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Abstract

We consider a stylized model of lending in which the lender analyzes the borrower’s credit

risk prior to the loan decision. Unless the lender obtains the full surplus from the project her

credit policy will be too conservative, i.e., she will reject projects that would have obtained

financing in a first-best world. The optimal contract in place minimizes this inefficiency. In

a general setting with a continuous cash-flow distribution we show that the unique optimal

contract is a standard debt contract. Among all possible contracts debt is the one that

makes the lender the least conservative, thus providing her with optimal incentives to make

(constrained) efficient credit decisions. Hence the common folk wisdom whereby giving banks

equity makes them less conservative in their lending practice is generally not correct.
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1 Introduction

One of the fundamental questions in the security design literature is under what conditions

simple security designs such as standard debt are optimal. This paper considers a stylized

model that is representative of many real-world lending decisions. A lender publicly offers a

contract, analyzes the borrower’s credit risk, and–based on the outcome of the analysis–either

rejects or accepts the borrower. The credit risk analysis can be potentially complex and have

multiple dimensions. For instance, a loan officer in charge of small business loans would typcially

base his recommendation both on “hard” information such as financial statements as well as

his subjective beliefs as to whether the business owner is honest and the business is likely to

do well in the future. The loan officer’s recommendation is assumed to come in the form of a

one-dimensional score–or signal–where higher values indicate that the borrower (or the project

for which he is seeking finance) is a better credit risk. Given that both the information entering

the signal and the process of weighing and aggregating the information are partly subjective, it

is natural to assume that the signal cannot be contracted upon.1 At the end of the day it is

thus exclusively at the lender’s discretion whether to grant the loan or not.

Our first observation is that–unless the lender obtains the entire surplus from the project–

her credit policy will be too conservative.2 That is, the cutoff signal chosen by the lender below

which the borrower is rejected is too high relative to a first-best world where total surplus is

maximized. This is not driven by the fact that the signal is a noisy indicator of the borrower’s

credit risk. It holds equally if the signal is perfectly informative. Neither is it driven by the type

of security in place. It holds for any security where the repayment is bounded from above by

the project cash flow. Finally, the result is not driven by asymmetric information on the part

of the borrower. While our results extend to the case where the borrower is privately informed

about his (or his project’s) credit risk, our base model assumes that the borrower and lender

have common priors at the time when the borrower applies for the loan.

The optimal security offered by the lender minimizes the inefficiency arising from excessive

1One interpretation is that the signal is private information. But even if the signal is publicly observable,

contracting upon it is pointless as long as the information entering the signal or the process of weighing and

aggregating the information into a signal are not fully transparent or subjective in nature. The lender would then

always report the signal that is optimal for her ex post. In the paper we also show that it is strictly suboptimal

to offer a menu of contracts from which the lender can choose after observing the signal.

2 If the lender obtains the entire surplus the (optimal) security is naturally straight equity.
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project rejection. In a model with a continuous cash-flow distribution we show that the unique

optimal security is standard debt. Debt maximizes the lender’s payoff in low cash-flow states,

thereby maximizing her return from low-type projects, i.e., projects with a high probability mass

on low cash-flow outcomes. Having less to worry about low-type projects the lender is willing

to apply a lower cutoff signal even though this increases the conditional likelihood of financing

a low-type project. In other words, the cutoff signal implemented under a debt contract is lower

than that implemented under any other security, and therefore closest to the cutoff signal chosen

in a first-best world. Our argument that debt implements optimal lending decisions is both new

and consistent with the widespread use of debt in situations where lenders perform credit risk

analyses.

Various other rationales for the optimality of debt have been proposed in the literature.

Debt minimizes ex-post verification costs (Townsend (1979), Gale and Hellwig (1985)) or the

deadweight loss from inflicting non-pecuniary penalties upon borrowers (Diamond (1984)). If

there is ex-post moral hazard on the part of the borrower debt provides the borrower with

incentives to work hard (Innes (1990)) or repay funds (Bolton and Scharfstein (1990), Hart

and Moore (1998)). Finally, debt is optimal if the issuer has private information either before

(Nachman and Noe (1994), formalizing the intuition in Myers and Majluf (1984)) or after the

security design (DeMarzo and Duffie (1999), Biais and Mariotti (2001)). In contrast to all these

models the incentive problem in our model is with the lender, not the borrower. Also, as we have

already emphasized, our argument for why debt is optimal is not related to private information

on the part of the borrower. A more detailed account of the differences between our model and

other models is provided in the paper.

Our results have implications for the policy debate surrounding the separation of banking

and commerce in the U. S. There, banks are–with few exceptions–forbidden to hold significant

equity stakes in nonfinancial firms.3 Berlin (2000) summarizes the research agenda as follows:

“Do restrictions against U.S. banks holding equity make a difference for banks’ behavior? Are

U.S. banks’ borrowers at a disadvantage because their lenders are too cautious when evaluating

project risks and too harsh when a borrower experiences financial difficulties?” While in our

model lenders are indeed too cautious, this is not because they hold debt, but because they do

3These restrictions derive from the Banking Act of 1933, also known as Glass-Steagall Act. The recent Gramm-

Leach-Bliley Act of 1999 modestly expands banks’ powers to hold equity, but stops well short of permitting banks

to hold mixed debt-equity claims as a normal lending practice.
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not capture the full surplus from the project. In fact, we show that it is debt, not equity, that

makes lenders the least cautious in their lending practice.4

In two extensions of the model we explore the potential role of borrowers’ private wealth,

which can be either used as collateral or to co-finance the investment. In either case the effect is

that the lender’s credit policy can be made more lenient. Pledging private wealth as collateral

protects the lender against high-risk projects, while reducing her investment naturally limits

her risk exposure. In both cases the lender will adjust the cutoff signal downwards. For a

range of parameter values the cutoff signal now coincides with that chosen in a first-best world.

The unique optimal contract is again standard debt: in addition to making the lender less

conservative debt also minimizes the (costly) use of the borrower’s private wealth.

Following Broecker (1990), a number of papers have examined the role of pool externalities

arising from the fact that rejected borrowers worsen the average quality of loan applicants. The

focus of this literature is clearly different from ours. In particular, it does not consider optimal

security design. Manove, Padilla, and Pagano (2001) have a model in which high-type borrowers

post collateral to avoid paying for testing costs. In our model testing costs are zero–hence there

is no inefficiency from too little testing. Rather, the inefficiency is that positive NPV projects

are not financed. Finally, in Garmaise (2001) investors receive a signal about project quality

prior to bidding for the financing of a project in a first-price auction. Unlike our model, there

is no underinvestment in his model as all projects are profitable.

The rest of the paper is organized as follows. Section 2 introduces the model. Section 3

derives the lender’s optimal credit policy and the optimal contract between the borrower and

lender. It also contains a discussion of the main differences between our model and other models

of debt. Section 4 reconsiders some of the main assumptions of the model and discusses their

robustness. Section 5 extends the model to situations where the borrower has private wealth

that can be either used as collateral or to co-finance the investment. Section 6 concludes. All

proofs are in the Appendix.

4Existing research addressing the question of whether banks should hold equity focuses on different issues,

such as the effect of bank equity holdings on borrowers’ project choice (John, John, and Saunders (1994)), and

banks’ behavior during debt workouts and conflicts between the firm and nonequity stakeholders during financial

distress (James (1995), Berlin, John, and Saunders (1996)).
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2 The Model

An entrepreneur (“the borrower”) has a project requiring an investment k. The borrower has

private wealth w, where 0 ≤ w < k. For the moment we shall set w = 0. In Section 5 we consider
the case where w > 0. Financing is provided by a lender who can assess the borrower’s credit

risk prior to the loan decision.

2.1 Project Technology

There are several possible project types denoted by θ ∈ Θ. For expositional convenience we
assume that the type set Θ is countable. Our results can be extended to arbitrary type sets,

except to the case where Θ is a singleton. Types are denoted by natural numbers θ ∈ Θ :=©
1, 2, ..., θ

ª
, where θ :=∞ if there is an infinite number of types.

A type-θ project generates a random, non-negative cash flow x drawn from the distribution

function Gθ(x) with support X := [x, x]. The support is the same for all types. We assume that

x > x ≥ 0, where x can be either finite or infinite. The corresponding density gθ(x) is positive
for all x ∈ X and has finite expected value µ(θ) > 0.5

We next impose an ordering on the family of distribution functions, Gθ(x). We assume that

high-type projects put strictly more probability mass on high cash flows than low-type projects

in the sense of the Monotone Likelihood Ratio Property (MLRP).

Assumption 1. For any pair (θ, θ0) ∈ Θ with θ0 > θ the ratio gθ0(x)/gθ(x) is strictly increasing
in x for all x ∈ X.

MLRP is a common assumption in contracting models. (See Milgrom (1981) for an economic

interpretation of MLRP.) In Section 4.2 we show that our results also hold under a weaker

assumption if we make an additional assumption about the contract space.

We assume that it is profitable to invest in projects with a sufficiently high θ. To provide

a role for credit risk analysis, we moreover assume that projects with a sufficiently low θ are

unprofitable.

5Continuity of the cash-flow distribution function is a standard assumption in the security design literature

and implies that we can restrict attention to deterministic sharing rules. We assume absolute continuity to

introduce the Monotone Likelihood Ratio Property below. All our results extend to the case where gθ(x) = 0 at

the boundaries of X.
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Assumption 2. µ(1) < k, µ(θ) > k if θ is finite, and µ(θ) > k for all sufficiently high θ ∈ Θ
if θ =∞.

Assumption 2 implies that x < k. Hence the riskless cash flow is strictly less than the

investment cost.

2.2 Credit Risk Analysis

As sketched in the Introduction, the credit risk analysis generates a noncontractible score–or

signal–s. (One interpretation is that the lender privately observes s.) The signal has support

S := [0, 1] and is drawn from the distribution function Fθ(s) with continuous density fθ(s),

where fθ(s) > 0 for all s ∈ (0, 1). The assumptions concerning the density function ensure
that even a small change in the contract (i.e., security) will have an effect on the lender’s credit

policy. Finally, while we believe the assumption that s is noisy is realistic, it is not critical for

our results. Section 4.3 shows that the model can be easily rephrased as a model in which there

is a continuum of project types and a fully informative signal.

There are at least two potential costs, or inefficiencies, associated with credit risk analysis:

(i) making type-1 and type-2 errors, i.e., misclassifying bad projects as good and vice versa, and

(ii) spending too little or too much time or effort on the analysis. As it is not the focus of the

paper we shall abstract from the second problem by assuming that the analysis is costless. In

practice, technological innovations such as credit scoring have drastically reduced the cost of

reviewing loan applications. For instance, credit scoring has reduced the loan approval process

to well under an hour (Mester (1997)), while the actual cost of a commercially available credit

scoring model averages about $1.5 to $10 per loan (Muolo (1995)).

Unlike other security design models (e.g., Nachman and Noe (1994), DeMarzo and Duffie

(1999), Biais and Mariotti (2001)), our results do not require that the borrower possesses private

information. To underscore this point we assume that prior to the credit risk analysis the

borrower and lender have common priors h(θ), where h(θ) > 0 for all θ ∈ Θ. In Section 4.4 we
show that our results naturally extend to the case where the borrower has private information

about the project quality.

One implication of the fact that the borrower and lender have common priors is that the

credit risk analysis generates new, valuable information that has been unavailable previously

(rather than merely providing the lender with information the borrower already has). After
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all, credit risk models are typically based on sophisticated statistical techniques and draw on

the experience from thousands of historical loans. It is unlikely that the borrower’s personal

estimate of the project’s credit risk is as accurate as that of an experienced loan officer. As we

pointed out above, however, our results also hold if the borrower knows more than the lender

at the time he applies for a loan.

Similar to Gθ(x), we impose an ordering on the family of signal-generating distributions,

Fθ(s) by assuming that high-type projects put strictly more probability mass on high signals

than low-type projects in the sense of MLRP.

Assumption 3. For any pair (θ, θ0) ∈ Θ with θ0 > θ the ratio fθ0(s)/fθ(s) is strictly increasing
in s for all s ∈ S.

By Bayes’ rule, the lender has posterior beliefs that the borrower is of type θ with probability

h(θ | s) := h(θ)fθ(s)P
θ0∈Θ h(θ0)fθ0(s)

. (1)

The conditional expected cash flow given the signal s is
P
θ∈Θ µ(θ)h(θ | s). Assumption 3

then has the following natural interpretation: observing a high signal is good news in the sense

that the conditional expected cash flow is increasing in s. (This follows directly from the fact

that under Assumption 3 posterior beliefs satisfy MLRP.) In the Appendix we show that the

reverse is also true, i.e., the conditional expected cash flow is increasing in s only if Assumption

3 holds. Finally, to rule out trivial cases where the optimal credit policy is independent of

the signal we assume that investing is unprofitable if s = 0 but profitable after if s = 1, i.e.,P
θ∈Θ µ(θ)h(θ | s) < k if s = 0 and

P
θ∈Θ µ(θ)h(θ | s) > k if s = 1.6

2.3 Lending Process

The timing is as follows. The lender publicly announces a contract–or repayment scheme–t(x)

(the “security”). The borrower then decides whether to apply for the loan. If the borrower

applies the lender assesses the borrower’s credit risk. Based on the resulting signal s the lender

either accepts or rejects the borrower. Both the security t(x) and the accept/reject-decision

(“credit policy”) are chosen optimally.

6For instance, this is satisfied if at s = 0 it holds that fθ(0) = 0 for θ > 1 and fθ(0) > 0 for θ = 1 and at s = 1

it holds that fθ(1) = 0 for θ < θ and fθ(1) > 0 for θ = 1. (If θ =∞ then fθ(1) = 0 must hold for all sufficiently

low values of θ.)
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We shall assume that the borrower receives a payment from the lender only if he has been

approved. For instance, courts might not be able to distinguish between someone who was re-

jected and someone who has never applied. In this case a payment conditional upon rejection

is not feasible. Second, such a payment might attract a large pool of fraudulent entrepreneurs,

or “fly-by-night operators” (Rajan (1992), von Thadden (1995)), i.e., applicants without a rea-

sonable investment opportunity who know for sure they will be rejected. The only reason why

these applicants would apply is to cash in the payment. In this case a payment conditional

upon rejection is feasible but not optimal.7 Note that this line of reasoning also rules out the

possibility of buying the borrower’s project pior to assessing the credit risk.

While the contract cannot condition on s the lender could–in principle–signal her infor-

mation by choosing a contract from a prespecified menu after observing s. We show in Section

4.1 that the unique optimal menu contains a single contract, implying that all borrowers who

are accepted obtain the same conditions. Hence in our model loan uniformity arises endoge-

nously as part of an optimal design. Alternatively–and related in spirit to DeMarzo and Duffie

(1999)–one could ask the question what is the optimal “robust” security that works well for

a variety of different borrowers. The reason for this could be that fine-tuning is costly or that

discretion regarding loan conditions invites rent-seeking or collusion between the loan officer and

the borrower. In this case loan uniformity is imposed by assumption. Whether uniformity is

endogenously optimal or assumed is not important for our purpose.

In practice all of the above arguments are likely to matter. For instance, Saunders and

Thomas (2001) note: “loan decisions made for many types of retail loans are reject or accept

decisions. All borrowers who are accepted are often charged the same rate of interest and by

implication the same risk premium. [...] In the terminology of finance, retail customers are more

likely to be sorted or rationed by loan quantity restrictions rather than by price or interest rate

differences.” The same authors also provide evidence suggesting that the cost of fine-tuning

may outweigh the benefits: “a $50,000 loan yielding three percent over cost of funds provides

7Specifically, suppose fraudulent entrepreneurs have projects that yield a certain payoff of zero. The lender finds

out whether the entrepreneur is fraudulent only by performing the credit risk analysis. (The credit risk analysis

includes an assessment of the entrepreneur’s books and business plan.) Stipulating a payment upon rejection

would attract all fraudulent entrepreneurs in the population. By making the pool of fraudulent entrepreneurs

sufficiently large we can then rule out the optimality of such payments. Note that if the payment was made to a

third party, this party would have an incentive to collude with a fraudulent entrepreneur.
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only $1,500 p.a. gross revenues, before provisions of credit losses and allocation of overheads.

This level of gross revenue can pay for very little of the loan officer’s analytical and monitoring

time”. Finally, loan officers indeed seem to have limited discretion in adjusting loan terms:

“relationship managers [...] had become largely a salesforce with limited discretion to depart

from centralized criteria on loan decisions” and “the discretion of relationship managers within

the guidelines for assessing risk, agreeing loans and setting terms under which he or she operates

is normally very limited” (UK Competition Commission (2002)).

Since w = 0 the repayment scheme must satisfy t(x) ≤ x. Note that this allows negative

transfers from the lender to the borrower. We finally invoke the standard assumption that the

repayment to the lender be nondecreasing in the realized cash flow.

Assumption 4: t(x) is nondecreasing.

If Assumption 4 did not hold the borrower could make an arbitrage gain by borrowing money

ex post to boost the cash flow. Since the loan is riskless any third party would be willing to

provide the required funds. In Section 4.2 we show that by strengthening Assumption 4 one can

relax Assumption 1 which requires that the cash-flow distribution satisfies MLRP.

While we assume that the lender makes the contract offer we explicitly want to leave open the

possibility that the surplus is shared between the borrower and lender. We do this by assuming

that in expectation the borrower must receive at least V ≥ 0. If V > 0 the borrower captures a
strictly positive fraction of the surplus. In practice, the division of surplus between the borrower

and lender will depend on their relative bargaining powers, which in turn will depend on the

competitiveness of the capital market.8

3 Optimal Credit Policy and Security Design

The analysis proceeds in two steps. We first derive the lender’s optimal credit policy. High-type

projects generate a more favorable signal distribution than low-type projects. Conversely, a

high signal generates a more favorable distribution of types, and hence project cash flows. Since

the lender’s payoff is nondecreasing in the project cash flow we have that both the first- and

second-best credit policy follow a simple cutoff rule: if the signal is above the cutoff signal the

borrower is accepted, otherwise he is rejected. In a second step we derive the optimal contract

8See Inderst and Müller (2002b) for a model endogenizing V as a function of capital market competition.
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between the borrower and lender. We finally point out the differences between our model and

related models of security design.

3.1 Optimal Credit Policy

As a benchmark let us begin with the first-best credit policy. The first-best credit policy is

characterized by a unique cutoff signal sFB with the following properties.

Lemma 1. The first-best credit policy is to approve the loan if s ≥ sFB and to reject the loan
if s ≤ sFB, where 0 < sFB < 1. The first-best cutoff signal is unique and given by

X
θ∈Θ

µ(θ)h(θ | sFB) = k. (2)

Lemma 1 follows from the fact that higher types both have a higher expected cash flow and

are more likely to generate a higher signal. At s = sFB the project just breaks even, implying

that acceptance and rejection are both optimal. For all s > sFB the expected project cash flow

is strictly greater than the investment cost k.

As s is not contractible there is no simple way to implement the first-best credit policy. The

lender’s incentives to accept or reject a project will then depend on the contract in place. We

now turn to the second-best credit policy, i.e., the credit policy implemented by the lender given

the underlying contract t(x). Denote the lender’s (gross) payoff from a type-θ project by

Uθ(t) :=

Z
x∈X

t(x)gθ(x)dx.

As t(x) is nondecreasing the lender’s payoff is increasing in the borrower’s type. Since high

types are more likely to generate high signals than low types, the second-best credit policy

involves (again) a unique cutoff signal. Denote this cutoff signal by sSB(t). Note that sSB

depends on t(x). Unlike the first-best case it is now possible that sSB(t) = 1. If s = sSB(t) = 1

the lender is either indifferent between accepting and rejecting (if
P
θ∈ΘUθ(t)h(θ | 1) = k) or

she strictly prefers to reject (if
P
θ∈Θ Uθ(t)h(θ | 1) < k). To simplify the optimal policy rule we

assume that in case of indifference the lender rejects.9

Lemma 2. The lender’s optimal–or second-best–credit policy is to approve the loan if s >

sSB(t) and to reject it if s ≤ sSB(t), where 0 < sSB(t) ≤ 1. If
P
θ∈ΘUθ(t)h(θ | 1) ≤ k the

9As indifference is a zero-probability event this is without loss of generality.
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second-best cutoff signal is sSB(t) = 1, while if
P
θ∈Θ Uθ(t)h(θ | 1) > k the second-best cutoff

signal is unique and given by

X
θ∈Θ

Uθ(t)h(θ | sSB(t)) = k. (3)

Accordingly, if the lender’s expected payoff at s = 1 is less than or equal to k the optimal

policy rule is to reject for all s ∈ S. By contrast, if the lender’s expected payoff at s = 1 is

greater than k there exists a threshold signal sSB(t) < 1 at which she just breaks even, while

for all signals s > sSB(t) her profit is strictly positive and increasing in s. The optimal policy

rule is then to reject if s ≤ sSB(t) and to accept is s > sSB(t). For expositional convenience

we shall frequently omit the argument in sSB(t) and write sSB, while keeping in mind that sSB

depends on t(x). Finally, comparing (2) and (3) shows that the first- and second-best cutoff

signals coincide if and only if Uθ(t) = µ(θ) for all θ, i.e., if and only if the lender obtains the

entire cash flow.10

Is the lender too conservative or too lenient under the second-best credit policy? Suppose

the lender does not obtain the entire cash flow. That is, suppose t(x) < x for some x, implying

that Uθ(t) < µ(θ). By (2) we haveX
θ∈Θ

Uθ(t)h(θ | sFB) <
X
θ∈Θ

µ(θ)h(θ | sFB) = k,

i.e., the lender no longer breaks even upon observing sFB. Since the lender’s expected payoffP
θ∈ΘUθ(t)h(θ | s) is strictly increasing in s this implies that the (second-best) optimal cutoff

signal must lie strictly above sFB. In other words, under the second-best credit policy the lender

is too conservative relative to the first-best benchmark.

Lemma 3. Unless the lender obtains the entire surplus the second-best cutoff signal lies strictly

above the first-best benchmark, i.e., sSB > sFB.

Interestingly, the argument that the lender is too conservative does not rest on Assumption

4 stating that repayment schemes be nondecreasing: the lender is too conservative under any

contract t(x) where t(x) < x on a set of positive measure. While the second-best credit policy

might no longer involve a single cutoff if t(x) is decreasing over some range, it still holds that

10For this argument it is crucial that t(x) ≤ x. If the borrower could make a repayment that is greater than x
in some states (e.g., by liquidating collateral) the first- and second best credit policy might coincide even if the

lender does not obtain the entire cash flow (on average). See Section 5.1 for details.
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the set of signals for which the borrower is accepted is strictly smaller than the corresponding

set in a first-best world.11

Example. As an illustration of Lemma 3 suppose there are two types, θ = 1, 2 (low- and

high-type projects, respectively). By Assumptions 1 and 4 we have that U1(t) < U2(t) (unless

t(x) = U1(t) = U2(t) = 0), i.e., the lender’s utility under the low-type project is strictly lower

than under the high-type project.

The lender’s expected utility given the signal s is

U1(t)h(1 | s) + U2(t) [1− h(1 | s)] .

Hence the lender’s expected utility is a weighted average of U1(t) and U2(t), where the “weight”

associated with the lower utility, h(1 | s), is decreasing in s. Unless t(x) = x the lender’s

expected utility at s = sFB is strictly less than k. To make it again equal to k the lender must

decrease the weight associated with the lower utility, h(1 | s), and increase the weight associated
with the higher utility, 1−h(1 | s). That is, the lender must increase s, implying that sSB > sFB.

3.2 Optimal Security Design

The previous analysis suggests that there are two cases. If V = 0 the lender can extract the

entire cash flow, implying that the unique optimal contract is t(x) = x. The corresponding credit

policy is first-best efficient.

By contrast, if V > 0 we necessarily have that t(x) < x for some x, implying that the

optimal credit policy is inefficient. The optimal contract minimizes this inefficiency. Formally,

the optimal contract maximizes the lender’s expected payoff

U(t) :=
X
θ∈Θ

h(θ)
£
1− Fθ(sSB)

¤
Uθ(t)

subject to the constraint that in expectation the borrower receives at least V :

V (t) :=
X
θ∈Θ

h(θ)
£
1− Fθ(sSB)

¤
Vθ(t) ≥ V , (4)

11This is easily established. Let ∆(x) := x − t(x) and ∆(θ) = R
x∈X ∆(x)gθ(x)dx. For V > 0 it must hold

that ∆(θ) > 0. The set of all signals for which the loan is approved, S, contains all s satisfying
P

θ∈Θ h(θ |
s) [µ(θ)−∆(θ)] ≥ k. If S is not empty it follows from continuity of the posterior distribution in s that S is

compact, implying by the definition of sFB that S ⊂ [sFB , 1] and that [sFB, 1]\S has positive measure.

12



where sSB is defined in Lemma 2, Vθ(t) :=
R
x∈X [x− t(x)]gθ(x)dx, and t(x) satisfies Assumption

4. Clearly, if V is too large the lender cannot break even. In all other cases a non-trivial

contract under which the borrower is accepted with positive probability exists. In the following

we assume that V is sufficiently small in the sense just described.

In equilibrium the constraint (4) must bind, implying that any surplus in excess of V accrues

to the lender. As a claimant to the residual surplus the lender wants to minimize the efficiency

loss due to excessive rejection.12 Standard debt accomplishes this objective. Subject to the

monotonicity constraint in Assumption 4 a debt contract maximizes the lender’s payoff in low

cash-flow states. Since low cash-flow states are more likely under low-type projects debt thus

maximizes the lender’s payoff from low-type projects. Having less to worry about low-type

projects the lender implements a credit policy that is less conservative than under other security.

Put differently, a debt contract minimizes the gap between the first- and second-best cutoff signal

and therefore the efficiency loss from excessive rejection. And yet, as long as we have V > 0 the

second-best cutoff signal remains above the first-best benchmark.

Proposition 1. If V = 0 the unique optimal contract is t(x) = x. The lender captures the

entire surplus and the optimal credit policy is first-best efficient.

By contrast, if V > 0 the unique optimal contract is a standard debt contract. That is, there

exists a repayment R > k such that the unique optimal contract is t(x) = x for all x ≤ R and

t(x) = R for all x > R.

If V = 0 the lender gets the entire project cash flow. The optimal contract t(x) = x can be

either interpreted as 100 percent equity or as standard debt with repayment level R = x. The

interesting case, however, is clearly where V > 0, i.e., where the borrower captures some of the

surplus generated by the project.

In the Appendix we show that the size of the repayment depends on V . If V is small the

borrower captures only a small fraction of the expected surplus, and R will be high. Conversely,

if V is high the repayment R will be low. We conclude by showing that the greater the fraction

of surplus captured by the borrower (i.e., the lower the repayment R), the more conservative is

the lender’s credit policy.

Corollary 1. An increase in V reduces R and raises the second-best cutoff signal sSB, thereby

12The same would hold if the borrower were to make the contract offer. The argument for why standard debt

is optimal in our model is thus independent of who makes the contract offer.
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pushing the second-best credit policy further away from the first-best optimum.

If V is a function of credit market competition Corollary 1 has the following tentative im-

plications. If–due to an increase in competition–borrowers capture a greater fraction of the

surplus, lenders become more conservative and any given borrower will be rejected with higher

probability. Several studies document a reduction in credit volume for small firms following

an increase in credit market competition, e.g., Petersen and Rajan (1995) and Cetorelli and

Gambera (2001). These studies also find that the adverse effect of an increase in competition is

strongest for firms that are young, small, and relatively opaque. In other words, firms for which

there is considerable quality uncertainty. These are precisely the kind of firms where credit risk

analysis is most valuable.

3.3 Theories of Debt

Sections 3.1-3.2 provide a new, and intuitive argument for the optimality of debt based on the

notion that credit decisions depend on the type of security in place. While the lender is generally

too conservative (unless V = 0), debt minimizes the associated inefficiency. Let us briefly point

out the main differences between our model and other models of debt. Evidently, our argument

is different from costly state-verification models (Townsend (1979), Gale and Hellwig (1985),

and repeated lending models with non-verifiable cash flow (Bolton and Scharfstein (1990), Hart

and Moore (1998), DeMarzo and Fishman (2000), Inderst and Müller (2002a)).

Nachman and Noe (1994), DeMarzo and Duffie (1999), and Biais and Mariotti (2001) con-

sider private information on the part of the borrower either before or after the security design.

While our model can be extended to incorporate such private information (Section 4.3), private

information is not crucial–or necessary–for our results. To underscore this point we assume

that the borrower and lender have symmetric information at the security design stage. After

the security design, if anything, it is the lender who has private information (about the signal),

not the borrower.

More fundamentally, and going back to Myers and Majluf (1984), the idea in private infor-

mation models is that debt limits underpricing as it is relatively “information insensitive” to

the borrower’s private information. If possible, the borrower would like to issue riskless debt,

thereby fully eliminating the lemons problem.13 By contrast, in our model the problem is to

13Riskless debt may have other disadvantages, however. While there is no mispricing, issuing riskless debt
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trade off errors of the first and second type. We showed in Section 3.1 that the first-best credit

policy can be implemented only by giving the lender 100 percent equity. Hence the idea is not

to shield the lender from cash-flow risk but–on the contrary– to expose her to cash-flow risk

so that she would make efficient lending decisions. In a sense, our model is much closer to a

moral hazard model than to a private information model. As the signal is noncontractible the

security is designed to give the lender optimal incentives to implement an efficient credit policy,

much like the optimal contract in a moral hazard model is designed to provide the agent with

incentives to exert effort.

Like this model, Innes (1990) also explores the interaction between security design and moral

hazard. In his model the incentive problem is with the borrower (i.e., the entrepreneur), while

in our model it is with the lender. Yet there is a second, interesting difference between the

kind of moral hazard examined here and that examined in Innes’ model. For simplicity suppose

there are two effort levels, θ = 1, 2. Denote the agent’s utility (including effort cost) under the

contract t by Uθ(t). In Innes’ model the agent’s incentives depend solely on the utility difference

U2(t)− U1(t). Accordingly, a non-monotonic contract generating the same utility difference as
100 percent equity can attain the first best outcome (Innes (1990), Section 4). By contrast, in

our model the lender’s incentives to approve the loan depend both on the difference U2(t)−U1(t)
and on the absolute levels U1(t) and U2(t). Unless U1(t) and U2(t) assume their first-best values

(i.e., unless the lender obtains the entire surplus) the first-best outcome cannot be attained–

regardless of what value the difference U2(t)− U1(t) takes.

4 General Discussion

4.1 Menu of Contracts

While the contract cannot directly condition on s there remains the possibility that the lender

chooses a contract from a prespecified menu after observing s, hence potentially revealing the

signal. We shall now investigate this possibility formally. By standard arguments we can restrict

attention to direct mechanisms of the following kind. The lender offers a menu of contracts.

After observing the signal the lender can reject or accept the applicant. If the applicant is

forces the issuer to retain a potentially large fraction of the project cash flow. See DeMarzo and Duffie (1999) for

a model where the issuer trades off the retention cost of debt against the benefit of limiting mispricing.
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accepted the lender is free to choose any contract from the menu.14 A menu is a collection

(ti)i∈I of contracts satisfying Assumption 4, where I is some index set and each contract is ex

post optimal for the lender for some s ∈ S given the other contracts in the menu.
In the Appendix we show that the unique optimal menu consists of a single contract. The

intuition is roughly as follows. Suppose V > 0.15 Clearly, the menu cannot contain t(x) = x,

for the lender would then always choose this contract, implying that the borrower earns zero

expected payoff. But if t(x) = x is not contained in the menu our previous logic applies,

suggesting that sSB > sFB. The optimal menu thus (again) minimizes the efficiency loss from

excessive project rejection.

Denote the lowest signal at which a contract is implemented by sSB, and denote the contract

implemented at this signal by tSB. At
¡
tSB, sSB

¢
the lender just breaks even. Suppose further

that for higher signals si > sSB different contracts ti 6= tSB are implemented. By revealed

preference, at s = si the lender’s payoff from implementing the associated ex post optimal

contract ti 6= tSB must be at least as great as his payoff from implementing tSB. Hence if the

lender deletes all contracts ti 6= tSB from the menu the borrower’s expected payoff cannot fall.

In fact, we show in the Appendix that it must strictly rise. Holding the cutoff signal sSB fixed,

this means the lender can adjust the (only) remaining contract tSB in her favor such that the

borrower’s expected payoff drops back to V . Denote the adjusted contract by t̂SB. Clearly, as

the lender just breaks even at
¡
tSB, sSB

¢
, replacing tSB by t̂SB implies that she must make

a positive profit at (t̂SB, sSB). Since the lender’s expected payoff is increasing in s, this in

turn means that–holding t̂SB fixed–she can lower the cutoff signal from sSB to ŝSB < sSB,

contradicting the optimality of the original menu. (Note that lowering the cutoff from sSB to

ŝSB while holding t̂SB fixed increases the borrower’s payoff and is therefore feasible.)

Proposition 2. The unique optimal menu of contracts consists of a single contract.

4.2 Ordering of Cash-Flow Distributions

Assumption 1 can be relaxed at the cost of strengthening Assumption 4. Consider the following

weaker assumption concerning the ordering of Gθ(x) :

14This setting is similar to Maskin and Tirole (1990, 1992).

15 If V = 0 the unique optimal contract is t(x) = x. Any optimal menu must then contain t(x) = x, in which

case this contract is always chosen.
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Assumption 1a. For any pair (θ, θ0) ∈ Θ with θ0 > θ the ratio [1 − Gθ0(x)]/[1 − Gθ(x)] is
strictly increasing in x for all x ∈ [x, x).

It is easily established that Assumption 1a implies Assumption 1.16 We next strengthen

Assumption 4 by requiring that–in addition to t(x) being nondecreasing–the borrower’s ex

post profit x− t(x) be nondecreasing in x. (If x− t(x) were decreasing the borrower could make
a gain by destroying cash flow ex post.)

Assumption 4a. t(x) and x− t(x) are both nondecreasing.

It is now straightforward to show that, with Assumptions 1 and 4 being replaced by As-

sumptions 1a and 4a, respectively, all our previous results continue to hold.17

Proposition 3. Proposition 1 continues to hold if Assumptions 1 and 4 are replaced by As-

sumptions 1a and 4a, respectively.

4.3 Fully Informative Signal

Our results also hold if the signal s is fully informative. Consider the following relabeling of our

model. There is a continuum of types s ∈ S. Each type respresents a “portfolio” consisting of all
projects θ ∈ Θ with type-dependent portfolio weights h(θ | s). Upon observing the signal s the
lender now knows exactly the borrower’s type. And yet, the underlying fundamental uncertainty

is the same as before since a type now represents a weighted average of cash-flow distributions.

It is straightforward to show that, once we introduce the necessary changes in notation, all our

previous results obtain. In particular, the cutoff signal now becomes a “cutoff type” representing

the lower bound of the set of all acceptable types.

This has interesting implications. There is a large literature concerned with the development

and evaluation of statistical methods to improve the predictive power of credit risk models.18

Our result suggests that–no matter how good the predictive power is–the associated credit

16As noted in Nachman and Noe (1994), Assumption 1a can be alternatively expressed in the following way:

For all x0 > x in X and all θ0 > θ in Θ it must hold that
Gθ (x

0)−Gθ (x)
1−Gθ (x) >

Gθ0 (x
0)−Gθ0 (x)

1−Gθ0 (x) . Nachman and Noe refer

to this requirement as Conditional Stochastic Dominance.

17As for Lemmas 1-3 this is immediate since there we only need first order stochastic dominance, which is

implied both by Assumptions 1 and 1a.

18For an overview of this literature see Saunders and Allen (2002).
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decision will remain inefficient for the simple reason that the lender does typically not capture

all the surplus.

4.4 Private Information about Project Quality

Finally, our results extend to the case where the borrower has private information about the

project quality. If the borrower and lender have common priors the borrower’s participation

constraint needs to be satisfied only in expectation (ex ante individual rationality). If the

borrower has private information about his type, however, the participation constraint must be

satisfied for each type the lender wants to attract (interim individual rationality). Moreover,

if borrowers know their types they may well have different, type-dependent reservation values

V (θ) ≥ 0. Whether a given type can–and will–be attracted by the lender’s offer depends on
the precise shape of the function V (θ). In particular, it need not necessarily be true that there

exists a threshold type θ̂ such that borrowers will be attracted if and only if θ > θ̂. In what

follows we sketch the argument for the simple two-type case.

As in the earlier example, let θ = 1, 2 denote the low- and high-type project, respectively. To

make lending profitable the high-type borrower’s reservation value V (2) must be sufficiently less

than µ(2). In contrast–and consistent with our earlier assumptions–lending to the low-type

borrower is assumed to be strictly unprofitable. Any payoff realized by the low-type borrower is

therefore wasted from the lender’s point of view as it does not relax the participation constraint

of the high-type borrower. Accordingly, the lender has two objectives: (i) minimizing the

efficiency loss from excessive project rejection, and (ii) minimizing the rent extracted by the

low-type borrower.19 As for (i) we have shown that a debt contract maximizes the lender’s

payoff from low-type borrowers, thus making her less conservative in her credit decisions. But

this is the same as saying that debt minimizes the payoff captured by low-type borrowers. Hence

debt accomplishes both objectives, implying that our results continue to hold if the borrower

has private information.

19The second objective is equivalent to minimizing the “mispricing” of high types. See Myers and Majluf (1984)

and Nachman and Noe (1994) for details.
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5 Private Wealth

We now relax the assumption that the borrower has no private wealth. Private wealth can be

used in two ways: as collateral and to co-finance the investment. As we show below, the two

uses have virtually identical effects. Drawing on the borrower’s private wealth is likely to be

costly. If the wealth is held in the form of illiquid assets there are liquidation costs. On the

other hand, if the wealth is liquid there are foregone returns from alternative investments. As it

turns out, a debt contract minimizes both the efficiency loss from excessive project rejection and

the (costly) use of the borrower’s private wealth. Explicitly introducing costs of private wealth

therefore has no effect on the security design, which is why we abstract from it. Only in case of

indifference, i.e., if two different levels of collateral or co-investment implement the same cutoff

signal, we select the solution that draws less on the borrower’s wealth.

To rule out trivial cases where the first-best credit policy can be implemented for all possible

values of V we assume that

Assumption 5. w < k − x.

Under Assumption 5 the first-best credit policy can be implemented for low, but not for high

values of V .

5.1 Collateral

Denote the transfer to the lender made out of the project cash flow by tP (x) and that made

out of the collateral by tC(x), where tP (x) ≤ x and 0 ≤ tC(x) ≤ w. By Assumption 4 the total
transfer t(x) = tP (x) + tC(x) must be nondecreasing.

To see the role played by collateral consider again equations (2)-(3) characterizing the first-

and second-best cutoff signal, respectively:

X
θ∈Θ

h(θ | sFB)µ(θ) = k

and

X
θ∈Θ

h(θ | sSB)Uθ(t) = k. (5)

In the absence of collateral it is necessarily true that Uθ(t) ≤ µ(θ) for all θ, implying that

the second-best credit policy is inefficient for all V > 0 (Lemma 3). This is different if the
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borrower can post collateral. Specifically, by liquidating collateral in low cash-flow states it is

possible to have Uθ(t) > µ(θ) for low θ, i.e., the lender’s payoff from low type-projects can

exceed the projects’ expected cash flow. (At the same time it must hold that Uθ(t) < µ(θ) for

high θ, however, or else the borrower will not break even.) Accordingly, with collateral (5) can

potentially be satisfied with sSB = sFB even if the lender does not capture the full surplus.

There are two ways of transferring funds to the lender in low cash-flow states, thereby

raising his payoff from low cash-flow projects: taking funds out of the project cash flow and

liquidating collateral. A debt contract, by maximizing the funds transferred out of the project

cash flow in low cash-flow states, economizes on the use of collateral. Debt thus accomplishes

two objectives: it makes the lender less conservative and it ensures that collateral is liquiated

only when absolutely necessary. More precisely, if the total transfer to the lender in low cash-

flow states is x + ∆(x), then x is taken out of the project cash flow and the residual ∆(x) is

taken out of the collateral.

Making the lender less conservative improves efficiency. For low V it is now possible to

implement the first-best credit policy. For this only a fraction of the borrower’s wealth must be

pledged as collateral, i.e., max
©
tC(x)

ª
< w. For intermediate V the first-best is still attainable,

but now the entire wealth must be pledged, i.e., max
©
tC(x)

ª
= w. Finally, if V is sufficiently

high the first-best credit policy is no longer implementable. In this case we have the familiar

result that sSB > sFB, where sSB is strictly increasing in V . As V increases, more and more

collateral must be pledged to implement the first-best credit policy.

Figure 1 depicts the optimal transfer made out of the collateral, tC(x), as a function of the

project cash flow. The left picture depicts the case where V is low; the right picture depicts the

case where V takes on intermediate and high values.

Proposition 4. If the borrower can pledge private wealth as collateral the unique optimal

transfer made out of the project cash flow, tP (x), takes the form of a standard debt contract.

The unique optimal transfer made out of the collateral, tC(x), is depicted in Figure 1.

Given Proposition 4 and the preceding discussion, the following corollary is immediate.

Corollary 2. If the borrower can pledge private wealth as collateral the first-best credit policy

is implementable if and only if V is sufficiently low. The fraction of wealth pledged as collateral

is weakly increasing in V . Finally, an increase in the borrower’s wealth weakly improves the

optimal credit policy.
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Figure 1: Optimal collateral policy for low V (left) and intermediate and high V (right).

5.2 Co-Financing

We now consider the other polar case where the borrower’s wealth is used to co-finance the

investment. Denote the fraction of the investment financed by the lender by L. The remainder

k − L is financed by the borrower, where k −L ≤ w.
To see why co-financing helps, consider again the two equations characterizing the first- and

second-best cutoff signal, respectively, where (6) now takes into account that lender finances

only a fraction L ≤ k of the investment:X
θ∈Θ

h(θ | sFB)µ(θ) = k

and X
θ∈Θ

h(θ | sSB)Uθ(t) = L. (6)

As was shown earlier, if L = k we necessarily have that sSB > sFB whenever V > 0 (Lemma

3). By contrast, if L < k equation (6) can potentially be satisfied with sSB = sFB even

if Uθ(t) < µ(θ), i.e., even if the lender does not capture all the surplus. Co-financing, like

collateral, reduces the lender’s risk exposure and thus makes her less conservative.

The analysis is similar to that with collateral. If V is low the first-best credit policy can be

implemented by reducing the lender’s investment share to L < k. The lender’s investment share

is a decreasing function of V , i.e., the greater is V the more private wealth is needed to attain
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the first-best. At some point the borrower’s wealth constraint k − L ≤ w binds. We then have
the familiar result that sSB > sFB, where sSB is strictly increasing in V .

Proposition 5. If the borrower can co-finance the investment the unique optimal transfer made

out of the project cash flow, tP (x), takes the form of a standard debt contract.

Given Proposition 5 and the preceding discussion, the following corollary is evident.

Corollary 3. If the borrower can co-finance the investment the first-best credit policy is im-

plementable if and only if V is sufficiently low. The fraction of the borrower’s wealth used to

co-finance the investment is strictly increasing in V . Finally, an increase in the borrower’s

wealth weakly improves the optimal credit policy.

Corollaries 2 and 3 suggest that an increase in the borrower’s wealth improves the optimal

credit policy, either by increasing the amount of collateral that can be posted or by reducing

the lender’s investment. This has implications for the relation between wealth and financing

constraints. For instance, if wealth is held in the form of real estate–which can be potentially

pledged as collateral–Corollary 2 implies that for high V a decrease in real estate prices (ineffi-

ciently) reduces credit volume. Existing arguments drawing a link between wealth and financing

constraints typically rest on borrower moral hazard.20 By contrast, in our model the borrower’s

wealth is used to improve the incentives of the lender.

6 Concluding Remarks

Lending decisions are inevitably discretionary and subjective, even if they are based on “hard”

information such as financial statements. We consider a stylized model of lending where the

lender can assess the borrower’s credit risk prior to the loan decision. Based on the outcome

of the credit risk analysis the lender is free to deny the applicant, i.e., the credit decision is

fully discretionary. We show that–regardless of the type of security in place–the lender’s

credit decision will be ineffecient in the sense that she will reject borrowers that would have

been accepted in a first-best world where credit decisions are contractible. We then explore the

effect of the security in place on the lender’s credit decision. Specifically, we ask what security

minimizes the inefficiency arising from excessive project rejection. (This is also the security

that maximizes the lender’s expected payoff subject to the borrower’s participation constraint.)

20See, e.g., Bernanke and Gertler (1989), Holmström and Tirole (1996), and Kiyotaki and Moore (1997).
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In a model with continuous cash-flow distribution we show that the unique optimal security is

standard debt. Debt maximizes the lender’s payoff in low cash-flow states, thereby maximizing

her return from low-type borrowers, i.e., borrowers with a high probability mass on low cash-flow

outcomes. By making the lender more lenient, debt thus implements constrained efficient credit

decisions.

Unlike other models of security design the incentive problem in our model is with the lender,

not the borrower. Specifically, the security in place affects the lender’s incentives to approve

or deny the loan. Using standard terminology, the problem is one of ex ante lender moral

hazard. In the paper we argue that the optimality of debt is robust with respect to introducing

private information on the part of the borrower. Furthermore, our assumptions imply that debt

also remains optimal if we introduce ex post moral hazard on the part of the borrower. (See

Innes (1990) and the assumptions therein.) The outcomet is less clear if–in addition to the ex

ante moral hazard problem considered here–there is ex post moral hazard both on the part of

the borrower and the lender. Such double-sided moral hazard is frequently assumed in models

of venture capital security design. There, the conclusion is typcially that some equity-linked

security such as, e.g., convertible debt is optimal (Schmidt (2000), Hellmann (2001), Repullo

and Suarez (2000)). Exploring the tension between double-sided ex post moral hazard (which

appears to favor equity) and ex ante lender moral hazard (which favors debt) in a single model

seems to be an interesting avenue for future research.

7 Appendix A: Implications of Assumption 3

Denote the posterior distribution function for some signal s by H(θ | s) := R s
0 h(θ | s0)ds0.

Assumption 3 implies now that for all s0 > s in S the posterior distribution H(θ | s0) dominates
that of H(θ | s) in the sense of First-Order Stochastic Dominance. This follows as the posterior
distribution also satisfies the MLRP property, which holds byAssumption 3 and as the ratio

h(s0 | θ)
h(s | θ) =

fθ(s
0)

fθ(s)

P
θ0∈Θ h(θ

0)fθ0(s)P
θ0∈Θ h(θ0)fθ0(s0)

strictly increases in θ in case s0 > s. (That fθ(s0)/fθ(s) strictly increases in θ follows as Assump-

tion 3 states that fθ0(s0)/fθ0(s) > fθ(s0)/fθ(s) holds if θ0 > θ and s0 > s.) As is well-known, by

First-Order Stochastic Dominance and as the values µ(θ) are strictly increasing in θ, the condi-

tional expected cash flow is strictly increasing in the observed signal. In this sense, observing a
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higher signal is good news about the project. In what follows, we show that—as asserted in the

main text—also the reverse is true. Hence, unless Assumption 3 is satisfied, we can not say that

observing a higher signal is goods news. Together with the previuos arguments we then obtain

the following assertion.

Claim. The posterior distribution of s0 ∈ S strictly dominates that for s ∈ S, where s < s0,

for all prior distribution of types if and only if Assumption 3 holds.

Proof. We have already shown sufficiency. To prove necessity, observe first that by First-Order

Stochastic Dominance it must hold for all s0 > s in S and for all θ < θ in Θ that

H(θ | s0) =
P
θ̃≤θ h(θ̃)fθ̃(s

0)P
θ̃∈Θ h(θ̃)fθ̃(s0)

< H(θ | s) =
P
θ̃≤θ h(θ̃)fθ̃(s)P
θ̃∈Θ h(θ̃)fθ̃(s)

. (7)

Transforming (7), we obtain the requirement

X
θ̃≤θ

h(θ̃)fθ̃(s
0)

X
θ̃>θ

h(θ̃)fθ̃(s)

−
X
θ̃>θ

h(θ̃)fθ̃(s
0)

X
θ̃≤θ

h(θ̃)fθ̃(s)

 < 0. (8)

Now suppose that Assumption 3 does not hold. Hence there exist signals s0 > s in S and types

θ00 > θ0 in Θ such that fθ00(s0)/fθ0(s0) ≤ fθ00(s)/fθ0(s). If the prior distribution now puts all

probability mass on the two types θ00 and θ0 and if we choose θ0 ≤ θ < θ00, it then follows that
the requirement (8) is not satified. Q.E.D.

8 Appendix B: Proofs

Proof of Lemma 1. The first-best credit policy prescribes to approve the loan whenever, given

the observed signal s, the expected cash flow
P
θ∈Θ µ(θ)h(θ | s) exceeds k and to reject the loan

whenever it falls below k. By Assumptions 1 and 3 the conditional expected cash-flow is strictly

higher after observing a higher signal. (As shown in Appendix A, Assumption 3 implies that

the posterior distribution satisfies the MLRP property.) Moreover, the posterior beliefs h(θ | s)
change continuously in s, which holds by continuity of the densities fθ(s) of the signal generating

technology. Finally, recall that the expected cash flow is strictly higher than k at s = 1 and

strictly lower than k at s = 0. We thus obtain a unique threshold 0 < sFB < 1, which is given

by (2), such that the borrower should be rejected for s < sFB and accepted for s > sFB. Q.E.D.

Proof of Lemma 2. The lender’s optimal credit policy is to reject the project if, conditional

on the observed signal s, the expected repayment is lower than the loan size k and to accept

24



if it is higher than k. By Assumption 4 t(x) must be nondecreasing. If t(x) is flat, Uθ(t) < k

holds for all θ ∈ Θ, which makes it optimal to always reject. If t(x) is not flat everywhere,
it must be strictly increasing over a set of positive measure. By Assumption 1 Uθ(t) is then

strictly increasing in θ. Given Assumption 3, the lender’s expected payoff when approving the

loan is then strictly increasing in the observed signal s. Moreover, it changes continuously in s,

which follows from continuity of fθ(s), while we have also
P
θ∈ΘUθ(t)h(θ | 0) < k. Existence

and characterization of the cutoff signal sSB(t) > 0 follow then immediately. Q.E.D.

Proof of Proposition 1 and Corollary 1. For V = 0 the lender simply obtains all proceeds,

i.e., t(x) = x. Suppose thus that V > 0 holds. We show first that any repayment scheme t that

is not debt cannot be optimal. We argue to a contradiction. Suppose thus that a contract t

that is not debt was optimal. We proceed as follows. We first construct a debt contract t̃ that

would give the lender and the borrower the same expected payoff if the lender applied the same

threshold as under t, i.e., sSB(t). Subsequently, we show that the true threshold implemented

under t̃ satisfies sSB(t̃) < sSB(t). This will imply that t cannot be optimal.

Suppose thus for a moment that the threshold applied by the lender is kept fixed at sSB(t).

Using this threshold, the lender’s expected payoff from a debt contract with repayment R equalsX
θ∈Θ

h(θ)
£
1− Fθ(sSB(t))

¤ ·Z
x∈X

min {x,R} gθ(x)dx− k
¸
, (9)

which is continuous and strictly increasing in R. Requiring that the expected payoff is equal to

that under t yields thus a unique debt contract. We denote this contract by t̃.

It is now helpful to introduce some additional notation. Define

z(θ) :=

Z
x∈X

£
t̃(x)− t(x)¤ gθ(x)dx

and observe that by construction of t̃ it holds thatX
θ∈Θ

h(θ)
£
1− Fθ(sSB)

¤
z(θ) = 0. (10)

If it could only be observed whether the borrower passes some threshold s or not, after passing

this threshold the conditional distribution would put on type θ the probability

h (θ | s) := h(θ) [1− Fθ(s)]P
θ0∈Θ h(θ0) [1− Fθ0(s)]

.

With this definition the requirement (10) transforms toX
θ∈Θ

z(θ)h
¡
θ | sSB¢ = 0. (11)
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In what follows we show that (11) implies
P
θ∈Θ z(θ)h

¡
θ | sSB¢ > 0, from which it follows

immediately that the true cutoff signal under t̃ must be lower than that under t. We need the

following auxiliary result.

Claim 1. There exists a type θ̃ ∈ Θ with 1 ≤ θ̃ < θ, such that the following assertions hold:
i) If θ > 2 it holds that θ̃ > 1, z(θ̃) ≥ 0, and z(θ) > 0 for all θ < θ̃. For θ = 2 it holds that
z(θ̃) > 0 with θ̃ = 1.

ii) For all θ > θ̃ it holds that z(θ) < 0.

Proof. Note first that by construction of t̃ and z(θ) there must be types θ ∈ Θ such that z(θ) < 0
and types θ ∈ Θ such that z(θ) > 0. Observe next that by Assumption 4 and construction of t̃
there exists a value x̃ in the interior of X such that t̃(x) ≥ t(x) holds for x < x̃ and t̃(x) ≤ t(x)
holds for x > x̃, where the inequalities hold strictly over sets of positive measure. Given some

pair θ0 > θ in Θ we can now transform z(θ0) into

z(θ0) =
Z x̃

x

£
t̃(x)− t(x)¤ gθ(x)gθ0(x)

gθ(x)
dx+

Z x

x̃

£
t̃(x)− t(x)¤ gθ(x)gθ0(x)

gθ(x)
dx.

As gθ0(x)/gθ(x) is strictly increasing in x by Assumption 1, the construction of x̃ implies

z(θ0) <
gθ0(x̃)

gθ(x̃)
z(θ). (12)

By (12) z(θ) ≤ 0 must imply z(θ0) < 0 for all higher types θ0 > θ. This proves existence of the
asserted type θ̃. Q.E.D.

Claim 2.
P
θ∈Θ z(θ)h

¡
θ | sSB¢ > 0.

Proof. Using (11) and the definitions of h
¡
θ | sSB¢ and h ¡θ | sSB¢, we obtain

X
θ∈Θ

z(θ)h
¡
θ | sSB¢ =

X
θ∈Θ

z(θ)
£
h
¡
θ | sSB¢− h ¡θ | sSB¢¤

=
X
θ∈Θ

z(θ)h
¡
θ | sSB¢ " fθ(s

SB)

1− Fθ(sSB)
P
θ0∈Θ h(θ

0)Fθ0(sSB)P
θ0∈Θ h(θ0)fθ0(sSB)

− 1
#
.

We next denote the term in rectangular brackets by α(θ). By Assumption 3 α(θ) is nonincreasing

for all θ ∈ Θ and strictly increasing for at least one θ ∈ Θ. (Note that the Monotone Likelihood
Ratio Property implies (strict) monotonicity of the hazard rate.) Rewriting

X
θ∈Θ

z(θ)h
¡
θ | sSB¢ =X

θ≤θ̃
α(θ)z(θ)h

¡
θ | sSB¢+X

θ>θ̃

α(θ)z(θ)h
¡
θ | sSB¢
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and using the monotonicity of α(θ) together with Claim 1, we finally obtainX
θ∈Θ

z(θ)h
¡
θ | sSB¢ > α(θ̃)X

θ∈Θ
z(θ)h

¡
θ | sSB¢ = 0.

Q.E.D.

By Claim 2, the construction of z(θ), and the definition of the optimal credit policy, the

following result is then immediate.

Claim 3. sSB(t) > sSB(t̃).

We are now in the position to argue that the lender is strictly better off by offering t̃ instead

of t. Observe first that by construction the lender is indeed strictly better off if the borrower

accepts the offer. It thus remains to show that the borrower realizes at least V , which is the

case if his payoff is not lower than under the original contract t. By construction the borrower’s

payoff would remain unchanged if the lender applied the threshold sSB(t). Given sSB(t̃) < sSB(t)

from Claim 3, i.e., that the ex-ante probability of acceptance is increased, and given that the

borrower’s expected payoff from acceptance is strictly positive for all values s, the borrower

becomes indeed strictly better off under t̃.

Summing up, we have thus shown that an optimal contract must be debt. We show next

that, given some value V , there exists a unique optimal debt contract. Note first that by opti-

mality the borrower’s participation constraint must bind. Given a debt contract with repayment

requirement R, his expected payoff equalsX
θ∈Θ

h(θ)
£
1− Fθ(sSB(t))

¤ Z
x∈X

max {0, x−R} gθ(x)dx,

which is continuous in R and equal to zero at the two boundaries R = x and R = x. We thus

obtain for all feasible values V a compact set of values R for which the participation constraint

binds. Denote this set by R(V ). As the lender’s payoff is strictly increasing in R, maxR(V )

must be the unique solution. We denote this solution by RSB(V ). This completes the proof of

Proposition 1.

By construction it follows immediately thatRSB(V ) is strictly decreasing. To prove Corollary

1 it thus remains to establish that this implies an increase in the applied cutoff signal sSB. But

this follows immediately from the definition of sSB in (3) and as an increase in the repayment

requirement R increases Uθ(t) for all θ ∈ Θ. Q.E.D.
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Proof of Proposition 2. By Assumptions 1-4 it follows again that, even when offering a menu,

the lender’s optimal policy is described by a unique cutoff signal. (Compare Lemma 2.) In a

slight abuse of notation denote by sSB the lowest signal for which the lender does not reject

the borrower. Recall that, unless the borrower is always rejected, the lender just breaks even

at s = sSB. By the argument in the main text it holds that sSB > sFB in case V > 0. The

optimal menu will minimize the resulting inefficiency from a too conservative policy.

In a slight deviation from what we specified previously for the case with a single contract, we

now specify that the lender approves the loan if he observes s = sSB. As this is a zero-probability

event this change is without consequences. But it allows to identify some contract tSB that is

implemented at the lowest acceptable signal, i.e., at s = sSB.21

Suppose now a menu is offered from which the lender will pick with positive probability

contracts different to tSB. Denote this menu by T = {ti}i∈I . We will now argue that offering T
can not be optimal. Construct T 0 =

©
tSB

ª
by deleting all contracts but tSB from the original

menu T . Note that this does not affect sSB , while the borrower’s expected payoff can not

decrease. (The latter observation follows directly from the revealed preferences of the lender

under the original menu.) We distinguish now between the two cases where tSB is a debt

contract and where this is not the case.

Suppose first that tSB is not a debt contract. Then we can construct a new offer T 00 =
©
t̃SB

ª
,

where the debt contract t̃SB is constructed from tSB in analogy to the proof of Proposition 1.

Note that this ensures that the new cutoff signal is strictly lower than sSB. If the borrower’s

participation constraint is slack, we can adjust the repayment level to further decrease the cutoff

threshold until the participation constraint binds. As the borrower’s participation constraint

now binds under the new menu T 00 and as the cutoff signal is strictly lower than that under T ,

it follows that T can not be optimal.

It remains to discuss the case where tSB is debt. We argue now that in this case the borrower’s

participation constraint will not bind under T 0, implying that we can again create a new offer

T 00 =
©
t̃SB

ª
with a higher repayment level in the single contract t̃SB. This again contradicts

optimality of T . The remaining step to be proved is that the borrower’s participation constraint

is relaxed if we exchange T by T 0. This follows from the following observation.

Claim. Suppose the lender is indifferent between a debt contract tD and another contract t 6= tD

21 In case of mixing tSB is in the support of the lender’s distribution if sSB is realized.
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if observing a signal s < 1. Then the lender must strictly prefer t over tD for all signals s0 > s.

Proof. The argument is analogous to that used in the proof of Proposition 1. We are therefore

brief. By Assumption 4 and the definition of a debt contract, there exists a value xD in the

interior of X such that tD(x) ≥ t(x) holds for x < xD and tD(x) ≤ t(x) holds for x > xD,

where the inequality holds strictly over sets of positive measure. Define the difference Z(θ) :=R
x∈X

£
tD(x)− t(x)¤ gθ(x)dx. Then Claim 1 in the proof of Proposition 1 holds also for the

function Z(θ). Observe next that by assumption
P
θ∈Θ Z(θ)h (θ | s) = 0. We then obtainX

θ∈Θ
Z(θ)h

¡
θ | s0¢ =X

θ∈Θ
z(θ)h (θ | s)

·
fθ(s

0)
fθ(s)

P
θ0∈Θ h(θ

0)fθ0(s)P
θ0∈Θ h(θ0)fθ0(s0)

− 1
¸
.

Given Assumption 3 and the argument in Claim 2 of the proof of Proposition 1, this proves thatP
θ∈ΘZ(θ)h (θ | s0) > 0, from which the assertion follows directly. Q.E.D.

This completes the proof of Proposition 2. Q.E.D.

Proof of Proposition 3. The proof is analogous to that of Proposition 1. The only difference,

where we made previously use of the stronger Assumption 1, is in the proof of Claim 1. We

therefore restrict ourselves to showing that Claim 1 is still valid under Assumptions 1a and 4a.

By Assumption 4a t(x) is now continuous and nondecreasing, while satisfying t(x0)− t(x) ≤
x0 − x for all x, x0 ∈ X. By monotonicity it is also a.e. differentiable. Where the derivative
exists, we denote it by d(x). Partial integration obtains thenZ x

x
t(x)dGθ(x) = t(x) +

Z x

x
d(x) [1−Gθ(x)] dx, (13)

where we have also used that Gθ(x) = 0. Denote the repayment level specified under the debt

contract t̃ by x < x̃ < x. Then by definition of t̃ the derivative equals one for x < x̃ and zero

for x > x̃. Using the definition of z(θ) and (13), we obtain

z(θ) = [x− t(x)] +
Z x̃

x
[1− d(x)] [1−Gθ(x)] dx−

Z x

x̃
d(x) [1−Gθ(x)] dx

such that, given two types θ0 > θ in Θ, we can transform z(θ0) to

z(θ0) = x− t(x) +
Z x̃

x
[1− d(x)] [1−Gθ(x)]

·
1−Gθ0(x)
1−Gθ(x)

¸
dx

−
Z x

x̃
d(x) [1−Gθ(x)]

·
1−Gθ0(x)
1−Gθ(x)

¸
dx.

Recall now that 0 ≤ d(x) ≤ 1 holds by Assumption 4a. Moreover, by construction of t̃ it follows
that d(x) > 0 holds strictly for a set of positive measure x > x̃, while either d(x) < 1 holds
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strictly for a set of positive measure x < x̃ or it holds that t(x) < x. Together with Assumption

1a we then obtain

z(θ0) <
1−Gθ0(x̃)
1−Gθ(x̃) z(θ), (14)

which is equivalent to (12) in Claim 1 of the proof of Proposition 1. Q.E.D.

Proof of Proposition 4 and Corollary 2. We need the following auxiliary result.

Claim 1. Take some debt contract t with repayment level R ∈ [x, x). Then Uθ(t) − µ(θ) is
strictly decreasing in θ for all θ ∈ Θ.
Proof. Define ∆(R) := Uθ0(t)−Uθ(t) for two arbitrary types θ0 > θ in Θ. Note that d∆/dR =
Gθ(R) − Gθ0(R), which by Assumption 1 is strictly positive for all R ∈ (x, x). Moreover, we
obtain ∆(x) = µ(θ0)−µ(θ). It thus follows that ∆(R) < µ(θ0)−µ(θ) holds for all R < x, which
implies Uθ0(t)− Uθ(t) < µ(θ0)− µ(θ) for all R < x. This proves the assertion. Q.E.D.

We next set up the lender’s problem more formally. The lender’s payoff must be maximized

subject to the borrower’s participation constraint and Assumption 4. (This problem was solved

in Proposition 1, albeit with the restriction to w = 0 and therefore to tC(x) = 0 for all x ∈ X.)
If the set of solutions to this problem is not a singleton, we have to choose the contract that

minimizes the expected liquidated wealth, which we denote by

C :=
X
θ∈Θ

h(θ)
£
1− Fθ(sSB))

¤ Z x

x
tC(x)gθ(x)dx. (15)

We next prove two more auxiliary results.

Claim 2. For all x ∈ X, tC(x) > 0 implies tP (x) = x.22

Proof. Suppose tC(x) > 0 and tP (x) < x over some set X 0 ⊆ X. This implies existence of a
set X 00 ⊆ X 0 and a value ε > 0 such that tC(x) > ε and tP (x) < x− ε for all x ∈ X 00. We can

then construct a new contract satisfying t̃P (x) = tP (x)+ ε and t̃C(x) = tC(x)− ε for all x ∈ X 00

and t̃P (x) = tP (x) and t̃C(x) = tC(x) for all x ∈ X\X 00. This operation leaves total transfers

unchanged for all outcomes, but decreases the expected transfers from private wealth. Q.E.D.

Claim 3. tC(x)− tC(x0) ≤ x0 − x holds for all x0 > x.
22 In what follows, we use the assertion that a result holds for all x ∈ X interchangeably for the assertion that

the result holds for all x ∈ X but a set of measure zero.
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Proof. The assertion follows by combining Assumption 4 with Claim 2. Note first that by

Assumption 4 and the definition of transfers it must hold that

tC(x)− tC(x0) ≤ tP (x0)− tP (x). (16)

The assertion follows immediately if tC(x) ≤ tC(x0). For tC(x) > tC(x0) we distinguish

between two cases. Suppose first that tC(x) > 0 and tC(x0) > 0, implying by Claim 2 that

tP (x) = x and tP (x0) = x0. Substituting these values into (16) proves the assertion. Finally,

suppose that tC(x) > 0 and tC(x0) = 0, implying tP (x) = x. In this case the right side of (16)

transforms to tP (x0)− x, which is surely bounded from above by x0 − x. Q.E.D.

We prove next that transfers (tP , tC) are uniquely determined and that they are characterized

as follows. First, tP is a debt contract with some repayment level RP . Second, tC follows the

description in Figure 1 and can thus be fully described by some value xC from which on it holds

that tC(x) = 0. Precisely, for xC ≤ w it holds that tC(x) = max©xC − x, 0ª, while for xC > w
it holds that tC(x) = w if x ≤ xC − w and tC(x) = max©xC − x, 0ª if x > xC − w. We denote
the respective set of transfers satisfying these characteristics by (tP , tC) ∈ TP × TC .

Claim 4. The solution must be an element of TP × TC .
Proof. Assume that a pair (tP , tC) /∈ TP ×TC solves the problem. We transform this contract

in the following way. First, we transform tP into t̃P . Assuming that sSB is kept constant,

t̃P ∈ TP is uniquely determined by the requirement that payoffs for both sides remain constant.
(Note that both payoffs are continuous and strictly monotonic in the repayment level R̃P , which

characterizes t̃P ) Second, we transform tC into t̃C . Assuming that sSB is kept constant, t̃C ∈ TC

is uniquely determined by the requirement that payoffs for both sides remain constant. (Note

that both payoffs are continuous and strictly monotonic in the value x̃C , which characterizes

t̃C .)

From the argument in Proposition 1 we know that the first operation to obtain t̃P leads

to a decrease in the lender’s optimal threshold. (Recall that this followed from Assumption 1

and the fact that tP and t̃P cross exactly once unless tP ∈ TP .) We argue next that the same
holds for the second operation to obtain t̃C . To see this, note that by Claim 3 tC and t̃C cross

exactly once, i.e., there exists a single value x̃ ∈ X such that t̃C(x) ≥ t̃C(x) holds for x ≤ x̃ and
t̃C(x) ≤ t̃C(x) holds for x ≥ x̃, unless tC ∈ TC .
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If sSB(t̃) < sFB holds, we have to perform yet another operation. In this case we have

to adjust R̃P , which characterizes t̃P , and x̃C , which characterizes t̃C , in the following way.

Keeping again sSB constant, i.e., at sSB(t), we increase R̃P and simultaneously adjust x̃C such

that payoffs remain constant until the true threshold sSB(t̃) satisfies sSB(t̃) = sFB. By Lemma

3 a solution satisfying x̃C > 0 exists. Note that this operation reduces the expected transferred

wealth. Denote the respective realization by C̃.23

We are now in the position to complete the proof, comparing t with the newly constructed

contract t̃. We discuss three cases in turn.

Case 1. Assume first that sSB(t) = sFB, implying by our operations that also sSB(t̃) = sFB(t)

and that payoffs are therefore unchanged. As, however, C̃ < C holds by construction of t̃C , we

obtain a contradiction to the optimality of (tP , tC).

Case 2. Assume next that sSB(t) > sFB. Note first that our construction implies sFB ≤
sSB(t̃) < sSB(t). As the lender optimally readjusts his threshold following the change of con-

tracts, it follows by construction that the lender is strictly better off under t̃. It thus remains to

show that the borrower is not worse off such that his participation constraint is still satisfied.

Given our construction, the borrower’s payoff would not be affected if the lender still imple-

mented his policy of only accepting types s ≥ sSB(t). Hence, it is sufficient to prove that the bor-
rower’s expected payoff is non-negative after being accepted for realizations s ∈ [sSB(t̃), sSB(t)).
Note that this is no longer immediate as the borrower pledges collateral.

Assertion: For Case 2 the borrower’s payoff is not lower if we replace t by t̃.

Proof. At s = sSB(t̃) it holds by definition of the cutoff signal that
P
θ∈Θ h(θ | s)Uθ(t̃) = k,

while by sFB ≤ sSB(t̃) we havePθ∈Θ h(θ | s)µ(θ) ≥ k. This implies that the borrower’s expected
payoff at s = sSB(t̃) is nonnegative. We now contradict the assumption that it becomes strictly

negative at some value s0 > sSB(t̃). Define y(θ) := Uθ(t̃)− µ(θ). Using continuity of payoffs in
the signal, the assertion

X
θ∈Θ

h(θ | s0)y(θ) > 0 (17)

23Note that we do not claim for this operation that sSB(t̃) is monotonic in x̃C . If there are more than one

solutions yielding sSB(t̃) = sFB, we may choose the one with the lowest realization of C̃.
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then implies existence of some signal s ∈ [sSB(t̃), s0) whereX
θ∈Θ

h(θ | s)y(θ) = 0. (18)

We argue first that y(θ) is strictly decreasing in θ. To see this, note that Uθ(t̃) = Uθ(t̃P ) +

Uθ(t̃
C). As t̃C is by construction nonincreasing, it follows from Assumption 1 that Uθ0(t̃C) ≤

Uθ(t̃
C) holds for all θ0 > θ in Θ. As a consequence, y(θ) is surely strictly decreasing if it holds

for all θ0 > θ in Θ that Uθ0(t̃P )− Uθ(t̃P ) < µ(θ0)− µ(θ). As t̃P is a debt contract, this follows
by Claim 1. We have thus shown that y(θ) = Uθ(t̃)− µ(θ) is strictly decreasing in θ. Hence, to
ensure that (17) holds, it must be the case that y(θ) > 0 for θ = 1. Moreover, by construction

of t̃ it follows that y(θ) < 0 holds for sufficiently high values of θ. We can thus find a value

1 ≤ θ̃ < θ such that y(θ) > 0 holds for all θ ≤ θ̃ and y(θ) < 0 holds for all θ > θ̃. We can now
use this result to contradict the claim that (17) holds. Using (18), we obtainX

θ∈Θ
h(θ | s0)y(θ) =

X
θ∈Θ

h(θ | s)y(θ)
·
h(θ | s0)
h(θ | s) − 1

¸

<

"
h(θ̃ | s0)
h(θ̃ | s) − 1

#X
θ∈Θ

h(θ | s)y(θ),

where the last step follows by monotonicity of y(θ), the definition of θ̃, and by Assumption 3.

Using again (18), this contradicts (17). Q.E.D.

This completes the discussion of Case 2.

Case 3. It remains to consider the case where sSB(t) < sFB. (In contrast to the analysis for

w = 0 such a contract is now feasible.) By our operations this implies sSB(t̃) = sFB. Hence

in contrast to the original contract there is now no acceptance for signals s ∈ [sSB(t), sFB).
Recall that by construction payoffs would unchanged if the original cutoff signal sSB(t) was still

implemented. As the lender optimally adjusts his policy, his payoff is again strictly higher under

the new threshold sFB. It thus again remains to show that the borrower is not made worse off,

which is surely the case if his expected payoff is non-positive for realizations s ∈ [sSB(t), sFB).
This follows from an argument analogous to that used for the case sSB(t) > sFB in the previous

Assertion.

Combining the Cases 1-3, we obtain a contradiction. This completes the proof of Claim 4

that an optimal contract must satisfy (tP , tC) ∈ TP × TC . Q.E.D.
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By Claim 4 the lender’s program has only the two variables xC and RP . Moreover, As-

sumption 4 transforms to the requirement RP ≥ xc. By optimality the borrower’s participation
constraint must be binding, which implies that the lender maximizes the joint surplus subject to

the program’s constraints. It is then immediate that the optimal contract implements a credit

policy satisfying s ≥ sFB.
If the first-best policy cannot be achieved, i.e., if sSB > sFB holds under an optimal contract,

it must hold that xC = RP , i.e., the constraint due to Assumption 4 must be binding. If this

did not hold, i.e., if xC < RP and sSB > sFB, we could by the arguments in Claim 4 find a

feasible contract under which the cut-off signal becomes lower as we increase xC and decrease

RP .

If it is possible to implement the efficient credit policy, we argue next that the optimal

contract is still unique. This follows from the second objective to minimize C. While in this

case there may be many pairs (xC , RP ) implementing the efficient policy, there is clearly a single

pair with the lowest value xC . (Note that by Lemma 3 this must satisfy xC > 0.)24

We have thus obtained the following results.

Claim 5. There is a unique optimal contract under which sSB ≥ sFB is implemented. If

sSB > sFB, then xC = RP .

We now introduce some additional notation. We claim that there is a threshold bV > 0 such
that the efficient credit policy is only chosen if V ≤ bV .
Claim 6. There exists bV > 0 such that for V > bV it holds that sSB > sFB, while for V ≤ bV
it holds that sSB = sFB.

Proof. By Claim 5 we know that an efficient policy can be implemented if and only if this is

possible by a contract t that can be written as

t(x) = w+max {x,R} (19)

for some value R. The assertion follows now directly from the following construction of the

threshold bV . The equationX
θ∈Θ

h(θ | sFB)
·Z x

x
min {x,R} gθ(x)dx

¸
= k −w (20)

24Existence follows by continuity of payoffs in xC and RP .
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has by Assumption 5 a unique solution for R, which we denote by bR, such that for all R < bR
the first-best credit policy can not be obtained. Substituting bR into the borrower’s expected

payoff, we obtain

bV :=X
θ∈Θ

h(θ)
£
1− Fθ(sFB)

¤ ·Z x

x
max

n
x− bR, 0o gθ(x)dx¸ . (21)

Q.E.D.

Combining Claims 4-6 proves Proposition 4. We turn now to the proof of Corollary 2.

Claim 7.

i) For V ≥ bV it holds that sSB increases in V .

ii) bV increases in w, while for V > bV an increase in w strictly increases sSB.

Proof. We prove first assertion i). From Claim 5 we know that for V ≥ bV it holds that

xC = RP = R. (In fact, the optimal contract can be written as in (19).) An increase in V must

now lead to a decrease in R. (Otherwise, as the lender’s payoff is strictly decreasing in R, the

previous contract would not have been optimal.) But sSB is by previous arguments (see the

proof of Proposition 1) strictly decreasing in R.

Turn next to assertion ii). Recall the definition of bV by (20)-(21) in Claim 6. The strict

monotonicity in w is then immediate. Suppose next that V > bV and consider a marginal increase
in w. Recall also that for V > bV the optimal contract can be written as in (19). As we adjust

w and R to keep the borrower’s payoff equal to V , it follows from by now standard arguments

that this must strictly reduce the cutoff signal sSB. Q.E.D.

We turn next to the size of the pledged collateral. The maximum value of pledged wealth,

i.e., maxx∈X tC(x), is given by tC(x). We know that tC(x) = w holds for all V ≥ bV . To complete
the proof of Corollary 2 it thus remains to show that tC(x) weakly increases over V ≤ bV . This
follows from the following assertion.

Claim 8. For V ≤ bV it holds that xC weakly increases in V .

Proof. Recall that for V ≤ bV it holds that sSB = sFB. While for V < bV the efficient cutoff

signal could be obtained by various combinations (RP , xC), there is a unique such combination

that minimizes xC and therefore C. Note next that as V increases the program of the lender
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becomes more constrained. It follows thus directly from optimality that the respective value xC

— and thus C— can not be strictly decreasing in V . Q.E.D.

Proof of Proposition 5 and Corollary 3. It is helpful to note that a contract specifying

t and the loan size L is equivalent to a contract under which the lender provides the full loan

k and where we adjust the payout to t̃(x) = F + t(x), where F = k − L. In what follows we
restrict consideration to such contracts where the repayment is characterized by a pair (F, t).

The arguments to prove Proposition 5 and Corollary 3 are analogous to those used to prove

Propositions 1 and 4 and Corollary 2. We are therefore short. The optimal contract again

maximizes the lender’s expected payoff. If this generates multiple solutions, which will again

hold only if sSB = sFB, then an optimal contract will reduce the borrower’s share of co-financing

F .

Claim 1. There exists a unique optimal contract, which takes the form of standard debt.

Proof of Claim 1. The proof that t must be standard debt proceeds in analogy to that of

Claim 4 in the proof of Proposition 3. Hence if we transform any other payout t into a debt

contract we can either implement a more efficient credit policy or, otherwise, at least reduce F .

Uniqueness follows then immediately. Q.E.D.

Claim 2.

i) There exists bV > 0 such that for V > bV it holds that sSB > sFB, while for V ≤ bV it holds

that sSB = sFB.

ii) For V ≥ bV it holds that sSB increases in V .

iii) bV increases in w, while for V > bV an increase in w strictly increases sSB.

Proof. Assertion i) follows from Claim 6 in the proof of Proposition 4. (Recall that for

sSB > sFB the optimal contract with collateral can be written as t(x) = w + max {x,R}.)
Likewise, we can appeal to Claim 7 in the proof of Proposition 3 to obtain assertions ii) and iii).

Q.E.D.

Claims 1-2 together with the following assertion complete the proof.

Claim 3. For V ≤ bV it holds that F strictly increases in V .

The proof of Claim 3 is analogous to that of Claim 8 in the proof of Proposition 3. This

completes the proof of Proposition 5 and Corollary 3. Q.E.D.
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