Dynamic Fault Tree analysis using I nput/Output I nteractive Markov Chains*

Hichem Boudali Pepijn Crouzehf Mariélle Stoelinga
hboudali@cs.utwente.nl crouzen@alan.cs.uni-sh.de marielle@cs.utwente.nl

University of Twente, Department of Computer Science,
P.O. Box 217, 7500 AE Enschede, the Netherlands

$Saarland University, Department of Computer Science,
D-66123 Saarbriicken, Germany

Abstract standard FT, dynamic fault trees are a high-level formal-
ism for computing reliability measures of computer-based
Dynamic Fault Trees (DFT) extend standard fault trees system. For over a decade now, DFT have been experienc-
by allowing the modeling of complex system components’ing a growing success among reliability engineers. Unfor-
behaviors and interactions. Being a high level model and tunately, a number of issues still remains when using DFT.
easy to use, DFT are experiencing a growing success amongviost notably the following three issues are a matter of con-
reliability engineers. Unfortunately, a number of issutlé s cern: (1) the DFT semantics is rather imprecise and the
remains when using DFT. Briefly, these issues are (1) a lacklack of formality has, in some cases, led to undefined be-
of formality (syntax and semantics), (2) limitations in mod havior and misinterpretation of the DFT model. (2) DFT
ular analysis and thus vulnerability to the state-space ex- lack modular analysis. That is, even though stochastically
plosion problem, and (3) lack in modular model-building. independent sub-modules exist in a certain DFT module
We use the input/output interactive Markov chain (I/O-IMC) (specifically those whose top-node is a dynamic gate), these
formalism to analyse DFT. I/O-IMC have a precise seman- sub-modules cannot be solved separately and still get an ex-
tics and are an extension of continuous-time Markov chains act solution. Consequently, a DFT model, which is typically
with input and output actions. In this paper, using the I1/0- analyzed by first converting it into a Markov chain (MC),
IMC framework, we address and resolve issues (2) and (3)becomes vulnerable to the state space explosion problem.
mentioned above. We also show, through some exampleq3) DFT also lack modular model-building, i.e. there are
how one can readily extend the DFT modeling capabilities some rather severe restrictions on the type of allowed in-
using the 1/0O-IMC framework. puts to certain gates (e.g. inputs to spare gates and depen-
dent events of functional dependency gates have to be basic
KEYWORDS: Fault tree, Interactive process, Markov events), which greatly diminish the modeling flexibilitycan

chain, compositional aggregation, modularity. power of DFT.
DFT are comprised of various elemeht8asic events,
1. Introduction static gates (AND, OR, and K/M gates), and dynamic gates

(functional dependency, priority AND, and spare gates).
Each of these elements is viewed as a process moving from
one state to another. States denote either the operation or
the failure of the element. Each element, or process, also
interacts (communicates) with its environment by respond-
ing to certain input signals and producing output signals.
These elementcould also possess a purely stochastic be-
*This research has been partially funded by the Netherlands o havior by allowing (in a probabilistic fashion) the passage
ganisation for Scientific Research (NWO) under FOCUS/BRSCHtant of time prior to moving to another state. In the remainder

number 642.000.505 (MOQS); the EU under grant number 1SI62D of the paper, we assume this passage of time to be governed
(ARTIST2); and by the DFG/NWO bilateral cooperation pragnae un-
der project number DN 62-600 (VOSS2).

tThe majority of this work was done while the author was at thé- U 1Also called components.
versity of Twente. 2At this point only the basic events.

Dynamic faulttrees (DFT) [11, 8, 20] extend standard (or
static) fault trees (FT) [1] by defining additional gatededl
dynamic gates. These gates allow the modeling of complex
system components’ behaviors and interactions which is far
superior to the modeling capabilities of standard FT. Like

by an exponential probability distribution (thus behaviisy ~ pendent) dynamic modulean be reused in any larger DFT

a Markovian process). Moving from one state to another is model.

therefore caused by either an input or output transition or ~ We also tackle issue (3) and lift two previously enforced
due to a Markovian transition. restrictions on DFT; namely, the restriction on spares and
functional dependency gates’ dependent events to be basic
events. In fact, in our framework it becomes possible to,
for instance, model a spare as a complex sub-system com-
pPrised of several basic events and gates. The use of (shared)
between Markovian transitions and interactive (involving SPares in DFT has always been somehow problematic [9].
input or output actions) transitions is made. Furthermore, N this paper, we carefully examine, clarify, and genegaliz
I/O-IMC have a precise and formal semantics. I/O-IMC the conceptogpare activation _ o

have proved to be a suitable and natural way to model DFT 10 Summarize, we make the following contributions:
elements.

Given the nature of DFT elements; we have used the in-
put/output interactive Markov chain (I/O-IMC) formalism
[5]. In fact, 1/O-IMC augment continuous-time Markov
chains with input and output actions and a clear separatio

1. lllustrate, through a case study, the use of the I/O-IMC

I/O-IMC are an example of a stochastic extension to a framework for the analysis of DFT, and in particular
process algebra. These stochastic process algebras have re we show the benefits of the compositional aggregation
cently gained popularity in performance modeling and anal- approach.

ysis due to theicompositional aggregatioapproach. We

refer the reader to [15] for case studies on the application 2. Showthe increased DFT modular analysis and the con-
of the compositional aggregation approach to the model- cept of reuse of dynamic modules.

ing and analysis of real systems. Compositional aggrega-

tion is a technique to build an 1/O-IMC by composing, in 3- Extend the DFT modeling capabilities by allowing
successive iterations, a number of elementary and smaller ~ complex spares (through the generalization of the con-
I/0-IMC and reducing (i.e. aggregating) the state-space of cept of activation) and complex functionally dependent
the generated I/0-IMC as the composition takes place (cf. events.

Section 3). . !
4. lllustrate how readily one can define new DFT ele-

Issue (1), mentioned above, has been addressed in [5] ments and provide 3 examples (i.e. inhibition, mutu-
where a formal syntax and semantics for DFT have been a”y exclusive events, and repair)_
defined. The formal syntax is derived by characterizing the
DFT as a directed acyclic graph. The formal DFT semantics The remainder of the paper is organized as follows: In Sec-
is described in terms of I/O-IMC, and provides a rigorous tion 2 and Section 3, we introduce DFT and I/O-IMC re-
basis for the analysis of DFT. In fact, each DFT element spectively. In Section 4, we show how a DFT is automat-
has a corresponding elementary 1/0O-IMC. This semanticsically converted into a community of I/O-IMC and discuss
is fully compositional, that is, the semantics of a DFT is non-determinism. In Section 5, we illustrate the DFT mod-
expressed in terms of the semantics of its elements. Thisular analysis. In Section 6, we lift the restrictions on the
enables an efficient analysis of DFT through compositional spare and functional dependency (FDEP) gates. Finally,
aggregation to produce a single I/O-IMC, on which we can in Section 7, we illustrate how one can readily extend the
then carry out performance analysis. Earlier work on for- modeling capabilities of DFT by augmenting or modifying
malizing DFT can be found in [9], where DFT are specified the set of elementary I/O-IMC models. Some of these ex-
using the Z formal specification language. The main differ- tensions includenutually exclusive eventsxdrepair. We
ence between the formal specification in [9] and the formal conclude the paper and suggest future work in Section 8.
specification used in this paper is that in our framework we
use a process algebra-like formalism (i.e. 1/0-IMC) which
allows us to use the well-defined concept of compositional
aggregation which helps us to combat the state-space ex-

2. Dynamic fault trees

plosion problem. In fact, this notion of compositional ag- Dynamic fault trees [8, 11] are an extension to standard
gregation is not present in [9] and the state-space explosio fault trees that allow richer modeling capabilities. A faul
problem is not addressed or mitigated whatsoever. tree model describes the system failure in terms of the fail-

ure of its components. Standard FT are combinatorial mod-
) els and are built using static gates (the AND, the OR, and the
framework, how the DFT analysis becomes greatly mod- k1 gates) and basic events (BE). A combinatorial model

ular compared to current state of the art DFT analysis tech—omy captures the combination of events and not the order
nigues. In particular, we demonstrate, through an example

system, how an I/O-IMC corresponding to a certain (inde- 3Also called sub-system or sub-tree.

We address issue (2) by showing, using the 1/O-IMC

of occurrence of their failures. Combinatorial models be- (0 < a < 1). The dormant and active states of a BE cor-
come, therefore, inadequate to model today’s complex dy-respond to dormant and active modes of the physical com-
namic systems. DFT introduce three novel modeling capa-ponent. For instance, a spare tire of a car is initially in a
bilities: (1) spare component management and allocation,dormant mode and switches to an active mode when it is
(2) functional dependency, and (3) failure sequence depen{ixed on the car for use.
dency. These modeling capabilities are realized usingethre Galileo DIFTree [12] was the first package to introduce,
main dynamic gatés The spare gate, the functional de- use, and analyze DFT. DIFTree uses a modular approach
pendency (FDEP) gate, and the priority AND (PAND) gate. to analyze a DFT. Indeed, the DFT is first split into inde-
Figure 1 depicts the three dynamic gates. pendent static and dynamic modules, the modules are then
The PAND gate fails when all its inputs fail and fail from solved separately and each of them is replaced by a BE with
left to right (as depicted on the figure) order. The spare gatea constant failure probability. The modules’ solutions are
has one primary input and one or more alternate inputs (i.e.then combined to find the overall system reliability. This
the spares). The primary input is initially powered on and process is iterative as independent modules could be nested
when it fails, it is replaced by an alternate input. The spare An independent module is dynamic if it contains at least
gate fails when the primary and all the alternate inputs fail one dynamic gate, otherwise it is static. Static modules are
(or are unavailable). A spare could also be shared amongsolved using binary decision diagrams and dynamic mod-
multiple spare gates. In this configuration, when a spareules are solved by converting them into MCs.
is taken by a spare gate, it becomes unavailable (i.e. essen- Note that when an independent module is replaced by
tially seen as failed) to the rest of the spare gates. The FDEPRa BE with a constant failure probability, some information
gate is comprised of a trigger event and a set of depen-(i.e. the shape) of the module’s failure distribution istlos
dent components. When the trigger event occurs, it causesince it is replaced by a single failure probability value.
the dependent components to become inaccessible or unugvioreover, since any dynamic gate requires the knowledge
able (i.e. essentially failed). The FDEP gate’s output is a of the entire failure probability density functions of thii-
‘dummy’ output (i.e. it is not taken into account during the puts, solving an independent module and replacing it by a
calculation of the system'’s failure probability). Alongtivi ~ BE with a constant failure probability is only possible ieth
module is part of a larger static (and not dynamic) module.

Output Output E;l:'rtnftv This constraint, which is linked to issue (2) mentioned im th
* ; Introduction, makes DFT far less modular (cf. Section 5).

. 3. Input/output interactive Markov chains

| Trigger
event —>]
Inputs T T T 5) E t Input/output interactive Markov chains [5] are
Primary Spares i an integration of Input/Output Automata [17] and
CTMC [16] [19]. I/O-IMC are closely related to Interactive
(@) (b) ©

Markov Chains [13] (IMC) which are an integration of
interactive processes (IP) [18] and CTMC.

Figure 2.a shows two examples of input/output interac-
tive Markov chains. Circles denote states in the model and
static and dynamic gates, DFT also possess basic eventsransitions are depicted as arrows. The starting stateis id
which are leaves of the tree. A basic event usually repre-tified by a black dot. There are two different kinds of transi-
sents a physical component having a certain failure proba-ions in an 1/0-IMC modelMarkovian transitionsdenoted
bility distribution (e.g. exponential). A DFT element has by a small rectangle on the arrow airderactive transi-

a number of operational or failed states. In the case of ations denoted by a line on the arrow. Each I/O-IMC has
BE®, operational states could be further classifiedias anaction signaturewritten next to its starting state, which
mantor activestates. A dormant state is a state where the shows how it communicates with the environment. 1/O-

BE failure rate is reduced by a factor called the dormancy IMC B, for instance, has an input-actiefi, an output ac-
factora. An active state is a state where the BE failure rate tion ! and no internal actions. When each of the I/O-IMC’s

Figure 1. Dynamic gates: (a) PAND, (b) spare, (c) FDEP.

A is unchanged. Depending on the valuexpfwe classify
BE as: cold BE & = 0), hot BE (@ = 1), and warm BE

4A fourth gate called ‘Sequence Enforcing’ gate has also ledined
in [11]; however, it turns out that this gate can be emulateidgia cold
spare gate.

5Also a spare gate as we will see in Section 6.

actions has at least one associated transition, the aégion s
nature can be (and often is) omitted. The difference between
inputs, outputs and internal actions will be discussedfirt
on in this section.

I/0-IMC B has a Markovian transition from state 1 to
state 2. This transition hasrate of A. Markovian transi-

tions in 1/0-IMC behave exactly the same way as Marko- interactive transitions is that interactive transitiomsalele
vian transitions in CTMC: the I/O-IMC moves from state the construction of large I/O-IMC by composition of sev-
1 to state 2 after an exponentially distributed delay. An eral smaller I/O-IMC [13]. The subject at hand (the analysis
I/O-IMC with only Markovian transitions can thus be in- of dynamic fault trees) is a good example. Instead of trans-
terpreted as a CTMCB also has an interactive transition forming the entire DFT into one large CTMC we transform
from state 1 to state 3 labeledt. This denotes that the the basic events and gates of the DFT first (cf. Section 4)
move from 1 to 3 is aimput actionnameda. Input actions and then create a single 1/O-IMC by combining the smaller
are denoted with a question mark (i«€). This means that ones (see Section 5). The I/O-IMC formalism is one such
if some other I/O-IMC performs aautput actionnameda approach to combining Markovian and interactive transi-
while I/O-IMC B is in state 1 themB will move to state tions. A discussion on different approaches to combining
3 immediately. It is important to note that every state of Markovian and interactive transitions in one formalism can
I/O-IMC B has an outgoing input transition namedThis be found in [13]. An I/O-IMC can also be transformed into
means thaB is always ready to respond to an output-action a smalleraggregated/O-IMC that is equivalent (i.e. pre-

a, even if this does not result in a state-change (wBes serving the system reliability measure) to the original1/O
in state 3, 4, or 5). For clarity we will omit these transition IMC. This state space aggregation, which generalizes the
(input-actions from a state to itself) from now on. We say notion of lumpingin CTMC, can very effectively reduce
that I/O-IMC B is input-enabledwith respect to actiom. the resources necessary to create a model of a real-life sys-
Note that input actions are delayable, i.e. they must wait tem [15]. In this work we have usedeak bisimulatior5]

until another 1/0-IMC performs the corresponding output- to aggregate the 1/0O-IMC. Figure 2 shows an example of

action. how two I/0O-IMC A and B can be composed (and hiding
A different kind of interactive transition from state 4 to signala with which they communicate) and how the result-
state 5 is also present i. This transition is labeledl and ing I/0-IMC can then be aggregated. When composing I/O-

is an output action. Output actions are denoted with an ex-IMC A and B we synchronizeon signala, because it is in
clamation mark (i.e.b!). When I/O-IMC B performs this both their action signatures. SinBehasa as an input, it has
output action all I/O-IMC which havé as an input action to wait for A’s output actiors!. This explains the absence
must perform this input action. Unlike input actions, odtpu of an input transitioru? from state(1, 1) in the composed
actions are immediate; i.e. when I/O-IM@moves to state model. However, in stat€, 1), for instance A outputs its
4 notime passes before it moves to state 5. It is however signala (and moves to state 3) atiglsimultaneously makes
possible that another interactive transition is taken imime the corresponding input transition and moves from state 1
ately. Specifically, if two or more different output actions to 3. All Markovian transitions and non-synchronizing sig-
are possible in a state, then the choice between the transinals are essentially interleaved during composition. &inc
tions isnon-deterministic One of the transitions is taken weak bisimulation abstracts from internal (unobserved) ac
immediately, but it is not known how this choice is made. tions; states (1,2), (2,1), (2,2), and (3,3) are equivaamn
that they essentially all move with a ratd¢o the same state
(3,4). Indeed, these 4 states are aggregated into a single
(unlabeled) state in Figure 2.c.
The technique o€ompositional aggregationonsists of
composing a large model out of smaller ones and aggre-
gating sub-models after each compositional step. This ap-
e (rae o & proach is to be contrasted with a more classical approach of
model generation, such as the one used by DIFTree, where

- 2% A b! H i
: to—t—r(O—i—+(9) @ the model of a dynamic system is generated at once and as

a whole and then eventually aggregated at the end.

(a) Two examples of I/O-IMC (c) Aggregation of ‘Hide a in A||B’

Figure 2. Composition, hiding, and aggregation. 4.DFT to I/O-IMC conversion

Besides input and output actions there are also internal During the conversion of a DFT to a MC, the DIFTree
actions (which are not featured in the example 1/O-1l8% algorithm [12] proceeds as follow: An initial state is first
Internal actions are denoted with a semi-colon. Internal ac created listing the states of all basic events, contained in
tions do not influence other /O-IMC and are not influenced the DFT, as operationdl From the initial state, every BE
by other I/O-IMC. Similar to output actions, internal acto is being failed (according to its failure rate) one at a time

are 'mmed'ate-_ o)]) 6Some extra information, such as which spare gate is usingem gi
The reason it is interesting to combine Markovian and spare, is also appended to the state.

and the corresponding transition and next state are created.1. Basic event I/O-IMC model
where the state information (i.e. operational or failed) of

the basic event is updated. For every newly created state, As pointed out in Section 2, a basic event has a differ-
the DFT model (i.e. system state) is evaluated to determineent failing behavior depending on its dormancy factor. For
whether the state corresponds to an operational or a faileghis reason we identify three types of basic events andcorre
system state As long as a state is an operational state, ev- spondingly three types of I/O-IMC. Figure 3 shows the 1/O-

ery Operational BE contained in that state is being failed, IMC Corresponding to a COld, warm, and hot basic events

and a corresponding new transition (and optionally a new (|| called 4). The I/0O-IMC clearly captures the behavior
state) is created. Note that each MC state has a vector list-

ing the state of all basic events contained in the DFT; conse- oN ®
quently, this makes the state-space grow exponentially wit ..} aA? aA?
the number of basic events. @0 O1-0*0 O+—-0*0

This DIFTree MC generation approach, where the model
of a dynamic system is generated at once and as a whole, Figure 3. I/0-IMC models of cold, warm, and hot BE.
is to be contrasted with our compositional aggregation ap-
proach. of the basic event described in Section 2.

In our 1/O-IMC framework, each DFT element (i.e. ba-
sic event and gates) has a corresponding I/0-IMC precisely4-2. PAND gate I/O-IMC model
defining its behavior (i.e. semantics). Every I/O-IMC has
an initial operational state (i.e. with no incoming trafsi), The PAND gate fires if all its inputs fail and fail from
some intermediate operational (dormant or active) states, left to right order. If the inputs fire in the wrong order,
firing (i.e. about to output a failure signal) state, and an ab- the PAND gate moves to an operational absorbing state (de-
sorbingfired state. The firing and fired states are both failed noted with anX on Figure 4). Figure 4 shows the I/O-IMC
states and are drawn as gray circles and double circles re-
spectively. There are two main signals (or actiondjriag fo
signal and anactivation signal The firing signal of ele-
mentA is denoted byf4 and it signals the failure of a BE 0 A\
or a gate. The activation signal refers to the activatian (i.
switching from dormant to active mode) of a sparand is
denoted by: 4. An activation signal is only output by spare
gates, and 4, denotes the activation of spareby spare .) .
gateB. Indeed, since a sparkcan be shared, and thus acti- Of the PAND gate?” with two inputsA and B (A being the
vated, by multiple spare gates, an activation signal iseeed '€ftmostinput).
for each of the spare gates. These activation signals ane the
translated by an auxiliary I/0-IMC modetalled activaton ~ 4.3. FDEP gate I/O-IMC model
auxiliary (AA) to a single activation signal, which acts
as an input to the sparé. In the original DIFTree method- A functional dependency is modeled using a firing auxil-
ology, only BE can act as spares, and thus BE are the onlyiary (FA). The FA governs when a dependent DFT element
elements that exhibit a dormant as well as an active behav4ires, i.e. either when the element fails by itself or when its
ior. However, in our framework we lift this restriction by failure is triggered by the FDEP gate trigger. There exists a
allowing any independent sub-system to act as a spare. Aglifferent FA for each dependent event. Figure 5 shows the
a conseqguence, spare gates also exhibit dormant and activEA of element4, which is functionally dependent updh
behaviors (see Section 6 for further details). The signalf corresponds to failure of elementby itself

In the fo"owing, we show the 1I/O-IMC of the basic without faCtoring in its functional dependency (Ie inleso
event, the PAND gate, the FDEP gate, and the spare gatdion), and the signaf, corresponds to the failure af when
(the full details on all the gates can be found in [5]). We also considering its functional dependency uggnin or-

postpone the discussion on the spare gate model until Secder to get the correct behavior of the eleménbne has to
tion 6. compose the three I/O-IMC correspondingdan isolation,

to its FA, and to the trigger B. Note that any element which
™ o o the VOAIMC f . hasA as input has to now interface witli's FA rather than
IS operation Is unnecessary In the - ramework. H . .. - _
8The AA model is essentially an OR gate having as inputs thewsr directly with A. Note also that the firing auxiliary 1/0-IMC

activations signals coming from the spare gates, and as tpotoal spare is similar to the OR gate I/O-IMC with two input signaf§
activation signal rather than a firing signal. andf4.

Figure 4. I/0-IMC of the PAND gate.

fa?

FDEP fal
L @0
?,D fa?

Figure 5. I/0-IMC of the firing auxiliary. (g

In the original DIFTree methodology, only BE can be
dependent events. However, in our framework we lift this
restriction by allowing any sub-system to be an FDEP gate

Figure 6. The occurrence of non-determinism.

dependent event (Section 6). MDP), which can be analysed by computing bounds of the
The 1/0O-IMC models have been generalized (cf. [10] for performance measure of interest (refer to [3] for an efficien
details) to deal with any number of inputs. algorithm on analysing CTMDP).
4.4. Simultaneity and non-determinism 4.5. Conversion of a DFT into a community
of I/O0-IMC

In earlier development of the DFT modeling formalism,
the semantics (i.e. the model interpretation) of some DFT ~ We have defined the individual I/O-IMC models for each
configurations, where FDEP gates are used, remains unof the DFT elements, some of which were described in the
clear. For instance, in Figure 6, the FDEP gate triggers (in previous sub-sections. We can now convert any given DFT
both configurations) the failures of two basic events. Doesinto a corresponding set of I/O-IMC models. Moreover, we
this mean that the dependent events fail simultaneously andeed to match the inputs and outputs of all the models. The
if so what is the state of the PAND gate (in configuration a) mapping between the DFT and the I/O-IMC community is
and which spare gate gets the shared spafie configu- a one-to-one mappingexcept for some cases (e.g. spare
ration b)? These examples were also discussed in [9], ancRctivation and functional dependency) where extra auyilia
we believe that this is an inherent non-determinism in thesel/O-IMC are also used.
models. In [9], these special cases are dealt with by system-
atically remoyi_ng the non-det_erm_inism l:_)y transforming it 5 DET analysis
into a probabilistic (or deterministic) choice. In our fram
work, we allow non-determinism and naturally provide a

mechanism for detecting it should this arise in a particu- v th i | i thodol b
lar DFT configuration. Moreover, if the non-determinism mun_|ty, € compositional aggregation methodology can be
applied on the I/O-IMC community to reduce the com-

) hen i R h i : _
was not intended, then its detection indicates that an errormunlty t0 a single 1/O-IMC. The final /O-IMC reduces

occurred during the model specification. Non-determinism .)

could also be agn inherent chzracteristic of the system beingIn many Cases to a CTMC This CTMC can be then
analyzed, and should therefore be explicitly modeled. An solved using standard methods [19] FO (_:Qmpute perfor-
example of such a system would be a repairman following mance measures such as _system unre.l|ab|I|ty. The full con-
a first failed first repaired policy and being in charge of two version/analysis algorithtfis as follows:

components. Now, if both components fail at the same time, 1 Map each DFT element to its corresponding (aggre-

then we might decide to model the choice of which one to gated) 1/0-IMC and match all inputs and outputs. The
pick first for repair to be a non-deterministic choice made result of this step is an I/O-IMC community.

by the repairman.
In the 1/O-IMC formalism, the DFT configurations de- 2. Pick two I/O-IMC and parallel compose them.
picted in Figure 6 will be interpreted as follows: Whenever
the dependent events failure has been triggered, then the 3. Hide output signals that won’t be subsequently used
trigger event (the cause) happened first and was then im- (i-e. synchronized on).

mediately (with no time elapsing) followed by the failure of 4 A . K bisimulati ioned i

the dependent events (the effect). This adheres to the clas- ™ ggr.egate (using wea ISImu ation as mentlong_ n

sical notion of causality Moreover, the dependent events Section 3) the ”O'IM.C Obt‘.""nEd from the compqsmon

fail in a non-deterministic order (i.e. essentially comsid of the two I/_O-IMC_p|cked in Step 2 and the hiding of
the output signals in Step 3.

all combinations of ordering). In this case, the final 1/O-
IMC model is nOt_a Contm_uous't'me Mark?‘{ chain (CTMC) 90ccasionally to a CTMDP if some non-determinism remains.
but rather a continuous-time Markov decision process (CT- 1°Note that this algorithm is amenable to parallelization.

Once the DFT has been converted into an I/O-IMC com-

5. Goto Step 2 if more than 1 I/O-IMC is left, otherwise
go to Step 6.

6. Analyse the aggregated CTMC (or CTMDP).
5.1. Example: The cardiac assist system

The cardiac assist system (CAS) model is taken from
[4] and is based on a real system. The DFT is shown in

Figure 7. The CAS consists of three separate and distinct

|
cPU_fdep | [cPU_unit | Wiotor_unit
\
MP ‘ Motors ‘ ‘ Pump_A ‘ ‘ Pump_B ‘
A A_ | WB | ‘ﬁ C

Figure 7. The cardiac assist system DFT.

modules: The CPU unit, the motor unit and the pump unit.
There are two CPUs: a primary (R,= 0.5) and a warm
spare (B,A = 0.5) with « = 0.5. Both are functionally
dependent on a cross switch (CSs= 0.2) and a system su-
pervision (SSA = 0.2), which means that the failure of ei-
ther these components will trigger the failure of both CPUs.
There are also two motors: a primary (MA,= 1) and a
cold spare (MBA = 1). The switching component (MS,

A = 0.01) that turns on the spare motor when the primary
fails is also subject to failure, but this failure is onlyaeant

if it occurs before the failure of the primary motor. Finally
there are three pumps: two primary pumps (PA and PB with
A = 1 for both) running in parallel and a cold shared spare
pump (PSA = 1). All three pumps must fail for the pump
unit to fail.

We have developed our own conversion tool which takes
as input a DFT specified in the Galileo DFT format [12],
and translates the DFT into its corresponding community of
I/O-IMC models in the format of the TIPP tool [14]. The
I/O-IMC models are then composed and aggregated usin
the TIPP tool. Finally, the system unreliability is compaite
also using the TIPP tool. Each of the aggregated 1/0O-IMC

models of the three modules had 6 states. This result Wast

comparable to the Galileo tool results, where the biggest
generated CTMC (the pump unit) had 8 states. The syste
unreliability obtained using the TIPP tool was 0.6579 for a
mission time equals to 1 time unit. The result provided by
the Galileo DIFTree tool was identical. In the next section,

we show, through a second example, the enhanced modula

analysis that we attain using the I/O-IMC framework.

5.2. Modular analysis

In this section, we illustrate the lack of modularity (al-
ready pointed outin [2, 6] and which leads to a worsening of
the state-space explosion problem) in the DIFTree method-
ology with respect to dynamic modules. The example at
hand, shown in Figure 8, is called the cascaded PAND sys-
tem (CPS) for which a variation can be found in [6]. The

OOOO0OO OO
Figure 8. The cascaded PAND system.

CPS consists of two PAND gates and three AND gates each
having four identical BE with a failure rate equals to 1. In
fact, the three AND gates constitute independent and identi
cal modules. However, since the top gate is a dynamic gate,
the DIFTree methodology does not modularize the tree into
fivel! distinct modules; but it rather considers the whole tree
as a single module. The reason that DIFTree does not con-
sider, for instance, moduld as an independent module is
because its parent gate (i.e. the PAND g&yesterpis a
dynamic gate (cf. Section 2).

Thanks to the interactivity of 1/0-IMC, we are able to
further modularize the CPS and generate the corresponding
I/O-IMC for each of the five modules. Moreover, sinde
C, and D are identical, we only need to generate the 1/O-
IMC for one of these modules and reuse it given some re-
naming of the activation and firing signals. Figure 9 shows
the 1/O-IMC of moduleA after parallel composition and
aggregation. The I/O-IMC is particularly small given that
all basic events have the same failure rate and the order

in which they fail is irrelevant. Solving the CPS following

Figure 9. I/O-IMC of module A.

this modular compositional aggregation analysis techmiqu

gresulted in 156 states and 490 transitions for the biggest

generated I/O-IMC. This result is to be contrasted with the
DIFTree solution which resulted in 4113 states and 24608
ransitions. The system unreliability, for a mission time
equals to 1 time unit, is the same in both cases and equals

rTb.00135. The reason DIFTree performs so poorly is because

the corresponding CTMC is generated for the whole tree
(i.e. with 12 basic events) and at once, and in which even
irrrelevant failure orders (such as for the BE belonging to

11Each gate acts as an independent module.

module A) are accounted for. The compositional aggrega- (which happen to be BE in this example), one level down the

tion approach performs particularly well for this example tree. The behavior of all the gates (i.e. I/O-IMC models) is

due to the high modularity of the system. However, the

approach does not perform as well for some examples we oysem aystem

have worked on where the DFT elements are highly con-]]k

nected (i.e. numerous interdependencies/interactions be

tween DFT elements which lead to the incapacity to effec-

tively divide the system into independent small modules). [] []

This example shows the enhanced modularity obtained in ®E © 0 @6 @6 é)

our framework and the ability to reuse sub-modules within @ ®)

larger dynamic modules. Such reusability, which was previ-

ously only fully implementable in static FT, is a very pow- Figure 10. Complex spares and FDEP gate extension.

erful and useful concept in large FT. Indeed, being able to

‘plug-in’ modules is a practical feature when designingver unchanged whether they are used as spares or not. However,

large systems where the model is build incrementally and/orthe spare gate is an exception to this rule and does behave

various teams are working on different parts of the system. differently when used as a spare. Figure 10.b illustratss th

when ‘spare’ is not activated (i.e. ‘primary’ has not fajled
6. Modular mode-building BE C aanD are dqrmant; and evgn.'(f' (being a warm
spare) fails,D remains dormant. This is the same behavior

. . . as with the ‘spare’ AND gate in Figure 10.a. If ‘spare’ is
Static fault tree§ are highly m°d”"’?‘“ I.e., any sub-tree activated, the activation signal is only passed to the pyma

can be used as an input to another static gate. UnfortunatelyC and D remains dormant (this is clearly different from the

:h|ds mc(j)dUI?mélg 0€s n(I)It curorlently apr;lytto dynamlcttrees. O(A\ND gate where both BE are activated). ShoGidail and
hadeed, only are aflowed as Inputs 1o spare gates an spare’ being in its active state, thdn is activated. Based

as dkepen(_jent eventtr? n F%ElP gtate?.Dllr;_lt_h; ”(ﬁ'IM.C f.rarlne-on the above explanation, Figure 11 shows the behavior of
work, we Increase the moduiarity ol y allowing: (1) e spare gatel'®. Signalsas 4 andag ¢ are actions out-
independent sub-trees to act as primary and spare compo- ’ '

nents and (2) FDEP gates to trigger BE and any arbitrary
gate.

riman spare
primary spare

6.1. Spare modules extension

The system depicted in Figure 10.a is a typical system
we would like to be able to model using the DFT formal-
ism. The primary and spare components are not BE, but
rather more complex sub-systems. In the 1/O-IMC frame-
work, we allow primary and spare components to be any
independent sub-systéfm We enforce the independence
restriction because otherwise the activation of these comp
nents becomes unclear. Figure 11. The spare gate 1/0-IMC model.

This extension of primary and spare components re-
quires the reexamination of the concept of activation. The put respectively byd andC signaling that the spar€ has
intuition is as follows: In Figure 10.a, the activation ofdio been taketf. The spare gate I/O-IMC model has been, of
ule ‘spare’ simply means the activation of the two BE&nd course, generalized to handle multiple spare gates sharing
D. The module’s (represented by its top-node AND gate) multiple spares (i.e. the most general case).
dormancy is defined by the dormancy of its BE. The AND
gate I/O-IMC modelis not changed and has the same behav6.2. FDEP gate extension
ior whether ‘spare’ is dormant or active. In fact, whenever
an activation signal is received by module ‘spare’, thissam In this framework, the FDEP gate can trigger the failure
activation signal is simply passed on to the next componentsof any gate (representing a sub-system) and not only BE.

127 sub-system is usually named after its top-node and is ieabgnt B3For clarity, the activation signal is drawn as a dashed line.
if (1) all the elements in the tree have inputs from only eletaavithin the 14This solution is not very scalable since it suggests thatgadre gates
same tree and (2) all the outputs, except for the top-no@ealap within sharing a spare communicate with each other. A better saliitas been

the tree and therefore hidden to the rest of the system found where a ‘spare granting’ auxiliary is used.

Indeed, this extension comes at no extra cost, and the I/O-modes: ‘failing to close’ and ‘failing to open’. These fail-
IMC used in this case is still the same as the one shown inures have normally different probabilities of occurrencd a

Figure 5. Figure 10.c shows such a configuration whére
triggers the failure of the sub-tre& Note that sub-system

different consequences on the overall system. The switch
failure modes have to be modeled as two mutually exclu-

A does not need to be an independent module. Note alscsive BE since the switch can either fail open or fail closed,

that the triggefl” only affects the failure of the gaté and
none of its elements below it such as the basic egéent

7. DFT elements extension

In this section, we show, through some examples, how

readily one can extend the DFT elements within the 1/O-
IMC framework. In fact, adding/modifying elements is
done at the level of the elementary 1/O-IMC models. More-

over, adding/modifying one element does not affect the re-

mainder of the elements (i.e. their corresponding I/O-IMC
models). This is indeed a desirable property of the 1/O-IMC
framework, where the behavioral details and interactidns o

any element is kept as local as possible. These extension

only affect Step 1 of the DFT conversion/analysis algorithm
laid out in Section 5. The remaining five steps, including

the composition, the aggregation and the analysis remain
unchanged. The first extension concerns the modeling of.

inhibition andmutually exclusive event$he second exten-

sion is somewhat more involved and concerns the modeling

of repair.
7.1. Inhibition and mutual exclusivity

We say that eventl inhibits the failure ofB if the fail-
ure of B is prevented wherA fails beforeB. following
the idea of the firing auxiliary (cf. Section 4.3), this could
be modeled by simply adding anhibition auxiliary (1A).
Figure 12 shows the configuration of such inhibition and
the corresponding I/O-IMC model of the IA &. f}; cor-
responds to the failure signal @ taken in isolation, i.e.
without A’s inhibition. Note that, as with the FA, any ele-
ment which hasB as input has to now interface with’s
IA rather than directly withB. If event B also inhibits

Q0
fa?

&)

fa?

Figure 12. The I/O-IMC model of the IA.

the failure of A, then we need to add an IA fot as well.
In this way, the failure ofdA and the failure ofB become
two mutually exclusive events. Mutual exclusivity is very
useful when modeling a component exhibiting various fail-
ure modes. A typical example is a switch with two failure

but not both.
7.2. Repair

Adding a notion of repair is somewhat more complicated
as every DFT element can now fail or be repaired. Thus, no
longer only a ‘failed event’ should be signaled but also a ‘re
paired event’. However, as mentioned above, we only need
to modify ‘locally’ the elementary I/O-IMC corresponding
to each DFT element behavior. Due to the lack of space, we
will only discuss the new I/O-IMC for the BE and the AND
gate (other elements are treated in the same fashion). The
gepairable cold BE’s I/O-IMC is shown on Figure 13. Here,
1+ denotes the BE repair rate anlds a signal output by the
BE notifying, to the rest of the elements, that it has been
repaired. Note that the fired state is not absorbing anymore.
s an alternative model, one can of course think of the BE
interacting with a repair station (RS); in which case, the re
pair proces® would be part of the RS I/O-IMC model and
f would also be an input to the RS. An extra signal (input
to the BE and an output of the RS) would also be needed
for communication between the BE and RS and signaling
that the RS has finished the repair. The repairable AND

Figure 13. The repairable BE I/O-IMC model.

gate I1/0O-IMC model is shown on Figure 14. The AND gate
has its own repair output signal (i.e!) and needs to con-
sider both failure {47 and fg7) and repair{,? andrg?)
signals coming from its inputd and B. Compared to the
unrepairable AND gate, Figure 14 has 3 extra states. If we
consider a very simple repairable system composed of an
AND gate with two BEA and B (Figure 15.a), then the
resulting 1/O-IMC after automatic composition and aggre-
gation'® is, as expected, a CTMC shown on Figure 15.b.
At this point, one can perform some analysis on the CTMC
such as computing the system unavailability.

15Which could be more complicated than a single Markoviansitam
with repair rateu.
16And abstraction of the AND gate activation and failure signa

Figure 15. A simple repairable system.

8. Conclusion and future wor k

In this paper, we have illustrated the use of the I/O-IMC
framework for the analysis of DFT and showed, through
some examples, the increase of the DFT modularity both at
the analysis level and the model-building level. We have

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

also demonstrated the ease with which one can define new

DFT elements and provided examples of such extensions.
Areas of future research include: (1) From a process al-
gebra point of view, we would like to achieve even more
drastic state-space reduction using more suitable aggrega
tion techniques. (2) Generalize the concept of activation
to any type of mode switdfi; this is similar to the notion
of ‘triggered Markov processes’ defined in [7]. (3) In this
paper, we have only considered exponential failure distrib
tions for BE; it would be worthwhile investigating the use of
phase-type distributions, which naturally integrate itite
I/O-IMC framework, to approximate any BE failure proba-
bility distribution.

References

[1] Fault tree handbook, NUREG-0492. Technical report,
United States Nuclear Regulatory Commission, NASA,
1981.

[2] S. Amari, G. Dill, and E. Howald. A new approach to solve
dynamic fault trees. IAnnual Reliability and Maintainabil-
ity Symposiumpages 374—-379, January 2003.

[3] C. Baier, H. Hermanns, J.-P. Katoen, and B. R. Haverkort.
Efficient computation of time-bounded reachability proba-

17In this respect, inhibition can be viewed as a mode switchravtiee
inhibited event moves to a permanent operational state thgoreceipt of
the failure signal from the inhibitor.

[12]

[13]

[14]

[15]

[16]

[17]

(18]

bilities in uniform continuous-time Markov decision pro-
cessesTheor. Comput. S¢i345(1):2—26, 2005.

H. Boudali. A Bayesian network reliability modeling and
analysis framework Phd dissertation, University of Vir-
ginia, Charlottesville, VA, May 2005.

H. Boudali, P. Crouzen, and M. I. A. Stoelinga. A com-
positional semantics for Dynamic Fault Trees in terms of
Interactive Markov Chains. Technical report, Universify o
Twente, Enschede, Netherlands, to appear.

H. Boudali and J. B. Dugan. A new Bayesian network ap-
proach to solve dynamic fault trees. Reliability and Main-
tainability Symposiumlan 2005.

M. Bouissou and J.-L. Bon. A new formalism that combines
advantages of fault-trees and Markov models: Boolean logic
driven Markov processesReliability Engineering and Sys-
tem Safety82(2):149-163, 2003.

M. A. Boyd. Dynamic fault tree models: techniques for
analyses of advanced fault tolerant computer systepinl
dissertation, Dept. of Computer Science, Duke University,
1991.

D. Coppit, K. J. Sullivan, and J. B. Dugan. Formal seman-
tics of models for computational engineering: A case study
on dynamic fault trees. IRroceedings of the International
Symposium on Software Reliability Engineeripages 270—
282. IEEE, Oct 2000.

P. Crouzen. Compositional analysis of dynamic fades.
MSc thesis, University of Twente, Enschede, Netherlands,
2006.

J. B. Dugan, S. J. Bavuso, and M. A. Boyd. Dy-
namic fault-tree models for fault-tolerant computer syse
IEEE Transactions on Reliability41(3):363—-377, Septem-
ber 1992.

J. B. Dugan, B. Venkataraman, and R. Gulati. DIFTree: a
software package for the analysis of dynamic fault tree mod-
els. InReliability and Maintainability Symposiunpages
64—70, Jan 1997.

H. Hermanns.Interactive Markov Chainsvolume 2428 of
Lecture Notes in Computer Scien@&pringer-Verlag, 2002.

H. Hermanns, U. Herzog, U. Klehmet, V. Mertsiotakisdan
M. Siegle. Compositional performance modelling with the
TIPPtool. Lecture Notes in Computer Sciendd69:51-62,
1998.

H. Hermanns and J.-P. Katoen. Automated compositional
Markov chain generation for a plain-old telephone system.
Science of Computer Programmir&6(1):97-127, 2000.

R. A. Howard. Dynamic probability systems. Volume 1:
Markov models Decision and Control. John Wiley & Sons,
Inc., 1971.

N. A. Lynch and M. R. Tuttle. An introduction to in-
put/output automataCWI Quarterly 2(3):219-246, 1988.

R. Milner. Communication and Concurrencfrentice Hall
Inc., 1989.

[19] W. J. Stewart. Introduction to the Numerical Solution of

[20]

Markov Chains Princeton University Press, 1994.

K. K. Vemuri, J. B. Dugan, and K. J. Sullivan. Auto-
matic synthesis of fault trees for computer-based systems.
IEEE Transactions on Reliability48(4):394-402, Decem-
ber 1999.

