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Abstract. In presence of multicollinearity principal component regression (PCR) is sometimes suggested for the 
estimation of the regression coefficients of a multiple regression model. Due to ambiguities in the interpretation 
involved by the orthogonal transformation of the set of explanatory variables the method could not yet gain wide 
acceptance. Factor analysis regression (FAR) provides a model-based estimation method which is particular 
tailored to overcome multicollinearity in an errors in variables setting. In this paper we present a new FAR 
estimator that proves to be unbiased and consistent for the coefficient vector of a multiple regression model 
given the parameters of the measurement model. The behaviour of feasible FAR estimators in the general case of 
completely unknown model parameters is studied in comparison with the OLS estimator by means of Monte 
Carlo simulation. 
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1. Introduction 
 
In case of multicollinearity the identification of separate influences of highly collinear 

variables proves to be extremely difficult. Due to negative covariances of estimated regression 

coefficients an overrating of one regression coefficient is known to go along with an 

underrating of another when standard estimation methods are applied. Only the common 

influence of the regressors can be reliable estimated. This issue is highly relevant for testing 

hypotheses and evaluating policy measurements.  

Several suggestions have been made to employ the methods of principal components in case 

of highly correlated explanatory variables in a multiple regression model in order to overcome 

- or at least mitigate - the problem of multicollinearity, see e.g. Amemiya (1985; pp. 57), 

Fomby et al. (1988, pp. 298). With principal components regression (PCR) one is willing to 

accept a biased estimation of the regression coefficients for the sake reduction of variability. 

However, due to ambiguities in the interpretation involved by the orthogonal transformation 

PCR could not gain wide acceptance, see Greene (2003, pp. 58). 

Factor analysis regression (FAR) provides a model-based estimation method that is particular 

tailored to cope with multicollinearity in an errors in variables setting. Scott (1966, 1969) was 

the first to address this issue by deriving “factor analysis regression equations” from a factor 
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model of both the dependent and the explanatory variables. The theoretical deficiencies of 

Scott’s approach are criticized for the most part by King (1969).1 He showed that Scott’s FAR 

estimator is biased and that the bias still exists asymptotically. Scott’s FAR approach has been 

reconsidered by Lawley and Maxwell (1973), Chan (1977) and Isogawa and Okamoto (1980). 

Chan’s investigation focuses on how to overcome the inconsistency in predicting the 

dependent variable in this type of FAR model , see also Basilevsky (1994, pp. 694). 

Basilevsky (1981) has developed an FAR estimator based on a factor analysis of only the 

explanatory variables. This approach of factor analysis regression gets particular attraction as 

it is the dependencies across the explanatory variables that are responsible for 

multicollinearity. Given the parameters of the multiple factor model Basilevsky’s FAR 

estimator proves to be unbiased and consistent, see Basilevsky (1981) and Basilevsky (1994, 

pp. 672). The finite-sample sample properties are, however, completely unknown for any kind 

of FAR estimator.  

The present paper aims at closing this gap. In section 2 the latter kind of the FAR approach is 

outlined. We distinguish two types of FAR estimators. The FAR estimator of first type is 

attached to the common factors, while the FAR estimator of second type refers to the “true” in 

the sense of flawless measured explanatory variables. An FAR estimator derived in this 

context differs from Basilevsky’s proposal in respect to its entirely data-based design. In 

section 3.1 it is shown that new FAR estimator shares the properties of the Basilevsky 

estimator under the same set of assumptions. The finite-sample properties of two feasible 

FAR estimators are investigated by Monte Carlo simulation in section 3.2. Special features of 

FAR estimators disclosed by the simulation experiments are discussed. Section 4 concudes 

with some qualifications regarding the applicability of the FAR approach. 

 

 

2. FAR model and estimation 
 

Let y be an nx1 vector of the regressand y, Ξ an nxp matrix of the stationary regressors ξj 

measured as deviations from their means, β a px1 vector of the regression coefficients βj and 

v an nx1 vector of disturbances v. Further assume that the structural equation of an 

econometric model is given by the multiple regression equation 
                                                 
1 There still exist some additional problems with Scott’s FAR approach. His so-called “factor analysis regression 

equations” e.g. do not result from a transformation of the factor matrix to a more simple and better 
interpretative structure in the sense of Thurstone’s concept of simple structure (Thurstone, 1970). It is simply 
the result of a reduction of multiple factor model to a one factor model. A “rotation” of the factor matrix is 
unnecessary since the implied “regression coefficients” are invariant to orthogonal transformations. 



 3 

(2.1) y = Ξ⋅β + v. 

The regressors ξj, however, are prone to measurement errors uj and thence are not directly 

observable. Only their flawed counterparts xj, ξj + uj, are accessible to observation. Hence, the 

nxp observation matrix X is composed of the matrix of “true” regressor values, Ξ, and the nxp 

matrix of measurement errors, U: 

(2.2) X = Ξ + U. 

By substituting Ξ with X-U in Equation (2.1) one obtains the error in variables model 

(2.3) y = X⋅β + ε 

with the error term 

(2.4) ε = v - U⋅β. 

It is well-known that the properties of the OLS estimator  for the parameter 

vector β depend on the kind of relationship among the regressors and the disturbances. If 

Equation (2.1) renders the “true” regression for which the standard assumptions 

yXXXβ ')'(ˆ 1−=

(2.5) (a) E(vΞ) = o     and      (b) Σv = E(v⋅v’Ξ) = ⋅I2
vσ n 

hold, it follows that the flawed regressors xj in model (2.3) are correlated with the 

disturbances εj. In this case the OLS estimator β  is neither unbiased nor consistent for β. 

Since the bias depends on the ratio σ  (Johnston and DiNardo, 1997, pp. 153), it may be 

negligible in situations when the disturbance variance σ  is small with regard to the variance 

 of the true regressors. Here we refer to the case of multicollinearity where the OLS 

estimator is bound up with high variability. Moreover, an overrating of one regression 

coefficient is known to come along with an underrating of another one. With increasing 

correlations the explonatory variables share larger common parts which makes a separation of 

their influences on the dependent variable more and more difficult. 

ˆ

22
v / ξσ

2
v

2
ξσ

From experience with principal components regression it can be expected that variability 

generally could be reduced by orthogonalising the collinear regressors. However, the increase 

of the bias with the orthogonalisation transformation has turned out to be dramatic.2 The 

advantage of factor analysis regression consists in explicitly allowing for the model structure. 

                                                 
2 This conclusion is drawn from an own simulation study which cannot be presented here due to space limitation.  
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Factor analysis serves as a measurement model for the common and specific parts of the 

regressors. After extracting common factors in the first step, the dependent variable y is 

regressed on the orthogonal factors f1, f2, …, fm in a second step (FAR estimator of 1st type). 

In a third step a factor analysis regression estimator (FAR estimator of 2nd type) is derived 

from the estimated influences of the factors on the explanatory and dependent variable y. 

By using the multiple factor model (Dillon and Goldstein, 1984, pp. 53; Johnson and 

Wichern, 1992, pp. 396) 

(2.6) X = F⋅Λ’ + U 

as a measurement model we assume a special data generating process for the explanatory 

variables. According to the factor model (2.6) the observed explanatory variables are 

generated by m common factors fk, m<p, and m specific factors uj. Each common factor is 

associated with more than one explanatory variable, whereas the specific factors are exactly 

assigned to a particular regressor. The specific factors match exactly with the measurement 

errors uj in Equation (2.2). With 

(2.7) Ξ = F⋅Λ’ 

the “true” regressors ξj are given by a linear combination of the common factors f1, f2, …, fm 

which are arranged in the nxm factor score matrix F. The weights λjk of the linear combinat-

ion (2.7) are called factor loadings; the pxm matrix of the factor loadings, Λ, denotes the 

factor matrix.  

Without loss of generality  

(2.8) E(F) = E(U) = 0 

and 

(2.9) Σf = E(
n
1 F’F) = Im 

can be assumed. The assumption (2.9) of uncorrelated common factors fk is always necessary 

for factor extraction. Although it can be altered in a later step it is retained in our case. The 

covariance matrix of the unique factors uj must be diagonal: 

(2.10) Σu = diag(     ...  ). 2
u1

σ 2
u 2

σ 2
u p

σ

Note that the distinction of two kind of factors requires the common factors fk to be 

uncorrelated with the specific factors uj: 



 5 

(2.11) E(F’U) = 0. 

Finally, we assume the common and unique factors to be independently normally distributed 

with zero expectation and covariance matrices given by (2.9) and (2.10), respectively. 

By inserting the hypothesis (2.7) on the generation of “true” regressors into the multiple 

regression equation (2.1) one obtains 

 y = F⋅Λ’ ⋅β + v 

or, with  

(2.12) β* = Λ‘⋅β 

(2.13) y = F⋅β* + v. 

Equation (2.13) can be interpreted as a factor regression where the endogenous variable of the 

original model, y, is explained by a set of common factors f1, f2, …, fm. While the explanatory 

variables x1, x2, …, xp will be highly correlated in case of multicollinearity, the common 

factors f1, f2, …, fm are uncorrelated. If the factor scores were assumed to be known, OLS 

applied on (2.13) would produce the factor analysis regression (FAR) estimator with respect 

to the common factors f1, f2, …, fm (FAR estimator of 1st type): 

(2.14) = (F’⋅F)*
FARβ̂ -1⋅F’⋅y. 

Of course, since the common factors are not directly observable, they have to be estimated in 

advance in order to measure the influences the common factors on the variable to be 

explained in the model. 

At the outset, though, we our interest has been addressed to the issue of a stable estimation of 

the parameter vector β in case of multicollinearity. This type of factor analysis regression 

(FAR) estimator (FAR estimator of 2nd type) has to capture the influences of the “true” 

regressors ξ1, ξ2, …, ξp on the dependent variable y. To obtain an FAR estimator β  for β 

compatible to , the relationship (2.12) between the parameter vectors β* and β has to be 

translated to both FAR estimators: 

FAR
ˆ

*
FARβ̂

(2.15)  = Λ’⋅β . *
FARβ̂ FAR

ˆ

After substitution of  in Equation (2.15) by (2.14) and premultiplication by the factor 

matrix Λ, the relation 

*
FARβ̂
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(2.16) Λ⋅Λ’⋅  = Λ⋅(F’⋅F)FARβ̂ -1⋅F’⋅y 

results. The FAR estimator with respect to the explanatory variables ξ1, ξ2, …, ξp is then 

given by 

(2.17) ⋅β  = (Λ⋅Λ’)FAR
ˆ +⋅Λ⋅(F’⋅F)-1⋅F’⋅y, 

where (Λ⋅Λ’)+ denotes the Moore-Penrose pseudo inverse of the product matrix Λ⋅Λ’. By 

replacing y by (2.13) it is easily shown with (2.12) that the FAR estimator (2.17) is invariant 

to orthogonal transformations of the factor matrix. Hence, the rotation problem of factor 

analysis does not matter at all in factor analysis regression. 

Note that in (2.17) both the factor matrix Λ and the factor score matrix F are unknown. In 

order to determine the FAR estimator numerically, Λ and F have to be estimated in advance. 

An orthogonal estimator of F is generally obtained, when Λ is estimated by maximum 

likelihood or generalised least squares factor analysis, see Jöreskog (1977). In ML factor 

analysis the relation  

(2.18) IFF =⋅ ˆ'ˆ
n
1  

is met – in contrary to other extraction methods - not only approximately but exactly. 

Moreover, ML factor analysis is preferable as well in order to ensure the consistency of an 

estimator  for the factor matrix Λ. To avoid a stodgy notation  always denote a consistent 

estimator of Λ. Then a feasible FAR estimator of type (2.17) reads 

Λ̂ Λ̂

(2.19)  .'ˆ)ˆ'ˆ(ˆ)'ˆˆ(ˆ̂ 1
FAR yFFFΛΛΛβ ⋅⋅⋅⋅⋅= −+

The factor scores can be estimated by the well-known “regression estimator” (Thomson 

estimator) 

(2.20)  '')'(')'('ˆ 12/1
u

1
u

'
T XΛΛΣΛIXΣΛΛΛF ⋅+=+⋅= −−−

that is known to be a biased minimum variance estimator, see Brachinger and Ost (1996, pp. 

691). Alternatively, the Bartlett estimator  

(2.21)  '')'(ˆ 2/1
u

12/1
u

'
B XΣΛΛΣΛF −−−=
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can be employed.  can be interpreted as a weighted least-squares estimator. It proved to be 

the best linear unbiased estimator of F given the parameters Λ and Σ

'
BF̂

u of the multiple factor 

model (2.6), see McDonald and Burr (1967) and Brachinger and Ost (1996, pp. 690). 

 

 

3. Properties of the FAR estimators 

 

3.1 Properties when Λ and Σu are known 

 

In factor analysis the properties of estimators F  of the factor score matrix F have been 

established for the case that the parameters of the factor analytics model Λ and Σ

ˆ

u are known, 

see Anderson and Rubin; McDonald and Burr, 1967; Lawley and Maxwell, 1971. Using the 

same set of assumptions here, the FAR estimator (2.17) proves to be unbiased for the 

parameter vector β for any conditional unbiased estimator  for F. F̂

Theorem 3.1 

For any conditional unbiased estimator  for F, F̂

(3.1) E( | F) = F F̂

given Λ and Σu the FAR estimator 

(3.2)  .'ˆ)ˆ'ˆ()'(ˆ 1
FAR yFFFΛΛΛβ ⋅⋅⋅⋅⋅= −+

is an unbiased estimator for the parameter vector β: 

(3.3) . ββ =)ˆ(E FAR

Proof 

Substituting y in (3.2) by Equation (2.13) and using (2.12) the FAR estimator takes the form 

).'('ˆ)ˆ'ˆ()'(ˆ 1
FAR vβΛFFFFΛΛΛβ +⋅⋅⋅⋅⋅⋅⋅= −+  

With regard to (3.1) the expectation reads 

 ](E')'()'('')'()'[(E)ˆ(E 11
FAR FvFFFΛΛΛβΛFFFFΛΛΛβ ⋅⋅⋅⋅+⋅⋅⋅⋅⋅⋅⋅= −+−+  

from which (3.3) immediately follows on account of  (2.5a).    � 

When the parameters Λ and Σu are known unbiasedness of FAR estimation is ensured. A 

theoretical assessment of FAR estimator, however, has to establish its large-sample 

properties, too. In this connection the property of consistency becomes the focus of attention. 
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Since unbiasedness also holds for n→∞, it is sufficient for β  to be consistent for β to 

show that its variances and covariances vanish asymptotically, see Judge et al. (1988, pp. 83 

and p.260). With regard to Theorem (3.1) consistency  is ensured if the covariance 

matrix of β , Cov(β ), does approach a pxp zero matrix 0

FAR
ˆ

FARβ̂

FAR
ˆ

FAR
ˆ p as n goes to infinity. 

Theorem 3.2 

For an asymptotical conditional unbiased estimator  for F F̂

(3.4) E( | F) = F 
∞→n

lim F̂

the FAR estimator (3.2) is a consistent estimator for the parameter vector β: 

(3.5)  ββ =
∞→

FAR
n

ˆlimp .

given the parameters Λ and Σu 

Proof 

On account of Theorem (3.1) consistency of the FAR estimator β  is ensured if its 

covariance matrix Cov(β ) is proved to approach the zero matrix 0

FARˆ

FAR
ˆ̂

p for n→∞. 

By plugging (2.13) into (3.1) it is easily verified that the expectation E(β ) is given 

by the expression 

FARˆ '
FARβ̂

E(β ) =  FARˆ '
FARβ̂

11 )'('''')'[(E)'( −−+ ⋅⋅⋅⋅ FFFΛFββFΛFFFΛΛΛ  + 11 )'(')(E')'( −− FFFβΛFFvFFF  

+ 11 )'()'(E'')'( −− FFFFvβFΛFFF  + +−− ⋅ )'('])'()'(E')'( 11 ΛΛΛFFFFvvFFF . 

From this 

 E( ) FARβ̂ '
FARβ̂ +σ+= )'(

n
1' 2

v ΛΛββ  

follows considering (2.5a), (2.5b), (2.9) and (2.18). 

Due to (3.2) the covariance of  reads FARβ̂

(3.6) Cov(β ) = FARˆ +σ )'(
n
1 2

v ΛΛ= , 

which approaches the zero matrix 0p as n goes to infinity:     � 
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Theorems (3.1) and (3.2) ensure unbiasedness and consistency of the FAR estimator β  

given the parameters Λ and Σ

FARˆ

u of the multiple factor model (2.6). However, with the usual 

extraction methods employed in factor analysis unbiased estimation of Λ and Σu cannot be 

assured. Moreover, consistent estimation of Λ and Σu by the method of maximum likelihood 

(ML) or the generalised least-squares (GLS) method does not necessarily translate this 

property to the feasible FAR estimator (2.19), see Greene (2000, p. 469) and Schmidt (1976, 

p. 69). 

 

 

3.2 Properties when Λ and Σu are unknown 

 

Usually the parameters Λ and Σu of the multiple factor model are not known in advance and, 

hence, have be estimated from sample data. Under the usual regular conditions maximum 

likelihood estimators the  and  are shown to be consistent, asymptotically efficient and 

asymptotically normal estimators, see Lawley and Maxwell (1971). Moreover, on the basis of 

the ML estimators for Λ and Σ

Λ̂ uΣ̂

u the validity of orthogonality condition (2.18) is ensured. 

To study the finite-sample properties of the FAR estimator in comparison with those of the 

OLS estimator we assume the common and specific factors to be multivariate normally 

distributed: 

 f ∼ MN(o, Im), k=1,2,...,m   and   u ∼ MN(o, Σu) 

with 

 f = (f1  f2  …  fm)’   and   u = (u1  u2  …  um)’. 

Collinear multivariate normally distributed regressors x1, x2, …, xp are generated by the 

measurement model (2.6) for given alternative factor patterns Λ: 

 x ∼ MN(o, Σx)    

with 

x = (x1  x2  …, xp)’. 

The structure covariance matrix of the regressors x1, x2, …, xp  

(3.7) Σx = Λ⋅Λ’ + Σu, 
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renders the so-called fundamental theorem of factor analysis, see e.g. Dillon and Goldstein 

(1984) or Johnson and Wichern (1992). The next step consists of estimating the factor matrix 

Λ by employing maximum factor analysis. Since the FAR estimator is invariant to orthogonal 

transformations, a factor rotation is redundant. After that the factor score matrix F is 

estimated by applying the Thompson and Bartlett estimators F  and  according to 

Equations (2.20) and (2.21), respectively. Finally, the properties of the two variants of the 

feasible FAR estimator (2.19) and the OLS estimator are investigated by Monte Carlo 

methods. 

Tˆ '
BF̂

Table 3.1: Experimental design 

Experimentation factor    

1. Number of factors (m) One-factor model Two-factor models  

2. Number of explanatory 
    variables (p) 

3, 4, 5 5, 6, 7  

3. Degree of multicollinearity Moderate Strong High 

4. Regression coefficients Identical Different  

The Monte Carlo simulation is stratified fourfold (Table 3.1). The first experimentation factor 

refers to the number of common factors, m, used to generate the regressors of the multiple 

regression model (2.3). Specifically, we study one- and two-factor models with a varying 

number of manifest variables, p. In the one-factor model the number of variables varies from 

three to five, in the two-factor model from five to seven. The second experimentation factor p 

is bounded downwards by the condition of non-negative degrees of freedom condition in the 

goodness-of-fit test. The third experimentation factor captures the degree of multicollinearity. 

Three degrees are distinguished: moderate, strong and high multicollinearity. Moderate 

multicollinearity reflects the situation where the factor pattern of the common factors implies 

correlations between 0.7 and 0.9 for respective groups of variables. Correlations between 0.90 

and 0.96 within groups of variables refer define a strong degree of multicollinearity. In case of 

high multicollinearity the correlations within groups of variables are larger than 0.96. Extreme 

situations of virtually perfect multicollinearity are not covered. Table 3.2 exhibits the special 

factor patterns studied by Monte Carlo methods.3 The fourth experimentation factor refers to 

the choice of identical or different components of the coefficient vector β. While all 

                                                 
3 The simulations are carried out with MATLAB Version 6.5.  
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regression coefficients are set equal to 1 in the former case, they are incremented by 0.5 or –

0.5 in the latter case.  

Table 3.2: Factor patterns and simulation design 

 Strong multicollinearity High multicollinearity Very high Multicollinearity 

 

One-
factor 
model 














































9.0
8.0
9.0
8.0
9.0

;
8.0
9.0
8.0
9.0

;
9.0
8.0
9.0

 














































97.0
96.0
95.0
95.0
98.0

;
96.0
95.0
95.0
98.0

;
96.0
95.0
98.0

 














































997.0
996.0
995.0
995.0
998.0

;
996.0
995.0
995.0
998.0

;
996.0
995.0
998.0

 

 

Two-
factor 
model 





























































9.00
85.00
85.00
09.0
09.0
08.0
09.0

;

85.00
85.00
9.00

09.0
08.0
09.0

;

8.00
9.00

09.0
08.0
09.0

 ;

97.00
96.00
98.00
098.0
095.0
098.0

;

96.00
98.00
098.0
095.0
098.0





























































95.00
97.00
96.00
98.00
098.0
095.0
098.0

 

;

997.00
996.00
998.00
0998.0
0995.0
0998.0

;

996.00
998.00
0998.0
0995.0
0998.0





























































995.00
997.00
996.00
998.00
0998.0
0995.0
0998.0

 

The Monte Carlo statistics are based on 10,000 repetitions and a sample size of 100. Table 

A3.1 exhibits the performance of the estimation methods for the one-factor models with 

identical regression coefficients. While the FAR estimators are generally slightly more biased 

than the OLS estimator for the lower degrees of multicollinearity, the overall bias of the OLS 

estimator exceeds that of the FAR1 estimator when multicollinearity is highly marked. The 

FAR1 estimator tends to be slightly downward biased, whereas a small upward bias is 

attached to the FAR2 estimator. The variance of the OLS estimator increases substantially 

with the degree of multicollinearity. For the highest degree of multicollinearity the variance of 

the OLS estimator exceeds those of the FAR1 and FAR2 estimators on the average by factors 

of about 50 and 19, respectively. In this case the OLS estimator becomes totally unreliable, 

whereas both FAR estimators scarcely lose their precision. According to the mean square 

error (MSE) criterion the OLS estimator is outperformed by both FAR estimators in the cases 

of strong and high multicollinearity for all one-factor models with identical coefficients. The 

FAR1 estimator proves to be slightly preferable to the FAR2 estimator.  

The performance of FAR experiences a distinct alteration in the case of non-identical 

regression coefficients. Table A3.2 shows that the biases of the FAR estimators increase 

considerably for all one-factor models. A clear tendency of a downward or upward can no 
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more be stated. However, a tendency of FAR estimation to equalize the effects of the 

explanatory variables on the dependent variable becomes obvious. With it the high precision 

of the FAR estimators is still retained. The average variance inflation factors (46 and 18) 

coming along with OLS estimation do not alter noticeable compared with the case of identical 

coefficients. Although OLS always ranks first in both lower degrees multicollinearity, its 

performance deteriorates in the factor analysis regression models which are subjugated to 

high multicollinearity. Only in the regression model with four explanatory variables the bias 

of the FAR estimators turns out to be more severe than the loss of precision by OLS 

estimation. In most of the cases the Bartlett-type FAR1 estimator outperforms the Thompson-

type FAR2 estimator. 

In the two-factor models with identical regression coefficients (Table A3.3) FAR estimation 

proved to be preferable to OLS estimation for both higher degrees of multicollinearity. Only 

in case of the lowest degree of multicollinearity the high precision of the FAR estimators 

cannot fully compensate their larger downward and upward biases. Again the variance 

inflation attached to the OLS estimator is much higher in relation to the FAR1 estimator as 

with the FAR2 estimator. In the highest degree of multicollinearity its variance is inflated on 

the average by the factors 54 and 14, respectively. Again the Bartlett-type FAR1 estimator 

proves to be superior to the Thompson-type FAR2 estimator due to its smaller bias and higher 

precision. 

As with the one-factors models Table A3.4 exhibits a tendency of FAR estimation to 

equalization in the two-factor models with non-identical regression. More specifically 

estimated regression coefficients of the groups of variables generated by a common factor 

seem to differ only randomly from one another. For the lowest degree of multicollinearity the 

OLS estimators outperforms the FAR estimators in respect to both bias and precision. In case 

of strong multicollinearity the gain in precision of both estimators cannot level out the adverse 

equalization tendency. When multicollinearity is highly marked, however, the variance 

inflation of the OLS estimator again turns out to be considerable. Compared with the FAR1 

estimator the variance inflation factor on the average takes a value of about 25. This illustrates 

once more that the FAR1 estimator clearly outperforms the FAR2 estimator with respect to 

precision. Although OLS can maintain its position against the Thompson-type FAR2 

estimator for the highest degree of multicollinearity it falls short against the Bartlett-type 

FAR1 estimator.  
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On the whole the simulation study shows how the trade-off between bias and precision 

manifests with OLS and FAR estimation. On the one hand the bias attached with OLS 

estimation turns out to be negligible for typically low-dimensional factor models. Due to a 

tendency of averaging of the effects of the variables related to the same common factor, 

feasible FAR estimators can become considerably biased. However, they retain their high 

precision under all experimental conditions, while the variance of the OLS estimator is 

inflated substantially with the degree of multicollinearity. When multicollinearity is highly 

marked the OLS estimator becomes totally unstable. Although specifically the Bartlett-type 

feassible FAR estimator can outperform OLS under these circumstances, it only performs 

satisfactorily when the influences the explanatory variables within a factor group exert on the 

regressand do not differ significantly.  

Thus, in case of high multicollinearity, generally neither the OLS estimator nor the FAR 

estimator of 2nd type, i.e. the FAR estimator with respect to the “true” regressors ξ1, ξ2, …, ξp 

will be an adequate choice. When the explanatory variables are prone to measurement errors 

and multicollinearity is highly marked, the FAR estimator of 1st type, i.e. the FAR estimator 

with respect to the common factors f1, f2, …, fm, gains attraction for it is not adversely 

affected by both data problems. A sensible application of this kind of FAR estimator in 

empirical research, however, crucially depends on the interpretability of the dimensions 

underlying the explanatory variables. 

 

 
4. Conclusions 

 
When multicollinearity is highly marked OLS goes along with highly inflated variances that 

can entirely invalidate statistical inference in an econometric model. Employing principal 

components regression in this situation could not yet gain broad acceptance, as its 

interpretation runs into difficulties (Greene, 1997, p. 427). Principal components regression 

basically stands for a pure transformation method and not for an explicit modelling approach. 

When the researcher intends to explicitly account for errors in variables a multiple factor 

model can be used as a measurement model for the explanatory variables. Factor analysis 

regression is a model-based approach to coping with multicollinearity when variables are 

measured with errors. 

Although factor analysis regression has been treated in several papers by different modelling 

approaches, finite-sample properties of FAR estimators in the case of unknown parameters of 
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the factor model have not yet been established. In this paper this issue has been addressed by 

means of Monte Carlo simulation. It turns out that unbiasedness and consistency given the 

parameters of the factor model are only of limited importance when they are actually 

unknown. Monte Carlo simulations uncover the particular behaviour of two feasible variants 

of a theoretically attractive FAR estimator in comparison with the OLS estimator.  

The simulation study reveals that the OLS estimator becomes totally unstable when 

multicollinearity is highly marked. While the bias of the OLS estimator remains negligible, its 

variance is substantially inflated. In contrary, both FAR estimators are expelled by a high 

precision, whereas their biases cannot be ignored in all stratifications. Although more biased 

the Bartlett-type feasible FAR estimator outperforms the OLS estimator in the highest grade 

of multicollinearity. 

Although an FAR estimator may be favourable compared with the OLS estimator when 

multicollinearity is highly marked, a distinct adverse feature is unmasked from the 

experimental study. FAR estimation tend to equalize the effects of the explanatory variables 

on the dependent variable within a factor group. Only when the regressors within a factor 

group exert identically influences on the regressand, the feasible FAR estimators solve the 

problem of multicollinearity very efficiently. In case of different influences FAR estimation is 

suitable to identify only the average effect of the explanatory variables loading on the same 

common factor. Single effects are mixed by balancing low and high effects. 

As a result both OLS and FAR do not provide satisfactory procedures to cope with high 

multicollinearity. However, the problem of the division of a common factor effect on the 

dependent variable in FAR does only refer to feasible estimators with respect to the 

explanatory variables (FAR estimator of 2nd type). The effects of the common factors on the 

dependent variable are not mixed. On this ground the employment of the FAR estimator of 1st 

type can be of advantage provided that the dimensions of the set of explanatory variables are 

accessible to a sensible economic interpretation. 
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Appendix: Simulation results 
 
 
Table A3.1: Simulation results for one-factor models (identical regression coefficients) 
 
 Moderate multicollinearity Strong multicollinearity High multicollinearity 
 OLS FAR1 FAR2 OLS FAR1 FAR2 OLS FAR1 FAR2 

One-Factor Model (p=3) 
Bias 0.0010 0.0319 0.1246 0.0019 0.0142 0.0353 0.0055 -0.0016 0.0136 
(p=3) -0.0013 -0.0839 -0.0015 -0.0027 -0.0169 0.0035 -0.0086 -0.0040 0.0113 
 0.0007 0.0314 0.1240 0.0011 -0.0066 0.0140 0.0034 -0.0030 0.0123 
Var 0.0067 0.0048 0.0044 0.0249 0.0048 0.0046 0.2464 0.0053 0.0104 
(p=3) 0.0049 0.0057 0.0059 0.0173 0.0051 0.0049 0.1668 0.0053 0.0105 
 0.0068 0.0049 0.0045 0.0198 0.0050 0.0048 0.1921 0.0053 0.0105 
MSE 0.0067 0.0059 0.0200 0.0249 0.0050 0.0058 0.2464 0.0053 0.0106 
(p=3) 0.0049 0.0128 0.0059 0.0173 0.0054 0.0049 0.1669 0.0053 0.0106 
 0.0068 0.0059 0.0199 0.0198 0.0050 0.0050 0.1922 0.0053 0.0106 
 One-Factor Model (p=4) 
 -0.0000 0.0519 0.1350 -0.0000 0.0180 0.0359 0.0009 -0.0021 0.0983 
Bias 0.0007 -0.0660 0.0078 0.0014 -0.0133 0.0041 0.0050 -0.0034 0.0969 
(p=4) -0.0007 0.0517 0.1348 -0.0009 -0.0132 0.0041 -0.0041 -0.0021 0.0983 
 -0.0003 -0.0657 0.0081 -0.0007 -0.0028 0.0147 -0.0021 -0.0028 0.0976 
 0.0076 0.0041 0.0035 0.0305 0.0045 0.0044 0.3668 0.0052 0.0165 
Var 0.0049 0.0054 0.0052 0.0175 0.0049 0.0047 0.2157 0.0052 0.0166 
(p=4) 0.0077 0.0041 0.0035 0.0186 0.0049 0.0047 0.3737 0.0052 0.0165 
 0.0051 0.0053 0.0051 0.0211 0.0048 0.0046 0.2775 0.0052 0.0165 
 0.0076 0.0068 0.0218 0.0305 0.0049 0.0057 0.3668 0.0052 0.0261 
MSE 0.0049 0.0097 0.0052 0.0175 0.0050 0.0047 0.2158 0.0053 0.0259 
(p=4) 0.0077 0.0067 0.0217 0.0186 0.0050 0.0047 0.3737 0.0052 0.0261 
 0.0051 0.0096 0.0052 0.0211 0.0048 0.0048 0.2775 0.0052 0.0260 
 One-Factor Model (p=5) 
 0.0010 0.0404 0.1019 0.0021 0.0166 0.0306 0.0064 -0.0005 0.0511 
Bias 0.0000 -0.0755 -0.0209 0.0000 -0.0146 -0.0010 -0.0000 -0.0029 0.0487 
(p=5) -0.0004 0.0405 0.1020 -0.0009 -0.0145 -0.0010 -0.0029 -0.0029 0.0487 
 -0.0008 -0.0750 -0.0205 -0.0017 -0.0041 0.0096 -0.0056 -0.0020 0.0495 
 0.0006 0.0402 0.1017 0.0009 0.0062 0.0200 0.0025 -0.0012 0.0504 
 0.0086 0.0037 0.0032 0.0360 0.0043 0.0042 0.3572 0.0049 0.0131 
Var 0.0053 0.0050 0.0048 0.0191 0.0046 0.0045 0.1857 0.0050 0.0132 
(p=5) 0.0085 0.0037 0.0033 0.0193 0.0047 0.0045 0.1871 0.0050 0.0132 
 0.0054 0.0051 0.0048 0.0231 0.0045 0.0044 0.2263 0.0050 0.0131 
 0.0084 0.0037 0.0032 0.0281 0.0044 0.0043 0.2768 0.0049 0.0131 
 0.0086 0.0053 0.0136 0.0360 0.0046 0.0051 0.3572 0.0049 0.0157 
MSE 0.0053 0.0107 0.0052 0.0191 0.0049 0.0045 0.1857 0.0050 0.0155 
(p=5) 0.0085 0.0054 0.0137 0.0193 0.0049 0.0045 0.1871 0.0050 0.0155 
 0.0054 0.0107 0.0052 0.0231 0.0046 0.0045 0.2263 0.0050 0.0156 
 0.0084 0.0053 0.0136 0.0281 0.0045 0.0047 0.2768 0.0049 0.0156 
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Table A3.2: Simulation results for the one-factor models (non-identical regression 
                    coefficients) 
 
 Moderate multicollinearity Strong multicollinearity High multicollinearity 
 OLS FAR1 FAR2 OLS FAR1 FAR2 OLS FAR1 FAR2 

One-Factor Model (p=3) 
Bias 0.0010 0.5314 0.6240 0.0019 0.5106 0.5316 0.0055 0.4981 0.5134 
(p=3) -0.0013 -0.0841 -0.0017 -0.0027 -0.0204 -0.0001 -0.0086 -0.0042 0.0111 
 0.0007 -0.4685 -0.3758 0.0011 -0.5101 -0.4896 0.0034 -0.5032 -0.4879 
Var 0.0067 0.0044 0.0039 0.0249 0.0048 0.0046 0.2464 0.0053 0.0104 
(p=3) 0.0049 0.0059 0.0061 0.0173 0.0051 0.0050 0.1668 0.0053 0.0105 
 0.0068 0.0059 0.0056 0.0198 0.0051 0.0049 0.1921 0.0053 0.0105 
MSE 0.0067 0.2867 0.3934 0.0249 0.2655 0.2872 0.2464 0.2534 0.2740 
(p=3) 0.0049 0.0130 0.0062 0.0173 0.0055 0.0050 0.1669 0.0054 0.0106 
 0.0068 0.2253 0.1468 0.0198 0.2653 0.2446 0.1922 0.2585 0.2486 
 One-Factor Model (p=4) 
 -0.0000 0.7992 0.9018 -0.0000 0.7686 0.7909 0.0009 0.7473 0.8729 
Bias 0.0007 0.1536 0.2447 0.0014 0.2295 0.2512 0.0050 0.2457 0.3711 
(p=4) -0.0007 -0.2008 -0.0981 -0.0009 -0.2704 -0.2487 -0.0041 -0.2527 -0.1271 
 -0.0003 -0.8454 -0.7542 -0.0007 -0.7574 -0.7355 -0.0021 -0.7534 -0.6280 
 0.0076 0.0059 0.0051 0.0305 0.0070 0.0068 0.3668 0.0080 0.0256 
Var 0.0049 0.0081 0.0078 0.0175 0.0075 0.0073 0.2157 0.0081 0.0258 
(p=4) 0.0077 0.0068 0.0061 0.0186 0.0076 0.0073 0.3737 0.0080 0.0256 
 0.0051 0.0095 0.0095 0.0211 0.0074 0.0072 0.2775 0.0081 0.0257 
 0.0076 0.6446 0.8184 0.0305 0.5978 0.6323 0.3668 0.5665 0.7875 
MSE 0.0049 0.0317 0.0677 0.0175 0.0602 0.0704 0.2158 0.0685 0.1635 
(p=4) 0.0077 0.0471 0.0157 0.0186 0.0807 0.0692 0.3737 0.0719 0.0418 
 0.0051 0.7241 0.5783 0.0211 0.5811 0.5482 0.2775 0.5758 0.4200 
 One-Factor Model (p=5) 
 0.0010 0.4317 0.4868 0.0021 0.4111 0.4236 0.0064 0.3993 0.4458 
Bias 0.0000 -0.1720 -0.1231 0.0000 -0.1169 -0.1047 -0.0000 -0.1028 -0.0565 
(p=5) -0.0004 -0.5680 -0.5130 -0.0009 -0.6168 -0.6047 -0.0029 -0.6028 -0.5565 
 -0.0008 -0.1716 -0.1227 -0.0017 -0.1074 -0.0952 -0.0056 -0.1021 -0.0557 
 0.0006 0.4315 0.4866 0.0009 0.4017 0.4141 0.0025 0.3987 0.4451 
 0.0086 0.0030 0.0026 0.0360 0.0036 0.0034 0.3572 0.0040 0.0106 
Var 0.0053 0.0042 0.0041 0.0191 0.0038 0.0037 0.1857 0.0041 0.0107 
(p=5) 0.0085 0.0033 0.0030 0.0193 0.0038 0.0037 0.1871 0.0041 0.0107 
 0.0054 0.0042 0.0041 0.0231 0.0037 0.0036 0.2263 0.0041 0.0107 
 0.0084 0.0029 0.0026 0.0281 0.0036 0.0035 0.2768 0.0040 0.0106 
 0.0086 0.1894 0.2396 0.0360 0.1726 0.1829 0.3572 0.1635 0.2093 
MSE 0.0053 0.0338 0.0192 0.0191 0.0175 0.0147 0.1857 0.0146 0.0139 
(p=5) 0.0085 0.3260 0.2661 0.0193 0.3843 0.3694 0.1871 0.3675 0.3203 
 0.0054 0.0337 0.0191 0.0231 0.0153 0.0127 0.2263 0.0145 0.0138 
 0.0084 0.1892 0.2393 0.0281 0.1650 0.1750 0.2768 0.1630 0.2087 
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Table A3.3: Simulation results for the two-factor models (identical regression coefficients) 
 
 Moderate multicollinearity Strong multicollinearity High multicollinearity 
 OLS FAR1 FAR2 OLS FAR1 FAR2 OLS FAR1 FAR2 

Two-Factor Models (p=5) 
 0.0014 0.0307 0.1227 0.0026 0.0073 0.0236 0.0075 -0.0021 0.1096 
Bias 0.0010 -0.0864 -0.0047 0.0019 -0.0243 -0.0085 0.0057 -0.0040 0.1074 
(p=5) -0.0017 0.0294 0.1214 -0.0039 0.0069 0.0232 -0.0127 -0.0021 0.1095 
 -0.0006 -0.0285 0.0072 -0.0015 -0.0031 0.0035 -0.0047 -0.0014 0.1774 
 0.0006 -0.0273 0.0086 0.0014 -0.0027 0.0040 0.0046 -0.0015 0.1773 
 0.0071 0.0086 0.0228 0.0319 0.0054 0.0058 0.3140 0.0053 0.0384 
MSE 0.0050 0.0175 0.0108 0.0185 0.0064 0.0058 0.1788 0.0054 0.0382 
(p=5) 0.0070 0.0083 0.0221 0.0315 0.0053 0.0057 0.3108 0.0053 0.0384 
 0.0044 0.0291 0.0336 0.0186 0.0065 0.0066 0.1798 0.0056 0.0691 
 0.0045 0.0288 0.0341 0.0188 0.0064 0.0064 0.1803 0.0055 0.0690 
 Two-Factor Models (p=6) 
 0.0005 0.0288 0.1210 0.0013 0.0061 0.0224 0.0046 -0.0032 0.1175 
 -0.0008 -0.0867 -0.0048 -0.0014 -0.0252 -0.0094 -0.0042 -0.0051 0.1155 
Bias -0.0002 0.0271 0.1191 -0.0004 0.0054 0.0217 -0.0009 -0.0034 0.1173 
(p=6) 0.0010 0.0318 0.1335 0.0022 0.0068 0.0251 0.0069 -0.0026 0.1169 
 -0.0013 -0.0275 0.0688 -0.0025 -0.0142 0.0037 -0.0080 -0.0038 0.1156 
 0.0002 -0.0258 0.0706 0.0004 -0.0032 0.0150 0.0012 -0.0029 0.1166 
 0.0071 0.0077 0.0218 0.0320 0.0052 0.0055 0.3153 0.0052 0.0376 
 0.0050 0.0167 0.0102 0.0185 0.0063 0.0057 0.1787 0.0053 0.0374 
MSE 0.0070 0.0076 0.0213 0.0317 0.0051 0.0054 0.3116 0.0052 0.0375 
(p=6) 0.0067 0.0080 0.0245 0.0293 0.0053 0.0057 0.2897 0.0052 0.0348 
 0.0059 0.0086 0.0133 0.0216 0.0058 0.0054 0.2094 0.0053 0.0346 
 0.0058 0.0086 0.0136 0.0253 0.0054 0.0055 0.2473 0.0053 0.0348 
 Two-Factor Models (p=7) 
 -0.0006 0.0273 0.1194 -0.0011 0.0063 0.0227 -0.0033 -0.0022 0.1352 
 -0.0002 -0.0871 -0.0052 -0.0001 -0.0245 -0.0086 -0.0001 -0.0038 0.1335 
Bias 0.0003 0.0275 0.1197 0.0008 0.0064 0.0227 0.0029 -0.0022 0.1352 
(p=7) -0.0006 0.0231 0.0946 -0.0012 0.0122 0.0281 -0.0035 -0.0021 0.0964 
 0.0001 -0.0340 0.0335 0.0001 -0.0084 0.0072 0.0003 -0.0033 0.0951 
 0.0001 -0.0349 0.0326 0.0003 0.0018 0.0175 0.0009 -0.0026 0.0957 
 0.0003 0.0214 0.0928 0.0006 -0.0195 -0.0041 0.0021 -0.0042 0.0941 
 0.0071 0.0076 0.0211 0.0320 0.0052 0.0056 0.3156 0.0052 0.0397 
 0.0052 0.0166 0.0098 0.0192 0.0063 0.0057 0.1854 0.0053 0.0395 
MSE 0.0071 0.0076 0.0212 0.0322 0.0052 0.0056 0.3174 0.0052 0.0397 
(p=7) 0.0081 0.0069 0.0152 0.0334 0.0051 0.0056 0.3307 0.0051 0.0238 
 0.0064 0.0089 0.0091 0.0223 0.0055 0.0053 0.2174 0.0052 0.0237 
 0.0067 0.0092 0.0093 0.0284 0.0053 0.0054 0.2795 0.0051 0.0238 
 0.0081 0.0068 0.0149 0.0189 0.0060 0.0055 0.1829 0.0052 0.0235 
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Table A3.4: Simulation results for the two-factor models (non-identical regression  
                    coefficients) 
 
 Moderate multicollinearity Strong multicollinearity High multicollinearity 
 OLS FAR1 FAR2 OLS FAR1 FAR2 OLS FAR1 FAR2 

Two-Factor Models (p=5) 
 0.0014 0.5301 0.6222 0.0026 0.5075 0.5238 0.0075 0.4980 0.6096 
Bias 0.0010 -0.0872 -0.0054 0.0019 -0.0246 -0.0088 0.0057 -0.0041 0.1073 
(p=5) -0.0017 -0.4697 -0.3776 -0.0039 -0.4930 -0.4768 -0.0127 -0.5021 -0.3905 
 -0.0006 0.1796 0.2598 -0.0015 0.2426 0.2575 -0.0047 0.2468 0.6491 
 0.0006 -0.3051 -0.2241 0.0014 -0.2556 -0.2407 0.0046 -0.2533 0.1490 
 0.0071 0.2992 0.4068 0.0319 0.2646 0.2813 0.3140 0.2535 0.3999 
MSE 0.0050 0.0354 0.0310 0.0185 0.0093 0.0087 0.1788 0.0056 0.0400 
(p=5) 0.0070 0.2398 0.1633 0.0315 0.2501 0.2342 0.3108 0.2576 0.1808 
 0.0044 0.1414 0.2012 0.0186 0.0871 0.0948 0.1798 0.0868 0.6036 
 0.0045 0.2468 0.2316 0.0188 0.0950 0.0879 0.1803 0.0900 0.2043 
 Two-Factor Models (p=6) 
 0.0005 0.5292 0.6214 0.0013 0.5066 0.5229 0.0046 0.4970 0.6179 
 -0.0008 -0.0863 -0.0044 -0.0014 -0.0252 -0.0094 -0.0042 -0.0051 0.1156 
Bias -0.0002 -0.4732 -0.3813 -0.0004 -0.4949 -0.4786 -0.0009 -0.5035 -0.3827 
(p=6) 0.0010 0.5683 0.8217 0.0022 0.5151 0.5609 0.0069 0.4933 0.7919 
 -0.0013 -0.0772 0.1627 -0.0025 -0.0369 0.0080 -0.0080 -0.0094 0.2890 
 0.0002 -0.5744 -0.3344 0.0004 -0.5103 -0.4649 0.0012 -0.5076 -0.2092 
 0.0071 0.2979 0.4073 0.0320 0.2638 0.2805 0.3153 0.2523 0.4080 
 0.0050 0.0351 0.0330 0.0185 0.0097 0.0091 0.1787 0.0056 0.0399 
MSE 0.0070 0.2429 0.1676 0.0317 0.2519 0.2360 0.3116 0.2588 0.1725 
(p=6) 0.0067 0.3525 0.7002 0.0293 0.2947 0.3429 0.2897 0.2748 0.7553 
 0.0059 0.0404 0.0621 0.0216 0.0323 0.0300 0.2094 0.0318 0.2124 
 0.0058 0.3664 0.1497 0.0253 0.2908 0.2455 0.2473 0.2893 0.1723 
 Two-Factor Models (p=7) 
 -0.0006 0.5273 0.6194 -0.0011 0.5065 0.5229 -0.0033 0.4978 0.6353 
 -0.0002 -0.0867 -0.0047 -0.0001 -0.0243 -0.0085 -0.0001 -0.0038 0.1336 
Bias 0.0003 -0.4713 -0.3790 0.0008 -0.4933 -0.4770 0.0029 -0.5022 -0.3647 
(p=7) -0.0006 -0.7200 -0.6306 -0.0012 -0.7292 -0.7093 -0.0035 -0.7522 -0.6292 
 0.0001 -0.2921 -0.2077 0.0001 -0.2552 -0.2357 0.0003 -0.2537 -0.1308 
 0.0001 0.2062 0.2904 0.0003 0.2574 0.2772 0.0009 0.2471 0.3700 
 0.0003 0.7763 0.8655 0.0006 0.7306 0.7500 0.0021 0.7451 0.8680 
 0.0071 0.2860 0.3919 0.0320 0.2621 0.2788 0.3156 0.2531 0.4253 
 0.0052 0.0189 0.0126 0.0192 0.0068 0.0062 0.1854 0.0054 0.0398 
MSE 0.0071 0.2314 0.1534 0.0322 0.2489 0.2330 0.3174 0.2574 0.1547 
(p=7) 0.0081 0.5278 0.4068 0.0334 0.5393 0.5103 0.3307 0.5737 0.4183 
 0.0064 0.0961 0.0540 0.0223 0.0732 0.0634 0.2174 0.0723 0.0397 
 0.0067 0.0532 0.0951 0.0284 0.0742 0.0845 0.2795 0.0690 0.1595 
 0.0081 0.6111 0.7571 0.0189 0.5421 0.5705 0.1829 0.5632 0.7760 
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