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Abstract. This paper concerns document ranking in information re-
trieval. In information retrieval systems, the widely accepted probability
ranking principle (PRP) suggests that, for optimal retrieval, documents
should be ranked in order of decreasing probability of relevance. In this
paper, we present a new document ranking paradigm, arguing that a bet-
ter, more general solution is to optimize top-n ranked documents as a
whole, rather than ranking them independently. Inspired by the Modern
Portfolio Theory in finance, we quantify a ranked list of documents on
the basis of its expected overall relevance (mean) and its variance; the
latter serves as a measure of risk, which was rarely studied for document
ranking in the past. Through the analysis of the mean and variance, we
show that an optimal rank order is the one that maximizes the overall rel-
evance (mean) of the ranked list at a given risk level (variance). Based on
this principle, we then derive an efficient document ranking algorithm.
It extends the PRP by considering both the uncertainty of relevance
predictions and correlations between retrieved documents. Furthermore,
we quantify the benefits of diversification, and theoretically show that
diversifying documents is an effective way to reduce the risk of docu-
ment ranking. Experimental results on the collaborative filtering problem
confirms the theoretical insights with improved recommendation perfor-
mance, e.g., achieved over 300% performance gain over the PRP-based
ranking on the user-based recommendation.

1 Introduction

Information retrieval (IR) aims at retrieving documents1 that are relevant to a
user’s information needs. To be able to effectively present the retrieved docu-
ments to the user, the probability ranking principle (PRP) states that [13]:

“If an IR system’s response to each query is a ranking of documents in order
of decreasing probability of relevance, the overall effectiveness of the system to
its user will be maximized.”

Despite its success in many IR applications, the principle however leaves the
following fundamental issues unsolved. 1) The PRP relies on the assumption
that the relevance of one document to an information need is independent of the
other documents in the collection. In many situations, this assumption is not
realistic [4]. It is beneficial to develop a more general ranking theory that can
deal with document dependency. 2) The PRP employs probability of relevance
to represent the uncertainty whether a document will be judged relevant. The
PRP assumes that such unknown probability of relevance is a fixed unknown

1 By convention, we use the term document. However, the discussion in this paper is
generally applicable to any information items, either textual or non-textual.
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constant and can be calculated with certainty [4]. But, when we estimate the
probability of relevance, another type of uncertainty can also arise, for instance,
due to limited sample size. Estimation errors in the probability of relevance
(commonly reported as a single point estimator, such as mean or mode) may
cause unreliably-estimated documents to be retrieved. Therefore, retrieval sys-
tems should have a method of quantifying this uncertainty, and address it when
ranking documents.

This paper attempts to deal with these two issues by proposing a new mean-
variance paradigm of document ranking. It is inspired by the Modern Portfolio
Theory in finance, introduced in 1952 by Markowitz [10]. The theory is concerned
with portfolio selection which involves many possible financial instruments. The
task is to select the portfolio of securities (e.g., stocks or shares) that will pro-
vide the best distribution of future consumption, given an investment budget.
Markowitz’ approach is based on the analysis of the expected return of a portfolio
and its variance of return, where the latter serves as a measure of risk.

Our work here is focused on the theoretical development; we examine the
proper use of relevance measures for document ranking, rather than consider-
ing in detail methods to calculate the measures. We draw an analogy between
the portfolio select problem in finance and the document ranking problem in
information retrieval, and argue that the document ranking problem can be ef-
fectively cast as a portfolio selection problem: in response to a user information
need, top-n ranked documents are selected and ordered as a whole, rather than
ranking them independently. To characterize a ranked list, we employ two sum-
mary statistics, mean and variance. The mean represents a best “guess” of the
overall relevance of the list, while the variance summarizes the uncertainty and
risk associated with the guess. Our analysis provides new insights into the way
we rank documents, and demonstrates that a better and more general ranking
principle is to select top-n documents and their order by maximizing the overall
relevance of the list given an upper bound on the risk (variance). An efficient
ranking algorithm is then introduced to trade off between efficiency and accu-
racy, and leads to a generalization of the PRP, where both the uncertainty of
the probability estimation and the diversity of ranked documents are modelled
in a principled manner. The new ranking approach has been applied to the rec-
ommendation problem. The experiment on collaborative filtering demonstrates
that significant performance gain has been achieved.

The paper is organized as follows. We will present our theoretical develop-
ment in Section 2, discuss the related work in Section 3, give our empirical
investigation on recommendation in Section 4, and conclude in Section 5.

2 Mean-Variance Analysis for Document Ranking
2.1 Expected Relevance of a Ranked List and Its Variance

The task of an IR system is to predict, in response to a user information need
(e.g., a query in ad hoc textual retrieval or a user profile in information filter-
ing), which documents are relevant. Suppose, given the information need, the IR
system returns a ranked list consisting of n documents from rank 1 to n – in an
extreme case, all the documents need to be ordered when n equals the number of
documents in the candidate set. Let ri be the relevance measure of a document
in the list, where i = {1, ..., n}, for each of the rank positions. We intentionally
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keep the discussion general, while bearing in mind that the exact definition of
the measure, either degree of relevance or probability of relevance [14], relies on
the system setting and adopted retrieval model.

Our objective is to find an optimal ranked list that has the maximum effec-
tiveness in response to the given user information need. There are many ways of
defining the effectiveness of a ranked list. A straightforward way is to consider
the weighted average of the relevance measures in the list as:

Rn ≡
n

∑

i=1

wiri (1)

where Rn denotes the overall relevance of a ranked list. We assign a variable wi,
where

∑n

i=1 wi = 1, to each of the rank positions for differentiating the impor-
tance of rank positions. This is similar to the discount factors that have been
applied to IR evaluation in order to penalize late-retrieved relevant documents
[7]. It can be easily shown that when w1 > w2... > wn, the maximum value of
Rn gives the ranking order r1 > r2... > rn. This follows immediately that maxi-
mizing R – by which the document with highest relevance measure is retrieved
first, the document with next highest is retrieved second, etc. – is equivalent to
the PRP.

However, the overall relevance Rn cannot be calculated with certainty. It
relies on the estimations of relevance measures rn of documents from retrieval
models. As we discussed, uncertainty can arise through the estimations. To ad-
dress such uncertainty, we make a probability statement about the relevance
measures, assuming the relevance measures are random variables and have their
own probability distributions2. Their joint distribution is summarized by using
the means and (co)variances. Mathematically, let E[ri], i = {1, ..., n} be the
means (the expected relevance measures), and let Cn be the covariance ma-
trix. The non-diagonal element ci,j in the matrix indicates the covariance of the
relevance measures between the document at position i and the document at
position j; the diagonal element ci,i is the variance of the individual relevance
measure, which indicates the dispersion from the mean E[ri].

Different probabilistic retrieval models result in different estimators of E[ri]
and Cn. E[ri] can be determined by a point estimate from the specific retrieval
model that has been applied. For instance, in text retrieval we may employ the
posterior mean of the query-generation model in the language modelling ap-
proach [12] as the estimator, or, in collaborative filtering, the expected relevance
may be obtained by using the expected rating estimated from the user-based or
item-based method [5, 15].

The covariance matrix Cn represents both the uncertainty and correlation
associated with the estimations. Although they are largely missing in current
probabilistic retrieval models, there are generally two ways of estimating them
in practice. One way is to determine them based on the second moment of the
predictive retrieval models. For instance, one can estimate the (co)variances of in-
dividual document models (parameters) by adopting the Bayesian paradigm [1].

2 For instance, to measure the uncertainty associated with the estimation of probabil-
ity of relevance, one might assume that the probability of relevance (θ ∈ [0, 1]) is a
random variable and follows the Beta distribution.
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Alternatively, the covariance matrix can be determined from historical informa-
tion of realized relevance or the features (e.g., terms) that represent documents.

Introducing E[ri] and ci,j gives the expected overall relevance of a ranked
list and its variance as follows:

E[Rn] =

n
∑

i=1

wiE[ri] (2)

V ar(Rn) =

n
∑

i=1

n
∑

j=1

wiwjci,j (3)

where V ar(Rn) denotes the variance of Rn. It indicates the dispersion from the
mean E[Rn]. The validity of Eq. (3) can be seen from the following derivation:

V ar(Rn) =E[(
∑

i

wiri)
2] − E[

∑

i

wiri]
2

=
(

∑

i

∑

j

wiwjE[rirj ]
)

−
(

∑

i

∑

j

wiwjE[ri]E[rj ]
)

=(
∑

i

∑

j

wiwj

(

E[rirj ] − E[ri]E[rj ]
)

=
∑

i

∑

j

wiwjci,j

(4)

2.2 Relevance v.s. Variance: A New Document Ranking Strategy

The mean and variance summarize our belief about the effectiveness of a ranked
list from the following two aspects3. The mean measures the overall relevance of
the ranked documents as a whole, and for optimal retrieval it seems intuitively
obvious to maximize the mean. This is essentially what the PRP has suggested.
But, on the other hand, the variance indicates the dispersion from the expected
relevance, representing the level of a risky prospect if we produce an optimal
rank order by maximizing the mean. Therefore, when we optimize the ranked
list, its overall variance (risk) is required to stay as small as possible.

The relationship between the expected overall relevance of a ranked list and
its variance is illustrated by the relevance-variance graph in Fig. 1. In the figure,
a possible top-n ranking solution is characterized by its mean and variance, and
represented as a point. Fig. 1 (a) shows that possible solutions are conceptually
located in four regions. For optimal retrieval, a ranking solution is preferred to
be located inside the upper left region because it has high returned relevance and
low variance; conversely, any solution located inside the lower right region needs
to be avoided due to its low relevance and large variance. Yet, in many practical
situations, it is a trade-off between the returned relevance and variance. We
either take more risk (larger variance) in order to obtain more highly relevant
documents in the ranked list (the upper right region), or conversely trade off
relevancy for having more confidence on the ranked documents (the lower left
region).

3 For simplicity, we use the term mean and expected overall relevance interchangeably.
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Fig. 1. The trade-off between relevance and variance in the top-n list of documents.
(a) The four regions. (b) Feasible solutions and efficient frontier.

Fig. 1 (b) further demonstrates this in the application of recommendation
[5], where the task is to suggest items that the user is most likely to like on
the basis of the user’s past ratings (a representation of user information needs).
In this example, information items are movies, and their relevance has multiple
values 1-6, with 1 being the lowest rating (no star) and 6 being the highest
one (five stars). Suppose, in response to a recommendation request, the system
returns a top-10 ranked list of movie items as a recommendation. Fig. 1 (b) plots
the randomly sampled recommendation solutions, each of which contains top-10
ranked items. Their means and variances are calculated based on Eq. (2) and
Eq. (3). The item-based model [15] was used to predict the individual items’
relevance, and the covariance matrix is estimated from the historic rating data.
From the graph, we can see that, for a given variance value (risk), one can find
an efficient ranking solution that has the highest expected relevance. Varying the
variance, we obtain a set of efficient ranking solutions; they are geometrically
located on the upper left boundary. Following the same terminology in finance,
we name the boundary the efficient frontier [10]. From the figure, we can see
that the efficient frontier presents the set of ranking solutions that have maximal
expected relevance given an upper bound on the variance.

Based on the analysis of mean and variance, we are ready to express our
hypothesis about generating a top-n ranked document list as:

In response to a given user information need, a retrieval system should
generate a ranked document list in such a way that the overall expected
relevance of the list is maximized given an upper bound on the risk that
the user/system is willing to take, where the risk is expressed by the
variance of the list.

Mathematically, it can be expressed as the following optimization problem:

max E[Rn]

subject to V ar(Rn) ≤ t
(5)

where t denotes an upper bound of risk that needs to meet. As shown in Fig. 1
(b) (see the vertical and horizontal dotted lines), maximizing the relevance given
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the upper bound of variance is equivalent to minimizing the variance given the
lower bound of expected relevance. In practice, it is convenient to formulate the
problem by maximizing the following unconstrained objective function:

On = E[Rn] − αV ar(Rn) (6)

where α, similar to t, is a parameter adjusting the risk level4. The efficient
frontier plotted in Fig. 1 (b) is a set of the solutions that maximize the objective
function as α ranges from 0 (the right side) to 40 (the left side). It is worth
noticing that the frontier cannot tell us which one is the single best ranked list
for a given user information need; it has to be dependent upon the user’s risk
preference, and can be tuned by the specific performance measure.

2.3 Diversification - A Way to Reduce Uncertainty

This section continues with a discussion of diversification, another importance
criterion, for document ranking. A further derivation from Eq. (3) gives

V ar(Rn) =
∑

i

w2
i ci,i + 2

∑

i

∑

j=i+1

wiwjci,j

=
∑

i

w2
i σ2

i + 2
∑

i

∑

j=i+1

wiwjσiσjρi,j

(7)

where σi =
√

ci,i is the standard deviation, and ρi,j =
ci,j

σiσj
is the correlation

coefficient. ρi,j = 1 means that there is an exact positive relationship between
two documents, ρi,j = 0 means no relationship between the two documents, and
ρi,j = −1 indicates an exact negative relationship between the two documents.
As shown in Eq. (7), to reduce the uncertainty of the relevance prediction for the
returned documents, we need to have small correlation coefficients (preferable
negative correlations) between documents. This means diversifying the docu-
ments in the ranked list will reduce the variance and therefore the uncertainty
of the relevance measures of the returned documents.

To understand this, let us consider two extreme cases. In the first case, sup-
pose we have a ranked list containing two documents, where the correlation
coefficient between them is −1. This means that they move in the exact oppo-
site direction in response to different information needs. The volatility of the
documents (as to whether they are relevant or not relevant) cancels one another
completely and this leads to a situation where the ranked list has no volatility at
all. As a result, a certain amount of relevancy for any kind of user information
needs is maintained. Conversely, when we have two documents that are perfectly
correlated (the correlation coefficient equals to 1) in the list, the relevance returns
of the two documents move in perfect same direction in response to different in-
formation needs. In this case, the relevance return of the list mimics that of the
two documents. As a result, the list contains the same amount of uncertainty
(risk) as those of the two documents. In this case, risk is not reduced.

4 Alternatively, the objective function in Eq. (6) can be derived formally by Utility
theory [19]. The utility parameter a represents the user’s risk preference. When
α > 0, the ranking is risk-averse, while when α < 0, it is risk-loving.
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2.4 Document Ranking - A Practical Solution

Directly optimizing the objective function in Eq. (6) is computationally expen-
sive. In this section, we present an efficient document ranking algorithm by
sequentially optimizing the objective function. It is based on the observation
that the larger the rank of a relevant document, the less likely it would be seen
or visited by the user. Therefore, an economical document selection strategy
should first consider rank position 1, and then add documents to the ranked list
sequentially until reaching the last rank position n. For each rank position, the
objective is to select a document that has the maximum increase of the objec-
tive function. Notice that such a sequential update may not necessarily provide
a global optimization solution, but it provides an excellent trade-off between
accuracy and efficiency.

The increase of the objective function from positions k − 1 to k is:

Ok − Ok−1

=

k
∑

i=1

wiE[ri] − α

k
∑

i=1

k
∑

j=1

wiwjci,j −
k−1
∑

i=1

wiE[ri] + α

k−1
∑

i=1

k−1
∑

j=1

wiwjci,j

(8)

where k ∈ {2, ..., n}. The final expression is derived as

Ok − Ok−1 = wk(E[rk] − αwkσk
2 − 2α

k−1
∑

i=1

wiσiσkρi,k) (9)

Because wk is a constant for all documents, we can safely drop it when using
the increase to rank documents. This gives the following ranking criterion:

select a document at rank k that has the maximum value of

E[rk] − αwkσk
2 − 2α

k−1
∑

i=1

wiσiσkρi,k

(10)

Eq. (10) provides a general principle of the document ranking. It contains
three components. The first component concerns the relevance of a document,
which is essentially equivalent to the PRP. The second component indicates that
the relevance estimation should be subtracted by a weighted variance (when
α > 0); it is a generalization from the PRP, and has an ability to address the
uncertainty of the point estimate of the relevance E[rk]. A positive α produces
risk-aversion ranking where an unreliably-estimated document (with big vari-
ance) should be given a large rank. The smaller the parameter α is, the less
risk-aversion the ranking is. When α = 0, it goes back to the PRP, which only
considers the point estimate E[rk]. In this case, the ranker intends to take more
risk regardless of the uncertainty associated with the relevance estimation. The
last component shows that the ranking prefers the documents that have small
correlations (preferably negative correlations) with the already retrieved docu-
ments in the lower rank positions. Therefore, diversification, which is quantified
by the weighted average of the correlations between the ranked documents, is
effectively incorporated into the document ranking. In [2], a heuristic reranking
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criterion, the MMR (Maximal Marginal Relevance), is proposed by employing
both the query-document and document-document similarities. The last compo-
nent resemble the MMR, providing a theoretical justification.

3 Related Work and Discussion

In information retrieval, the most relevant work can be found in [3], where Chen
and Karger argued that the classic probabilistic ranking principle (PRP) [13],
which ranks documents in descending order of probability of relevance, is not al-
ways optimal for different user information needs. In some scenarios users would
be satisfied with a limited number of relevant documents, rather than all rel-
evant documents. The authors therefore proposed to maximize the probability
of finding a relevant document among the top n. By considering the retrieved
lower ranked documents as non-relevant ones, their algorithm introduced di-
versification into the probabilistic ranking. Their experiments on the specific
metric that reflects above different user behaviors show that the approach de-
signed for directly optimizing the metric outperforms the PRP. Another related
work can be found in [2], where Carbonell and Goldstein proposed to re-rank
retrieved documents, and use the Maximal Marginal Relevance (MMR) criterion
to reduce redundancy. The criterion has been applied to the recommendation
problem in [21]. In text retrieval, the MMR criterion has also been employed in
a risk framework to address the subtopic retrieval problem [9, 20]. But nonethe-
less, when coming to the practical algorithms, these studies in [9, 20] still resolve
to take a point estimate, and use mode of the posterior without considering the
uncertainty of the point estimate.

Our work can be regarded as research along this direction, but set out for
more ambitious goals. We argue that ranking documents by examining their
expected relevance is insufficient. A new point of view that focuses on evaluating
the documents’ relevance under conditions of risk is presented. By introducing
variance as a measure of risk, diversification is naturally integrated into the
probabilistic ranking. We demonstrate that it will play a central role in reducing
the risk of document ranking. Our probabilistic ranking principle in Eq. (10) is
independent of any retrieval models, and has the advantage of tuning the risk
via a single parameter.

4 Empirical Study on Collaborative Filtering

In this section, we present our empirical study on the recommendation problem,
while leaving the evaluation on other retrieval applications such as text and mul-
timedia retrieval, expert search, content-based filtering, and advertising ranking
for future work. The reason to study recommendation first is due to the fact
that the recommendation problem is generally formulated as rating prediction,
while we believe a better view of the task is to regard it as a ranking problem
[18]; our main goal is to validate our theoretical development, and investigate
the impact of the parameter.

The task of recommendation is to suggest to a user information items that
he or she might be interested in; collaborative filtering is one of the common
techniques to generate a ranked list of relevant items. The covariance matrix of
documents is calculated by users’ ratings. We experimented with the EachMovie
data set (http://www.grouplens.org/taxonomy/term/14), and adopted a subset
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Fig. 2. The behaviors of parameter α. (a) The impact of the parameter α on the
relevance and variance. (b) Efficient Frontier.

described in [8], which contains 2,000 users. Each user has rated as least 40
items. The rating scale is indicated as a value between 1 and 6, with 1 being the
lowest rating and 6 being the highest one. In our study, only the rating values 5
and 6 were regarded as relevant.

For testing, we assigned the users in the data set randomly to a training
user and a test user set. Users in the training set were used as the basis for
making predictions, while our test users were considered as the ground truth for
measuring prediction accuracy. Each test users ratings have been split into a set
of observed items and one of held-out items. The ratings of the observed items
were input and represent user information needs (interests). Based on the user
interests, the task is to generate a ranked item list. The held-out items (the test
items) were used as the ground truth to evaluate the ranking accuracy.

4.1 Impact of the User’s Risk Preference

Recall in Eq. (6) and Eq. (10), we have introduced parameter α to balance
the expected overall relevance and its risk. This section empirically studies the
behavior and impact of the parameter α. Fig. 2 (a) plots the expected overall
relevance and variance against the different values of the parameter α, where the
left y axis corresponds to the expected relevance of top-10 ranked documents
and the right y axis shows the variance (uncertainty) of the list. The graph
demonstrates that when we set a small α, the optimal rank list will have a
relatively large variance (risk). As a reward of taking such risk, the expected
relevance of the list stays high. But as the parameter α increases, the ranking
becomes more risk-aversion. As a result, it tends to select a rank list whose
variance is smaller, and subsequently the expected relevance of the list is reduced.
We can thus conclude that the relevance ranking is risk-sensitive. This is similar
to the observation in the financial market, i.e., any investment is a trade-off
between return and risk.

We plot the efficient frontier in Fig. 2 (b) to further study optimal ranked lists
under different risk preferences. The efficient frontier is calculated by applying
our ranking principle in Eq. (10). The region above the frontier is unachievable
by any rank order, while points below the frontier are suboptimal. The curves
confirms our observation that high risk means high relevance return while low
risk gives low relevance return.
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Fig. 3. The impact of the parameter α. (a) NDCG at 3 and (b) Mean reciprocal rank.

To show the impact of the parameter α (and therefore the user’s risk prefer-
ence) on the retrieval performance, we plot the value of the parameter against
two rank-based measures in Fig. 3. Since the low rank positions are crucial to
a retrieval system, we report NDCG (Normalized Discounted Cumulative Gain)
at 3 and the Mean Reciprocal Rank (MRR). (For the detailed definitions of the
two measures, we refer to [7] and [17], respectively.) To study the influence of the
user profile length, we vary the length as 5, 10, and 15 (denoted as UP Length 5,
10, and 15 in the figures). From the two graphs, we can see that the optimal ones
are located around α = 30, and significant performance gain has been achieved
if we compare them to the PRP-based ranking (where α = 0).

4.2 Performance Evaluation

This section compares our ranking principle with the PRP-based ranking. For
our approach, we set α = 30. Notice that the setting of the parameter is not
optimal for all the configurations. But we intend to investigate the performance
of ranking method by using a universal value of α. Given this, it is expected that
the performance can be improved even further when α is optimized with respect
to individual collections or metrics.

Three popular recommendation algorithms were adopted to predict item rat-
ings, namely the user-based algorithm [5], the item-based algorithm [15], and
the method based on Probabilistic Latent Semantic Analysis (PLSA) [6]. The
results and comparisons are shown in Table 1. The performance gain was mea-
sured by the percentage of the improvement over the PRP (α = 0). From the
table, we can see that for the three basic algorithms, our ranking method out-
performs the method using the PRP in all configurations. We also conducted a
significance test (the Wilcoxon signed-rank test) applied to each configuration,
indicating that the improvements are significant. In particular, the results are
at least 3 times better when we use the user-based approach as the basic predic-
tion method. This may be due to the fact that the user-based approach explores
the correlations between users, while our mean-variance ranking addresses the
correlations between items. A combination between them would generate much
better performance gain than other combinations.

The relatively unsatisfied performance of the user-based, item-based, and
PLSA approaches confirm the observation that rating-prediction based approaches
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Table 1. Comparison with the other approaches in the EachMovie data set. A Wilcoxon
signed-rank test is conducted and all the improvements are significant.

Metrics NDCG at 3 Precision at 3 Mean Reciprocal Rank
Results Basic MV-Rank Gain(%) Basic MV-Rank Gain(%) Basic MV-Rank Gain(%)
UPSize 5 0.077 0.137 77.916 0.090 0.180 100.692 0.194 0.373 92.063
UPSize 10 0.083 0.139 66.819 0.096 0.184 92.280 0.212 0.368 74.163
UPSize 20 0.089 0.145 62.864 0.100 0.199 99.659 0.222 0.413 86.319

(a) The item-based algorithm is used as the basis.

Metrics NDCG at 3 Precision at 3 Mean Reciprocal Rank
Results Basic MV-Rank Gain(%) Basic MV-Rank Gain(%) Basic MV-Rank Gain(%)
UPSize 5 0.025 0.121 376.239 0.033 0.182 458.384 0.074 0.381 413.100
UPSize 10 0.034 0.133 291.192 0.034 0.202 494.827 0.092 0.416 351.368
UPSize 20 0.032 0.141 344.521 0.030 0.209 597.931 0.087 0.436 398.788

(b) The user-based algorithm is used as the basis.

Metrics NDCG at 3 Precision at 3 Mean Reciprocal Rank
Results Basic MV-Rank Gain(%) Basic MV-Rank Gain(%) Basic MV-Rank Gain(%)
UPSize 5 0.045 0.106 136.489 0.059 0.158 168.476 0.139 0.326 134.868
UPSize 10 0.054 0.127 134.122 0.075 0.177 136.918 0.178 0.372 109.405
UPSize 20 0.065 0.125 91.434 0.091 0.186 104.466 0.202 0.399 97.709

(c) The PLSA algorithm is used as the basis.

are not ideal solutions for item ranking [11]. To address this, our ranking method,
which analyzes the mean and variance of rank lists, is found to be effective in
improving the ranking accuracy of recommendation consistently.

5 Conclusion and Future Work

In this paper, we have presented a new theory for document ranking by adopt-
ing the mean-variance analysis. We argued that an optimal document ranking
strategy is to cast the ranking problem as a portfolio selection problem, where an
optimal decision is to rank documents by maximizing their expected overall rele-
vance given a risk (variance) level. It suggests that an optimal ranker should not
only consider the expected relevance of the documents, but equally importantly
understand the uncertainty associated with the estimation and the correlations
between the documents. We have quantified the benefits of diversification and
showed that it effectively reduces the risk of document ranking.

Our study is intended to increase the awareness of the mean-variance analysis
for the relevance estimation and ranking. There are fruitful avenues for future
investigations:
– We have adopted variance to measure the risk of document ranking. Variance

cannot distinguish between “good” and “bad” dispersion. But in document
ranking, the concept of risk is only associated with the latter. It will of
great interest to investigate alternative measures for the risk. For instance,
measures focusing on “downside risk” in finance might be beneficial.

– We have used historic rating data to calculate the covariance of items. But
nonetheless, how to effectively and efficiently calculate the variance (risk)
and correlation between the relevance predictions remains an open question.
A large number of documents makes the estimation of correlations between
documents a great challenge. A possible future direction would be to apply
factor models [16] to reduce the computation complexity.

– Direct optimization of the objective function is expensive. It is worth inves-
tigating a global yet efficient optimization solution.
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– It is expected that our ranking method will have many practical applications.
We are currently studying its effectiveness in ad hoc text retrieval; we shall
also explore more opportunities in other information retrieval fields such as
multimedia retrieval, content-based filtering, and advertising.

– The parameter a represents the risk preference of the user. It is highly ben-
eficial to study its relationship with retrieval metrics and derive a learning
method that can directly tune the parameter from the data.
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