
Graduate Student Database Project

Nicholas Wallen
Department of Computer Science

Florida State University

Major Professor: Dr. David Whalley

In partial fulfillment of the requirements for the Degree of Master of Science



Introduction

Background

In the Computer Science Department at Florida State University, tracking a student's progress 

through the graduate program has been  handled separately and disjointly by the different staff 

members based on what they oversee. However, as multiple aspects of the students data must be shared 

for various tasks, this data is often shared via email and stored redundantly in excel spreadsheets across 

the department. This manner of storage often leads  to hardships with regards to how the data was 

managed, updated, and shared; when data needs to be updated, all copies must be updated manually 

with great care so that out of date information is not kept and recirculated through the system. In 

addition, various governmental and provisional bodies request periodic surveys to be done on the 

makeup of the student body. Currently, this is done by sifting through hundreds of papers for all the 

students and counting them manually. With a centralized system, it could potentially take a single query 

to count the students on a moments notice.

 

Goal

The objective of this master’s project is to create a database to centrally handle the information 

of all the graduate students in the Computer Science Department, and to provide access to this 

information with an easy to use web-based interface that can be accessed by any device with basic html 

rendering capabilities.

 

Requirements

Requirements for the system fall into three categories, those tending towards the usability of the 

system, those towards the maintenance and alteration of the system, and those towards the security of 

the system.  For the first requirement, accessibility was addressed by making the system accessible 



from the web via a standard web browser, and no required extensions, such as java, javascript, or flash. 

The system was also designed so that the users would be able to complete the repeatable tasks in a 

streamlined manner to cut down on wasted time, and in a concise way to switch between tasks. To 

address the maintenance of the system, a modular design was used. This was done so that bugs  can 

easily be found and additional features can easily be added to the system. To address the security of the 

system, users are required to run sessions over Hypertext Transfer Protocol over Secure Socket Layer, 

https. 

Functional Description 

Method of Use

There are multiple users for this system defined by their role. First is the Director of Graduate 

Studies. It is this person’s job to initiate the student into the system by using the accept function. Using 

this functionality, when a student arrives at the university, the director  accesses the list of accepted 

students and creates an entry for  the new student into the graduate student database. This is done by 

changing the status under “attending” to either  “yes” or “no” and hitting the submit button. The list of 

students can be filtered by year, semester, and whether the sought degree is MS or PhD.



Fig. 1: Accept Function

The next job of the supervisor is to initialize the data when the student meets with the director to 

discuss  the degree program requirements. At this time the director records into the system the class 

prerequisites, and advisor status for the student. Later as the student progresses through the program, 

the director can set the faculty members that are on the student’s defense committee if the student 

intends to defend a dissertation, project, or thesis. To edit a student's information in the system, the 

supervisor selects the “Alter student information” button on the left panel, and selects the student to edit 

(see Fig 2). The students can be queried based on their status in the system. The choices are “attending” 

for ordinary students, “uninitialized” for students new to the system, and  “graduated”, “left”, and 

“expelled” for students no longer in the department. Selecting the student to edit will take the director 

to the page to alter that student's data (Fig 3).



Fig. 2: Alter/View Detail Function – Student Select Page



Fig. 3: Alter/View Detail Function – Student Detail Page

The final job of the director is to  indicate that the student  is no longer an active student upon 

the student's graduation or otherwise departure from the school. This is done by again going into the 

“modify permanent info” form and selecting “degree status” and changing it to either expelled, left, or 



graduated.

The next set of users of the system is the RA manager and TA manager. It is their job to record 

the semesterly information regarding the students’ position and their related pay. For first time students, 

the data must be initialized in the semester data table. To do this, the manager clicks on the “Add a TA” 

or the “Add a RA” button on the navigation panel, and then chooses “enter a single student” and then 

fills out the appropriate data for that student.  Recurring students may be entered at the same time by 

instead choosing “enter students in batch mode,” which copies a subset of the students from the 

previous semester to the current one. Finally, the managers can edit the information with the TA/RA 

matrix manager. 

Fig 4 Add Single TA/RA

The person in charge of payroll also has access to the system to view the costs associated with 

employing the TAs and RAs. The payroll manager has read access to the TA/RA matrix that the RA 



and TA managers use to input the financial information.  The names of the students were omitted from 

this viewing of the matrix.



Fig 5 TA/RA Matrix Manager

Implementation

The system was written to work with a mysql database back-end to store the data, and is written 

in Perl to create the pages to serve via apache. The content of the database is divided into four major 

components.  The first is the applicant information that the student submits when requesting admission 

into the program. This table  is preexisting before the creation of this system, and was adapted for its 

new use. This table is used to look up the student ID, name and standardized testing scores.  The second 

table used is for data that is static for most of the student's time in the department. This table holds the 

following data:



Fig. 6 Permanent Info Table

The id is the student ID that links the permanent information to the students entry in the 

applicant database. The username is the student's username and email address, and link is a link to their 

picture. DegreeStatus describes whether the student has been initialized, has left the program, or is a 

currently attending student. DegreeType describes which degree the student is pursuing: computer 

science, software engineering, or information security. DegreeLevel represents whether the student is 

pursuing a PhD, or a course, project, or thesis based MS degree. StartSem and startYear  comprise the 

semester and year the student enters the system. Room is the student's office room number. 

PostDegreeEmp lists the students employment after leaving the system.  

The third table used by the system is used to track the semester to semester information of the 

student's information through the degree program. This table also uses an ID field for referencing a 



student, and a semester and year field for the semester and year this entry tracks. startDate and endDate 

mark the dates by which the appointment begin and end. FundingType describes the type of position 

the student has and can be one of the following: 'TA – MA' for a student teaching a class in the CS 

major, 'TA -NM' for students teaching a non-majors class, 'TA – LI' for those teaching a literacy class, 

'TA -OR' for any other teaching assignment, 'RA' for research assistants, 'SG' for those in the systems 

group, and 'OR' for all other job positions. Jobcode, projectcode, fundingcode, record, and employeeID 

all represent codes needed by the school to describe the student's job position internally. Jdescripction 

describes the job and jSupervisor lists the staff or faculty member that the student reports to for the job. 

Hours lists the number of hours the student works weekly. Teach is a flag that is set if the student is in a 

teaching position. 

Fig 7 Semester Information Table

Three other tables are used by the database to manage users and their privileges. GradUsers, 

GradPages, and GradPrivileges (see Fig 8).  GradUsers contains the username and the password for the 



account. GradPages contains pageID, used to uniquely identify the page, pageLink, a link that the script 

uses to find the correct section of code for that page, and 'pageDesc' which is a description for the end 

users to know what that page is for. GradPrivileges describes user privleges by mapping a user's 

username to the pageID's of the pages he has access to.

 Fig 8 User Privileges Tables

Sessions

User sessions are managed by the Perl module cgi:sessions. cgi:sessions  provides two ways to 

track users of the web page. The first is through a cookie management system. This management 

system was not chosen for this project so that users without a cookie supporting browser could use the 

system. The second way of detecting users is by calling $session->id(), which returns the id of the 

session, and embedding the value in the web page. When a related web page is submitted to the 

webserver, if it has a session id, the perl script connects to the database server, looks up the id, and if it 



exists, loads the saved data into the session variable. If the page does not send a session id, the script 

generates one for it, and if it sends a faulty id, it returns the user to the login screen.

HTML

Web page design was done with the aid of the perl module html:template. This allows for the 

html to be written in a template file separate from the perl code to increase code readability and 

reusability. When a template is called, the script loads data from the template and substitutes any perl 

variables in the template with the corresponding variable in the script. Many different templates were 

designed for the various pages, as well as a generic template for pages with less content. All templates 

load two frames: 'content', for the specific content of the page, and 'noncontent' for items standard to 

each page such as the links to the different section and the logout button.

Future Work

While this project has supplied the basics for a system to keep track of students, many further 

enhancements are desired for greater control of the information.

The first major enhancement would be for advisors to be able to log in and see the information 

for their students. They should be able to see what prerequisites the students have taken, and still need 

to take, as well as information about their job, pay, room assignment, and email address. The advisors 

should also be able to fill out semester and yearly progress reports on phd students who have advanced 

to candidacy. Also useful would be the ability to record which classes have been recommended by the 

student's advisor, as well as taken classes and grades made in said classes.

Another useful addition to the system would be an extended system by which a student should 

exit the system. Currently, the Grad Supervisor simply marks 'graduated', 'left', or 'expelled' in a 



students status when the student leaves; instead, a system could be set that allows the supervisor to 

simply click a button and have the system automatically check which graduation requirements have 

been met, which are currently being worked on, and which are unmet.

Other improvements to the system should relate to the maintenance of the system. There should 

be some method for the users of the system to correct mistakes made by themselves that do not require 

them to contact the webmaster to modify the mysql tables to fix the problem. Similarly, user account 

generation, password management, and course and advisor status should be modifiable from within the 

user interface for privileged users.

Another way the system could be improved upon is with the matrix manager. Currently, it 

requires the user to type in the values for each of the fields that are in the matrix. The burden of typing 

in the users could be eased by creating pull down menus for enumerated values and booleans.

A prototype for a more visually appealing and intuitive template was worked on and 

implemented for the matrix manager. This new, more user friendly design could be propagated 

throughout the system.

Finally, a general query capability should be added.  This feature will be very useful when 

attempting to fill out surveys regarding our graduate students, to answer questions from administrators, 

or to obtain information for various reports. 

Conclusions 

In conclusion, a database is a far more efficient mechanism to store and organize data than 

spreadsheets; it allows for a centralized facility that can easily be modified and quickly shared among 

multiple users. Having a web based front end removes the requirement of users having to understand 

and use a database directly, and allows users to connect from anywhere with an internet connection and 



a basic web browser. It also allows the possibility of queries to obtain information for various surveys. 

Due to the number of users reading and modifying student data in the department, it is an ideal use for 

such a system.


