Linear Regression Analysis for STARDEX

Malcolm Haylock, Climatic Research Unit

The following document is an overview of linear regression methods for reference by
members of STARDEX. While it aims to cover the most common and relevant methods for
calculating trends and their levels of statistical significance, there will inevitably be
omissions. Please send any corrections or comments to Malcolm Haylock
(M.Haylock@uea.ac.uk).

Trend Calculation

Least squares (used in diagnostic tool)

Least squares linear regression is a maximum likelihood estimate i.e. given a linear model,
what is the likelihood that this data set could have occurred? The method attempts to find the
linear model that maximises this likelihood.

Suppose each data point y; has a measurement error that is independently random and

normally distributed around the linear model with a standard deviation o, .

The probability that our data (+ some fixed Ay at each point) occurred is the product of the
probabilities at each point:
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Maximising this is equivalent to minimising:
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If the standard deviation &, at each point is the same, then this is equivalent to minimising:
Z(yi - (a +bx, ))2

Solving this by finding a and b for which partial derivatives with respect to a and b are zero,
gives the best fit parameters for the regression constant and coefficient (o and B):
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For further information, see Wilks (1995) or Press et al. (1986).
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Least squares linear regression, like many statistical techniques, assumes that the departures
from the linear model (errors) are normally distributed. Techniques that do not rely on such
assumptions are termed robust.



Least squares regression is also sensitive to outliers. Although most of the errors may be
normally distributed, a few points with large errors can have a large affect on the estimated
parameters. Techniques that are not so sensitive to outliers are termed resistant.

A more resistant method for linear trend analysis is to assume that the errors are distributed as
a two-sided exponential. This distribution, with its larger tails, allows a higher probability of
outliers:
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Similarly to the process of least squares, this requires that we minimise:
N

Z|yi —(a +bxil

i=l1

The solution to this needs to be found numerically. Example code can be found in Press et al.
(1986).

Three-group resistant line

This method derives its resistance from the fact that one of the simplest resistant measures of
a sample is the median.

Data are divided into three groups depending on the rank of the x values. The /eft group
contains the points with the lowest third of x values. In a time series this is equivalent to the
first third of the series. Similarly, the middle and right groups contain points with the middle
and highest third of ranked x values respectively.

Next the x and y median values are determined for the three groups to give the points
(rp20)s (o) and (2. 7,)-

The slope of the line is taken as the gradient of the line through the medians of the left and
right groups:
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The intercept of the line is calculated by finding the three lines with slope b, that pass
through each of the points (x,,y, ), (x,,, 7, ) and (x,,y, ), then averaging their intercept:

a =§[(yL _bOXL)+(yM _boxM)+(J’R _bOxR)]

The three-group resistant line method usually requires iteration. After the first pass to find q,
and b, , the process can be repeated on the residuals to find @, and b, . The iterations are

continued until the adjustment to the slope is sufficiently small in magnitude (at most 1%).
The final slope and intercept is the sum of those from each iteration.

Further information can be found in Hoaglin et al. (1983).

Logistic Regression

Linear regression has been generalised under the field of generalised linear modelling, of
which logistic regression is a special case. This method utilises the binomial distribution and
can therefore be used to model counts of extreme events.



Often in a series, the variance of the residuals (from the linear model) varies with the
magnitude of the data. This goes against the assumptions of least squares regression, which
assumes residuals to have constant variance, but is a natural element of the binomial
distribution and logistic regression. Therefore data do not need to be normalised.

The logistic regression model expresses the probability © of a success (e.g. an event above a
particular threshold) as a function of time:

n(n):(x+B -t

Since the probability of a success is in the range [0,1], it needs to be transformed to the range
(~ o0,0) using a link function:

n(x)= log(ij
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Solving for 1 gives:
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We are not fitting a straight line to the counts and therefore can not refer to a single trend
value. The odds ratio is used to express the relative change in the ratio of events to non-events
over the period (7,7, ):
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Model fitting can be done using a maximum likelihood method.

Further information about logistic regression, together with an example using extreme
precipitation in Switzerland, can be found in Frei and Schér (2001).

Significance Testing

Confidence intervals for least squares

Often the standard deviations o, for the observations are not known. If we assume that the
linear model does fit well and that all observations have the same standard deviation o , the

assumption that the residuals are normally distributed around the linear model implies that:
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= N> , with N-2 appearing in the denominator because two parameters are

estimated.
From the above, it can be shown that the regression coefficient b will be normally distributed
with variance:
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Since the variance of b is estimated, Student’s t-distribution is used to define the multiplier ¢
for the confidence limits for the regression coefficient:

b=p xtVar(b)
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The assumption that the residuals are normally distributed can be tested with a quantile-
quantile (Q-Q) plot of the residuals against the quantiles from a Gaussian distribution.

For further information, see Wilks (1995) or Press et al. (1986).

Linear Correlation

The linear correlation coefficient (Pearson product-moment coefficient of linear correlation)
is used widely to assess relationships between variables and has a close relationship to least
squares regression.

The correlation coefficient is defined by:

cov(x,y) . . . .
5 = M i.e. the ratio of the covariance of x and y to the product of their standard
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deviations.

In a least squares linear model, the variance of the predictand can be proportioned into the
variance of the regression line and the variance of the predictand around the line:

SST=SSR+SSE
Sum of Squares Total = Sum of Squares Regression + Sum of Squares Error

In a good linear relationship between the predictor and predictand, SSE will be much smaller
than SSR i.e. the spread of points around the line will be much smaller than the variance of
the line. This goodness of fit can be described by the coefficient of determination:

,  SSR . . . .
R = SoT = variance of predictand explained by the predictor
It can be shown that the coefficient of determination is the same as the square of the
correlation coefficient. The correlation coefficient can therefore be used to assess how well
the linear model fits the data. Assessing the significance of a sample correlation is difficult,
however, as there is no way to calculate its distribution for the null hypothesis (that the
variables are not correlated). Most tables of significance use the approximation that, for a
small number of points and normally distributed data, the following statistic is distributed for
the null hypothesis like Student’s t-distribution:

2 (1)

The common basis of the correlation coefficient and least squares linear regression means that
they share the same shortcomings such as limited resistance to outliers.

See Wilks (1995) or Press et al. (1986) for further information.

Spearman rank-order correlation coefficient

Non parametric correlation statistics are an attempt to overcome the limited resistance and
robustness of the linear correlation coefficient, as well as the uncertainty in determining its
significance.

If x and y data values are replaced by their rank, we are left with the set of points (i), 1,j=1,N
which are drawn from an accurately known distribution. Although we are ignoring some
information in the data, this is far outweighed by the benefits of greater robustness and
resistance.



The Spearman rank-order correlation coefficient is just the correlation coefficient of these
ranked data. Significance is tested as for the linear correlation coefficient using (1), but in this
case the approximation does not depend on the distributions of the data.

See Press et al. (1986) for further information.

Kendall-Tau (used in diagnostic tool)

Kendall’s Tau differs from the Spearman rank-order correlation in that it only uses the
relative ordering of ranks when comparing points. It is calculated over all possible pairs of
data points using the following:

concordant — discordant

T

\/ concordant + discordant + sameX \/ concordant + discordant + sameY

where concordant is the number of pairs where the relative ordering of x and y are the same,
discordant where they are the opposite, sameX where the x values are the same and sameY
where the y values are the same.

T 1s approximately normally distributed with zero mean and variance:
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One advantage of Kendall’s tau over the Spearman coefficient is the problem of assigning
ranks when data are tied. Kendall’s tau is only concerned whether a rank is higher or lower
than another, and can therefore be calculated by comparing the data themselves rather than
their rank. When data are limited to only a few discrete values, Kendall’s tau is a more
suitable statistic.

See Press et al. (1986) for further information.

Resampling

Resampling procedures are used extensively by climatologists and could be used to assess the
significance of a linear trend. The bootstrap method involves randomly resampling data (with
replacement) to create new samples, from which the distribution of the null hypothesis can be
estimated. Therefore no assumption needs be made about the sample distribution. If enough
random samples are generated, the significance of an observed linear trend can be assessed by
where it appears in the distribution of trends from the random samples.

A problem, however, is that the maximum likelihood derivation of the least squares estimate
for the linear trend assumed that data residuals about the line were normally distributed.
Therefore if the distribution of the residuals is not Gaussian, then the least squares estimate is
not valid. Still, bootstrapping could be used to test the significance of a least squares linear
trend, given that this may not be the best trend estimate.

An important assumption in resampling is that observations are independent. Zwiers (1990)
showed that, for the case of assessing the significance of the difference in two sample means,
the presence of serial correlation greatly affected the results. A method has been proposed by
Ebisuzaki (1997) whereby random samples are taken in the frequency domain (with random
phase) to retain the serial correlation of the data in each sample.
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