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Abstract 

This paper is dedicated to the Linear Analysis of dy-
namic systems represented by Modelica models. The 
simulation of dynamic systems helps the engineer in 
his design activities giving him a better understand-
ing of the system he is in charge. Additionally to 
time-domain simulations, frequency domain analysis 
provides a complementary view of the systems. This 
paper gives a general overview of the Linear Analy-
sis methods that can be performed on Modelica 
models using the existing facilities in LMS Imag-
ine.Lab platform. It highlights the use of Eigenval-
ues, Modals Shapes, Transfer Functions or Root Lo-
cus to fully understand the intrinsic dynamic behav-
iors of the systems, including non-linear systems. 
Different multi-physics examples show how these 
tools can be used practically. 

Keywords: Modelica; linear analysis; eigenvalues; 
modal shapes; transfer function; root locus 

1 Introduction 

The responsibility of any engineer is to find a techni-
cal solution to a given problem. Most issues appear-
ing around dynamics systems are related to vibra-
tions or instabilities of the control laws used to pilot 
these systems. In order to analyze the response of 
their systems, the engineers can use the computer 
efficiency. With virtual prototypes, engineers can 
explore different design options such as evaluating 
the influence of parameters variations in time-
domain simulations. However, more powerful ap-
proaches such as frequency-domain analysis can re-
veal the intrinsic dynamic properties of these sys-
tems, independently from their time-domain excita-
tions, and with very few computation times. Finally, 
the full understanding of the in-depth dynamic be-
havior of the systems allows making the most appro-
priate design choices with an important efficiency in 
the design process (fewer iterations, then reduced 
development time). 

 

In order to improve the behaviour of the system, sev-
eral possibilities could be tested: 

Some engineers could: 
• perform several batch runs in the simulation tool, 

changing a set of parameters and looking at the 
corresponding time-responses, with quite long 
CPU-times. 

• launch Design Exploration tools such as Optimi-
zation, Design Of Experiments, Monte-Carlo, 
Pareto Plots, … with quite long CPU-times. 

Or, others engineers would prefer to: 
• analyze the root locus of the system as function 

of each parameter, and to check if the eigenval-
ues (real and imaginary parts, that provide natu-
ral frequency [Hz] and damping ratio [null]) 
move towards more stable areas. 

• analyze the modal shapes in order to understand 
how each mode contributes to the motion of each 
output observer variable. 

• analyze the transfer functions of the system, in 
particular the one linking some output observer 
variables to some input control variables 
(O(s) / I(s)), and to check which are the condi-
tions of resonance (peaks in Bode plots for ex-
ample), when natural frequencies can be excited 
by the inputs. 

This paper emphasizes the Linear Analysis approach 
as a very powerful method. State space representa-
tion and the Linearization process used in the LMS 
Imagine.Lab AMESim tool supporting Modelica 
models are presented. The second section shows 
some practical applications on multi-domains sys-
tems such as mechanical, thermal and electrical 
models. Finally, the Linear Analysis approach is ap-
plied to a Diesel Common Rail Injection System. 
This general approach is discussed to conclude on its 
benefits in system modeling. 

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 646 DOI: 10.3384/ecp09430097



2 Linearization Process of Nonlinear 
Systems 

2.1 Level and Formalism for physical modeling 

Various formalisms exist to represent physical mod-
els. For example, Vangheluwe [1] proposed a classi-
fication with a multi-criteria analysis that shows that 
each formalism has its advantages and its flaws. 

 
Legend: 

 
Figure 1: Comparison of formalisms/languages, 

extract of some criterias from [1] 
 

With the comparison of the formalisms, it then be-
comes clear that Modelica, with its high level of ab-
stract for the models description, can help the Equa-
tions formalism to fulfill non-good criteria such as 
Numerical Analysis or Topology Analysis, to bring 
Equations formalism combined with Modelica to the 
highest values. 

 

However, it may still be interesting to use formal-
isms such as State-Space equations or Transfer 
Functions commonly used in the Control commu-
nity, to add valuable information about the system’s 
dynamics (Otter [2]). Since these ways of representa-
tion are only usable in linear cases, engineers could 
think this would strongly limit their applicability. 
But it is not actually the case since non-linear sys-
tems can be linearized around some operating points. 
It is also very useful to make analogies on complex 
physical systems to represent them as simpler 
equivalent linear mass-springs models. Additionally, 
the utilities developed by control-specialists on the 
basis of these formalisms are numerous and ex-
tremely useful (e.g., the study of dynamics and sta-
bility on Bode, Nyquist or Black-Nichols charts, the 
location of Evans poles, etc. ), which largely justifies 
their use in the context of process control problems. 

 

2.2 Numerical linearization of the system 

One of the principal techniques for the analysis of 
nonlinear system is to approximate them with a 
proper linear system and then to use the linear sys-

tem theory, which is fully established since about 
three decades (Russell [3]). 

The very interesting point is that whereas engineer-
ing systems are never linear, they can practically be 
approximated as linear, and it appears that such a 
linear system description is sufficient enough around 
selected operating points (N [rpm], P [bar], T [°C], 
…). It is particularly true when the amplitude and 
frequency of the excitation signal (the inputs) are 
kept in between certain limits, which define the do-
main of linearity. 

 

The linearization process needs the determination of 
the Jacobian matrix of the system at the desired op-
erating point. 

The evaluation of the [A, B, C, D] matrices is quite 
equivalent to considering the linear behaviour tan-
gent to the nonlinear system in correspondence with 
an operating point which has also to be an equilib-
rium point. 

 
Figure 2 : linearization of a nonlinear system around 

two different local maximum points 
 

Finally, a full description of the non-linear system 
around various operating points can be obtained con-
sidering several times the linear description of the 
non-linear system around several equilibrium operat-
ing points. Ones could imagine it would lead to a 
large number of linear analysis to be done, but in 
practice, only the extreme operating points, such as 
an injector fully opened and an injector fully closed, 
are considered. 

 

The non-linear system may be written as: 
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Each term of the ith vector is evaluated, applying a 
numerical perturbation to the state variable xi: 
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The other B, C and D matrices are determined in the 
same way. For an ordinary differential equation sys-
tem, the linearized system is represented under the 
common A, B, C, D state-space representation: 
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
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+=

+=

DuCxy

BuAx
dt

dx
 

Where: 

• u is the vector of the control variables 

• x is the vector of the state variables 

• y is the vector of the observer variables 

 

From this control representation, it is possible to ap-
ply linear algebra algorithms to compute the eigen-
values (that are included in A matrix) representing 
the system natural modes, the modal shapes of the 
frequencies (eigenvectors from matrixes A and C) 
representing the distribution of a frequency all along 
the system, the transfer functions (linking A, B, C, D 
matrices) that represent the frequency response in 
magnitude and phase of an observer variable due to 
the excitation of another control variable, and the 
root locus (from A matrix) that represent the evolu-
tions in frequency and damping ratio of the natural 
modes to some parameters changes in a 
real/imaginary plot. 

 

For differential algebraic equation (DAE) systems, 
we first consider a semi-explicit DAE, as obtained 
by topologically sorting the constitutive equations in 
LMS Imagine.Lab AMESim: 
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x (resp. z) being the differential (resp. algebraic) state 
variables, in addition to the already defined input and 
observer variables. 

This system may be linearized around an equilibrium 
point: 
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If the system index is one, then the partial Jacobian 

matrix gz∇   is non-singular. Taking the Laplace 
transform of (1)-(3), and introducing the augmented 

state  ( )( )TsZsX )(,=φ  , the state-space equations 
are given by: 
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As the output of the system is 

( ) ( ) ( ) ( )sUsDsUDsCsY 10 ++= φ  

with the following additional matrix definitions 
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the transfer matrix of the system is finally given by: 
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The above reasoning can be extended to higher index 
systems. In this case, the equation (2) is differenti-
ated up to the index of the DAE. In the resulting lin-
earization process, higher order derivatives of the 
input variables are retained, and thus the transfer ma-
trix defined by (4) is generalized by extending the 
summation order up to the system index. 

 

Finally, the linear analysis tools used for differential 
algebraic equation system are the same as the ones 
used for ordinary differential equation systems. 
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3 LMS Modelica libraries overview 

The LMS Modelica libraries are an in-house library 
that presents several packages as shown below for 
the first hierarchical level: 

 
Figure 3: screen shot of some Imagine.Lab libraries in 

the package browser 
 

The packages are structured in functional sub-
packages (Tummescheit [7]). Some of them include 
quite simple models. The intention there was mainly 
to support the development of the Modelica compiler 
embedded in Imagine.Lab AMESim. 

 
Figure 4: example of Imagine.Lab library for 

Electrical / Basics components 
 

Other libraries offer more complex models. These 
LMS Modelica models will be used to illustrate the 
Linear Analysis approach described in the next sec-
tions. 

4 Linear analysis in various physical 
domains 

The Linear Analysis approach can be applied to any 
physical system modeled with Modelica models, 
whatever are the involved domains of physics (Kar-
nopp [4]). 

 

4.1 Mechanical systems 

Let’s consider the example of the longitudinal vibra-
tions of a rod in fixed conditions. We sample the 

continuous system in distributed parameters nodes 
with 7 masses and 8 stiffnesses with dampers: 

 
 Mechanical Rod 

 

 
Figure 5: distributed rod in fixed conditions 

 

We consider the Modelica model of the system, built 
by connecting together the simple Modelica models 
of mass elements with spring and damper elements: 

model distributed_rod 

parameter Integer n(fixed=true) = 7; 

LMS.Mechanics.Translational.Mass mass_element[n](each 

m=1.290569); 

LMS.Mechanics.Translational.Spring 

spring_element[n+1](each k=12692085.0); 

LMS.Mechanics.Translational.Damper 

damper_element[n+1](each d=1000.0); 

LMS.Mechanics.Translational.Ground ground1; 

LMS.Mechanics.Translational.Ground ground2; 

equation 

connect(ground1.q, spring_element[1].q1); 

connect(ground1.q, damper_element[1].q1); 

for i in 1:n loop 

connect(spring_element[i].q2, mass_element[i].q); 

connect(mass_element[i].q, spring_element[i+1].q1); 

connect(damper_element[i].q2, mass_element[i].q); 

connect(mass_element[i].q, damper_element[i+1].q1); 

end for; 

connect(ground2.q, spring_element[n+1].q2); 

connect(ground2.q, damper_element[n+1].q2); 

end distributed_rod; 

 

Figure 6: Modelica text for the rod model 
 

To get the modal shapes of the system, we need first 
to set the mass velocities [m/s] as state observers. 
This is done through the simulation tool GUI. Note 
that no modification of the Modelica models within 
the sketch is needed for accessing the linear analysis 
settings, neither any specific library with added 
blocks on the sketch. A selection list is directly avail-
able at the tool level, being in the Linear Analysis 
mode: 
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Figure 7: selection list for observer variables in Linear 

Analysis mode 
 

An additional Linear Status window summarizes all 
the status (observer / control / …) of the variables in 
the Modelica model: 

 

 
Figure 8: Linearization Status window 

These modal shapes provide the distribution of the 
natural mode along the different observed parts. It is 
easy to recognize here the well-known normal modal 
shapes of the continuous rod system (dashed line): 

 
Figure 9: first modal shape (f1=193 Hz, ζζζζ=2.4%) of a 
mechanical rod with fixed-fixed boundary conditions 

 

 
Figure 10: second modal shape (f2=379 Hz, ζζζζ=4.7%) of 
a mechanical rod with fixed-fixed boundary conditions 
 

This approach greatly helps the engineer understand-
ing which parts of the systems are involved in the 
frequencies present on experimentally measured 
oscillations. 

 

4.2 Thermal systems 

We start here from a yet existing Modelica model 
and we will reuse it to determine the eigenvalues of 
the system: 
 

Ct 

 

Ct 

T1 
T2 

Rth Rth Rth 

Figure 11: two thermal capacities with conductance 
 

The Modelica model was built as an AMESim su-
percomponent to be able to mix the Modelica model 
with non-Modelica (standard C) models. 

 
Figure 12: simple Modelica thermal model connected 

to non-Modelica thermal sources and signal 
 

The Modelica text is quite simple, just calling the 
Modelica components in libraries to connect them 
together to get the assembled circuit of the thermal 
system. 

The time-response of the temperature in the thermal 
capacities are the following: 
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Figure 13: evolution of the temperatures Temp 

[degree] in the two masses in time-domain 
 

Looking at the eigenvalues shows that there are two 
time constants τ: 

 
Figure 14: eigenvalues of the thermal system 

Then: 

• τ1 = 1/(2π 0.002540) = 62.6 s 

• τ2 = 1/(2π 0.006674) = 23.8 s 

It is clear that these two time constants τ1 and τ2 
directly represent the system dynamics. It is typical 
to get slow dynamics for thermal systems (range is 
several [s]). 

Alternatively, the analysis of the eigenvalues of this 
thermal model could help the engineer finding out 
the best sampling for distributed thermal capacities 
in his thermal model, in order to reduce the number 
of states variables, still being sure that the system 
dynamics are preserved and not altered by the model 
reduction. This is practically very helpful. 

 

4.3 Electromechanical systems 

We now show the interest of eigenvalues analysis for 
electromechanical systems. We consider there the 
electrical motor of a tailgate motorized opening sys-
tem. 

An electrical motor is loaded by the rotor inertia with 
an external torque applied as input: 

 

 

k  

J 

T  
U 

 
Figure 15: electrical motor with inertia and torque 

 

The Modelica text for the electrical model is pre-
sented below: 
model PermanentMagnetDCMotorWithLoad 

LMS.Electrical.ElectricMotors.PermanentMagnetDCMotor 

motor; 

 LMS.Electrical.Sources.SignalVoltage Source; 

 LMS.Mechanics.Rotational.Inertia J; 

 LMS.Mechanics.Rotational.SignalTorque Tau; 

LMS.Blocks.Sources.ConstantSig torque(k(fixed=false)=0.33); 

LMS.Blocks.Sources.ConstantSig voltage(k(fixed=false)=13); 

 LMS.Electrical.Ground g; 

equation 

 connect(g.p, Source.n); 

 connect(g.p, motor.n); 

 connect(Source.p, motor.p); 

 connect(motor.rotor, J.flange_b); 

 connect(J.flange_a, Tau.flange); 

 connect(Tau.inputTorque, torque.outport); 

 connect(Source.inputVoltage, voltage.outport); 

end PermanentMagnetDCMotorWithLoad; 

 

Figure 16: Modelica text for the model of electrical 
motor with inertia and torque 

When the U = 13 V voltage source is activated, the 
inertia starts increasing its shaft speed up to its 
steady state value. Depending on the inertia J, we 
can see that the transient behavior completely dif-
fers: 

 
Figure 17: evolution of the motor speed N [rev/min] 

(top) and the armature current I [A] (bottom) in ti me-

ττττ2 

3*ττττ2
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domain – J=3·10-6 kg.m² (green curve) and 
J=15·10-6 kg.m² (blue curve) 

 

It is commonly considered that such a system has an 
electrical time-response τ1 and a mechanical time-
constant τ2. Actually, the eigenvalues reveal that 
there are two separated time-constants τ1 and τ2: 

 
Figure 18: eigenvalues of the electrical system - 

J=15·10-6 kg.m² 
But these considerations of time-constants being 
separated are quite abusive since these two time-
constants are linked together (it is a second order 
system). These two time-constants are therefore not 
uncoupled. For example, considering a change in the 
moment of inertia from 3·10-6 kg.m² to 15·10-6 kg.m² 
would reveal that the dynamic behavior shifts from 
an oscillatory mode around f = 50 Hz, well damped 
ζ = 55%, to the two separated time-constants ob-
served previously. The best way to follow this 
change of dynamics is to plot a Root Locus after 
making batch runs with modified inertia values J 
[kg.m²]: 

 
Figure 19: Root-Locus of the electrical motor with 

inertia - J =3·10-6 kg.m² to 15·10-6 kg.m² 
 

One has to remember the corresponding time-
responses associated to the location of the eigenval-
ues: 

 
Figure 20: root locus and typical equivalent time-

responses 
 

It is finally easy to follow the evolution of the natural 
modes (frequency f [Hz] and damping ratio ζ [% or 
null]) to any change of parameters. Root Locus 
analysis are very appropriate for solving optimal de-
sign issues. 

 

5 Case Study: Diesel Common Rail 
Injection System 

Diesel engines need to meet reduced fuel consump-
tion and pollutants emissions. In order to reach these 
targets, Diesel Common Rail injection systems have 
been introduced some years ago, with various evolu-
tions of their design and architecture. Below is pre-
sented a typical Common Rail injection system with 
a Bosch CP3 pump that delivers the required amount 
of fuel to be injected by the injectors, depending on 
the operating conditions (Nengine [rpm], Prail [bar], Trail 
[°C], …). 

 

 
Figure 21: Diesel Common Rail Injection System – 
Bosch GmbH - Second generation with CP3 pump 

 

J=3·10-6 kg.m² 

J=3·10-6 kg.m² 

J=15·10-6 kg.m² 

J=15·10-6 kg.m² 
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Nowadays, the control strategies of injection include 
multiple-injections to be able to pilot the injected 
flow rate Q [mm3/ms] that directly impacts the com-
bustion in the engine cylinder: 

 
Figure 22: Typical multiple-injection with 

pre/main/post-injections 
 

The fuel quantities [mg/stroke] to be injected are 
very small with low deviations admitted from stroke 
to stroke and from cylinder to cylinder. Therefore, 
any pressure oscillations as the ones appearing dur-
ing the injection (typically from 800 Hz to 1000 Hz) 
have to be understood and controlled, if not damped 
enough. We propose below to use the Linear Analy-
sis approach on a simple injection system to demon-
strate where these frequencies come from. It pro-
vides a complementary view to time-domain analysis 
such as the one proposed by Corno, Casella and All 
[5] for Gasoline injection system in Modelica. 

 

5.1 Coupling between L4 cylinders 

We propose to start with a L4 engine. 

 

 
Figure 23: schematics of a L4 injection system: pump 

with common rail and 4 injectors 
 

The injector is detailed below. Note that an inner 
pipe is located around the injector needle, which runs 
from the filter at one end up to the nozzle at the other 

end. The dimensions of this inner injector line are 
usually quite similar to the dimensions of the con-
necting line from the rail to the injector (∅2.4 mm – 
L= 150 mm to 200 mm): 

 
Figure 24: Common Rail Injector– cross-sectional view 
 

The injector ends by the nozzle that delivers the 
amount of fuel in the cylinders. As a first approach, 
the nozzle can be modeled as a simple orifice. 

 

 
Figure 25: Nozzle with injection holes 

 

The fuel used is a standard ISO4113 diesel. The me-
dia properties are based on measurements in the 
temperature range of +10 to +120°C and pressure 
range of 0 to 2000 bar: 

 
 

Figure 26 : ISO4113 properties – 0 to 2000 bar – 
+40°C, from Chaufour and All [6] 

 

1111 
2222 

3333 
4444 
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For computing the linear state-space representation 
of the injection system parts in the next section, we 
will only consider the Prail = 1000 bar and T = +40 °C 
operating conditions. 

ISO4113 
media 

properties 
@ +40 °C 

Isentropic 
bulk 

modulus 
[bar] 

Density 

 [kg/m 3] 

Kine-
matic 

viscosity 
[cSt] 

Prail = 0 bar 9 700 810 2.8 

Prail =1000 bar 23 700 855 4.6 

Prail =2000 bar 32 800 886 6.9 
Figure 27 : ISO4113 fuel properties 

The L4 injection system for the common rail with 4 
injectors sub-system without the pump can be sim-
plified into the following system, the rail being con-
sidered as a distributed volume with closed-closed 
boundary conditions, and the injectors with connect-
ing pipes being represented by their hydraulic iner-
tances and hydraulic stiffnesses: 
 

I inj  

V inj 

Vrail/3 Vrail/3  Vrail/3 

I inj  I inj  I inj  

V inj V inj V inj 

 
 
Figure 28: simplified injection system with 4 injectors 

The model is based on a prototype LMS thermal-
hydraulic library which is still under development. 
The components are limited to thermal-hydraulic 
capacity C, resistance R and inertance I, with usual 
equations. The specific point here is that the 
ISO4113 Diesel properties are called from the stan-
dard Imagine.Lab AMESim Bosch properties with 
external C-coded functions: 

function mo_tfrhopti_ 

 input Real P; 

 input Real T; 

 input Real fluid_index; 

 output Real rho; 

 external "C"; 

end mo_tfrhopti_; 

Figure 29: Modelica text for external function call of 
ISO4113 media properties 

 

Currently, the library is not finalized then its design 
could be highly improved in the future. 

 
Figure 30: example of parameters window for a 

thermal-hydraulic system with the prototype library 
 

This library is used for applying the Linear Analysis 
tools. For example, the modal shapes are computed 
for the first 4 natural modes. They highlight that the 
4 injectors are actually coupled together, even 
through the large diameter rail, since the 4 inertances 
contributions are always combined together in every 
modal shape. Note also that their frequencies are 
very close. 

 
 

 
 

1111 2222 3333 4444 
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Figure 31: modal shapes of the first 4 modes – 

simplified injection system with 4 injectors  
 

These values from f1 = 1010 Hz to f4 = 1384 Hz are 
finally close to the oscillations observed in experi-
ments as presented in Figure 22 with a 1 ms period 
for one oscillation, which corresponds to approxi-
mately 1000 Hz. 

 

Additional transfer functions could give more infor-
mation. They could help determining if the associ-
ated gains [dB] of the nozzles pressures are impor-
tant when an excitation occurs in one cylinder. It is 
indeed likely that the natural mode the closest to 
where the injection occurs would be the more excited 
one. 

 

Finally, the modal shapes help understand how the 
system dynamics are organized. Some hydrau-
lics/mechanics analogies (Viersma [8]) through the 
hydraulic stiffness Khyd [Pa/m3] and the hydraulic 
inertance Ihyd [kg/m4] would show that the rail with 
the 4 injectors and connecting pipes behave as a 
simple masses-springs system: 

 

I inj  

K inj 

K rail/3 

I inj  

K inj 

I inj 

K inj 

I inj 

K inj 

K rail/3 K rail/3 

 
 
Figure 32: equivalent mass-spring model for common 

rail with 4 injectors 
 

For the injector with connecting line included, we 
have: 

( )
47
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From this equivalent model, we would find directly 
the observed characteristic frequencies as: 
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6 Conclusions 

This paper demonstrated how Linear Analysis can be 
used to understand the dynamic behavior of a Mode-
lica model. The view is independent from the time 
excitation so that the dynamic answer of such system 
can be understood for any type of excitations, with 
very few associated CPU-time. After a brief theoreti-
cal overview, the Linear Analysis approach has been 
applied to a series of different Modelica models to 
demonstrate that it is valid on different fields of 
physics, and that it can also be used for non-linear 
systems with a great efficiency. Next steps would be 
to highlight the use of such Linear Analysis tools in 
the context of models reduction (to reduce CPU-time 
to reach Real-Time performances during the 
MIL/SIL/HIL process) or for the design of the Con-
trol laws of closed loop systems (including Black-
Nichols or Nyquist charts for control stability analy-
sis). Alternatively, some works around formal lin-
earization to get the Jacobian with Modelica libraries 
would bring even more added-value in the lineariza-
tion process of nonlinear dynamic systems. 
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