F3 0.1

=]
Pa
B3
=]

014 56.958 0.000



Model Predicted Covariance Matrix

* To show how CFA works...We can confirm in
IML the model predicted covariances

X=APA' +P



ROW1
ROWZ
ROW3
ROW4
ROWS
ROWG
ROWY
ROWSB
ROWS
ROW10
BOW11

ROW12

ROW1
ROW2
ROW3
ROW4
ROWS
ROWG
ROWY
ROWSB
ROWS
ROW10

oo oo oo

ROM11 0.4762586
ROM12 0.3826122

predcov 12 rows 12 cols
coL1 coLz coL3 CoL4
0.542744 0.336336 0.348684 0.328692
0.336336 0.503184 0.339196 0.319748
0.348684 0.3391396 0.558649 0.331487
0.328692 0.319748 0.331487 0.705481
. 3654549 0.3555%106 0.3685625% 0.3474308
3117517 0.3032687 0.3144027 0.2963762
L2962779 0.2882159 0.29879r73 0.2816656
.2475809 0.240844 0.2496862 0.235%3703
.3390584 0.3298324 0.3419416 0.3223362
.3358727 0.3267333 0.3387287 0.3193075
.4060963 0.3950461 0.4095495% 0.3860673
The S5A5 System

coL1 coLz coL3 coL4
.3262459 0.3173685% 0.3290201 0.3101556
COLY coLs coLa cCoL19
2962779 0.2475809 0.3390584 0.3358727
.2882159 0.240844 0.3298324 0.3267V333
.2987973 0.2496862 0.3419416 0.3387287
.2B816656 0.2353703 0.3223362 0.3193075
0.522753 0.436832 0.598235 0.592614
0.445935 0.37264 0.510325 0.50553
0.938801 0.354144 0.484995% 0.480438
0.354144 0.835936 0.40528 0.401472
0.4849495 0.40528 0.970025 0.54981
0.480438 0.401472 0.54981 1.261644
0.3979795 0.5450271 0.539906
0.3137251 0.4378589 0.4337447

(numer ic)

CoLs

0.3654549
0.3555106
0.3685625
0.3474308
0.9382809
0.550055
0.522753
0.436832
0.59823%
0.5%92614
0.5874587

CoLS
0.4719472
coL11

4060963
. 3950461
4095495
.JB6067H
5874587
5011323
4762586
.3973795
5450271
0.5%39906

0.9331
0.63635

COoOooooooOo

COLG

0.3117517
0.3032687
0.3144027
0.2963762
0.550055
0.832225
0.4459335
0.37264
0.5%10325
0.50553
0.5%011323

COLG
0.4025951
coLi12

. 3262459
.3173685
3290201
. 3101556
LA719472
4025951
.3826122
.3197251
.4378589
4337447
0.63635
0.866225

CSCoOoOoooooOOoOo



ITEM13
ITEM14
ITEM1S
ITEM1G
ITEM1T
ITEM1SZ
ITEM1S
ITEMZ20
ITEMZ21
ITEMZZ
ITEMZ23
ITEMZ4

ITEM1SZ
ITEM1S
ITEMZ20
ITEMZ21
ITEMZZ
ITEMZ23
ITEMZ4

ITEMZ23
ITEMZ4

Model Estimated Covariances/Correlations/Residual Correlations
ITEMI1S

ITEM13

. 543

.336
. 348
328
312
.366
.258
.248
. 340
.336
. 407
L3327

[ O e R e Y O Y e O e Y e Y IO i O e O i

ITEM14

. 502
.338
.318
.303
.356

fa g =)
fugal

241
.330
L3327
.385
317

L O e Y e Y i T e Y e O e Y i Y i I ]

L O e R e N O Y e O e Y e Y O

. 558
. 332
.315
.3689
.238
.250
. 342
.338
410
328

ITEM1G

[ O e Y e Y O i Y e O e Y e o |

L7035
L2587
. 348
282
.235
323
.318
.386
.310

ITEM1T

. 807
.551
. 446
373
.511
.5035
. 502
. 403

[ e Y e I O e T e O e Y o |

Model Estimated Covariances/Correlations/Residual Correlations
ITEMzZ0O

ITEM1SZ

.068
. 523
437
. 5388
. 583

[ e T e T O e Y B

ITEM1S

[ O e T e I i O e i

L O e Y e Y Y ]

.836
.405
.401
.388
320

ITEMZ21

[ e T e Y

871
. 550
. 545
. 438

ITEMZZ

1.261
0.540
0.434

Model Estimated Covariances/Correlations/Residual Correlations

ITEMZ23

0.934

0.636

ITEMZ4



COMPARING CFA AND EFA



Comparing CFA and EFA

* Although CFA and EFA are very similar, their

results can be very different for 2 or more
factors

* Recall, EFA typically assumes uncorrelated
factors

e |f we fix our factor correlation to zero, a CFA
model becomes very similar to an EFA model

— But...with one exception...



EFA Model Constraints

* For more than one factor, the EFA model has
too many parameters to estimate
— Uses identification constraints:
ANPA=A
where A is diagonal

* This constraint puts m*(m-1)/2 constraints on
the loadings and uniquenesses

— Multivariate constraints



Model Likelihood Function

 Under maximum likelihood estimators, both
EFA and CFA use the same likelihood function

— Multivariate normal
— Mplus: full information

— SAS: sufficient statistics (i.e., Wishart distribution
for the covariance matrix)



CFA Approaches to EFA

 Therefore, we can approach an EFA model using a CFA

— We just need to set the right number of constraints for
identification

— We set the value of factor loadings for a few items on a few of
the factors

* Typically to zero
* Sometimes to one

— We keep the factor covariance matrix as an identity

e Benefits:

— Our constraints remove rotational indeterminacy of factor
loadings

— Defines factors with potentially less ambiguity
* Constraints are easy to see
— For some software (SAS), we get more model fit information




EFA with CFA Constraints

e The constraints in CFA are

— Fixed factor loadings (set to either zero or one)

* Use “row echelon” form :

* One item has only one factor loading estimated

* One item has only two factor loadings estimated

* One item has only three factor loadings estimated

— Fixed factor covariances

* Set to zero



Re-Examining Our EFA of the Teacher
Ratings Data — with CFA

* We will fit a series of “just-identified” CFA
models and examine our results

e NOTE: the one factor model CFA model will be
identical to the one factor EFA model

— The loadings and unique variances in the EFA

model are the standardized versions from the CFA
model



One Factor Results

¥ Mplus - [teacherlinp]

5 File Edit View Mplus

N & || & @

Graph

Window

TITLE:
teachers
DATR:
FILE
VARTLEBLE :
HAMES = ITEM13-ITEMZ4:;
MISSTHG = LLL(29);

teachers.csv;

MODEL:

Fl by ITEM13* ITEM14-TTEMZ24

F1@1;
OUTEUT :
RESIDUAL MODINDICES STAMND:

MODEL FIT INFORMATION

Humber of Free Parameters 36
Loglikelihood
HO Value -18337.949
H1 Value -17707.861

Information Criteria

Akaike (RIC) 36747.829

Bayesian (BIC) 36937.37%

Sample-Size Adjusted BIC 38823.019
[m* = (n + 2} / 24)

Chi-Sguare Test of Model Fit

Value 1260.178
Degree= of Freedom LS4
BE-Value 0.0000

RMSERA (Root Mean Square Error Of Approximation)

Estimate 0.125

90 Percent C.I. 0.119

Probability BMSER <= .05 0.000
CFI/TLI

CFI 0.867

TLI 0.837

Chi-Sguare Test of Model Fit for the Baseline Model

Value 9132.568
Degree= of Freedom 1
BE-Value 0.0000

S5BME (5tandardized Root Mean Sguare Residual)

Value 0.0680

0.131



Two Factor Results

TITLE:
teachers
DATL :
FILE = teachers.csv;
VARIAELE :|
HAMES = ITEM13-ITEMZ4;
MTISS5THG = ALL(99);

MODEL:
Fl1 by ITEM13* ITEMI4-ITEMZ4:
FZ2 by ITEM14* TITEMIS-ITEMZ4:
Fl1 with F2E0;
F1@1; F2E1;

CUTFEUT :
EESIDUAL MODIMDICES S5TAND:

MODEL FIT INFORMATIOHN

NHumber of Free Parameters 47
Loglikelihood
HO WValue -1781%9.928
H1 Value -17707.861

Information Criteria

Akaike (RIC) 35933.855

Bayesian (BIC) 38181.232

Sample-5ize Adjusted BIC 36031.92%
m* = (n + 2} / 24)

Chi-S5guare Test of Model Fit

Value 424,134
Degrees of Freedom 43
E-Value 0.0000

RM5EL (Root Mean Sguare Error Of Approximation)

Eztimate 0.078

90 Percent C.I. 0.072

Probability RMSEA <= .05 0.000
CFI/TLI

CFI 0.958

TLT 0.935

Chi-S5quare Test of Model Fit for the Baseline Model

Value 9132.568
Degrees of Freedom &aa
E-Value 0.0000

SEMR (S5tandardized Root Mean Square Residual)

Value 0.025



Three Factor Results

MCDEL FIT INFORMATION

1 T
FITLE: Humber of Free Parameters 57
teachers Loglikelihood
DATH:
FILE = teachers.csv; HO Value -17776.793
VARIARLE : H1 Value -17707.861

NAMES = ITEM13-ITEM24;
MISSING = ALL(99);

Information Criteria

Lkaike (RIC) 35667.586

Bayesian (BIC) 35967.5596

MODEL: Sample-Size Adjusted BIC 35786.527
Fl1 by ITEM13* ITEM14-ITEMZ4: (n* = (n + 2) / 24)

F2 by ITEM14* ITEM1S5-ITEMZ4:

F3 by ITEM15* ITEM16-ITEM24; Chi-Square Test of Model Fit

Fl with F2@0; Fl1 with F3@0; F2Z with F3@0: Value 137.865
Fl@l; F2@1; F3@1; Degrees of Freedom 33
OUTPUT - P-Value 0.0000

RESIDUAL MODINDICES STAND;
EMSERL (Root Mean Square Error Of Approximation)

Esztimate 0.047

90 Percent C.I. 0.039 0.055

Probability RMSEA <= .05 0.701
CFI/TLI

CFI 0.988

TLI 0.3

Chi-Square Test of Model Fit for the Baseline Model

Value 9132 .568
Degrees of Freedom B
P-Value 0.0000

SBMR (Standardized Root Mean Sguare BResidual)

Value 0.014



Four Factor Results

TITLE:
teachers
DLTR:
FILE = teachers.csv;
VLRILBLE:
HAMES = ITEM13-ITEMZ4:
MISSING = ALL(99):

MCDEL:
Fl1 by ITEM13* ITEM14-ITEMZ4:
F2 by ITEM14* ITEM1S5-ITEMZ4:
F3 by ITEM1S* ITEM1&6-ITEMZ4:
F4 by ITEMl1&6* ITEM17-ITEMZ4:

Fl with F2@0:; F1 with F3E0; F1 with F4@0:
F2 with F3@0; F2 with F4@0;
F3 with F4@0;
Fi1@1; FZ@1:; F3@1:; F4@1:
CUTPUT :
RESIDUOAL MODINDICES STAND:

MCODEL FIT INFCRMATION

Humber of Free Parameters 13
Loglikelihood
HO Value -17730.604
H1 Value -17707.861

Information Criteria

Rkaike (RIC) 35593.207

Bayesian (BIC) 35940.587

Sample-5ize Adjusted BIC 35730.928
(m* = (n + 2) / 24)

Chi-Sguare Test of Model Fit

Value 45.486
Degrees of Freedom 24
B-Value 0.0051

EMSEA (Root Mean Sgquare Error Of Approximation)

Estimate 0.025

90 Percent C.I. 0.013

Probakility BRMSERL <= .05 1.000
CFI/TLI

CFI 0.9%8

TLI 0.993

Chi-Sguare Test of Model Fit for the Baseline Model

Value 9132.568
Degree=s of Freedom 1
B-Value 0.0000

SBEME (Standardized Root Mean Sguare Residual)

Value 0.008

0.036



Model Comparison

wosel lac  lmc  lmwseA o

1 Factor 36,747.899 36,823.019 0.125 0.867
2 Factor 35,933.855 36,181.232 0.079 0.958
3 Factor 35,667.586 35,967.596 0.047 0.988

4 Factor 35,593.207 35,940.587 0.025 0.998



10DEL RESULTS

F1

ITEM13
ITEM14
ITEM1S
ITEMlG
ITEM1T
ITEM1S
ITEM1S
ITEMZ20O
ITEMZ21
ITEMZZ
ITEMZ23
ITEMZ24

ITEM14
ITEMIS
ITEM1&
ITEMATY
ITEMIE
ITEMI1S
ITEMZ0O
ITEMZ]
ITEMZ22
ITEMZ3
ITEMZ4

Three Factor Model Results

Eztimate

o T s o T Y s o Y s Y s o Y s Y s i o

[ O s i T O s Y T i e o O v

. 602
T
. 576
. 355
. 645
511
. 346
. 350
. 568
463
676
325

032
.083
120
241
.823
.6828
.408
. 358
.4789
L1189
L0583

[ O s i T O s Y T i e o O v

o T s o T Y s o Y s Y s o Y s Y s i o

020
.034
.030
.11a
203
158
128
211
269
. 385
.405

Est./5.E.

11.
13.
21.
14.
25.
19.7

[ e T S S U S T

.613
. 730
.948
072
.06d
028
178
. 705
. T80
.301
231

Two-Tailed

F-Value

o T s o T Y s o Y s Y s o Y s Y s i o

[ O s i T O s Y T i e o O v

000
000
000
000
000
000
000
000
000
000
000
000

F3
ITEMIS
ITEM1&
ITEMAT
ITEMIS
ITEMI1S
ITEH20
ITEM2]
ITEMz22
ITEHZ23
ITEHZ4

.038
008
144
L2686
203
la2
271
. 343
532
. 507

L T e R e Y e O i Y i O e Y e Y e O

057
105
183
465
.472
.308
.270
.370
.080
117



Wrapping Up

 Today we covered an introduction CFA and SEM

 The main point of this lecture is to show how
each of these

— Fits into a mixed modeling framework
* Multivariate normal

— Subsumes the EFA and CCA techniques used in the
past

* The link between CFA/SEM and mixed models is
important to understand

— Latent variables = random effects (broadly construed)



Up Next

e Tuesday: Multidimensional Scaling, Classical
Clustering, Distance Methods

 Wednesday: Latent class/finite mixture
models

* Thursday: Missing data methods




