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Abstract. MEMS resonators have potential applications in the areas of RF-MEMS, clock
oscillators, ultrasound transducers, etc. The important characteristics of a resonator are its
resonant frequency and Q-factor (a measure of damping). Usually large damping in macro
structures makes it difficult to excite and measure their higher modes. In contrast, MEMS
resonators seem amenable to excitation in higher modes. In this paper, 28 modes of vibration of
an electrothermal actuator are experimentally captured— perhaps the highest number of modes
experimentally captured so far. We verify these modes with FEM simulations and report that
all the measured frequencies are within 5% of theoretically predicted values.

1. Introduction
Micromachined resonators have potential applications in RF-MEMS, clock oscillators, resonant
sensors such as biological mass detector, optical communications, displays, barcode readers and
biomedical imaging [1, 2]. To use these resonators effectively, one needs to find a suitable
actuation mechanism that is compatible with MEMS technology. Several actuation schemes are
explored by different research groups across the world. They can be classified into electrostatic,
piezoelectric, electromagnetic and electrothermal types [3, 4]. The response of the resonator
to any actuation mechanism depends on two important characterstics of the resonator —
its resonant frequency and quality factor (Q) [5]. Its an easy task to estimate the resonant
frequencies using numerical tools but it is challenging to capture the higher modes of vibration
of the resonator experimentally [6] as the amplitude of vibration reduces enormously at higher
modes.

A resonator can be used in variety of applications depending on the mode shape and resonant
frequency. For example an electrothermal actuator can be used as an accelerometer in the first
mode and as a micro mirror in second and third modes [3]. So it is essential to determine the
resonant frequencies and mode shapes which dictate the suitability of their application. Many
researchers are exploring ways to capture the higher modes of vibration, Polytec researchers [4]
have reported successful extraction of data for the first four modes of a MEMS device, while
the same group in collaboration with MEMUNITY also reported data till seventh mode for a
compressor [7]. In 2006, Liang-chia chen [8] reported data till seventh mode of vibration of an
AFM cantilever. Mitchell [9] in early 1998 has reported the data for a macro scale plate (with
dimensions 18 in × 18 in × 1

8 in) upto the ninth normal mode. Martarelli [10] was successful
in capturing the frequencies till 23rd mode of vibration of turbine blade using Laser Surface
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Velocimeter. To the best of our knowledge this is the maximum number of modes captured and
reported in the literature till now in the history of structural vibrations.

The current study is partly motivated by a need to explore higher modes of vibration in
MEMS devices for sensing purposes. For high Q materials like silicon, most of the damping
in oscillations of these devices comes from squeeze film effects [11, 12, 13]. It has been shown
that it is possible to reduce this kind of damping and increase the Q of the MEMS resonators
by exciting them in higher modes [1]. Of course, the study of higher modes of oscillation is an
important area in its own right. What is interesting here is that because of the small scale of
the vibrating structure, we are able to capture fairly high modes of oscillation relatively easily.
In our experiments we have been able to capture up to 28 modes of out-of-plane vibrations of
a resonator from the response to a single excitation. Subsequent numerical simulations have
confirmed that the captured modes are indeed what is expected and the measured frequencies
are very close to the theoretically predicted values.

In this study we use a MEMS resonator fabricated by SOI MUMPs process [14]. This
resonator is actually an electrothermal actuator. Structure of the fabricated device is shown
in Figure 1. The structure consists of a proof mass suspended by a set of meandering beams.
The beam segments that span the meander width are called span beams, while those connecting
the span beams are called connector beams [15]. The meanders are connected to the substrate
by means of a set of straight beams. Table 1 provides the details of geometric and material
properties of the structure used in simulations. Details of experiments and numerical simulations
carried out are provided in the second section.

Proof 
mass

Outer
frame

Span beams

Connector beams

Figure 1. SEM image of the
micromachined electrothermal
actuator.

Table 1. Mechanical and physical parameters of the electrothermal actuator.

Parameter Value

Length of straight beams connecting to the substrate, L 1000 µm
Width of straight beams connecting to the substrate, w 45 µm
Thickness of structure, t 25 µm
Length of span beams, ls 200 µm
Length of connector beams, lc 100 µm
Proof mass size 200× 200 µm2

Young’s modulus, E 130 GPa
Poisson ratio, ν 0.22
Density, ρ 2300 kg/m3

Co-efficient of thermal expansion, α 2.33× 10−6 /◦C
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2. Theory
Here, we discuss the governing equations of elastic structural vibration. We also outline the
numerical and experimental procedure to calculate the natural frequencies of the resonator.

2.1. Numerical procedure
In this work, the numerical results are obtained by carrying out modal analysis of the structure
in finite-element software, ANSYS [16]. The numerical computation of natural frequencies and
the mode shapes involves three main steps. In the first step, the geometric modelling is done
in MEMS specific design tool, CoventorWare, by specifying the mask data and fabrication
steps involved in realizing the structure. The 3D model is imported into ANSYS and the
modal analysis is carried out to estimate the eigenvalues and eigenvectors. For this analysis,
the structure is meshed with 25000 eight-noded brick elements. The zero-displacement and
zero rotation boundary conditions are applied on the substrate. Then, the theory of elastic
dynamics is used for determining the natural frequencies and the corresponding mode shapes of
an undamped system.

The general governing equation of motion for free vibration can be written as [5]:

[M ]{ẅ}+ [K]{w} = 0 (1)

where [M ] is the structural mass matrix and [K] is the stiffness matrix. If the displacement
w(x, y, z) is written in terms of n eigenvectors φi(x, y) and the time dependent modal coordinate
qi(t) [17] as

w(x, y, t) =
n∑

i=1

φi(x, y)qi(t) (2)

then the eigenvalues and the corresponding eigenvectors can be calculated from the equilibrium
equations:

[K]{φi} = ω2
i [M ]{φi} (3)

Based on the orthogonal properties of the eigenvectors, we obtain the expressions for resonant
frequencies and corresponding mode shapes:

{φi}T [K]{φi} = ω2
i {φi}T [M ]{φi}. (4)

Let {φi}T [K]{φi} = Ki and {φi}T [M ]{φi} = Mi. Then we get

ω2
i =

Ki

Mi
(5)

where Mi and Ki are the mass and stiffness of the structure in ith mode corresponding to the
eigenvector φi and the resonant frequency ωi.

Finally, the natural frequencies and the corresponding mode shapes (shown in Fig. 4) for all
out-of-plane modes are extracted in the postprocessing step. The numerical values of frequencies
for the first 28 modes are given in Table 2.
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2.2. Experimental procedure
Use of a Laser Doppler Vibrometer (LDV) [4] is an attractive method for noncontact dynamic
displacement measurements with high positional accuracy. LDVs measure out-of-plane velocities
by interferometrically measuring the change in frequency and phase of the back scattered laser
light reflected from the surface. In the microsystems analyzer (MSA), the laser light is fed
through a microscope to reduce the focused spot size of the laser light [4, 18]. This is important
since the velocity is averaged over the spot area and the motion of the small features can only
be measured with a small spot size [4]. Single point LDVs require multiple measurements for
establishing the mode shapes. Since it is not possible to measure input forces directly, one
common technique is to use the excitation voltage as a reference [4]. Response measurements
can be sequentially taken at several points, and then combined to provide mode shapes [18]. We
have used a Scanning Laser Vibrometer for the experiments conducted in this study.

Vibrometer Channel

V
(t)

Vibrometer
Reference Channel

Input 
Signal

Electrical
Excitation

Vibrating 
Plate

Scanning Head

+
-

Fixed Plate

LASER

Figure 2. Working principle of the laser doppler vibrometer.

The working principle of the set-up is schematically shown in Fig. 2. The experimentation
involves electrical excitation (say Vinput = Vdc +Vac,where Vac � Vdc) that causes the suspended
structure to vibrate. The laser spot from the interferometer in the scanning head is positioned
on a scan point on the object by means of mirrors and is scattered back. The back scattered
laser light interferes with the reference beam in the scanning head. A photo detector records the
interference. A decoder in the vibrometer provides a voltage which is proportional to the velocity
of the scanned point parallel to the measurement beam. The voltage is digitized and processed
as the vibrometer signal. The output signal can be obtained as velocity or displacement signal
using the velocity or the displacement decoder.

The MEMS device under investigation here is an electrothermal actuator. In such devices,
hot and cold junctions are generated on application of voltage due to the Peltier effect. Due
to thermal expansion, the structure tends to bend. Upon application of a sinusoidal signal,
structure starts to vibrate about its equilibrium position. To capture the modal parameters
(resonant frequency and damping) of the structure, we apply a pseudorandom signal of voltage
8± 2 V during the experimentation. After averaging the FRF of the output signal over 5 times,
we determine the resonant frequency of the structure using the frequency response curve, and
the corresponding mode shapes are obtained from presentation mode of the vibrometer. Figure
3 shows the frequency response of the structure, natural frequencies and the corresponding mode
shapes for the first 28 out-of-plane modes shown in Figure 4.
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3. Results and discussion
We now present the results of the numerical and experimental studies. In contrast to such studies
at macroscales, we use the experimental results here to validate the numerical results since the
finite element model of the structure is likely to have more errors due to uncertainties in material
properties and geometric parameters. Figure 3 shows the frequency response of the resonator.
From the FRF the modal parameters are extracted and the natural frequencies corresponding
to the first 28 modes are as listed in Table 2, and the corresponding mode shapes are shown in

Table 2. Comparison between experimental and numerical results.

Mode fexp fnum % error Mode fexp fnum % error
No. (kHz) (kHz) |fexp−fnum

fexp
| × 100 No. (kHz) (kHz) |fexp−fnum

fexp
| × 100

1 32.94 33.97 3.13 15 374.80 377.77 0.79
2 53.75 54.08 0.62 16 395.00 409.64 3.71
3 54.42 54.85 0.79 17 403.30 413.23 2.46
4 73.98 74.14 0.21 18 410.50 413.82 0.81
5 101.80 104.77 2.92 19 424.20 418.26 1.40
6 173.30 174.31 0.58 20 430.20 434.55 1.01
7 183.30 184.44 0.62 21 448.40 445.68 0.61
8 263.90 257.90 2.27 22 482.20 472.75 1.96
9 288.40 296.52 2.81 23 581.60 557.66 4.11
10 295.60 306.24 3.59 24 730.00 731.57 0.21
11 299.50 310.08 3.53 25 740.50 744.76 0.57
12 303.10 314.22 3.67 26 769.40 783.96 1.89
13 324.70 326.12 0.44 27 800.90 791.71 1.14
14 360.20 358.23 0.55 28 878.60 920.52 4.77

Fig. 4. Since the structure is symmetric we can notice many degenerate modes (pseudorepeated
modes) [19] such as second and third modes of vibration. Similarly 9th and 10th, 16, 17, 18 and
19th modes are again degenerate. The difference between eigenvalues of degenerate modes in
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Figure 3. Frequency response function from experimental studies.
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Numerical Experimental

f1=33.97 kHz f2=54.08 kHz

f3=54.85 kHz f4=74.14 kHz

f5=104.77 kHz f6=174.31 kHz

f7=184.44 kHz f8=257.90 kHz

f9=296.52 kHz f10=306.24 kHz

f11=310.08 kHz f12=314.22 kHz

f13=326.12 kHz f14=358.23 kHz

f15=377.77 kHz f16=409.64 kHz

f17=413.23 kHz f18=413.82 kHz

Max Min

f1=32.94 kHz f2=53.75 kHz

f3=54.42 kHz f4=73.98 kHz

f5=101.80 kHz f6=173.30 kHz

f7=183.30 kHz f8=263.90 kHz

f9=288.40 kHz f10=295.60 kHz

f11=299.50 kHz f12=303.10 kHz

f13=324.70 kHz f14=360.20 kHz

f15=374.80 kHz f16=395.00 kHz

f17=403.30 kHz f18=410.50 kHz
Min Max
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Numerical Experimental

f19=418.26 kHz f20=434.55 kHz

f21=445.68 kHz f22=472.75 kHz

f23=557.66 kHz f24=731.57 kHz

f25=744.76 kHz f26=783.96 kHz

f27=791.71 kHz f28=920.52 kHz

Max Min

f19=424.20 kHz f20=430.20 kHz

f21=448.40 kHz f22=482.20 kHz

f23=581.60 kHz f24=730.00 kHz

f25=740.50 kHz f26=769.40 kHz

f27=800.90 kHz f28=878.60 kHz

Min Max

Figure 4. Comparison between numerical and experimental mode shapes.

the symmetric structure indicates of nonuniformities in the modal parameters such as mass
and stiffness of the structure [19]. These nonuniformities will further change the dynamic
performance characteristics of the system. For example, nonuniformities in mass may result
in changes in inertial forces, whereas nonuniformities in stiffness may result in unexpectedly
large deflections at certain frequencies in the harmonic response of the system [19]. It can be
noticed from Table 2 that numerical and experimental values are very close, with an error less
than 5% for all the modes, and the degenerate modes are very close to each other hence reducing
the nonuniformities present in the system.

4. Conclusions
We have experimentally determined 28 modes of out-of-plane vibrations of a MEMS resonator.
The experimentally measured frequencies are compared with numerically computed values from
the modal analysis of the resonator carried out using FEM analysis. The numerically found
frequencies match the experimental values within 5% error — can be incredible result especially
for higher modes. Our work shows that micro resonators or micro mechanical structures can
be excited in fairly higher modes, in contrast to their macro counterparts, rather easily. The
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accuracy of results shows that one can confidently employ the higher modes for sensing in MEMS
devices. This is particularly significant in the light of the reported results in the literature that
Q-factor of a resonator goes up in higher modes if the Q is dominated by squeeze film damping
effects.
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