
Chapter 2

Regression Analysis and Forecasting Models

A forecast is merely a prediction about the future values of data. However, most

extrapolative model forecasts assume that the past is a proxy for the future. That is,

the economic data for the 2012–2020 period will be driven by the same variables as

was the case for the 2000–2011 period, or the 2007–2011 period. There are many

traditional models for forecasting: exponential smoothing, regression, time series,

and composite model forecasts, often involving expert forecasts. Regression analy-

sis is a statistical technique to analyze quantitative data to estimate model

parameters and make forecasts. We introduce the reader to regression analysis in

this chapter.

The horizontal line is called the X-axis and the vertical line the Y-axis. Regres-
sion analysis looks for a relationship between the X variable (sometimes called the

“independent” or “explanatory” variable) and the Y variable (the “dependent”

variable).

For example, X might be the aggregate level of personal disposable income in

the United States and Y would represent personal consumption expenditures in the

United States, an example used in Guerard and Schwartz (2007). By looking up

these numbers for a number of years in the past, we can plot points on the graph.

More specifically, regression analysis seeks to find the “line of best fit” through the

points. Basically, the regression line is drawn to best approximate the relationship
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between the two variables. Techniques for estimating the regression line (i.e., its

intercept on the Y-axis and its slope) are the subject of this chapter. Forecasts using
the regression line assume that the relationship which existed in the past between

the two variables will continue to exist in the future. There may be times when this

assumption is inappropriate, such as the “Great Recession” of 2008 when the

housing market bubble burst. The forecaster must be aware of this potential pitfall.

Once the regression line has been estimated, the forecaster must provide an estimate

of the future level of the independent variable. The reader clearly sees that the

forecast of the independent variable is paramount to an accurate forecast of the

dependent variable.

Regression analysis can be expanded to include more than one independent

variable. Regressions involving more than one independent variable are referred to

as multiple regression. For example, the forecaster might believe that the number of

cars sold depends not only on personal disposable income but also on the level of

interest rates. Historical data on these three variables must be obtained and a plane

of best fit estimated. Given an estimate of the future level of personal disposable

income and interest rates, one can make a forecast of car sales.

Regression capabilities are found in a wide variety of software packages and

hence are available to anyone with a microcomputer. Microsoft Excel, a popular

spreadsheet package, SAS, SCA, RATS, and EViews can do simple or multiple

regressions. Many statistics packages can do not only regressions but also other

quantitative techniques such as those discussed in Chapter 3 (Time Series Analysis

and Forecasting). In simple regression analysis, one seeks to measure the statistical

association between two variables, X and Y. Regression analysis is generally used to
measure how changes in the independent variable, X, influence changes in the

dependent variable, Y. Regression analysis shows a statistical association or corre-

lation among variables, rather than a causal relationship among variables.

The case of simple, linear, least squares regression may be written in the form

Y ¼ aþ bX þ e; (2.1)

where Y, the dependent variable, is a linear function of X, the independent variable.
The parameters a and b characterize the population regression line and e is the

randomly distributed error term. The regression estimates of a and b will be derived

from the principle of least squares. In applying least squares, the sum of the squared

regression errors will be minimized; our regression errors equal the actual dependent

variable minus the estimated value from the regression line. If Y represents the actual

value and Y the estimated value, then their difference is the error term, e. Least squares
regression minimized the sum of the squared error terms. The simple regression line

will yield an estimated value of Y, Ŷ, by the use of the sample regression:

Ŷ ¼ aþ bX: (2.2)

In the estimation (2.2), a is the least squares estimate of a and b is the estimate of

b. Thus, a and b are the regression constants that must be estimated. The least
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squares regression constants (or statistics) a and b are unbiased and efficient

(smallest variance) estimators of a and b. The error term, ei, is the difference

between the actual and estimated dependent variable value for any given indepen-

dent variable values, Xi.

ei ¼ Ŷi � Yi: (2.3)

The regression error term, ei, is the least squares estimate of ei, the actual

error term.1

To minimize the error terms, the least squares technique minimizes the sum of

the squares error terms of the N observations,

XN
i¼1

e2i : (2.4)

The error terms from the N observations will be minimized. Thus, least squares

regression minimizes:

XN
i¼1

e2i ¼
XN
i¼1

½Yi � Ŷi�2 ¼
XN
i¼1

½Yi � ðaþ bXiÞ�2: (2.5)

To assure that a minimum is reached, the partial derivatives of the squared error

terms function

XN
i¼1

¼ ½Yi � ðaþ b XiÞ�2

will be taken with respect to a and b.

@
PN
i¼1

e2i

@a
¼ 2

XN
i¼1

ðYi � a� bXiÞð�1Þ

¼ �2
XN
i¼1

Yi �
XN
i¼1

a� b
XN
i¼1

Xi

 !

1 The reader is referred to an excellent statistical reference, S. Makridakis, S.C. Wheelwright, and

R. J. Hyndman, Forecasting: Methods and Applications, Third Edition (New York; Wiley, 1998),

Chapter 5.
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ðYi � a� bXiÞð�XiÞ
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XN
i¼1

YiXi �
XN
i¼1

Xi � b
XN
i¼1

X2
1

 !
:

The partial derivatives will then be set equal to zero.

@
PN
i¼1

e2i

@a
¼ �2

XN
i¼1

Yi �
XN
i¼1

a� b
XN
i¼1

Xi

 !
¼ 0

@
PN
i¼1

e2i

@b
¼ �2

XN
i¼1

YXi �
XN
i¼1

Xl � b
XN
i¼1

X2
1

 !
¼ 0:

(2.6)

Rewriting these equations, one obtains the normal equations:

XN
i¼1

Yi ¼
XN
i¼1

aþ b
XN
i¼1

Xi

XN
i¼1

YiXi ¼ a
XN
i¼1

Xi þ b
XN
i¼1

X2
1:

(2.7)

Solving the normal equations simultaneously for a and b yields the least squares
regression estimates:

â ¼
PN
i¼1

X2
i

� � PN
i¼1

Yi

� �
� PN

i¼1

XiYi

� �

N
PN
i¼1

X2
i

� �
� PN

i¼1

Xi

� �2
;

b̂ ¼
PN
i¼1

XiYi

� �
� PN

i¼1

Xi

� � PN
i¼1

Yi

� �

N
PN
i¼1

X2
i

� �
� PN

i¼1

Xi

� �2
:

(2.8)

An estimation of the regression line’s coefficients and goodness of fit also can be

found in terms of expressing the dependent and independent variables in terms of

deviations from their means, their sample moments. The sample moments will be

denoted by M.
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MXX ¼
XN
i¼1

x2i ¼
XN
i¼1

xi � �xð Þ2

¼ N
XN
i¼1

Xi �
XN
i¼1

Xi

 !2

MXY ¼
XN
i¼1

xiyi ¼
XN
i¼1

Xi � �Xð Þ Yi � �Yð Þ

¼ N
XN
i¼1

XiYi �
XN
i¼1

Xi

 ! XN
i¼1

Yi

 !

MYY ¼
XN
i¼1

y2i ¼
XN
i¼1

Y � �Yð Þ2

¼ N
XN
i¼1

Y2
i

 !
�
XN
i¼1

ðYiÞ2:

The slope of the regression line, b, can be found by

b ¼ MXY

MXX
(2.9)

a ¼
PN
i¼1

Yi

N
� b

PN
i¼1

Xi

N
¼ �y� b �X: (2.10)

The standard error of the regression line can be found in terms of the sample

moments.

S2e ¼
MXXðMYYÞ � ðMXYÞ2

NðN � 2ÞMXX

Se ¼
ffiffiffiffiffi
S2e

q
:

(2.11)

The major benefit in calculating the sample moments is that the correlation

coefficient, r, and the coefficient of determination, r2, can easily be found.

r ¼ MXY

ðMXXÞðMYYÞ
R2 ¼ ðrÞ2:

(2.12)
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The coefficient of determination, R2, is the percentage of the variance of the

dependent variable explained by the independent variable. The coefficient of

determination cannot exceed 1 nor be less than zero. In the case of R2 ¼ 0, the

regression line’s Y ¼ Y and no variation in the dependent variable are explained. If

the dependent variable pattern continues as in the past, the model with time as the

independent variable should be of good use in forecasting.

The firm can test whether the a and b coefficients are statistically different from

zero, the generally accepted null hypothesis. A t-test is used to test the two null

hypotheses:

H01 : a ¼ 0

HA1
: a ne 0

H02 : b ¼ 0

HA2
: b ne 0,

where ne denotes not equal.

The H0 represents the null hypothesis while HA represents the alternative

hypothesis. To reject the null hypothesis, the calculated t-value must exceed the

critical t-value given in the t-tables in the appendix. The calculated t-values for a
and b are found by

ta ¼ a� a
Se

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NðMXXÞ

MXX þ ðN �XÞ2
s

tb ¼ b� b
Se

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ðMXXÞ
N

r
:

(2.13)

The critical t-value, tc, for the 0.05 level of significance with N � 2 degrees of

freedom can be found in a t-table in any statistical econometric text. One has a

statistically significant regression model if one can reject the null hypothesis of the

estimated slope coefficient.

We can create 95% confidence intervals for a and b, where the limits of a
and b are

aþ ta=2Se
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðN �XÞ2 þMXX

NðMXXÞ

s

bþ ta=2Se

ffiffiffiffiffiffiffiffiffi
N

MXX

r
:

(2.14)

To test whether the model is a useful model, an F-test is performed where

H0 ¼ a ¼ b ¼ 0

HA ¼ a ne b ne 0
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F ¼
PN
i¼1

Y2 � 1� b2
PN
i¼1

X2
i

PN
i¼1

e2 � N � 2

: (2.15)

As the calculated F-value exceeds the critical F-value with (1, N � 2) degrees of

freedom of 5.99 at the 0.05 level of significance, the null hypothesis must be

rejected. The 95% confidence level limit of prediction can be found in terms of

the dependent variable value:

ðaþ bX0Þ þ ta=2Se

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NðX0 � �XÞ2
1þ N þMXX

s
: (2.16)

Examples of Financial Economic Data

The most important use of simple linear regression as developed in (2.9) and (2.10)

is the estimation of a security beta. A security beta is estimated by running a

regression of 60 months of security returns as a function of market returns. The

market returns are generally the Standard & Poor’s 500 (S&P500) index or a

capitalization-weighted index, such as the value-weighted Index from the Center

for Research in Security Prices (CRSP) at the University of Chicago. The data for

beta estimations can be downloaded from the Wharton Research Data Services

(WRDS) database. The beta estimation for IBM from January 2005 to December

2009, using monthly S&P 500 and the value-weighted CRSP Index, produces a beta

of approximately 0.80. Thus, if the market is expected to increase 10% in the

coming year, then one would expect IBM to return about 8%. The beta estimation of

IBM as a function of the S&P 500 Index using the SAS system is shown in

Table 2.1. The IBM beta is 0.80. The t-statistic of the beta coefficient, the slope

of the regression line, is 5.53, which is highly statistically significant. The critical

5% t-value is with 30 degrees of freedom 1.96, whereas the critical level of the t-
statistic at the 10% is 1.645. The IBM beta is statistically different from zero. The

IBM beta is not statistically different from one; the normalized z-statistical is
significantly less than 1. That is, 0.80 � 1.00 divided by the regression coefficient

standard error of 0.144 produces a Z-statistic of�1.39, which is less than the critical

level of�1.645 (at the 10% level) or�1.96 (at the 5% critical level). The IBM beta

is 0.78 (the corresponding t-statistic is 5.87) when calculated versus the value-

weighted CRSP Index.2

2 See Fama, Foundations of Finance, 1976, Chapter 3, p. 101–2, for an IBM beta estimation with

an equally weighted CRSP Index.
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Let us examine another source of real-business economic and financial data. The

St. Louis Federal Reserve Bank has an economic database, denoted FRED,

containing some 41,000 economic series, available at no cost, via the Internet, at

http://research.stlouisfed.org/fred2. Readers are well aware that consumption

makes up the majority of real Gross Domestic Product, denoted GDP, the accepted

measure of output in our economy. Consumption is the largest expenditure, relative

to gross investment, government spending, and net exports in GDP data. If we

download and graph real GDP and real consumption expenditures from FRED from

1947 to 2011, shown in Chart 2, one finds that real GDP and real consumption

expenditures, in 2005 $, have risen substantially in the postwar period. Moreover,

there is a highly statistical significant relationship between real GDP and consump-

tion if one estimates an ordinary least squares (OLS) line of the form of (2.8) with

real GDP as the dependent variable and real consumption as the independent

variable. The reader is referred to Table 2.2.

Table 2.1 WRDS IBM Beta 1/2005–12/2009

Dependent variable: ret

Number of observations read: 60

Number of observations used: 60

Analysis of variance

Source DF Sum of squares Mean square F-value Pr > F

Model 1 0.08135 0.08135 30.60 <0.0001

Error 58 0.15419 0.00266

Corrected total 59 0.23554

Root MSE 0.05156 R2 0.3454

Dependent mean 0.00808 Adjusted R2 0.3341

Coeff var 638.12982

Parameter estimates

Variable DF Parameter estimate Standard error t-Value Pr > |t|

Intercept 1 0.00817 0.00666 1.23 0.2244

Sprtrn 1 0.80063 0.14474 5.53 <0.0001

Table 2.2 An Estimated Consumption Function, 1947–2011

Dependent variable: RPCE

Method: least squares

Sample(adjusted): 1,259

Included observations: 259 after adjusting endpoints

Variable Coefficient Std. error t-Statistic Prob.

C �120.0314 12.60258 �9.524349 0.0000

RPDI 0.933251 0.002290 407.5311 0.0000

R2 0.998455 Mean dependent var 4,319.917

Adjusted R2 0.998449 S.D. dependent var 2,588.624

S.E. of regression 101.9488 Akaike info criterion 12.09451

Sum squared resid 2,671,147 Schwarz criterion 12.12198

Log likelihood �1,564.239 F-statistic 166,081.6

Durbin–Watson stat 0.197459 Prob(F-statistic) 0.000000
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The slope of consumption function is 0.93, and is highly statistically significant.3

The introduction of current and lagged income variables in the consumption

function regression produces statistically significant coefficients on both current

and lagged income, although the lagged income variable is statistically significant

at the 10% level. The estimated regression line, shown in Table 2.3, is highly

statistically significant.

Table 2.3 An estimated consumption function, with lagged income

Dependent variable: RPCE

Method: least squares

Sample(adjusted): 2,259

Included observations: 258 after adjusting endpoints

Variable Coefficient Std. error t-Statistic Prob.

C �118.5360 12.73995 �9.304274 0.0000

RPDI 0.724752 0.126290 5.738800 0.0000

LRPDI 0.209610 0.126816 1.652864 0.0996

R2 0.998470 Mean dependent var 4,332.278

Adjusted R2 0.998458 S.D. dependent var 2,585.986

S.E. of regression 101.5529 Akaike info criterion 12.09060

Sum squared resid 2,629,810 Schwarz criterion 12.13191

Log likelihood �1,556.687 F-statistic 83,196.72

Durbin–Watson stat 0.127677 Prob(F-statistic) 0.000000

3 In recent years the marginal propensity to consume has risen to the 0.90 to 0.97 range, see Joseph

Stiglitz, Economics, 1993, p.745.
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The introduction of current and once- and twice-lagged income variables in the

consumption function regression produces statistically significant coefficients on both

current and lagged income, although the lagged income variable is statistically

significant at the 20% level. The twice-lagged income variable is not statistically

significant. The estimated regression line, shown in Table 2.4, is highly

statistically significant.

Autocorrelation

An estimated regression equation is plagued by the first-order correlation of

residuals. That is, the regression error terms are not white noise (random) as is

assumed in the general linear model, but are serially correlated where

et ¼ ret¼1 þ Ut; t ¼ 1; 2; . . . ;N (2.17)

et ¼ regression error term at time t, r ¼ first-order correlation coefficient, and

Ut ¼ normally and independently distributed random variable.

The serial correlation of error terms, known as autocorrelation, is a violation

of a regression assumption and may be corrected by the application of the

Cochrane–Orcutt (CORC) procedure.4 Autocorrelation produces unbiased, the

expected value of parameter is the population parameter, but inefficient parameters.

The variances of the parameters are biased (too low) among the set of linear

unbiased estimators and the sample t- and F-statistics are too large. The CORC

4D. Cochrane and G.H. Orcutt, “Application of Least Squares Regression to Relationships

Containing Autocorrelated Error Terms,” Journal of the American Statistical Association, 1949,
44: 32–61.

Table 2.4 An estimated consumption function, with twice-lagged consumption

Dependent variable: RPCE

Method: least squares

Included observations: 257 after adjusting endpoints

Variable Coefficient Std. error t-Statistic Prob.

C �120.9900 12.92168 �9.363331 0.0000

RPDI 0.736301 0.126477 5.821607 0.0000

LRPDI 0.229046 0.177743 1.288633 0.1987

L2RPDI �0.030903 0.127930 �0.241557 0.8093

R2 0.998474 Mean dependent var 4,344.661

Adjusted R2 0.998456 S.D. dependent var 2,583.356

S.E. of regression 101.5049 Akaike info criterion 12.09353

Sum squared resid 2,606,723 Schwarz criterion 12.14877

Log likelihood �1,550.019 F-statistic 55,188.63

Durbin–Watson stat 0.130988 Prob(F-statistic) 0.000000
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procedure was developed to produce the best linear unbiased estimators (BLUE)

given the autocorrelation of regression residuals. The CORC procedure uses the

information implicit in the first-order correlative of residuals to produce unbiased

and efficient estimators:

Yt ¼ aþ bXt þ et

r̂ ¼
P

et; et � 1P
e2t � 1

:

The dependent and independent variables are transformed by the estimated rho,

r̂, to obtain more efficient OLS estimates:

Yt � rYt�1 ¼ a l� rð Þ þ b Xt � rXt�1ð Þ þ ut: (2.19)

The CORC procedure is an iterative procedure that can be repeated until the

coefficients converge. One immediately recognizes that as r approaches unity the

regression model approaches a first-difference model.

The Durbin–Watson, D–W, statistic was developed to test for the absence of

autocorrelation:

H0: r ¼ 0.

One generally tests for the presence of autocorrelation (r ¼ 0) using the

Durbin–Watson statistic:

D�W ¼ d ¼
PN
t¼2

ðet ¼ et�1Þ2

PN
t¼2

e2t

: (2.20)

The es represent the OLS regression residuals and a two-tailed tail is employed

to examine the randomness of residuals. One rejects the null hypothesis of no

statistically significant autocorrelation if

d<dL or d>4� dU;

where dL is the “lower” Durbin–Watson level and dU is the “upper” Durbin–Watson

level.

The upper and lower level Durbin–Watson statistic levels are given in Johnston

(1972). The Durbin–Watson statistic is used to test only for first-order correlation

among residuals.

D ¼ 2 1� rð Þ: (2.21)

If the first-order correlation of model residuals is zero, the Durbin–Watson

statistic is 2. A very low value of the Durbin–Watson statistic, d < dL, indicates
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positive autocorrelation between residuals and produces a regression model that is

not statistically plagued by autocorrelation.

The inconclusive range for the estimated Durbin–Watson statistic is

dL<d<dU or 4� dU<4� dU:

One does not reject the null hypothesis of no autocorrelation of residuals if

dU < d < 4 � dU.
One of the weaknesses of the Durbin–Watson test for serial correlation is that

only first-order autocorrelation of residuals is examined; one should plot the

correlation of residual with various time lags

corr ðet; et�kÞ
to identify higher-order correlations among residuals.

The reader may immediately remember that the regressions shown in

Tables 2.1–2.3 had very low Durbin–Watson statistics and were plagued by auto-

correlation. We first-difference the consumption function variables and rerun the

regressions, producing Tables 2.5–2.7. The R2 values are lower, but the regressions

are not plagued by autocorrelation. In financial economic modeling, one generally

first-differences the data to achieve stationarity, or a series with a constant standard

deviation.

The introduction of current and lagged income variables in the consumption

function regression produces statistically significant coefficients on both current

and lagged income, although the lagged income variable is statistically significant

at the 10% level. The estimated regression line, shown in Table 2.6, is highly

statistically significant, and is not plagued by autocorrelation.

The introduction of current and lagged income variables in the consumption

function regression produces statistically significant coefficients on both current

and lagged income, statistically significant at the 1% level. The estimated regres-

sion line, shown in Table 2.5, is highly statistically significant, and is not plagued by

autocorrelation.

Table 2.5 An estimated consumption function, 1947–2011

Dependent variable: D(RPCE)

Method: least squares

Included observations: 258 after adjusting endpoints

Variable Coefficient Std. error t-Statistic Prob.

C 22.50864 2.290291 9.827849 0.0000

D(RPDI) 0.280269 0.037064 7.561802 0.0000

R2 0.182581 Mean dependent var 32.18062

Adjusted R2 0.179388 S.D. dependent var 33.68691

S.E. of regression 30.51618 Akaike info criterion 9.682113

Sum squared resid 238,396.7 Schwarz criterion 9.709655

Log likelihood �1,246.993 F-statistic 57.18084

Durbin-Watson stat 1.544444 Prob(F-statistic) 0.000000
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The introduction of current and once- and twice-lagged income variables in the

consumption function regression produces statistically significant coefficients on

both current and lagged income, although the twice-lagged income variable is

statistically significant at the 15% level. The estimated regression line, shown in

Table 2.7, is highly statistically significant, and is not plagued by autocorrelation.

Many economic time series variables increase as a function of time. In such

cases, a nonlinear least squares (NLLS) model may be appropriate; one seeks to

estimate an equation in which the dependent variable increases by a constant

growth rate rather than a constant amount.5 The nonlinear regression equation is

Table 2.6 An estimated consumption function, with lagged income

Dependent variable: D(RPCE)

Method: least squares

Included observations: 257 after adjusting endpoints

Variable Coefficient Std. error t-Statistic Prob.

C 14.20155 2.399895 5.917570 0.0000

D(RPDI) 0.273239 0.034027 8.030014 0.0000

D(LRPDI) 0.245108 0.034108 7.186307 0.0000

R2 0.320314 Mean dependent var 32.23268

Adjusted R2 0.314962 S.D. dependent var 33.74224

S.E. of regression 27.92744 Akaike info criterion 9.508701

Sum squared resid 198,105.2 Schwarz criterion 9.550130

Log likelihood �1,218.868 F-statistic 59.85104

Durbin-Watson stat 1.527716 Prob(F-statistic) 0.000000

Table 2.7 An estimated consumption function, with twice-lagged consumption

Dependent variable: D(RPCE)

Method: least squares

Included observations: 256 after adjusting endpoints

Variable Coefficient Std. error t-Statistic Prob.

C 12.78746 2.589765 4.937692 0.0000

D(RPDI) 0.262664 0.034644 7.581744 0.0000

D(LRPDI) 0.242900 0.034162 7.110134 0.0000

D(L2RPDI) 0.054552 0.034781 1.568428 0.1180

R2 0.325587 Mean dependent var 32.34414

Adjusted R2 0.317558 S.D. dependent var 33.76090

S.E. of regression 27.88990 Akaike info criterion 9.509908

Sum squared resid 196,017.3 Schwarz criterion 9.565301

Log likelihood �1,213.268 F-statistic 40.55269

Durbin–Watson stat 1.535845 Prob(F-statistic) 0.000000

5 The reader is referred to C.T. Clark and L.L. Schkade, Statistical Analysis for Administrative

Decisions (Cincinnati: South-Western Publishing Company, 1979) and Makridakis, Wheelwright,

and Hyndman, Op. Cit., 1998, pages 221–225, for excellent treatments of this topic.
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Y ¼ abx

or log Y ¼ log aþ logBX:
(2.22)

The normal equations are derived from minimizing the sum of the squared error

terms (as in OLS) and may be written as

X
log Yð Þ ¼ N log að Þ þ log bð Þ

X
XX

X log Yð Þ ¼ log að Þ
X

X þ log bð Þ
X

X2:
(2.23)

The solutions to the simplified NLLS estimation equation are

log a ¼
P ðlog YÞ

N
(2.24)

log b ¼
P ðX log YÞP

X2
: (2.25)

Multiple Regression

It may well be that several economic variables influence the variable that one is

interested in forecasting. For example, the levels of the Gross National Product

(GNP), personal disposable income, or price indices can assert influences on the

firm. Multiple regression is an extremely easy statistical tool for researchers and

management to employ due to the great proliferation of computer software. The

general form of the two-independent variable multiple regression is

Yt ¼ b1 þ b2X2t þ b3X3t þ et; t ¼ 1; . . . ;N: (2.26)

In matrix notation multiple regression can be written:

Y ¼ Xbþ e: (2.27)

Multiple regression requires unbiasedness, the expected value of the error term

is zero, and the X’s are fixed and independent of the error term. The error term is an

identically and independently distributed normal variable. Least squares estimation

of the coefficients yields

b̂ ¼ ðb̂1; b̂2; b̂3Þ
Y ¼ Xb̂þ e:

(2.28)
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Multiple regression, using the least squared principle, minimizes the sum of the

squared error terms:

XN
i¼1

e21 ¼ e0e

ðY � Xb̂Þ0ðY � Xb̂Þ:
(2.29)

To minimize the sum of the squared error terms, one takes the partial derivative

of the squared errors with respect to b̂ and the partial derivative set equal to zero.

@
ðe0eÞ
@b

¼ �2X0Y þ 2X0Xb̂ ¼ 0 (2.30)

b̂ ¼ X0Xð Þ�1
X0Y:

Alternatively, one could solve the normal equations for the two-variable to

determine the regression coefficients.

X
Y ¼ b1N þ b̂2

X
X2 þ b̂3

X
X3X

X2Y ¼ b̂1
X

X2 þ b̂2X2
2 þ b̂3

X
X2
3X

X3Y ¼ b̂1
X

X3 þ b̂2
X

X2X3 þ b̂3
X

X2
3:

(2.31)

When we solved the normal equation, (2.7), to find the a and b that minimized

the sum of our squared error terms in simple liner regression, and when we solved

the two-variable normal equation, equation (2.31), to find the multiple regression

estimated parameters, we made several assumptions. First, we assumed that the

error term is independently and identically distributed, i.e., a random variable with

an expected value, or mean of zero, and a finite, and constant, standard deviation.

The error term should not be a function of time, as we discussed with the

Durbin–Watson statistic, equation (2.21), nor should the error term be a function

of the size of the independent variable(s), a condition known as heteroscedasticity.

One may plot the residuals as a function of the independent variable(s) to be certain

that the residuals are independent of the independent variables. The error term

should be a normally distributed variable. That is, the error terms should have an

expected value of zero and 67.6% of the observed error terms should fall within the

mean value plus and minus one standard deviation of the error terms (the so-called

Bell Curve or normal distribution). Ninety-five percent of the observations should

fall within the plus or minus two standard deviation levels, the so-called 95%

confidence interval. The presence of extreme, or influential, observations may

distort estimated regression lines and the corresponding estimated residuals.

Another problem in regression analysis is the assumed independence of the
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independent variables in equation (2.31). Significant correlations may produce

estimated regression coefficients that are “unstable” and have the “incorrect”

signs, conditions that we will observe in later chapters. Let us spend some time

discussing two problems discussed in this section, the problems of influential

observations, commonly known as outliers, and the correlation among independent

variables, known as multicollinearity.

There are several methods that one can use to identify influential observations or

outliers. First, we can plot the residuals and 95% confidence intervals and examine

how many observations have residuals falling outside these limits. One should

expect no more than 5% of the observations to fall outside of these intervals. One

may find that one or two observations may distort a regression estimate even if there

are 100 observations in the database. The estimated residuals should be normally

distributed, and the ratio of the residuals divided by their standard deviation, known

as standardized residuals, should be a normal variable. We showed, in equation

(2.31), that in multiple regression

b̂ ¼ ðX0XÞX0Y:

The residuals of the multiple regression line are given by

e ¼ Y0 � b̂X:

The standardized residual concept can be modified such that the reader can

calculate a variation on that term to identify influential observations. If we delete

observation i in a regression, we can measure the change in estimated regression

coefficients and residuals. Belsley et al. (1980) showed that the estimated regres-

sion coefficients change by an amount, DFBETA, where

DFBETAi ¼ ðX0XÞ�1X0ei
1� hi

; (2.32)

where hi ¼ XiðX0XÞ�1X0
i:

The hi or “hat” term is calculated by deleting observation i. The corresponding
residual is known as the studentized residual, sr, and defined as

sri ¼ ei

ŝ
ffiffiffiffiffiffiffiffiffiffiffiffi
1� hi

p ; (2.33)

where ŝ is the estimated standard deviation of the residuals. A studentized residual

that exceeds 2.0 indicates a potential influential observation (Belsley et al. 1980).

Another distance measure has been suggested by Cook (1977), which modifies the

studentized residual, to calculate a scaled residual known as the Cook distance

measure, CookD. As the researcher or modeler deletes observations, one needs to
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compare the original matrix of the estimated residual’s variance matrix. The

COVRATIO calculation performs this calculation, where

COVRATIO ¼ 1

n�p�1
n�p þ e�i

ðn�pÞ
h ip

ð1� hiÞ
; (2.34)

where n ¼ number of observations, p ¼ number of independent variables, and

ei
* ¼ deleted observations.

If the absolute value of the deleted observation >2, then the COVRATIO

calculation approaches

1� 3p

n
: (2.35)

A calculated COVRATIO that is larger than 3p/n indicates an influential obser-

vation. The DFBETA, studentized residual, CookD, and COVRATIO calculations

may be performed within SAS. The identification of influential data is an important

component of regression analysis. One may create variables for use in multiple

regression that make use of the influential data, or outliers, to which they are

commonly referred.

The modeler can identify outliers, or influential data, and rerun the OLS

regressions on the re-weighted data, a process referred to as robust (ROB) regres-

sion. In OLS all data is equally weighted. The weights are 1.0. In ROB regression

one weights the data universally with its OLS residual; i.e., the larger the residual,

the smaller the weight of the observation in the ROB regression. In ROB regression,

several weights may be used. We will see the Huber (1973) and Beaton-Tukey

(1974) weighting schemes in our analysis. In the Huber robust regression proce-

dure, one uses the following calculation to weigh the data:

wi ¼ 1� eij j
si

� �2
 !2

; (2.36)

where ei ¼ residual i, si ¼ standard deviation of residual, and wi ¼ weight of

observation i.
The intuition is that the larger the estimated residual, the smaller the weight.

A second robust re-weighting scheme is calculated from the Beaton-Tukey

biweight criteria where

wi ¼ 1�
eij j
se

4:685

0
BB@

1
CCA

20
BB@

1
CCA

2

; if
eij j
se

> 4:685;

1; if
eij j
se

< 4:685:

(2.37)
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A second major problem is one of multicollinearity, the condition of correlations

among the independent variables. If the independent variables are perfectly

correlated in multiple regression, then the (X0X) matrix of (2.31) cannot be inverted

and the multiple regression coefficients have multiple solutions. In reality, highly

correlated independent variables can produce unstable regression coefficients due

to an unstable (X0X)�1 matrix. Belsley et al. advocate the calculation of a condition

number, which is the ratio of the largest latent root of the correlation matrix relative

to the smallest latent root of the correlation matrix. A condition number exceeding

30.0 indicates severe multicollinearity.

The latent roots of the correlation matrix of independent variables can be used to

estimate regression parameters in the presence of multicollinearity. The latent

roots, l1, l2, . . ., lp and the latent vectors g1, g2, . . ., gp of the P independent

variables can describe the inverse of the independent variable matrix of (2.29).

ðX0XÞ�1 ¼
Xp
j¼1

l�1
j gjg

0
j:

Multicollinearity is present when one observes one or more small latent vectors.

If one eliminates latent vectors with small latent roots (l < 0.30) and latent vectors

(g < 0.10), the “principal component” or latent root regression estimator may be

written as

b̂LRR ¼
XP
j¼0

fjdj;

where fj ¼ ��g0lj
�1P

q

g2
0
lq

�1 ;

where n2 ¼ Sðy� �yÞ2
and l are the “nonzero” latent vectors. One eliminates the latent vectors with

non-predictive multicollinearity. We use latent root regression on the Beaton-

Tukey weighted data in Chapter 4.

The Conference Board Composite Index of Leading Economic

Indicators and Real US GDP Growth: A Regression Example

The composite indexes of leading (leading economic indicators, LEI), coincident,

and lagging indicators produced by The Conference Board are summary statistics

for the US economy. Wesley Clair Mitchell of Columbia University constructed the

indicators in 1913 to serve as a barometer of economic activity. The leading

indicator series was developed to turn upward before aggregate economic activity

increased, and decrease before aggregate economic activity diminished.
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Historically, the cyclical turning points in the leading index have occurred before

those in aggregate economic activity, cyclical turning points in the coincident index

have occurred at about the same time as those in aggregate economic activity, and

cyclical turning points in the lagging index generally have occurred after those in

aggregate economic activity.

The Conference Board’s components of the composite leading index for the

year 2002 reflects the work and variables shown in Zarnowitz (1992) list, which

continued work of the Mitchell (1913 and 1951), Burns and Mitchell (1946), and

Moore (1961). The Conference Board index of leading indicators is composed of

1. Average weekly hours (mfg.)

2. Average weekly initial claims for unemployment insurance

3. Manufacturers’ new orders for consumer goods and materials

4. Vendor performance

5. Manufacturers’ new orders of nondefense capital goods

6. Building permits of new private housing units

7. Index of stock prices

8. Money supply

9. Interest rate spread

10. Index of consumer expectations

The Conference Board composite index of LEI is an equally weighted index in

which its components are standardized to produce constant variances. Details of the

LEI can be found on The Conference Board Web site, www.conference-board.org,

and the reader is referred to Zarnowitz (1992) for his seminal development of

underlying economic assumption and theory of the LEI and business cycles (see

Table 2.8).

Let us illustrate a regression of real US GDP as a function of current and lagged

LEI. The regression coefficient on the LEI variable, 0.232, in Table 2.9, is highly

statistically significant because the calculated t-value of 6.84 exceeds 1.96, the 5%

critical level. One can reject the null hypothesis of no association between the

growth rate of US GDP and the growth rate of the LEI. The reader notes, however,

that we estimated the regression line with current, or contemporaneous, values of

the LEI series.

The LEI series was developed to “forecast” future economic activity such that

current growth of the LEI series should be associated with future US GDP growth

rates. Alternatively, one can examine the regression association of the current

values of real US GDP growth and previous or lagged values, of the LEI series.

How many lags might be appropriate? Let us estimate regression lines using up to

four lags of the US LEI series. If one estimates multiple regression lines using the

EViews software, as shown in Table 2.10, the first lag of the LEI series is statisti-

cally significant, having an estimated t-value of 5.73, and the second lag is also

statistically significant, having an estimated t-value of 4.48. In the regression

analysis using three lags of the LEI series, the first and second lagged variables

are highly statistically significant, and the third lag is not statistically significant

because third LEI lag variable has an estimated t-value of only 0.12. The critical
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t-level at the 10% level is 1.645, for 30 observations, and statistical studies often use

the 10% level as a minimum acceptable critical level. The third lag is not statisti-

cally significant in the three quarter multiple regression analysis. In the four quarter

lags analysis of the LEI series, we report that the lag one variable has a t-statistic of

Table 2.8 The conference board leading, coincident, and lagging indicator components

Leading index

Standardization

factor

1 BCI-01 Average weekly hours, manufacturing 0.1946

2 BCI-05 Average weekly initial claims for unemployment insurance 0.0268

3 BCI-06 Manufacturers’ new orders, consumer goods and materials 0.0504

4 BCI-32 Vendor performance, slower deliveries diffusion index 0.0296

5 BCI-27 Manufacturers’ new orders, nondefense capital goods 0.0139

6 BCI-29 Building permits, new private housing units 0.0205

7 BCI019 Stock prices, 500 common stocks 0.0309

8 BCI-106 Money supply, M2 0.2775

9 BCI-129 Interest rate spread, 10-year Treasury bonds less federal funds 0.3364

10 BCI-83 Index of consumer expectations 0.0193

Coincident index

1 BCI-41 Employees on nonagricultural payrolls 0.5186

2 BCI-51 Personal income less transfer payments 0.2173

3 BCI-47 Industrial production 0.1470

4 BCI-57 Manufacturing and trade sales 0.1170

Lagging index

1 BCI-91 Average duration of unemployment 0.0368

2 BCI-77 Inventories-to-sales ratio, manufacturing and trade 0.1206

3 BCI-62 Labor cost per unit of output, manufacturing 0.0693

4 BCI-109 Average prime rate 0.2692

5 BCI-101 Commercial and industrial loans 0.1204

6 BCI-95 Consumer installment credit-to-personal income ratio 0.1951

7 BCI-120 Consumer price index for services 0.1886

Table 2.9 Real US GDP and the leading indicators: A contemporaneous examination

Dependent variable: DLOG(RGDP)

Sample(adjusted): 2,210

Included observations: 209 after adjusting endpoints

Variable Coefficient Std. error t-Statistic Prob.

C 0.006170 0.000593 10.40361 0.0000

DLOG(LEI) 0.232606 0.033974 6.846529 0.0000

R2 0.184638 Mean dependent var 0.007605

Adjusted R2 0.180699 S.D. dependent var 0.008860

S.E. of regression 0.008020 Akaike info criterion �6.804257

Sum squared resid 0.013314 Schwarz criterion �6.772273

Log likelihood 713.0449 F-statistic 46.87497l

Durbin–Watson stat 1.594358 Prob(F-statistic) 0.000000

38 2 Regression Analysis and Forecasting Models



3.36, highly significant; the second lag has a t-statistic of 4.05, which is statistically
significant; the third LEI lag variable has a t-statistic of �0.99, not statistically

significant at the 10% level; and the fourth LEI lag variable has an estimated

t-statistic of 1.67, which is statistically significant at the 10% level. The estimation

of multiple regression lines would lead the reader to expect a one, two, and four

variable lag structure to illustrate the relationship between real US GDP growth and

The Conference Board LEI series. The next chapter develops the relationship using

time series and forecasting techniques. This chapter used regression analysis to

illustrate the association between real US GDP growth and the LEI series.

The reader is referred to Table 2.11 for EViews output for the multiple regres-

sion of the US real GDP and four quarterly lags in LEI.

Table 2.10 Real GDP and the conference board leading economic indicators

1959 Q1–2011 Q2

Lags (LEI)

Model Constant LEI One Two Three Four R2 F-statistic

RGDP 0.006 0.232 0.181 46.875

(t) 10.400 6.850

RGDP 0.056 0.104 0.218 0.285 42.267

9.910 2.750 5.730

RGDP 0.005 0.095 0.136 0.162 0.353 38.45

9.520 2.600 3.260 4.480

RGDP 0.005 0.093 0.135 0.164 0.005 0.351 28.679

9.340 2.530 3.220 3.900 0.120

RGDP 0.005 0.098 0.140 0.167 �0.041 0.061 0.369 24.862

8.850 2.680 3.360 4.050 �0.990 1.670

Table 2.11 The REG procedure

Dependent variable: DLUSGDP

Sample(adjusted): 6,210

Included observations: 205 after adjusting endpoints

Variable Coefficient Std. error t-Statistic Prob.

C 0.004915 0.000555 8.849450 0.0000

DLOG(LEI) 0.098557 0.036779 2.679711 0.0080

DLOG(L1LEI) 0.139846 0.041538 3.366687 0.0009

DLOG(L2LEI) 0.167168 0.041235 4.054052 0.0001

DLOG(L3LEI) �0.041170 0.041305 �0.996733 0.3201

DLOG(L4LEI) 0.060672 0.036401 1.666786 0.0971

R2 0.384488 Mean dependent var 0.007512

Adjusted R2 0.369023 S.D. dependent var 0.008778

S.E. of regression 0.006973 Akaike info criterion �7.064787

Sum squared resid 0.009675 Schwarz criterion �6.967528

Log likelihood 730.1406 F-statistic 24.86158

Durbin–Watson stat 1.784540 Prob(F-statistic) 0.000000
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We run the real GDP regression with four lags of LEI data in SAS. We report the

SAS output in Table 2.12. The Belsley et al. (1980) condition index of 3.4 reveals

little evidence of multicollinearity and the collinearity diagnostics reveal no two

variables in a row exceeding 0.50. Thus, SAS allows the researcher to specifically

address the issue of multicollinearity. We will return to this issue in Chap. 4.

Table 2.12 The REG procedure model: MODEL1

Dependent variable: dlRGDP

Number of observations read: 209

Number of observations used: 205

Number of observations with missing values: 4

Analysis of variance

Source DF Sum of squares Mean

square

F-value Pr > F

Model 5 0.00604 0.00121 24.85 <0.0001

Error 199 0.00968 0.00004864

Corrected

total

204 0.01572

Root MSE 0.00697 R2 0.3844

Dependent

mean

0.00751 Adjusted

R2
0.3689

Coeff. var 92.82825

Parameter estimates

Variable DF Parameter

estimate

Standard

error

t-Value Pr > |t| Variance

inflation

Intercept 1 0.00492 0.00055545 8.85 <0.0001 0

dlLEI 1 0.09871 0.03678 2.68 0.0079 1.52694

dlLEI_1 1 0.13946 0.04155 3.36 0.0009 1.94696

dlLEI_2 1 0.16756 0.04125 4.06 <0.0001 1.92945

dlLEI_3 1 �0.04121 0.04132 �1.00 0.3198 1.93166

dlLEI_4 1 0.06037 0.03641 1.66 0.0989 1.50421

Collinearity diagnostics

Number Eigenvalue Condition

index

1 3.08688 1.00000

2 1.09066 1.68235

3 0.74197 2.03970

4 0.44752 2.62635

5 0.37267 2.87805

6 0.26030 3.44367

Proportion of variation

Number Intercept dlLEI dlLEI_1 dlLEI_2 dlLEI_3 dlLEI_4

1 0.02994 0.02527 0.02909 0.03220 0.02903 0.02481

2 0.00016369 0.18258 0.05762 0.00000149 0.06282 0.19532

3 0.83022 0.00047128 0.02564 0.06795 0.02642 0.00225

4 0.12881 0.32579 0.00165 0.38460 0.00156 0.38094

5 0.00005545 0.25381 0.41734 0.00321 0.44388 0.19691

6 0.01081 0.21208 0.46866 0.51203 0.43629 0.19977
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The SAS estimates of the regression model reported in Table 2.12 would lead the

reader to believe that the change in real GDP is associated with current, lagged, and

twice-lagged LEI.

Alternatively, one could use Oxmetrics, an econometric suite of products for

data analysis and forecasting, to reproduce the regression analysis shown in

Table 2.13.6

An advantage to Oxmetrics is its Automatic Model selection procedure that

addresses the issue of outliers. One can use the Oxmetrics Automatic Model

selection procedure and find two statistically significant lags on LEI and three

outliers: the economically volatile periods of 1971, 1978, and (the great recession

of) 2008 (see Table 2.14).

The reader clearly sees the advantage of the Oxmetrics Automatic Model

selection procedure.

Table 2.13 Modeling dlRGDP by OLS

Coefficient Std. error t-Value t-Prob
Part.

R2

Constant 0.00491456 0.0005554 8.85 0.0000 0.2824

dlLEI 0.0985574 0.03678 2.68 0.0080 0.0348

dlLEI_1 0.139846 0.04154 3.37 0.0009 0.0539

dlLEI_2 0.167168 0.04123 4.05 0.0001 0.0763

dlLEI_3 �0.0411702 0.04131 �0.997 0.3201 0.0050

dlLEI_4 0.0606721 0.03640 1.67 0.0971 0.0138

Sigma 0.00697274 RSS 0.00967519164

R2 0.384488; F(5,199) ¼ 24.86 [0.000]

Adjusted R2 0.369023 Log-

likelihood

730.141

No. of

observations

205 No. of

parameters

6

Mean(dlRGDP) 0.00751206 S.E.(dlRGDP) 0.00877802

AR 1–2 test: F(2,197) ¼ 3.6873 [0.0268]*

ARCH 1–1 test: F(1,203) ¼ 1.6556 [0.1997]

Normality test: Chi-squared(2) ¼ 17.824

[0.0001]

Hetero test: F(10,194) ¼ 0.86780

[0.5644]

Hetero-X test: F(20,184) ¼ 0.84768

[0.6531]

RESET23 test: F(2,197) ¼ 2.9659 [0.0538]

6 Ox Professional version 6.00 (Windows/U) (C) J.A. Doornik, 1994–2009, PcGive 13.0.See

Doornik and Hendry (2009a, b).
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Summary

In this chapter, we introduced the reader to regression analysis and various estima-

tion procedures. We have illustrated regression estimations by modeling consump-

tion functions and the relationship between real GDP and The Conference Board

LEI. We estimated regressions using EViews, SAS, and Oxmetrics. There are many

advantages with the various regression software with regard to ease of use, outlier

estimations, collinearity diagnostics, and automatic modeling procedures. We will

use the regression techniques in Chap. 4.

Appendix

Let us follow The Conference Board definitions of the US LEI series and its

components:

Table 2.14 Modeling dlRGDP by OLS

Coefficient Std. error t-Value t-Prob
Part.

R2

Constant 0.00519258 0.0004846 10.7 0.0000 0.3659

dlLEI_1 0.192161 0.03312 5.80 0.0000 0.1447

dlLEI_2 0.164185 0.03281 5.00 0.0000 0.1118

I:1971-01-01 0.0208987 0.006358 3.29 0.0012 0.0515

I:1978-04-01 0.0331323 0.006352 5.22 0.0000 0.1203

I:2008-10-01 �0.0243503 0.006391 �3.81 0.0002 0.0680

Sigma 0.00633157 RSS 0.00797767502

R2 0.49248 F(5,199) ¼ 38.62

[0.000]

Adjusted R2 0.479728 Log-likelihood 749.915

No. of

observations

205 No. of parameters 6

Mean(dlRGDP) 0.00751206 se(dlRGDP) 0.00877802

AR 1–2 test: F(2,197) ¼ 3.2141

[0.0423]

ARCH 1–1 test: F(1,203) ¼ 2.3367

[0.1279]

Normality test: Chi-squared

(2) ¼ 0.053943

[0.9734]

Hetero test: F(4,197) ¼ 3.2294

[0.0136]

Hetero-X test: F(5,196) ¼ 2.5732

[0.0279]

RESET23 test: F(2,197) ¼ 1.2705

[0.2830]
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Leading Index Components

BCI-01 Average weekly hours, manufacturing. The average hours worked per week
by production workers in manufacturing industries tend to lead the business cycle

because employers usually adjust work hours before increasing or decreasing their

workforce.

BCI-05 Average weekly initial claims for unemployment insurance. The number of

new claims filed for unemployment insurance is typically more sensitive than either

total employment or unemployment to overall business conditions, and this series

tends to lead the business cycle. It is inverted when included in the leading index;

the signs of the month-to-month changes are reversed, because initial claims

increase when employment conditions worsen (i.e., layoffs rise and new hirings

fall).

BCI-06 Manufacturers’ new orders, consumer goods and materials (in 1996 $).
These goods are primarily used by consumers. The inflation-adjusted value of new

orders leads actual production because new orders directly affect the level of both

unfilled orders and inventories that firms monitor when making production

decisions. The Conference Board deflates the current dollar orders data using

price indexes constructed from various sources at the industry level and a chain-

weighted aggregate price index formula.

BCI-32 Vendor performance, slower deliveries diffusion index. This index

measures the relative speed at which industrial companies receive deliveries from

their suppliers. Slowdowns in deliveries increase this series and are most often

associated with increases in demand for manufacturing supplies (as opposed to a

negative shock to supplies) and, therefore, tend to lead the business cycle. Vendor

performance is based on a monthly survey conducted by the National Association

of Purchasing Management (NAPM) that asks purchasing managers whether their

suppliers’ deliveries have been faster, slower, or the same as the previous month.

The slower-deliveries diffusion index counts the proportion of respondents

reporting slower deliveries, plus one-half of the proportion reporting no change in

delivery speed.

BCI-27 Manufacturers’ new orders, nondefense capital goods (in 1996 $). New
orders received by manufacturers in nondefense capital goods industries (in

inflation-adjusted dollars) are the producers’ counterpart to BCI-06.

BCI-29 Building permits, new private housing units. The number of residential

building permits issued is an indicator of construction activity, which typically

leads most other types of economic production.

BCI-19 Stock prices, 500 common stocks. The Standard & Poor’s 500 stock index

reflects the price movements of a broad selection of common stocks traded on the

New York Stock Exchange. Increases (decreases) of the stock index can reflect both
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the general sentiments of investors and the movements of interest rates, which is

usually another good indicator for future economic activity.

BCI-106 Money supply (in 1996 $). In inflation-adjusted dollars, this is the M2

version of the money supply. When the money supply does not keep pace with

inflation, bank lending may fall in real terms, making it more difficult for the

economy to expand. M2 includes currency, demand deposits, other checkable

deposits, travelers checks, savings deposits, small denomination time deposits,

and balances in money market mutual funds. The inflation adjustment is based on

the implicit deflator for personal consumption expenditures.

BCI-129 Interest rate spread, 10-year Treasury bonds less federal funds. The
spread or difference between long and short rates is often called the yield curve.

This series is constructed using the 10-year Treasury bond rate and the federal funds

rate, an overnight interbank borrowing rate. It is felt to be an indicator of the stance

of monetary policy and general financial conditions because it rises (falls) when

short rates are relatively low (high). When it becomes negative (i.e., short rates are

higher than long rates and the yield curve inverts) its record as an indicator of

recessions is particularly strong.

BCI-83 Index of consumer expectations. This index reflects changes in consumer

attitudes concerning future economic conditions and, therefore, is the only indicator

in the leading index that is completely expectations-based. Data are collected in a

monthly survey conducted by the University of Michigan’s Survey Research

Center. Responses to the questions concerning various economic conditions are

classified as positive, negative, or unchanged. The expectations series is derived

from the responses to three questions relating to (1) economic prospects for the

respondent’s family over the next 12 months; (2) economic prospects for the Nation

over the next 12 months; and (3) economic prospects for the Nation over the next

5 years.
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