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Abstract

In order to improve the behaviour of the systerna; se
This paper is dedicated to the Linear Analysisyof deral possibilities could be tested:
namic systems represented by Modelica models. The
simulation of dynamic systems helps the engineerSeme engineers could:
his design activities giving him a better underdtane  perform several batch runs in the simulation tool,
ing of the system he is in charge. Additionally to changing a set of parameters and looking at the
time-domain simulations, frequency domain analysis corresponding time-responses, with quite long
provides a complementary view of the systems. This CPU-times.
paper gives a general overview of the Linear Analy- launch Design Exploration tools such as Optimi-
sis methods that can be performed on Modelica zation, Design Of Experiments, Monte-Carlo,
models using the existing facilities in LMS Imag- Pareto Plots, ... with quite long CPU-times.
ine.Lab platform. It highlights the use of Eigenvabr, others engineers would prefer to:
ues, Modals Shapes, Transfer Functions or Root ko- analyze the root locus of the system as function
cus to fully understand the intrinsic dynamic behav of each parameter, and to check if the eigenval-
iors of the systems, including non-linear systems. yes (real and imaginary parts, that provide natu-
Different multi-physics examples show how these ral frequency [Hz] and damping ratio [null])

tools can be used practically. move towards more stable areas.
Keywords: Modelica; linear analysis, eigenvalues;, e+ analyze the modal shapes in order to understand
modal shapes, transfer function; root locus how each mode contributes to the motion of each

output observer variable.

* analyze the transfer functions of the system, in

1 Introduction particular the one linking some output observer
variables to some input control variables

The responsibility of any engineer is to find ahigie (O(s) /' 1(s)), and to check which are the condi-
cal solution to a given problem. Most issues appear tions of resonance (peaks in Bode plots for ex-
ing around dynamics systems are related to vibra- ample), when natural frequencies can be excited
tions or instabilities of the control laws usedpitot by the inputs.
these systems. In order to analyze the response of
their systems, the engineers can use the compUteis paper emphasizes the Linear Analysis approach
efficiency. With virtual prototypes, engineers ca@s a very powerful method. State space representa-
explore different design options such as evaluatitign and the Linearization process used in the LMS
the influence of parameters variations in timémagine.Lab AMESim tool supporting Modelica
domain simulations. However, more powerful apnodels are presented. The second section shows
proaches such as frequency-domain analysis canS@me practical applications on multi-domains sys-
veal the intrinsic dynamic properties of these sy&ms such as mechanical, thermal and electrical
tems, independently from their time-domain excit&odels. Finally, the Linear Analysis approach is ap
tions, and with very few computation times. Finallyplied to a Diesel Common Rail Injection System.
the full understanding of the in-depth dynamic bdhis general approach is discussed to concludéson i
havior of the systems allows making the most appieenefits in system modeling.
priate design choices with an important efficiemty
the design process (fewer iterations, then reduced
development time).
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2 Linearization Process of Nonlinear tem theory, which is fully established since about
Systems three decades (Russell [3]).

The very interesting point is that whereas engineer

2.1 Level and Formalism for physical modeling INg Systems are never linear, they can practidadly
approximated as linear, and it appears that such a
Various formalisms exist to represent physical motear system description is sufficient enough acbu
els. For example, Vangheluwe [1] proposed a clasilected operating points (N [rpm], P [bar], T [°C]
fication with a multi-criteria analysis that shodmt ---). It is particularly true when the amplitude and
each formalism has its advantages and its flaws. frequency of the excitation signal (the inputs) are

Popariy [N odars |Adapabiin] Nomerical | Topoioe kep_t in b_etwe_en certain limits, which define the do
main of linearity.
Equations 5 4 3
State-Space 4 3 2 . . . .
Transfer 5 3 2 The linearization process needs the determination o
Function the Jacobian matrix of the system at the desired op
Bond-Graphs 2 5 5 erating point.

Legend: The evaluation of the [A, B, C, D] matrices is quit

[ilemsoot [ eood [ oloewed [iload | equivalent to considering the linear behaviour tan-
gent to the nonlinear system in correspondence with

Figure 1. Comparison of formalisms/languages,

extract of some criterias from [1] an operating point which has also to be an equilib-
rium point.
With the comparison of the formalisms, it then be , . =~ . . [A,B,C,D]
comes clear that Modelica, with its high level bf a
stract for the models description, can help Enaa- t [A'B°.C°,D7]
tions formalism to fulfill non-good criteria such as A f
Numerical Analysis or Topology Analysis, to bring S

Equations formalism combined with Modelica to the :
highest values. ;
|
However, it may still be interesting to use forma I
isms such asSate-Space equations or Transfer :
Functions commonly used in the Control commu t 2
nity, to add valuable information about the system’Figure 2 : linearization of a nonlinear system arond
dynamics (Otter [2]). Since these ways of represent two different local maximum points
tion are only usable in linear cases, engineerédcou
think this would strongly limit their applicability Finally, a full description of the non-linear syste
But it is not actually the case since non-lineas-syaround various operating points can be obtained con
tems can be linearized around some operating poisidering several times the linear description @& th
It is also very useful to make analogies on complern-linear system around several equilibrium operat
physical systems to represent them as simpieg points. Ones could imagine it would lead to a
equivalent linear mass-springs models. Additionalllarge number of linear analysis to be done, but in
the utilities developed by control-specialists twe t practice, only the extreme operating points, suEh a
basis of these formalisms are numerous and ex-injector fully opened and an injector fully ads
tremely useful (e.g., the study of dynamics and ste considered.
bility on Bode, Nyquist or Black-Nichols chartseth
location of Evans poles, etc. ), which largely ijfiess
their use in the context of process control prolslem

»time

The non-linear system may be written as:

dx

— = 1IXt

- fxt)

2.2 Numerical linearization of the system The linearization of these differential equationseg

L . ~ the Jacobian matrix A:
One of the principal techniques for the analysis of 5 of 5

nonlinear system is to approximate them with Az[}
proper linear system and then to use the linear sys | 0% 0%,  0X,
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Each term of the" vector is evaluated, applying arhis system may be linearized around an equilibrium
numerical perturbation to the state variahle x point:

[ of, | dx
0X;
TR0 X+ O X ) = (e X = e ) dt

ﬁziz 26 0= DXgBd—+DZgBd—+D B(;—E[j 2

A N R R B AT R

25 y=0hx+0,hZz+0,h )]
If the system index is one, then the partial Jaaobi

=0, f k+0,f Z+0,f @ )

o,

n

| 0X

The other B, C and D matrices are determined in tmatrix b9 is non-singular. Taking the Laplace
same way. For an ordinary differential equation sysansform of (1)-(3), and introducing the augmented
tem, the linearized system is represented under the (0:( ( ) Z(s))T

common A, B, C, D state-space representation: ~ Staté
are given by:

, the state-space equations

ax
- Ax+Bu se(s) = Ag(s)+ B,U (s)+ B, sU(s)
y =Cx+Du with
Where ={ D_le D_lzf }
 uis the vector of the control variables -(0,9)"0,00,f -(0,09)"0,90,f
» Xxis the vector of the state variables O, f
» yisthe vector of the observer variables °7l 0
F hi I ion, it i ibl B { 0 }
rom this control representation, it is possiblepe B, = 4
ply linear algebra algorithms to compute the eigen- _( zg) (Dxf O, f +Dug)

values (that are included in A matrix) representings the output of the system is

the system natural modes, the modal shapes of the _

frequencies (eigenvectors from matrixes A and C) Y(S) =C (ds)+ DoU (S)+ D, sU (S)
representing the distribution of a frequency ain@ with the following additional matrix definitions
the system, the transfer functions (linking A, B,0C [D h O h]

matrices) that represent the frequency response |n

magnitude and phase of an observer variable dueQg =0 h

the excitation of another control variable, and th
root locus (from A matrix) that represent the evolu
tions in frequency and damping ratio of the naturéle transfer matrix of the system is finally given
modes to some parameters changes in a 1 _ .
real/imaginary plot. Y(s)= Z(C (s -A)'B+D, ) s'U(s) (4)

i=0

=

The above reasoning can be extended to higher index
Ot/stems In this case, the equation (2) is diffieren
ed up to the index of the DAE. In the resultimg |
earization process, higher order derivatives of the
input variables are retained, and thus the tramaéer

For differential algebraic equation (DAE) system
we first consider a semi-explicit DAE, as obtaine
by topologically sorting the constitutive equatians
LMS Imagine.Lab AMESIm:

d trix defined by (4) is generalized by extending the
f(x, z,u,t) . .

d summation order up to the system index.

0= (x, z,u,t)

y= h(x zu t) Finally, the linear analysis tools used for diffeial

algebraic equation system are the same as the ones
used for ordinary differential equation systems.

x (resp.2) being the differential (resp. algebraic) state

variables, in addition to the already defined ingd

observer variables.
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3 LMS Modelica libraries overview continuous system in distributed parameters nodes
with 7 masses and 8 stiffnesses with dampers:

The LMS Modelica libraries are an in-house library
that presents several packages as shown below,for

) ) - Mechanical Rod f/f’
the first hierarchical level: < > é
= e LMS ;
4 ey Blocks fﬁ/i
- ewy Constant Figure 5: distributed rod in fixed conditions
4 ey Electrical
1w Magneti . . .
: Aan=te We consider the Modelica model of the system, built
+- ey Mechanics . . .
- Thermal by connecting together the simple Modelica models
- ww ThermalHydraiic of mass elements with spring and damper elements:
H e INits oo
. ] : . . model distributed_rod
Figure 3: screen shot of some Imagine.Lab libraries parameter Integer n(fixed=true) = 7;
the package browser LMS.Mechanics.Translational.Mass mass_element[n](each

m=1.290569);
The packages are structured in functional sub“\"s-'_V'eChT”‘CS-Tra”S'at‘O”;'IfF’””g
packages (Tummescheit [7]). Some of them include spring_element[n+a](each k=12692085.0);
. . . . . MS.Mechanics.Translational.Damper
guite simple models. The intention there was mainly

. . damper_element[n+1](each d=1000.0);
to support the development of the Modelica compiler, yis mechanics. Translational. Ground groundz;

embedded in Imagine.Lab AMESIm. LMS.Mechanics.Translational.Ground ground2;
; - - - - g equation
@J < AW W AN s connect(grounda.q, spring_element[1].q1);

connect(groundi.q, damper_element[1].q1);

foriin 1:n loop
connect(spring_element[i].q2, mass_element[i].q);
connect(mass_element[il.q, spring_element[i+1].q1);

Ground  ZeroCurr... Resistor  VariableR... HeatingR... HeatingVa...

Inductor  VariableIn... Capacitor VariableC... Diode IdealDiode LimitedCu...

9 e e : connect(damper_element[i].q2, mass_element[i].q);
(L)) W) LU connect(mass_element[il.q, damper_element[i+1].q1);
VoltageDr... Mode3way Modedway Transformer IdealTran... Ideal\:aria... Gyrator end fOI',' .
connect(ground2.q, spring_element[n+1].q2);
Figure 4: example of Imagine.Lab library for connect(groundz.q, damper_element[n+1].q2);
Electrical / Basics components end distributed_rod;

. . Figure 6: Modelica text for the rod model
Other libraries offer more complex models. These g

LMS Modelica models will be used to illustrate th ,
Linear Analysis approach described in the next s @ get the modal shapg_s of the system, we nedd firs
tions. to set the mass velocities [m/s] as state observers
This is done through the simulation tool GUI. Note
that no modification of the Modelica models within
: S : . the sketch is needed for accessing the linear sisaly
4 Llnea_r anaIySIS In various phySICal settings, neither any specific library with added
domains blocks on the sketch. A selection list is direatisail-

_ _ _ able at the tool level, being in the Linear Anadysi
The Linear Analysis approach can be applied to agyde:

physical system modeled with Modelica models,
whatever are the involved domains of physics (Kar-

nopp [4]).

4.1 Mechanical systems

Let's consider the example of the longitudinal =ibr
tions of a rod in fixed conditions. We sample the
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Title

(= E1 mass_element[1]
=N

mass_element[1].q.force

=+ £ mass_element[2]
=2
mass_element[2].q.force
mass_element[Z].q.velodty
= £ mass_element[3]
=-B8q
mass_element[3].q.force
mass_element[3].q.velodty

Variables of mod2ameinOoutd [AMEMECA 1D_DISTRIBUTED_ROD-1]

mass_element[1].q.velocity mjs state observer 1~ E

Unit Status MName
M clear %15
free state
fixed state
N Staie cbserver OB
mys state observer ®1
M clear %17
mys state observer w2

Figure 7: selection list for observer variables irLinear
Analysis mode

An additional Linear Status window summarizes ¢
the status (observer / control / ...) of the variahie

the Modelica model:

||:| Modal shapes at 379.961 Hz Damping 4.75247

of
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-" “\

—ap

#
#
+
¥
E
+
%
LY
b

ST I T =T
h

ol

CEATEXIE D
Tuaduackelan el ndsukedasl
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X : Animation time

Figure 10: second modal shape £379 Hz,(=4.7%) of
a mechanical rod with fixed-fixed boundary conditiins

This approach greatly helps the engineer understand
ing which parts of the systems are involved in the
frequencies present on experimentally measured
oscillations.

4.2 Thermal systems

We start here from a yet existing Modelica model
and we will reuse it to determine the eigenvalues o
the system:

B LA Status Fields 3|

Free states Fixed states

TVanah\e Unit | No | Submodel | Vanable

imass_element[1].q.velocity m/e

|mass element[2].q.velocity m/s

|mass_element[3].q.velocity mis

|mass_element[4].q.velocity ms

'mass_elemerrt[ﬂ.q.ve\ucity m/s

'massjlemerﬂ[ﬁ.q.ve\ucity m/s |

'mass,elemamm.q.ve\ocitv mis ™

1.1 T | ||| e — =

Caontrol variables Obsenver variables

| Vanable Urit | | Variable Unit ’_‘I

| spring_elemert[1].q1 force N mass_element[1].q.velocity mss

E«spnng_elemarrt[%].quUr\:e N mass_element[2].q.velocity m/fs

| mass_element[3].q.velocity ms
mass_element]4].q.velocity m/s
mass_element][5].q.velocity mis
mass_element[6].q.velocity m/s o
mass_element[7].q.velocity mis B

® e ) e [

Figure 8: Linearization Status window

ol —_— —_— —_— T2
Rth Rth Rth

These modal shapes provide the distribution of th
natural mode along the different observed parts. |
easy to recognize here the well-known normal mo
shapes of the continuous rod system (dashed line)

——
2.0
¥ : Animation time [cyde]

— T T
3.0 4.0 3.0

Figure 9: first modal shape (§=193 Hz,{=2.4%) of a

mechanical rod with fixed-fixed boundary conditions

© The Modelica Association, 2009

gigure 11: two thermal capacities with conductance

él'gpe Modelica model was built as an AMESIim su-

percomponent to be able to mix the Modelica model
with non-Modelica (standard C) models.

1

Modelica
E—] th_temperature_source_3 [THT51-3
Model Imm@—l =L = =1l ]|
|th_temperature_source_2_2 [THT51—4]| *

Figure 12: simple Modelica thermal model connected
to non-Modelica thermal sources and signal

The Modelica text is quite simple, just calling the
Modelica components in libraries to connect them
together to get the assembled circuit of the therma
system.

The time-response of the temperature in the thermal
capacities are the following:
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mod2ame_ttoo - TempOutputl.inport.realSignal [null]

mod2ame_ttoo - TempOutput2.inport.realSignal [null] k T

2 O v pPp<€4—e

40 14p®

Figure 15: electrical motor with inertia and torque

The Modelica text for the electrical model is pre-
sented below:

model PermanentMagnetDCMotorWithLoad
LMS.Electrical.ElectricMotors.PermanentMagnetDCMotor

20

T T A B S S B LA B T e e L B e e |
0 100 200 300 400 500 600

o motor;
X : Time [s] Lo .
LMS.Electrical.Sources.SignalVoltage Source;
Figure 13: evolution of the temperatures Temp LMS.Mechanics.Rotational.Inertia J;
[degree] in the two masses in time-domain LMS.Mechanics.Rotational.SignalTorque Tau;

LMS.Blocks.Sources.ConstantSig torque(k(fixed=false)=0.33);
LMS.Blocks.Sources.ConstantSig voltage(k(fixed=false)=13);

Looking at the eigenvalues shows that there are tWQ < gjectrical Ground g

time constants: equation
Eigenvalues connect(g.p, Source.n);
connect(g.p, motor.n);
Frequency Damping ratic | Real pat | Imaginary part connect(Source.p, motor.p);
0.002540 1.000000 -0.015961 0.000000 connect(motor.rotor, J.flange_b);
0006674 1000000 -0.041934  0.000000 connect() flange_a, Tau.flange);
i i i i connect(Tau.inputTorque, torque.outport);
Figure 14: eigenvalues of the thermal system connect(Source.inputVoltage, voltage.outport);
Then: end PermanentMagnetDCMotorWithLoad;

* T11=1/(210.002540) = 62.6 5 Figure 16: Modelica text for the model of electrich
* 12=1/(210.006674) = 23.8 s motor with inertia and torque

It is clear that these two time constamisandTt2 \yhen the U = 13 V voltage source is activated, the
directly represent the system dynamics. It is BbiGnertia starts increasing its shaft speed up to its

to get slow dynamics for thermal systems (rangedgady state value. Depending on the inertia J, we

several [s]). can see that the transient behavior completely dif-
Alternatively, the analysis of the eigenvaluesto$t fers:
thermal model could help the engineer finding o =

the best sampling for distributed thermal capagiti
in his thermal model, in order to reduce the numk**]
of states variables, still being sure that the esyst :o]
dynamics are preserved and not altered by the mc_ ]
reduction. This is practically very helpful.

005

-0 T T T
0.000 0.020 0.040 0060 0.080 0.1
X: Time

Amature cument [A]
35

We now show the interest of eigenvalues analysis 1
electromechanical systems. We consider there *]
electrical motor of a tailgate motorized opening-sy “?
tem. ]

4.3 Electromechanical systems

An electrical motor is loaded by the rotor inextidh -
an external torque applied as input:

0
0doo 0z oda 00 oden od

X: Time

Figure 17: evolution of the motor speed N [rev/min]
(top) and the armature current | [A] (bottom) in ti me-
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domain — J=310° kg.m? (green curve) and IMAGINARY

J=1510° kg.m? (blue curve)
+

It is commonly considered that such a system has %“
electrical time-responsel and a mechanical time- N
constantt2. Actually, the eigenvalues reveal the
there are two separated time-constaftandrt2:

Eg‘
=~
+
AR

[

Eigenvalues L a .
e L +
Frequency Damping ratic | Realpat | Imaginary part + {%‘ \
11511485 1.000000 -72 328879 0.000000 M
44 197731 1.000000 277 671121 0.000000 s
_ _ | ﬁ’@v i ﬂ%ﬂ'
Figure 18: eigenvalues of the electrical system - T

J=1510° kg.m?
But these considerations of time-constants beingFigure 20: root locus and typical equivalent time-
separated are quite abusive since these two time- responses
constants are linked together (it is a second order

system). These two time-constants are therefore na finally easy to follow the evolution of thetural
uncoupled. 'For Qxample, c60n5|der|ng a crgange in hBdes (frequency f [Hz] and damping rafi§ or
moment of inertia from-30~ kg.m? to 1510 kg.m? nyll]) to any change of parameters. Root Locus

would reveal that the dynamic behavior shifts froghalysis are very appropriate for solving optimed d
an oscillatory mode around f =50 Hz, well dampegign issues.

( =55%, to the two separated time-constants ob-
served previously. The best way to follow this
change of dynamics is to plot a Root Locus after
making batch runs with modified inertia values - NG :
[kg.m7: 8 Case Study: Diesel Common Rail

Injection System

62 o1

s "~ 3=310° kg.m? Diesel engines need to meet reduced fuel consump-

0. ... tion and pollutants emissions. In order to rea@séeh
| | targets, Diesel Common Rail injection systems have

»= been introduced some years ago, with various evolu-
100-| ' tions of their design and architecture. Below is-pr
o= Sented a typical Common Rail injection system with
J=1510° kg.m? ] a Bosch CP3 pump that delivers the required amount
ol @O+ IO) . of fuel to be injected by the injectors, dependomgy

the operating conditions (Nne[rPm], Rai [bar], T

J=1510°kg.m2 [°C], ...).

+

Rail pressure
sensor RDS

—2.1 (6
J=3-10" kg.m? ®

- B s

100

= & X ;L;;ﬂl
Figure 19: Root-Locus of the electrical motor with Fus e ]
inertia - J =3-10° kg.m? to 1510° kg.m? J— )

mm High pressure

One has to remember the corresponding tim

responses associated to the location of the eigenve_; - ——
ues: Figure 21: Diesel Common Rail Injection System —

Bosch GmbH - Second generation with CP3 pump

= Low pressure
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Nowadays, the control strategies of injection idelu end. The dimensions of this inner injector line are
multiple-injections to be able to pilot the injedteusually quite similar to the dimensions of the con-
flow rate Q [mn¥ms] that directly impacts the comnecting line from the rail to the injectdri2.4 mm —

bustion in the engine cylinder: L= 150 mm to 200 mm):
o ] L=

200 5

150 4 Control-valve lift [um]

100 4 Needle lift [[m]

50 3

;s - W

-50 T T T T T T T leD'3

U‘gl L0 20 3.0 ¥z Time [s] 5.0 6.0 7.0 8.0

Leb /1700 bar Nozzle

pressure [bar]

T A AN

L3 <|1300 bar
1.00 T T T T T T I"lDr3
0.0 10 20 3.0 X t|Time [s] 5.0 6.0 7.0 8.0
ve AT2 * —  Figure 24: Common Rail Injector— cross-sectional \&w
20 4§ AT ﬂ Injected flow rate
15 3 i N [L/min]
1.0 3 .. .
s - pre Thain post The injector er_lds by th_e nozzle thal_t delivers the
b .+ amount of fuel in the cylinders. As a first apptoac
oo 1o 20 20 }i:Tm'Ive Bl 5.0 5.0 70 80

the nozzle can be modeled as a simple orifice.
Figure 22: Typical multiple-injection with
pre/main/post-injections

The fuel quantities [mg/stroke] to be injected are
very small with low deviations admitted from stroke
to stroke and from cylinder to cylinder. Therefore,
any pressure oscillations as the ones appearing dur
ing the injection (typically from 800 Hz to 1000 Hz
have to be understood and controlled, if not damped 11
enough. We propose below to use the Linear Analy- ") Injection . —
sis approach on a simple injection system to demon- holes

strate where these frequencies come from. It pro- Figure 25: Nozzle with injection holes

vides a complementary view to time-domain analysis

such as the one proposed by Corno, Casella and 7k fuel used is a standard 1ISO4113 diesel. The me-

[5] for Gasoline injection system in Modelica. dia properties are based on measurements in the
temperature range of +10 to +120°C and pressure
range of 0 to 2000 bar:

Nozzle

5.1 Coupling between L4 cylinders ,
x10

?—: 35—: 840 41

We propose to start with a L4 engine. . ] P N
] 07 _9‘,..*“',: I
& e 1 ,n-"',f? -"!
EE El S I / yd
= i & 17 l_,.-"‘
= E E ] = .-""P' ‘.F'P
.% 45 E E 15 %\ ',*""
5 43 2 18 /‘/ ’.“,;"
= ] 107 ,a" “‘_a"
359 ] S
. 5] .»":f"
. . L 253 i 500 . : : : i’
Figure 23: schematics of a L4 injection system: pum o 0.4 0.8 12 i 2

pressure [bar]

with common rail and 4 injectors

. ) i . Figure 26 : 1ISO4113 properties — 0 to 2000 bar —
The injector is detailed below. Note that an inner +40°C, from Chaufour and All [6]

pipe is located around the injector needle, whigtsr
from the filter at one end up to the nozzle atdtier
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For computing the linear state-space representati@mrently, the library is not finalized then itssign
of the injection system parts in the next sectiwa, could be highly improved in the future.

will on[y consid'e'r the B;= 1000 bar and T = +40 °Clo. e |unt
operating conditions. = £2 {Capazp
: F =-E2 p1
lSO4113 Isentroplc Klng_ ® Capa2p.pl.T - Temperature in the connection point 313 K
media bulk Density matic ® Capazp.pl.p - Pressure in the connection point 1000 bars
properties modulus viscosity e otame oo
@ +40 C [bar] [kg/m 3] [cSt] = 3 ConstantDMTSource
ConstantDMTSource. fi - fluid index L rull
Prail =0 bar 9700 810 2.8 ConstantDMTSource, TO 33K
ConstantDMTSource. dmi 0.05 kafs
Prail =1000 bar | 23700 855 4.6 B £ Res
Res.fi - fluid index 1 rull
Pra” =2000 bar 32 800 886 6.9 Res.lamc - Critical flow number 1000 null
- : - Res.cgmax - Maximum flow coefficent 0.7 rull
Flgure 27 . 1SO4113 fuel propertles Res.deq - Equivalent orifice diameter 0.00014 m
.. . . . = £1 ConstantPTSource
The L4 injection system for the common rail with ConstantPTSource. T0 313 K
injectors sub-system without the pump can be si ConstantTSource. PO 50 bara
plified into the following system, the rail beingre Figure 30: example of parameters window for a

sidered as a distributed volume with closed-closeghermal-hydraulic system with the prototype library
boundary conditions, and the injectors with connect

ing pipes being represented by their hydraulic-inefns fibrary is used for applying the Linear Anatys
tances and hydraulic stiffnesses: tools. For example, the modal shapes are computed
Vraig Vai3 Vrails3 for the first 4 natural modes. They highlight titfae
/4 4 injectors are actually coupled together, even
\ / \ / \_ through the large diameter rail, since the 4 imes
contributions are always combined together in every
modal shape. Note also that their frequencies are
very close.

Modal shapes at 1010, 38 Hz Damping -6, 123232-15 [%]

Vinj . Vinj ‘ Vinj ’

L] L] L]
@ @ €)

Figure 28: simplified injection system with 4 injet¢ors

The model is based on a prototype LMS thermi _, 3
hydraulic library which is still under development L 2 3 4
The components are limited to thermal-hydraulic

capacity C, resistance R and inertance |, with lust*~

equations. The specific point here is that tt+4
ISO4113 Diesel properties are called from the ste 30
dard Imagine.Lab AMESIm Bosch properties wit »

odal shapes at 1083.68 Hz Damping -6.12323e-15 [%]

external C-coded functions: 03
function mo_tfrhopti_ ]
input Real P; 103
input Real T; <:> —20—?
input Real fluid_index; .3g_§
output Real rho; i a0 ]

external "C";
end mo_tfrhopti_;

Figure 29: Modelica text for external function callof
ISO4113 media properties
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odal shapes at 1242.94 Hz Damping -6, 12323e-15 [%] K rail/3 K railr3 K rai3

AW —— AW, <

linj Linj

Kinj Kinj
[ R
-30 ; T " T . T R ® @
Figure 32: equivalent mass-spring model for common
o ndal shapes at 1384 Hz Damping -6. 12323e-15 [%] rail with 4 injectors
30 .. . . . .
N For the injector with connecting line included, we
have:
10
0 Ihyd,, =2 “/;re”gth = ”855[0'3852 = 727010 kg/m
ea _
10 (24107
4
-20
23700010°
- Khyd,, = DUk = =20310" Pa/m’®
i Volume 08110°°
' 1 ' 2 ' 3 4 From this equivalent model, we would find directly
Figure 31: modal shapes of the first 4 modes —  the observed characteristic frequencies as:

simplified injection system with 4 injectors Khyd

o 5
.Y Wo_ 1 /2.93EL017 —1010Hy
These values from = 1010 Hz to f = 1384 Hz are 2\ lhyd,, 27\ 727010

finally close to the oscillations observed in exper
ments as presented in Figure 22 with a 1 ms period
for one oscillation, which corresponds to approxi-

mately 1000 Hz. 6 Conclusions

Additional transfer functions could give more inforThis paper demonstrated how Linear Analysis can be
mation. They could help determining if the assodised to understand the dynamic behavior of a Mode-
ated gains [dB] of the nozzles pressures are impt¢a model. The view is independent from the time
tant when an excitation occurs in one cylindeis It €xcitation so that the dynamic answer of such syste
indeed likely that the natural mode the closest @8n be understood for any type of excitations, with
where the injection occurs would be the more edciteery few associated CPU-time. After a brief theleret
one. cal overview, the Linear Analysis approach has been
applied to a series of different Modelica models to
emonstrate that it is valid on different fields of
sics, and that it can also be used for non4inea
'stems with a great efficiency. Next steps wowdd b
highlight the use of such Linear Analysis tools

Finally, the modal shapes help understand how
system dynamics are organized. Some hydr
lics/mechanics analogies (Viersma [8]) through tq

_hydraulic Isr:iffjnekss/ ﬁI;hyd |[§aﬁh an(:] theh hyd_rlau!i(r:] the context of models reduction (to reduce CPU-time
inertance Inyd [kg/m) would show that the rail wit to reach Real-Time performances during the

the 4 Injectors an_d connectm.g pipes behave aAt/sIL/HIL process) or for the design of the Con-

simple masses-springs system: trol laws of closed loop systems (including Black-
Nichols or Nyquist charts for control stability dya
sis). Alternatively, some works around formal lin-
earization to get the Jacobian with Modelica litasir
would bring even more added-value in the lineariza-
tion process of nonlinear dynamic systems.
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