
Dynamic Fault Tree analysis using Input/Output Interactive Markov Chains∗

Hichem Boudali
hboudali@cs.utwente.nl

Pepijn Crouzen§,†

crouzen@alan.cs.uni-sb.de
Mariëlle Stoelinga

marielle@cs.utwente.nl

University of Twente, Department of Computer Science,
P.O. Box 217, 7500 AE Enschede, the Netherlands

§Saarland University, Department of Computer Science,
D-66123 Saarbrücken, Germany

Abstract

Dynamic Fault Trees (DFT) extend standard fault trees
by allowing the modeling of complex system components’
behaviors and interactions. Being a high level model and
easy to use, DFT are experiencing a growing success among
reliability engineers. Unfortunately, a number of issues still
remains when using DFT. Briefly, these issues are (1) a lack
of formality (syntax and semantics), (2) limitations in mod-
ular analysis and thus vulnerability to the state-space ex-
plosion problem, and (3) lack in modular model-building.
We use the input/output interactive Markov chain (I/O-IMC)
formalism to analyse DFT. I/O-IMC have a precise seman-
tics and are an extension of continuous-time Markov chains
with input and output actions. In this paper, using the I/O-
IMC framework, we address and resolve issues (2) and (3)
mentioned above. We also show, through some examples,
how one can readily extend the DFT modeling capabilities
using the I/O-IMC framework.

KEYWORDS: Fault tree, Interactive process, Markov
chain, compositional aggregation, modularity.

1. Introduction

Dynamic fault trees (DFT) [11, 8, 20] extend standard (or
static) fault trees (FT) [1] by defining additional gates called
dynamic gates. These gates allow the modeling of complex
system components’ behaviors and interactions which is far
superior to the modeling capabilities of standard FT. Like

∗This research has been partially funded by the Netherlands Or-
ganisation for Scientific Research (NWO) under FOCUS/BRICKS grant
number 642.000.505 (MOQS); the EU under grant number IST-004527
(ARTIST2); and by the DFG/NWO bilateral cooperation programme un-
der project number DN 62-600 (VOSS2).

†The majority of this work was done while the author was at the Uni-
versity of Twente.

standard FT, dynamic fault trees are a high-level formal-
ism for computing reliability measures of computer-based
system. For over a decade now, DFT have been experienc-
ing a growing success among reliability engineers. Unfor-
tunately, a number of issues still remains when using DFT.
Most notably the following three issues are a matter of con-
cern: (1) the DFT semantics is rather imprecise and the
lack of formality has, in some cases, led to undefined be-
havior and misinterpretation of the DFT model. (2) DFT
lack modular analysis. That is, even though stochastically-
independent sub-modules exist in a certain DFT module
(specifically those whose top-node is a dynamic gate), these
sub-modules cannot be solved separately and still get an ex-
act solution. Consequently, a DFT model, which is typically
analyzed by first converting it into a Markov chain (MC),
becomes vulnerable to the state space explosion problem.
(3) DFT also lack modular model-building, i.e. there are
some rather severe restrictions on the type of allowed in-
puts to certain gates (e.g. inputs to spare gates and depen-
dent events of functional dependency gates have to be basic
events), which greatly diminish the modeling flexibility and
power of DFT.

DFT are comprised of various elements1: Basic events,
static gates (AND, OR, and K/M gates), and dynamic gates
(functional dependency, priority AND, and spare gates).
Each of these elements is viewed as a process moving from
one state to another. States denote either the operation or
the failure of the element. Each element, or process, also
interacts (communicates) with its environment by respond-
ing to certain input signals and producing output signals.
These elements2 could also possess a purely stochastic be-
havior by allowing (in a probabilistic fashion) the passage
of time prior to moving to another state. In the remainder
of the paper, we assume this passage of time to be governed

1Also called components.
2At this point only the basic events.

by an exponential probability distribution (thus behavingas
a Markovian process). Moving from one state to another is
therefore caused by either an input or output transition or
due to a Markovian transition.

Given the nature of DFT elements; we have used the in-
put/output interactive Markov chain (I/O-IMC) formalism
[5]. In fact, I/O-IMC augment continuous-time Markov
chains with input and output actions and a clear separation
between Markovian transitions and interactive (involving
input or output actions) transitions is made. Furthermore,
I/O-IMC have a precise and formal semantics. I/O-IMC
have proved to be a suitable and natural way to model DFT
elements.

I/O-IMC are an example of a stochastic extension to a
process algebra. These stochastic process algebras have re-
cently gained popularity in performance modeling and anal-
ysis due to theircompositional aggregationapproach. We
refer the reader to [15] for case studies on the application
of the compositional aggregation approach to the model-
ing and analysis of real systems. Compositional aggrega-
tion is a technique to build an I/O-IMC by composing, in
successive iterations, a number of elementary and smaller
I/O-IMC and reducing (i.e. aggregating) the state-space of
the generated I/O-IMC as the composition takes place (cf.
Section 3).

Issue (1), mentioned above, has been addressed in [5]
where a formal syntax and semantics for DFT have been
defined. The formal syntax is derived by characterizing the
DFT as a directed acyclic graph. The formal DFT semantics
is described in terms of I/O-IMC, and provides a rigorous
basis for the analysis of DFT. In fact, each DFT element
has a corresponding elementary I/O-IMC. This semantics
is fully compositional, that is, the semantics of a DFT is
expressed in terms of the semantics of its elements. This
enables an efficient analysis of DFT through compositional
aggregation to produce a single I/O-IMC, on which we can
then carry out performance analysis. Earlier work on for-
malizing DFT can be found in [9], where DFT are specified
using the Z formal specification language. The main differ-
ence between the formal specification in [9] and the formal
specification used in this paper is that in our framework we
use a process algebra-like formalism (i.e. I/O-IMC) which
allows us to use the well-defined concept of compositional
aggregation which helps us to combat the state-space ex-
plosion problem. In fact, this notion of compositional ag-
gregation is not present in [9] and the state-space explosion
problem is not addressed or mitigated whatsoever.

We address issue (2) by showing, using the I/O-IMC
framework, how the DFT analysis becomes greatly mod-
ular compared to current state of the art DFT analysis tech-
niques. In particular, we demonstrate, through an example
system, how an I/O-IMC corresponding to a certain (inde-

pendent) dynamic module3 can be reused in any larger DFT
model.

We also tackle issue (3) and lift two previously enforced
restrictions on DFT; namely, the restriction on spares and
functional dependency gates’ dependent events to be basic
events. In fact, in our framework it becomes possible to,
for instance, model a spare as a complex sub-system com-
prised of several basic events and gates. The use of (shared)
spares in DFT has always been somehow problematic [9].
In this paper, we carefully examine, clarify, and generalize
the concept ofspare activation.

To summarize, we make the following contributions:

1. Illustrate, through a case study, the use of the I/O-IMC
framework for the analysis of DFT, and in particular
we show the benefits of the compositional aggregation
approach.

2. Show the increased DFT modular analysis and the con-
cept of reuse of dynamic modules.

3. Extend the DFT modeling capabilities by allowing
complex spares (through the generalization of the con-
cept of activation) and complex functionally dependent
events.

4. Illustrate how readily one can define new DFT ele-
ments and provide 3 examples (i.e. inhibition, mutu-
ally exclusive events, and repair).

The remainder of the paper is organized as follows: In Sec-
tion 2 and Section 3, we introduce DFT and I/O-IMC re-
spectively. In Section 4, we show how a DFT is automat-
ically converted into a community of I/O-IMC and discuss
non-determinism. In Section 5, we illustrate the DFT mod-
ular analysis. In Section 6, we lift the restrictions on the
spare and functional dependency (FDEP) gates. Finally,
in Section 7, we illustrate how one can readily extend the
modeling capabilities of DFT by augmenting or modifying
the set of elementary I/O-IMC models. Some of these ex-
tensions includemutually exclusive eventsandrepair. We
conclude the paper and suggest future work in Section 8.

2. Dynamic fault trees

Dynamic fault trees [8, 11] are an extension to standard
fault trees that allow richer modeling capabilities. A fault
tree model describes the system failure in terms of the fail-
ure of its components. Standard FT are combinatorial mod-
els and are built using static gates (the AND, the OR, and the
K/M gates) and basic events (BE). A combinatorial model
only captures the combination of events and not the order

3Also called sub-system or sub-tree.

of occurrence of their failures. Combinatorial models be-
come, therefore, inadequate to model today’s complex dy-
namic systems. DFT introduce three novel modeling capa-
bilities: (1) spare component management and allocation,
(2) functional dependency, and (3) failure sequence depen-
dency. These modeling capabilities are realized using three
main dynamic gates4: The spare gate, the functional de-
pendency (FDEP) gate, and the priority AND (PAND) gate.
Figure 1 depicts the three dynamic gates.

The PAND gate fails when all its inputs fail and fail from
left to right (as depicted on the figure) order. The spare gate
has one primary input and one or more alternate inputs (i.e.
the spares). The primary input is initially powered on and
when it fails, it is replaced by an alternate input. The spare
gate fails when the primary and all the alternate inputs fail
(or are unavailable). A spare could also be shared among
multiple spare gates. In this configuration, when a spare
is taken by a spare gate, it becomes unavailable (i.e. essen-
tially seen as failed) to the rest of the spare gates. The FDEP
gate is comprised of a trigger event and a set of depen-
dent components. When the trigger event occurs, it causes
the dependent components to become inaccessible or unus-
able (i.e. essentially failed). The FDEP gate’s output is a
‘dummy’ output (i.e. it is not taken into account during the
calculation of the system’s failure probability). Along with

Output

Inputs

SPARE GATE

Spares

FDEP

Trigger

event

Dependent

eventsPrimary

Dummy

outputOutput

(a) (c)(b)

Figure 1. Dynamic gates: (a) PAND, (b) spare, (c) FDEP.

static and dynamic gates, DFT also possess basic events,
which are leaves of the tree. A basic event usually repre-
sents a physical component having a certain failure proba-
bility distribution (e.g. exponential). A DFT element has
a number of operational or failed states. In the case of a
BE5, operational states could be further classified asdor-
mantor activestates. A dormant state is a state where the
BE failure rate is reduced by a factor called the dormancy
factorα. An active state is a state where the BE failure rate
λ is unchanged. Depending on the value ofα, we classify
BE as: cold BE (α = 0), hot BE (α = 1), and warm BE

4A fourth gate called ‘Sequence Enforcing’ gate has also beendefined
in [11]; however, it turns out that this gate can be emulated using a cold
spare gate.

5Also a spare gate as we will see in Section 6.

(0 < α < 1). The dormant and active states of a BE cor-
respond to dormant and active modes of the physical com-
ponent. For instance, a spare tire of a car is initially in a
dormant mode and switches to an active mode when it is
fixed on the car for use.

Galileo DIFTree [12] was the first package to introduce,
use, and analyze DFT. DIFTree uses a modular approach
to analyze a DFT. Indeed, the DFT is first split into inde-
pendent static and dynamic modules, the modules are then
solved separately and each of them is replaced by a BE with
a constant failure probability. The modules’ solutions are
then combined to find the overall system reliability. This
process is iterative as independent modules could be nested.
An independent module is dynamic if it contains at least
one dynamic gate, otherwise it is static. Static modules are
solved using binary decision diagrams and dynamic mod-
ules are solved by converting them into MCs.

Note that when an independent module is replaced by
a BE with a constant failure probability, some information
(i.e. the shape) of the module’s failure distribution is lost
since it is replaced by a single failure probability value.
Moreover, since any dynamic gate requires the knowledge
of the entire failure probability density functions of their in-
puts, solving an independent module and replacing it by a
BE with a constant failure probability is only possible if the
module is part of a larger static (and not dynamic) module.
This constraint, which is linked to issue (2) mentioned in the
Introduction, makes DFT far less modular (cf. Section 5).

3. Input/output interactive Markov chains

Input/output interactive Markov chains [5] are
an integration of Input/Output Automata [17] and
CTMC [16] [19]. I/O-IMC are closely related to Interactive
Markov Chains [13] (IMC) which are an integration of
interactive processes (IP) [18] and CTMC.

Figure 2.a shows two examples of input/output interac-
tive Markov chains. Circles denote states in the model and
transitions are depicted as arrows. The starting state is iden-
tified by a black dot. There are two different kinds of transi-
tions in an I/O-IMC model:Markovian transitions, denoted
by a small rectangle on the arrow andinteractive transi-
tions, denoted by a line on the arrow. Each I/O-IMC has
anaction signature, written next to its starting state, which
shows how it communicates with the environment. I/O-
IMC B, for instance, has an input-actiona?, an output ac-
tion b! and no internal actions. When each of the I/O-IMC’s
actions has at least one associated transition, the action sig-
nature can be (and often is) omitted. The difference between
inputs, outputs and internal actions will be discussed further
on in this section.

I/O-IMC B has a Markovian transition from state 1 to
state 2. This transition has arate of λ. Markovian transi-

tions in I/O-IMC behave exactly the same way as Marko-
vian transitions in CTMC: the I/O-IMC moves from state
1 to state 2 after an exponentially distributed delay. An
I/O-IMC with only Markovian transitions can thus be in-
terpreted as a CTMC.B also has an interactive transition
from state 1 to state 3 labeleda?. This denotes that the
move from 1 to 3 is aninput actionnameda. Input actions
are denoted with a question mark (i.e.a?). This means that
if some other I/O-IMC performs anoutput actionnameda
while I/O-IMC B is in state 1 thenB will move to state
3 immediately. It is important to note that every state of
I/O-IMC B has an outgoing input transition nameda. This
means thatB is always ready to respond to an output-action
a, even if this does not result in a state-change (whenB is
in state 3, 4, or 5). For clarity we will omit these transitions
(input-actions from a state to itself) from now on. We say
that I/O-IMC B is input-enabledwith respect to actiona.
Note that input actions are delayable, i.e. they must wait
until another I/O-IMC performs the corresponding output-
action.

A different kind of interactive transition from state 4 to
state 5 is also present inB. This transition is labeledb! and
is an output action. Output actions are denoted with an ex-
clamation mark (i.e.b!). When I/O-IMCB performs this
output action all I/O-IMC which haveb as an input action
must perform this input action. Unlike input actions, output
actions are immediate; i.e. when I/O-IMCB moves to state
4 no time passes before it moves to state 5. It is however
possible that another interactive transition is taken immedi-
ately. Specifically, if two or more different output actions
are possible in a state, then the choice between the transi-
tions isnon-deterministic. One of the transitions is taken
immediately, but it is not known how this choice is made.

b!

2

4 5

3

a?

a?

a?

b!

-
B 1

a!
2 3

-

a!

-
A 1

b!
3,4 3,5

-

b!

a;

1,1

a?

a?

a?

1,2

2,2

2,1

-

b!

a;
b!

3,4 3,5

3,3

a;

a;

1,1

(a) Two examples of I/O-IMC

(b) Parallel composition of A and B,

hiding signal a (‘Hide a in A||B’)

(c) Aggregation of ‘Hide a in A||B’

Figure 2. Composition, hiding, and aggregation.

Besides input and output actions there are also internal
actions (which are not featured in the example I/O-IMCB).
Internal actions are denoted with a semi-colon. Internal ac-
tions do not influence other I/O-IMC and are not influenced
by other I/O-IMC. Similar to output actions, internal actions
are immediate.

The reason it is interesting to combine Markovian and

interactive transitions is that interactive transitions enable
the construction of large I/O-IMC by composition of sev-
eral smaller I/O-IMC [13]. The subject at hand (the analysis
of dynamic fault trees) is a good example. Instead of trans-
forming the entire DFT into one large CTMC we transform
the basic events and gates of the DFT first (cf. Section 4)
and then create a single I/O-IMC by combining the smaller
ones (see Section 5). The I/O-IMC formalism is one such
approach to combining Markovian and interactive transi-
tions. A discussion on different approaches to combining
Markovian and interactive transitions in one formalism can
be found in [13]. An I/O-IMC can also be transformed into
a smalleraggregatedI/O-IMC that is equivalent (i.e. pre-
serving the system reliability measure) to the original I/O-
IMC. This state space aggregation, which generalizes the
notion of lumping in CTMC, can very effectively reduce
the resources necessary to create a model of a real-life sys-
tem [15]. In this work we have usedweak bisimulation[5]
to aggregate the I/O-IMC. Figure 2 shows an example of
how two I/O-IMC A andB can be composed (and hiding
signala with which they communicate) and how the result-
ing I/O-IMC can then be aggregated. When composing I/O-
IMC A andB we synchronizeon signala, because it is in
both their action signatures. SinceB hasa as an input, it has
to wait for A’s output actiona!. This explains the absence
of an input transitiona? from state(1, 1) in the composed
model. However, in state(2, 1), for instance,A outputs its
signala (and moves to state 3) andB simultaneously makes
the corresponding input transition and moves from state 1
to 3. All Markovian transitions and non-synchronizing sig-
nals are essentially interleaved during composition. Since
weak bisimulation abstracts from internal (unobserved) ac-
tions; states (1,2), (2,1), (2,2), and (3,3) are equivalentgiven
that they essentially all move with a rateλ to the same state
(3,4). Indeed, these 4 states are aggregated into a single
(unlabeled) state in Figure 2.c.

The technique ofcompositional aggregationconsists of
composing a large model out of smaller ones and aggre-
gating sub-models after each compositional step. This ap-
proach is to be contrasted with a more classical approach of
model generation, such as the one used by DIFTree, where
the model of a dynamic system is generated at once and as
a whole and then eventually aggregated at the end.

4. DFT to I/O-IMC conversion

During the conversion of a DFT to a MC, the DIFTree
algorithm [12] proceeds as follow: An initial state is first
created listing the states of all basic events, contained in
the DFT, as operational6. From the initial state, every BE
is being failed (according to its failure rate) one at a time

6Some extra information, such as which spare gate is using a given
spare, is also appended to the state.

and the corresponding transition and next state are created
where the state information (i.e. operational or failed) of
the basic event is updated. For every newly created state,
the DFT model (i.e. system state) is evaluated to determine
whether the state corresponds to an operational or a failed
system state7. As long as a state is an operational state, ev-
ery operational BE contained in that state is being failed,
and a corresponding new transition (and optionally a new
state) is created. Note that each MC state has a vector list-
ing the state of all basic events contained in the DFT; conse-
quently, this makes the state-space grow exponentially with
the number of basic events.

This DIFTree MC generation approach, where the model
of a dynamic system is generated at once and as a whole,
is to be contrasted with our compositional aggregation ap-
proach.

In our I/O-IMC framework, each DFT element (i.e. ba-
sic event and gates) has a corresponding I/O-IMC precisely
defining its behavior (i.e. semantics). Every I/O-IMC has
an initial operational state (i.e. with no incoming transition),
some intermediate operational (dormant or active) states,a
firing (i.e. about to output a failure signal) state, and an ab-
sorbingfiredstate. The firing and fired states are both failed
states and are drawn as gray circles and double circles re-
spectively. There are two main signals (or actions): afiring
signal and anactivation signal. The firing signal of ele-
mentA is denoted byfA and it signals the failure of a BE
or a gate. The activation signal refers to the activation (i.e.
switching from dormant to active mode) of a spareA and is
denoted byaA. An activation signal is only output by spare
gates, andaA,B denotes the activation of spareA by spare
gateB. Indeed, since a spareA can be shared, and thus acti-
vated, by multiple spare gates, an activation signal is needed
for each of the spare gates. These activation signals are then
translated by an auxiliary I/O-IMC model8 called activation
auxiliary (AA) to a single activation signalaA which acts
as an input to the spareA. In the original DIFTree method-
ology, only BE can act as spares, and thus BE are the only
elements that exhibit a dormant as well as an active behav-
ior. However, in our framework we lift this restriction by
allowing any independent sub-system to act as a spare. As
a consequence, spare gates also exhibit dormant and active
behaviors (see Section 6 for further details).

In the following, we show the I/O-IMC of the basic
event, the PAND gate, the FDEP gate, and the spare gate
(the full details on all the gates can be found in [5]). We
postpone the discussion on the spare gate model until Sec-
tion 6.

7This operation is unnecessary in the I/O-IMC framework.
8The AA model is essentially an OR gate having as inputs the various

activations signals coming from the spare gates, and as an output a spare
activation signal rather than a firing signal.

4.1. Basic event I/O-IMC model

As pointed out in Section 2, a basic event has a differ-
ent failing behavior depending on its dormancy factor. For
this reason we identify three types of basic events and corre-
spondingly three types of I/O-IMC. Figure 3 shows the I/O-
IMC corresponding to a cold, warm, and hot basic events
(all calledA). The I/O-IMC clearly captures the behavior

fA!

aA?

fA!

aA?

·

fA!

aA?

Figure 3. I/O-IMC models of cold, warm, and hot BE.

of the basic event described in Section 2.

4.2. PAND gate I/O-IMC model

The PAND gate fires if all its inputs fail and fail from
left to right order. If the inputs fire in the wrong order,
the PAND gate moves to an operational absorbing state (de-
noted with anX on Figure 4). Figure 4 shows the I/O-IMC

fP!

fA?
fB?

fB?

fA fB

fP

Figure 4. I/O-IMC of the PAND gate.

of the PAND gateP with two inputsA andB (A being the
leftmost input).

4.3. FDEP gate I/O-IMC model

A functional dependency is modeled using a firing auxil-
iary (FA). The FA governs when a dependent DFT element
fires, i.e. either when the element fails by itself or when its
failure is triggered by the FDEP gate trigger. There exists a
different FA for each dependent event. Figure 5 shows the
FA of elementA, which is functionally dependent uponB.
The signalf∗

A corresponds to failure of elementA by itself
without factoring in its functional dependency (i.e. in isola-
tion), and the signalfA corresponds to the failure ofA when
also considering its functional dependency uponB. In or-
der to get the correct behavior of the elementA, one has to
compose the three I/O-IMC corresponding toA in isolation,
to its FA, and to the trigger B. Note that any element which
hasA as input has to now interface withA’s FA rather than
directly withA. Note also that the firing auxiliary I/O-IMC
is similar to the OR gate I/O-IMC with two input signalsf∗

A

andfA.

fA!

f*A?

fB?

FDEP

B

A

Figure 5. I/O-IMC of the firing auxiliary.

In the original DIFTree methodology, only BE can be
dependent events. However, in our framework we lift this
restriction by allowing any sub-system to be an FDEP gate
dependent event (Section 6).

The I/O-IMC models have been generalized (cf. [10] for
details) to deal with any number of inputs.

4.4. Simultaneity and non-determinism

In earlier development of the DFT modeling formalism,
the semantics (i.e. the model interpretation) of some DFT
configurations, where FDEP gates are used, remains un-
clear. For instance, in Figure 6, the FDEP gate triggers (in
both configurations) the failures of two basic events. Does
this mean that the dependent events fail simultaneously and
if so what is the state of the PAND gate (in configuration a)
and which spare gate gets the shared spareS (in configu-
ration b)? These examples were also discussed in [9], and
we believe that this is an inherent non-determinism in these
models. In [9], these special cases are dealt with by system-
atically removing the non-determinism by transforming it
into a probabilistic (or deterministic) choice. In our frame-
work, we allow non-determinism and naturally provide a
mechanism for detecting it should this arise in a particu-
lar DFT configuration. Moreover, if the non-determinism
was not intended, then its detection indicates that an error
occurred during the model specification. Non-determinism
could also be an inherent characteristic of the system being
analyzed, and should therefore be explicitly modeled. An
example of such a system would be a repairman following
a first failed first repaired policy and being in charge of two
components. Now, if both components fail at the same time,
then we might decide to model the choice of which one to
pick first for repair to be a non-deterministic choice made
by the repairman.

In the I/O-IMC formalism, the DFT configurations de-
picted in Figure 6 will be interpreted as follows: Whenever
the dependent events failure has been triggered, then the
trigger event (the cause) happened first and was then im-
mediately (with no time elapsing) followed by the failure of
the dependent events (the effect). This adheres to the clas-
sical notion of causality. Moreover, the dependent events
fail in a non-deterministic order (i.e. essentially consider
all combinations of ordering). In this case, the final I/O-
IMC model is not a continuous-time Markov chain (CTMC)
but rather a continuous-time Markov decision process (CT-

FDEP

AT B

SPARE GATE

WSP

SPARE GATE

WSP

S

FDEP

T BA

(a) (b)

Figure 6. The occurrence of non-determinism.

MDP), which can be analysed by computing bounds of the
performance measure of interest (refer to [3] for an efficient
algorithm on analysing CTMDP).

4.5. Conversion of a DFT into a community
of I/O-IMC

We have defined the individual I/O-IMC models for each
of the DFT elements, some of which were described in the
previous sub-sections. We can now convert any given DFT
into a corresponding set of I/O-IMC models. Moreover, we
need to match the inputs and outputs of all the models. The
mapping between the DFT and the I/O-IMC community is
a one-to-one mapping, except for some cases (e.g. spare
activation and functional dependency) where extra auxiliary
I/O-IMC are also used.

5. DFT analysis

Once the DFT has been converted into an I/O-IMC com-
munity, the compositional aggregation methodology can be
applied on the I/O-IMC community to reduce the com-
munity to a single I/O-IMC. The final I/O-IMC reduces
in many cases to a CTMC9. This CTMC can be then
solved using standard methods [19] to compute perfor-
mance measures such as system unreliability. The full con-
version/analysis algorithm10 is as follows:

1. Map each DFT element to its corresponding (aggre-
gated) I/O-IMC and match all inputs and outputs. The
result of this step is an I/O-IMC community.

2. Pick two I/O-IMC and parallel compose them.

3. Hide output signals that won’t be subsequently used
(i.e. synchronized on).

4. Aggregate (using weak bisimulation as mentioned in
Section 3) the I/O-IMC obtained from the composition
of the two I/O-IMC picked in Step 2 and the hiding of
the output signals in Step 3.

9Occasionally to a CTMDP if some non-determinism remains.
10Note that this algorithm is amenable to parallelization.

5. Go to Step 2 if more than 1 I/O-IMC is left, otherwise
go to Step 6.

6. Analyse the aggregated CTMC (or CTMDP).

5.1. Example: The cardiac assist system

The cardiac assist system (CAS) model is taken from
[4] and is based on a real system. The DFT is shown in
Figure 7. The CAS consists of three separate and distinct

Motor_unit

system

Trigger MP

Pump_unitCPU_fdep CPU_unit

Motors Pump_A Pump_B

CS SS

P B

MS MA MB PA PS PB

Figure 7. The cardiac assist system DFT.

modules: The CPU unit, the motor unit and the pump unit.
There are two CPUs: a primary (P,λ = 0.5) and a warm
spare (B,λ = 0.5) with α = 0.5. Both are functionally
dependent on a cross switch (CS,λ = 0.2) and a system su-
pervision (SS,λ = 0.2), which means that the failure of ei-
ther these components will trigger the failure of both CPUs.
There are also two motors: a primary (MA,λ = 1) and a
cold spare (MB,λ = 1). The switching component (MS,
λ = 0.01) that turns on the spare motor when the primary
fails is also subject to failure, but this failure is only relevant
if it occurs before the failure of the primary motor. Finally,
there are three pumps: two primary pumps (PA and PB with
λ = 1 for both) running in parallel and a cold shared spare
pump (PS,λ = 1). All three pumps must fail for the pump
unit to fail.

We have developed our own conversion tool which takes
as input a DFT specified in the Galileo DFT format [12],
and translates the DFT into its corresponding community of
I/O-IMC models in the format of the TIPP tool [14]. The
I/O-IMC models are then composed and aggregated using
the TIPP tool. Finally, the system unreliability is computed
also using the TIPP tool. Each of the aggregated I/O-IMC
models of the three modules had 6 states. This result was
comparable to the Galileo tool results, where the biggest
generated CTMC (the pump unit) had 8 states. The system
unreliability obtained using the TIPP tool was 0.6579 for a
mission time equals to 1 time unit. The result provided by
the Galileo DIFTree tool was identical. In the next section,
we show, through a second example, the enhanced modular
analysis that we attain using the I/O-IMC framework.

5.2. Modular analysis

In this section, we illustrate the lack of modularity (al-
ready pointed out in [2, 6] and which leads to a worsening of
the state-space explosion problem) in the DIFTree method-
ology with respect to dynamic modules. The example at
hand, shown in Figure 8, is called the cascaded PAND sys-
tem (CPS) for which a variation can be found in [6]. The

system

BA

DC

Figure 8. The cascaded PAND system.

CPS consists of two PAND gates and three AND gates each
having four identical BE with a failure rate equals to 1. In
fact, the three AND gates constitute independent and identi-
cal modules. However, since the top gate is a dynamic gate,
the DIFTree methodology does not modularize the tree into
five11 distinct modules; but it rather considers the whole tree
as a single module. The reason that DIFTree does not con-
sider, for instance, moduleA as an independent module is
because its parent gate (i.e. the PAND gateSystem) is a
dynamic gate (cf. Section 2).

Thanks to the interactivity of I/O-IMC, we are able to
further modularize the CPS and generate the corresponding
I/O-IMC for each of the five modules. Moreover, sinceA,
C, andD are identical, we only need to generate the I/O-
IMC for one of these modules and reuse it given some re-
naming of the activation and firing signals. Figure 9 shows
the I/O-IMC of moduleA after parallel composition and
aggregation. The I/O-IMC is particularly small given that
all basic events have the same failure rate and the order
in which they fail is irrelevant. Solving the CPS following

fA!aA?

Figure 9. I/O-IMC of module A.

this modular compositional aggregation analysis technique
resulted in 156 states and 490 transitions for the biggest
generated I/O-IMC. This result is to be contrasted with the
DIFTree solution which resulted in 4113 states and 24608
transitions. The system unreliability, for a mission time
equals to 1 time unit, is the same in both cases and equals
0.00135. The reason DIFTree performs so poorly is because
the corresponding CTMC is generated for the whole tree
(i.e. with 12 basic events) and at once, and in which even
irrelevant failure orders (such as for the BE belonging to

11Each gate acts as an independent module.

moduleA) are accounted for. The compositional aggrega-
tion approach performs particularly well for this example
due to the high modularity of the system. However, the
approach does not perform as well for some examples we
have worked on where the DFT elements are highly con-
nected (i.e. numerous interdependencies/interactions be-
tween DFT elements which lead to the incapacity to effec-
tively divide the system into independent small modules).
This example shows the enhanced modularity obtained in
our framework and the ability to reuse sub-modules within
larger dynamic modules. Such reusability, which was previ-
ously only fully implementable in static FT, is a very pow-
erful and useful concept in large FT. Indeed, being able to
‘plug-in’ modules is a practical feature when designing very
large systems where the model is build incrementally and/or
various teams are working on different parts of the system.

6. Modular model-building

Static fault trees are highly modular, i.e., any sub-tree
can be used as an input to another static gate. Unfortunately,
this modularity does not currently apply to dynamic trees.
Indeed, only BE are allowed as inputs to spare gates and
as dependent events in FDEP gates. In the I/O-IMC frame-
work, we increase the modularity of DFT by allowing: (1)
independent sub-trees to act as primary and spare compo-
nents and (2) FDEP gates to trigger BE and any arbitrary
gate.

6.1. Spare modules extension

The system depicted in Figure 10.a is a typical system
we would like to be able to model using the DFT formal-
ism. The primary and spare components are not BE, but
rather more complex sub-systems. In the I/O-IMC frame-
work, we allow primary and spare components to be any
independent sub-system12. We enforce the independence
restriction because otherwise the activation of these compo-
nents becomes unclear.

This extension of primary and spare components re-
quires the reexamination of the concept of activation. The
intuition is as follows: In Figure 10.a, the activation of mod-
ule ‘spare’ simply means the activation of the two BEC and
D. The module’s (represented by its top-node AND gate)
dormancy is defined by the dormancy of its BE. The AND
gate I/O-IMC model is not changed and has the same behav-
ior whether ‘spare’ is dormant or active. In fact, whenever
an activation signal is received by module ‘spare’, this same
activation signal is simply passed on to the next components

12A sub-system is usually named after its top-node and is independent
if (1) all the elements in the tree have inputs from only elements within the
same tree and (2) all the outputs, except for the top-node, are also within
the tree and therefore hidden to the rest of the system

(which happen to be BE in this example), one level down the
tree. The behavior of all the gates (i.e. I/O-IMC models) is

SPARE GATE

WSP

system SPARE GATE

WSP

system

primary

A B

spare

C D

SPARE GATE

WSP

primary

A B

SPARE GATE

WSP

spare

C D

FDEP

T A

B C

system

(a) (b) (c)

Figure 10. Complex spares and FDEP gate extension.

unchanged whether they are used as spares or not. However,
the spare gate is an exception to this rule and does behave
differently when used as a spare. Figure 10.b illustrates this;
when ‘spare’ is not activated (i.e. ‘primary’ has not failed),
BE C and D are dormant; and even ifC (being a warm
spare) fails,D remains dormant. This is the same behavior
as with the ‘spare’ AND gate in Figure 10.a. If ‘spare’ is
activated, the activation signal is only passed to the primary
C andD remains dormant (this is clearly different from the
AND gate where both BE are activated). ShouldC fail and
‘spare’ being in its active state, thenD is activated. Based
on the above explanation, Figure 11 shows the behavior of
the spare gateA13. SignalsaS,A andaS,C are actions out-

CA

P S

fP? fS?

fS? fP?

aS,C?
fA!

fP? fS?

fP? fP?

aS,C?

aS,C?

aA?

aA?

aA?

aS,C?aS,A!

fS?

Figure 11. The spare gate I/O-IMC model.

put respectively byA andC signaling that the spareS has
been taken14. The spare gate I/O-IMC model has been, of
course, generalized to handle multiple spare gates sharing
multiple spares (i.e. the most general case).

6.2. FDEP gate extension

In this framework, the FDEP gate can trigger the failure
of any gate (representing a sub-system) and not only BE.

13For clarity, the activation signal is drawn as a dashed line.
14This solution is not very scalable since it suggests that allspare gates

sharing a spare communicate with each other. A better solution has been
found where a ‘spare granting’ auxiliary is used.

Indeed, this extension comes at no extra cost, and the I/O-
IMC used in this case is still the same as the one shown in
Figure 5. Figure 10.c shows such a configuration whereT

triggers the failure of the sub-treeA. Note that sub-system
A does not need to be an independent module. Note also
that the triggerT only affects the failure of the gateA and
none of its elements below it such as the basic eventC.

7. DFT elements extension

In this section, we show, through some examples, how
readily one can extend the DFT elements within the I/O-
IMC framework. In fact, adding/modifying elements is
done at the level of the elementary I/O-IMC models. More-
over, adding/modifying one element does not affect the re-
mainder of the elements (i.e. their corresponding I/O-IMC
models). This is indeed a desirable property of the I/O-IMC
framework, where the behavioral details and interactions of
any element is kept as local as possible. These extensions
only affect Step 1 of the DFT conversion/analysis algorithm
laid out in Section 5. The remaining five steps, including
the composition, the aggregation and the analysis remain
unchanged. The first extension concerns the modeling of
inhibition andmutually exclusive events. The second exten-
sion is somewhat more involved and concerns the modeling
of repair.

7.1. Inhibition and mutual exclusivity

We say that eventA inhibits the failure ofB if the fail-
ure of B is prevented whenA fails beforeB. following
the idea of the firing auxiliary (cf. Section 4.3), this could
be modeled by simply adding aninhibition auxiliary (IA).
Figure 12 shows the configuration of such inhibition and
the corresponding I/O-IMC model of the IA ofB. f∗

B cor-
responds to the failure signal ofB taken in isolation, i.e.
without A’s inhibition. Note that, as with the FA, any ele-
ment which hasB as input has to now interface withB’s
IA rather than directly withB. If event B also inhibits

A B

IAB

fA fB*

fB

fA?

fB*? fB!

fA?

Figure 12. The I/O-IMC model of the IA.

the failure ofA, then we need to add an IA forA as well.
In this way, the failure ofA and the failure ofB become
two mutually exclusive events. Mutual exclusivity is very
useful when modeling a component exhibiting various fail-
ure modes. A typical example is a switch with two failure

modes: ‘failing to close’ and ‘failing to open’. These fail-
ures have normally different probabilities of occurrence and
different consequences on the overall system. The switch
failure modes have to be modeled as two mutually exclu-
sive BE since the switch can either fail open or fail closed,
but not both.

7.2. Repair

Adding a notion of repair is somewhat more complicated
as every DFT element can now fail or be repaired. Thus, no
longer only a ‘failed event’ should be signaled but also a ‘re-
paired event’. However, as mentioned above, we only need
to modify ‘locally’ the elementary I/O-IMC corresponding
to each DFT element behavior. Due to the lack of space, we
will only discuss the new I/O-IMC for the BE and the AND
gate (other elements are treated in the same fashion). The
repairable cold BE’s I/O-IMC is shown on Figure 13. Here,
µ denotes the BE repair rate andr! is a signal output by the
BE notifying, to the rest of the elements, that it has been
repaired. Note that the fired state is not absorbing anymore.
As an alternative model, one can of course think of the BE
interacting with a repair station (RS); in which case, the re-
pair process15 would be part of the RS I/O-IMC model and
f would also be an input to the RS. An extra signal (input
to the BE and an output of the RS) would also be needed
for communication between the BE and RS and signaling
that the RS has finished the repair. The repairable AND

f!a?

r!

Figure 13. The repairable BE I/O-IMC model.

gate I/O-IMC model is shown on Figure 14. The AND gate
has its own repair output signal (i.e.r!) and needs to con-
sider both failure (fA? andfB?) and repair (rA? andrB?)
signals coming from its inputsA andB. Compared to the
unrepairable AND gate, Figure 14 has 3 extra states. If we
consider a very simple repairable system composed of an
AND gate with two BEA andB (Figure 15.a), then the
resulting I/O-IMC after automatic composition and aggre-
gation16 is, as expected, a CTMC shown on Figure 15.b.
At this point, one can perform some analysis on the CTMC
such as computing the system unavailability.

15Which could be more complicated than a single Markovian transition
with repair rateµ.

16And abstraction of the AND gate activation and failure signals.

rA?

fA?

rB?

fB?

rA?

fA?

rB?

fB?

rA?

fA?

rB?

fB?

f!

r!

r!

fA?

rA?

rB?

fB?

r!

Figure 14. The repairable AND gate I/O-IMC model.

A

(a) (b)

B

Figure 15. A simple repairable system.

8. Conclusion and future work

In this paper, we have illustrated the use of the I/O-IMC
framework for the analysis of DFT and showed, through
some examples, the increase of the DFT modularity both at
the analysis level and the model-building level. We have
also demonstrated the ease with which one can define new
DFT elements and provided examples of such extensions.

Areas of future research include: (1) From a process al-
gebra point of view, we would like to achieve even more
drastic state-space reduction using more suitable aggrega-
tion techniques. (2) Generalize the concept of activation
to any type of mode switch17; this is similar to the notion
of ‘triggered Markov processes’ defined in [7]. (3) In this
paper, we have only considered exponential failure distribu-
tions for BE; it would be worthwhile investigating the use of
phase-type distributions, which naturally integrate intothe
I/O-IMC framework, to approximate any BE failure proba-
bility distribution.

References

[1] Fault tree handbook, NUREG-0492. Technical report,
United States Nuclear Regulatory Commission, NASA,
1981.

[2] S. Amari, G. Dill, and E. Howald. A new approach to solve
dynamic fault trees. InAnnual Reliability and Maintainabil-
ity Symposium, pages 374–379, January 2003.

[3] C. Baier, H. Hermanns, J.-P. Katoen, and B. R. Haverkort.
Efficient computation of time-bounded reachability proba-

17In this respect, inhibition can be viewed as a mode switch where the
inhibited event moves to a permanent operational state uponthe receipt of
the failure signal from the inhibitor.

bilities in uniform continuous-time Markov decision pro-
cesses.Theor. Comput. Sci., 345(1):2–26, 2005.

[4] H. Boudali. A Bayesian network reliability modeling and
analysis framework. Phd dissertation, University of Vir-
ginia, Charlottesville, VA, May 2005.

[5] H. Boudali, P. Crouzen, and M. I. A. Stoelinga. A com-
positional semantics for Dynamic Fault Trees in terms of
Interactive Markov Chains. Technical report, University of
Twente, Enschede, Netherlands, to appear.

[6] H. Boudali and J. B. Dugan. A new Bayesian network ap-
proach to solve dynamic fault trees. InReliability and Main-
tainability Symposium, Jan 2005.

[7] M. Bouissou and J.-L. Bon. A new formalism that combines
advantages of fault-trees and Markov models: Boolean logic
driven Markov processes.Reliability Engineering and Sys-
tem Safety, 82(2):149–163, 2003.

[8] M. A. Boyd. Dynamic fault tree models: techniques for
analyses of advanced fault tolerant computer systems. Phd
dissertation, Dept. of Computer Science, Duke University,
1991.

[9] D. Coppit, K. J. Sullivan, and J. B. Dugan. Formal seman-
tics of models for computational engineering: A case study
on dynamic fault trees. InProceedings of the International
Symposium on Software Reliability Engineering, pages 270–
282. IEEE, Oct 2000.

[10] P. Crouzen. Compositional analysis of dynamic fault trees.
MSc thesis, University of Twente, Enschede, Netherlands,
2006.

[11] J. B. Dugan, S. J. Bavuso, and M. A. Boyd. Dy-
namic fault-tree models for fault-tolerant computer systems.
IEEE Transactions on Reliability, 41(3):363–377, Septem-
ber 1992.

[12] J. B. Dugan, B. Venkataraman, and R. Gulati. DIFTree: a
software package for the analysis of dynamic fault tree mod-
els. In Reliability and Maintainability Symposium, pages
64–70, Jan 1997.

[13] H. Hermanns.Interactive Markov Chains, volume 2428 of
Lecture Notes in Computer Science. Springer-Verlag, 2002.

[14] H. Hermanns, U. Herzog, U. Klehmet, V. Mertsiotakis, and
M. Siegle. Compositional performance modelling with the
TIPPtool.Lecture Notes in Computer Science, 1469:51–62,
1998.

[15] H. Hermanns and J.-P. Katoen. Automated compositional
Markov chain generation for a plain-old telephone system.
Science of Computer Programming, 36(1):97–127, 2000.

[16] R. A. Howard. Dynamic probability systems. Volume 1:
Markov models. Decision and Control. John Wiley & Sons,
Inc., 1971.

[17] N. A. Lynch and M. R. Tuttle. An introduction to in-
put/output automata.CWI Quarterly, 2(3):219–246, 1988.

[18] R. Milner. Communication and Concurrency. Prentice Hall
Inc., 1989.

[19] W. J. Stewart. Introduction to the Numerical Solution of
Markov Chains. Princeton University Press, 1994.

[20] K. K. Vemuri, J. B. Dugan, and K. J. Sullivan. Auto-
matic synthesis of fault trees for computer-based systems.
IEEE Transactions on Reliability, 48(4):394–402, Decem-
ber 1999.

