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Abstract
With the arrival of new emerging technologies for main memory, the cost of read-

ing from memory will be significantly cheaper than the cost of writing to memory.
This rises new challenges to algorithm design since many of the classic algorithms
use approximately the same number of reads and writes. My thesis will study sev-
eral aspects of this asymmetry between read and write costs. First, it will present
and study several cost models that account for this asymmetry in various settings,
including both sequential and parallel models. Then the thesis will introduce new
algorithms and techniques that are more efficient on the new models compared to
standard approaches. To justify whether the approaches and algorithms translate to
better efficiency on real hardware, I will attempt to run experiments on upcoming
memory systems (this will depend on when the hardware becomes available).
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1 Introduction
Classic research on algorithms has focused on settings in which reads and writes (to the main
memory) have similar cost. However, such assumption might not be the reality in the future since
we are on the cusp of the emergence of a new wave of nonvolatile memory technologies that are
projected to become the dominant type of main memory in the near future [26, 30, 35, 44].
A key property of these new memory technologies (e.g., phase-change memory, spin-torque
transfer magnetic RAM, and memristor-based resistive RAM) is their asymmetric read-write
costs: Writes can be an order of magnitude or more higher energy, higher latency, and lower
(per-module) bandwidth than reads [3, 5, 11, 12, 16, 21, 22, 27, 29, 33, 38, 42]. Given 50
years of research on models in which memory access is assumed to be symmetric, this high cost
inevitably arises the following challenges:

• How should existing computational models be modified to take account for this asymmetry
between reads and writes, and how should such memory be modeled?

• How would this asymmetry impact algorithm design?

• What new techniques are useful for trading-off doing more cheaper operations (say more
reads) in order to do fewer expensive operations (say fewer writes)?

• What are the fundamental limitations on such trade-offs (lower bounds)?

While several prior works, which are introduced in Section 2, have explored write-efficient
algorithms for databases or for the unique properties of NAND Flash, our ongoing work seeks
to develop a broader theory of algorithm design for asymmetric memories and provides a first
step towards answer these fundamental questions. From the model side, my first paper on this
topic [13] defined an Asymmetric PRAM model that differs from the classic PRAM in charging
ω (an integer and ω � 1) for writes (reads are unit cost), as well as a variety of external-memory-
style models that transfer data in blocks. The follow-on paper [12] defined the sequential (M,ω)-
Asymmetric RAM model that combines a small symmetric-cost memory of size M with a large
asymmetric-cost memory. Later, the third paper [7] defined the Asymmetric Nested-Parallel
model, which combines features of the sequential parallel model but with a distinctive memory
allocation scheme. It is shown in the paper that the model, with its costs analyzed based on the
computation DAG (with no notions of processors or scheduling), maps efficiently onto a more
concrete machine model, when using a work-stealing scheduler. These models are sufficient to
evaluate the cost for both sequential and parallel algorithms while considering the asymmetry
between reads and writes.

With these models, a number of algorithmic results are presented in this thesis. For sequential
algorithms, the lower and/or upper bounds are discussed on Fast Fourier Transform, sorting net-
works, comparison sorting, diamond DAG, longest common subsequence, edit distance, search

1



tree, priority queue, 2D convex hull, Delaunay triangulation, BFS, DFS, topological sort, bicon-
nected components, strongly connected components, single-source/all-pair shortest-paths, and
minimum spanning tree. A common theme in many of these algorithms is that they use redun-
dant computations and trade off writes for reads. A more detailed summary of the results are
given in Section 4.

This thesis also introduces various parallel algorithms for a number of fundamental problem-
s. For the problems studied, our goal is to reduce the number of writes while preserving work-
efficiency and low depth (a.k.a., low span). Reduced write, work efficient, low depth Asymmetric
Nested-Parallel algorithms are presented for reduce, list contraction, tree contraction, compari-
son sorting, FFT, matrix multiplication, breadth-first search, ordered filter, planar convex hull,
and minimum spanning tree algorithm. See Section 5 for details of results. All these algorithms
significantly reduce the number of writes over the best prior algorithms. These algorithms re-
veal several interesting techniques for significantly reducing shared memory writes in parallel
algorithms without asymptotically increasing the number of shared memory reads.

Although a number of algorithms on a variety of problems are introduced, it is interesting
whether there exist some general techniques that can improve the performance of types of al-
gorithms, and this might be one of the future (proposed) work. One example is the randomized
incremental algorithms. All of these algorithms share a similar framework, and a general solution
may reduce writes for all of these algorithms.

The current results stand on the theory side, but it is on the plan to actually run experiments
on the algorithms in the future as soon as the new memory system is available. Based on the
results, it will be possible to justify the algorithms and techniques that are useful in practice.

Thesis statement: The goal of this thesis is to develop efficient algorithms for asymmetric
memory on read and write costs. This includes proposing modified computational models and
techniques, and designing specific algorithms and experiment verification.

2 Background and Related Work
Emerging nonvolatile/persistent memory (NVM) technologies such as Phase-Change Mem-

ory (PCM), Spin-Torque Transfer Magnetic RAM (STT-RAM), and Memristor-based Resis-
tive RAM offer the promise of significantly lower energy and higher density (bits per area)
than DRAM. With byte-addressability and read latencies approaching or improving on DRAM
speeds, these NVM technologies are projected to become the dominant memory within the
decade [26, 30, 35, 44], as manufacturing improves and costs decrease.

Although these NVMs could be viewed as just a layer in the memory hierarchy that provides
persistence, there is one important distinction: Writes are significantly more costly than reads,
suffering from higher latency, lower per-chip bandwidth, higher energy costs, and endurance
problems (a cell wears out after 108–1012 writes [35]). Thus, unlike DRAM, there is a significant
(often an order of magnitude or more) asymmetry between read and write costs [3, 5, 21, 22,
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29, 33, 38, 42], and more technical details are provided in Appendix A. Motivated by these
techniques, the study of write-efficient (write-limited, write-avoiding) algorithms, which reduce
the number of writes relative to existing algorithms, is of significant and lasting importance.

Related Work. Read-write asymmetry has been the focus of many systems efforts [18, 34,
43, 45]. Reducing the number of writes has long been a goal in disk arrays, distributed systems,
cache-coherent multiprocessors, and the like, but that work has not focused on NVMs and the
solutions are not suitable for their properties. Several papers [6, 23, 25, 36, 37, 41] have looked
at read-write asymmetries in the context of flash memory. However, due to the different physical
properties between main memory and flash memory, these results cannot directly apply to the
new emerging problems. A few prior works [17, 40, 41] have also looked at algorithms for
asymmetric read-write costs in emerging NVMs, in the context of databases. Our proposed work
extends far beyond this, providing a systematic study of models, algorithms, and runtime systems
for asymmetric read-write costs.

Carson et al.’s work [16] nevertheless is similar to our results. They presented upper and low-
er bounds for various linear algebra problems and direct N-body methods under asymmetric read
and write costs. However, they restricted their focus to the class of “communication-avoiding”
algorithms, i.e., parallel algorithms that minimize the (unweighted) sum of reads and writes, in-
stead of the overall cost. Their results are more useful for distributed or external memory setting,
while we focus on sequential and share-memory parallel algorithms.

3 Computational Models
The first step towards designing algorithms on asymmetric memory is to propose appropriate

machine models that estimate the cost of an algorithm running on an asymmetric memory. In
this section, several models are introduced for various settings.

3.1 The Asymmetric RAM Model

Random-access machine (RAM) is an abstract machine in the general class of register machines.
The RAM model is the most commonly used model for computational complexity analysis. In
the RAM model, any operation and memory access (read or write) takes unit time. This model
does not distinguish different levels in the memory hierarchy.

To define a new machine model of the computation on asymmetric memories, two modifi-
cations are required: first, a write should cost more than a read; second, a fast-memory should
be included since the registers and caches will still be symmetric on read and write costs in the
future. In the simplest model we consider, there is an asymmetric random-access memory such
that reads cost 1 and writes cost ω � 1, as well as a constant number of symmetric “registers”
that can be read or written at unit cost. More generally, we consider settings in which the amount
of symmetric memory is M � n, where n is the input size: Thus, we give the definition of
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(M,ω)-Asymmetric RAM (ARAM):
Definition 1. The (M,ω)-Asymmetric RAM (ARAM) is comprised of a symmetric small-memory
of size M , an asymmetric large-memory of unbounded size, and an integer write cost ω. The
ARAM cost Q is the number of reads from large-memory plus ω times the number of writes to
large-memory. The time T is Q plus the number of reads and writes to small-memory.

The cost Q, measures the I/O cost of the main memory, which is similar to the I/O cost of the
classic external memory model except that the block size are ignored. This cost is useful for I/O
bounded algorithms like sorting, FFT, linear time graph algorithms and many data structures. The
time T resembles the cost of a RAM model which measures the cost of both I/O and operations,
and is used in analyzing computation-intensive algorithms like dynamic programming, graph and
geometry algorithms.

3.2 The Asymmetric Nested-Parallel Model

For the purpose of parallelism, this thesis introduces a parallel variant [7] of the (M,ω)-Asymmetric
RAM (ARAM) model to analyze algorithms. The goal is to allow for dynamic parallelism and to
analyze algorithms using work and depth (also called span or critical path length). The nested-
parallel model [9] therefore is used to extended with asymmetric memory. This thesis includes
some detail on the model since there are some subtleties on how the small symmetric memory is
defined in a dynamically parallel model, and some care was given to the particular formulation
we give here. This thesis also describe a more concrete machine model and map costs from the
(M,ω)-ARAM model to it.

In the nested-parallel model a computation starts and ends with a single root task. Each task
has a constant number of registers, and runs a standard instruction set from a random access
machine (RAM), except it has one additional instruction called FORK. The FORK instruction
takes an integer n and creates n child tasks, which can run in parallel. Child tasks get a copy
of the parents register values, with one special register getting an integer from 1 to n indicating
which child it is. The parent task suspends until all its children finish1 at which point it continues
with the registers in the same state as when it suspended, except the program counter advanced
by one. We say a computation has binary branching if n = 2. In the model a computation can
be viewed as a (series-parallel) DAG in the standard way. We assume every instruction has a
weight (cost). The work (W ) is the sum of the weights of the instructions, and the depth (D)
is the weight of the heaviest path. The nesting depth (δ) is the maximum depth of forked tasks
during the computation.

In the (M,ω)-ARAM we assume a stack allocated symmetric small memory, and a heap
allocated assymetric large memory. Stack allocated memory is memory allocated by a task,
available to the task and its children, but invalid when the task finishes. It is under this model,
for example, that the memory bounds for work stealing are shown [15]. Heap allocated mem-
ory is allocated by a task and can be accessed by any other task, including ancestor tasks (it is

1We assume, as in the RAM, there is a FINISH instruction.
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completely shared memory). Each instruction has weight one, except writes to the heap memory,
which have weight ω ≥ 1 (in practice, ω � 1). In this paper we assume the amount of stack
memory allocated by all but the leaf tasks (tasks with no forks) is constant. The amount of sym-
metric stack memory a leaf task can allocate is bounded by a parameter Ml. This separation into
stack and heap allocated memory, and the distinction between leaf and non-leaf tasks for stack
memory size, is made both because it is a convenient model for using the different memories,
and also because it allows an efficient mapping onto a fixed number of processors, as justified
below.

We call an algorithm to be a bulk-synchronous algorithm if there is only one level of nesting.
The root task proceeds in a sequence of R rounds. In each round i it forks ni child tasks (each
a leaf) and waits for them to finish. The root task can run arbitrary computation between such
rounds. We refer define the iteration count I as

∑R
i=1 ni.

To justify the model here we outline a key result for mapping costs in the model onto a more
concrete target machine. For the target machine we adapt the PRAM model as follows. We
assume P processors, each a RAM running its own instructions with a small symmetric local
memory of size M . The processors share an unbounded asymmetric global memory, to which
concurrent reads and writes are allowed. We also allow any processor to read the local memory
of another processor (concurrently), but not to write to it. A request to read the local memory of
another processor is viewed as requiring a write out to the global memory in order to enable the
read, and hence is charged ω. On each processor any write to the global memory also takes ω
time. All other instructions take unit time. For synchronizing we assume an atomic fetch-and-add
to the global memory. We refer to this model as the (M,ω)-Asymmetric PRAM.

One useful aspect of our model is that although it might seem that every FORK would re-
quire at least one write to the global memory (and hence the (M,ω)-ARAM model would need
to charge ω for every FORK instead of 1), this is not the case when using a work-stealing sched-
uler [15], as shown by the following theorem.

Theorem 3.2.1. A computation with binary branching factor on the (M,ω)-ARAM model with
W work, D depth, δ nesting depth, and Ml leaf stack memory, can be simulated on an (M,ω)-
Asymmetric PRAM with P processors and M = O(δ +Ml) in expected O(W/P + ωD) time.

The theorem provides justification for charging only unit cost for FORK, and for example,
means that the standard Reduce via a binary tree incurs only Θ(n + ω) work instead of Θ(ωn)

work on the (M,ω)-ARAM. Note also that our separate accounting for leaf stack memory in
the (M,ω)-ARAM model, and the observation that the non-leaf tasks of all the algorithms in
this paper each allocate only O(1) stack memory, means that the bound in the lemma is only a
constant number of writes per steal, whereas without the separate accounting, it would be O(Ml)

writes per steal.
The following lemma provides additional support for the model.

Lemma 3.2.2. A bulk-synchronous computation with arbitrary branching on the (M,ω)-ARAM
model with W work, D depth, R rounds, I iteration count, and Ml leaf stack memory, can be
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simulated on an (M,ω)-Asymmetric PRAM with P processors and M = O(Ml) in O((W +

ωI)P +D + ωR) time.

3.3 The Asymmetric External Memory Model and Cache Models

The widely studied External Memory (EM) model [2] (also called I/O model, Disk Model and
Disk Access Model) assumes a two level memory hierarchy with a fixed size primary memory
(cache) of size M and a secondary memory of unbounded size. Both are partitioned into blocks
of size B. Standard RAM instructions can be used within the primary memory, and in addition
the model has two special memory transfer instructions: a read transfers (alternatively, copies)
an arbitrary block from secondary memory to primary memory, and a write transfers an arbitrary
block from primary to secondary memory. The I/O complexity of an algorithm is the total num-
ber of memory transfers. The Asymmetric External Memory (AEM) model [13] simply adds a
parameter ω to the EM model, and charges this for each write of a block. Reading a block still
has unit cost.

The Ideal-Cache model [24] is a variant of the EM model. The machine model is still orga-
nized in the same way with two memories each partitioned into blocks, but there are no explicit
memory transfer instructions. Instead all addressable memory is in the secondary memory, but
any subset of up to M/B of the blocks can have a copy resident in the primary memory (cache).
Any reference to a resident block is a cache hit and is free. Any reference to a word in a block that
is not resident is a cache miss and requires a memory transfer from the secondary memory. The
cache miss can replace a block in the cache with the loaded block, which might require evicting
a cache block. The I/O or cache complexity of an algorithm is the number of cache misses.

The main purpose of the Ideal-Cache model is for the design of cache-oblivious algorithms.
These are algorithms that do not use the parameters M and B in their design, but for which one
can still derive effective bounds on I/O complexity. This has the advantage that the algorithms
work well for any cache sizes on any cache hierarchies.

This thesis defines the Asymmetric Ideal-Cache model [13] by distinguishing reads from
writes, as follows. A cache block is dirty if the version in the cache has been modified since it
was brought into the cache, and clean otherwise. When a cache miss evicts a clean block the cost
is 1, but when evicting a dirty block the cost is 1 + ω, 1 for the read and ω for the write.

For the classic Ideal-Cache model, an optimal (offline) cache eviction policy is assumed—
i.e., one that minimizes the I/O complexity. It is well known that the optimal policy can be
approximated using the online least recently used (LRU) policy at a cost of at most doubling the
number of misses, and doubling the cache size [39]. For the new model, we again assume an ideal
offline cache replacement policy—i.e., minimizing the total I/O cost. Under this model we note
that the LRU policy is no longer 2-competitive. However, the following variant is competitive
within a constant factor. The idea is to separately maintain two equal-sized pools of blocks in
the cache (primary memory), a read pool and a write pool. When reading a location, (i) if its
block is in the read pool we just read the value, (ii) if it is in the write pool we copy the block to
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the read pool, or (iii) if it is in neither, we read the block from secondary memory into the read
pool. In the latter two cases we evict the LRU block from the read pool if it is full, with cost 1.
The rules for the write pool are symmetric when writing to a memory location, but the eviction
has cost ω + 1 because the block is dirty. We call this the read-write LRU policy. This policy is
competitive with the optimal offline policy:
Theorem 3.3.1. For any sequence S of instructions, if it has cost QI (S) on the Asymmetric
Ideal-Cache model with cache size MI , then it will have cost

QL (S) ≤ ML

(ML −MI)
QI (S) + (1 + ω)MI/B

on an asymmetric cache with read-write LRU policy and cache sizes (read and write pools) ML.
With the Ideal-Cache model, a Cache-Oblivious paradigm can be analyzed. Here algorithms

are defined as nested parallel computations based on parallel loops, possibly nested. The depth
of the computation is the longest chain of dependencies, and the depth of a parallel loop is
the maximum of the depths of its iterates. The computation has a natural sequential order by
converting each parallel loop to a sequential loop.

Using known scheduling results the depth and sequential cache complexity of a computation
are sufficient for deriving bounds on parallel cache complexity. In particular, let D be the depth
and Q1 be the sequential cache complexity. Then for a p-processor shared-memory machine
with private caches (each processor has its own cache) using a work-stealing scheduler, the total
number of missesQp across all processors is at mostQ1+O (pωDM/B) with high probability [1,
11]. For a p-processor shared-memory machine with a shared cache of size M + pBD using a
parallel-depth-first (PDF) scheduler, Qp ≤ Q1 [8, 11]. These bounds can be extended to multi-
level hierarchies of private or shared caches, respectively [10].

4 Sequential Algorithms on the (M,ω)-ARAM Model
This section presents a number of lower and upper bounds for the (M,ω)-ARAM [12, 13],

as summarized in Table 5.1. These results consider a number of fundamental problems and
demonstrate how the asymptotic algorithm costs decrease as a function of M , e.g., polynomially,
logarithmically, or not at all.

Lower bounds To start with, we show lower bounds on a variety of fundamental problems.
For these problems, we show that these problems (or computations) cannot take advantage at all
from cheaper reads, unless ω > M , which is rarely to be true.

For FFT we show an Ω(ω(n logωM n)) lower bound on the ARAM cost, and a matching
upper bound. Thus, even allowing for redundant (re)computation of nodes (to save writes), it is
only possible to achieve asymptotic improvements with cheaper reads when ω > M . Prior lower
bound approaches for FFTs for symmetric memory fail to carry over to asymmetric memory,
so a new lower bound technique is required. We use an interesting new accounting argument
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Table 4.1: Summary of Our Results for the (M,ω)-ARAM

problem ARAM cost Q(n) or
Q(n,m)

ARAM time T (n) or
T (n,m)

FFT Θ(ωn log n/ log(ωM)) Θ(Q(n) + n log n)

sorting networks Ω(ωn log n/ log(ωM)) Ω(Q(n) + n log n)

sorting (comparison) O(n(log n+ ω)) Θ(n(log n+ ω))

diamond DAG Θ(n2ω/M) Θ(Q(n) + n2)

longest common subsequence,
edit distance

O(n2ω/min(ω1/3M,M3/2)) O(n2(1 +

ω/min(ω1/3M2/3,M3/2)))

search tree, priority queue O(ω + log n) per update O(ω + log n) per update
planar convex hull, triangulation O(n(log n+ ω)) Θ(n(log n+ ω))

BFS, DFS, topological sort, bi-
connected components, SCC

Θ(ωn+m) Θ(ωn+m)

all-pairs shortest-path O(n2(ω + n/
√
M)) O(Q(n) + n3)

single-source shortest path O(min(n(ω+m/M), ω(m+

n log n),m(ω + log n)))

O(Q(n,m) + n log n)

minimum spanning tree O(mmin(log n, n/M) + ωn) O(Q(n,m) + n log n)

for fractionally assigning a unit weight for each node of the network to subcomputations that
each have cost ωM . The assignment shows that each subcomputation has on average at most
M log(ωM) weight assigned to it, and hence the total cost across all Θ(n log n) nodes yields the
lower bound.

For sorting, we show the surprising result that on asymmetric memories, comparison sorting
is asymptotically faster than sorting networks. This is in contrast with the RAM model (and
parallel models such as the PRAM, I/O models, etc.), in which the asymptotic costs are the
same! The lower bound leverages the same key partitioning lemma as in the FFT proof.

We present a tight lower bound for DAG computation on diamond DAGs that shows there is
no asymptotic advantage of cheaper reads if we allow no recomputation. The proof is based on
a conclusion from Cook and Sethi [19], and even simplifies the proof of the original symmetric
setting by Hong and Kong [31].

Upper bound (algorithms) We also present several interesting algorithms that have lower cost
and time on the (M,ω)-ARAM comparing to classic approaches. A common theme in many of
the upper bounds is that they require redundant computation and a tradeoff between reads and
writes.

For the diamond DAG, despite that there exist a tight lower bound if recomputation is prohib-
ited, we show that allowing a vertex to be “partially” computed before all its immediate prede-
cessors have been computed (thereby violating a DAG computation rule), we can beat the lower
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Table 5.1: Our Results for the Asymmetric NP Model

problem work depth
Reduce Θ(n+ ω) Θ(log n+ ω)

Ordered filter Θ(n+ ωk)† O(ω log n)†
Sorting Θ(n log n+ nω)† O(ω log n)†
List contraction Θ(n) O(ω log n)†
Tree contraction Θ(n) O(ω log n)†
Minimum span-
ning tree

O(α(n)m+

ωn log(min(m
n
, ω)))†

O(ω polylog(m))†

2D convex hull O(n log k+ωn log log k)‡ O(ω log2 n)†
BFS tree Θ(m+ ωn)‡ O(ωδ log n)†

k=output size; †=with high probability; ‡=expected; α=inverse Ackerman; δ=graph diameter

bound and show asymptotic advantage. Specifically, for both the longest common subsequence
and edit distance problems (normally thought of as diamond DAG computations), we devise a
new “path sketch” technique that leverages partial aggregation on the DAG vertices. Again we
know of no other models in which such techniques are needed.

We also show how to adapt Dijkstra’s single-source shortest paths algorithm using phases so
that the priority queue is kept in small-memory. The key idea in this algorithm is to run Dijkstra’s
algorithm while only maintain a priority queue (Fibonacci heap) with limited size, which requires
some non-trivial modifications to the priority queue.

We discuss how to adapt Borůvka’s minimum spanning tree algorithm to reduce the number
of shortcuts and hence writes that are needed.

Lastly, we analyze the cost and time of many basic problems and algorithmic building blocks
which only require relatively straight-forward modifications of the algorithms. These problems
and building blocks include sorting, search tree, priority queue, 2D convex hull, Delauney trian-
gulation, BFS, DFS, topological sort, biconnected components, strongly connected components,
and all-pairs shortest-paths.

5 Parallel Algorithms on the Asymmetric NP Model

This section introduces the parallel Algorithms on the Asymmetric NP Model [7, 13]. For
each problem studied, our goal is to reduce the number of writes while preserving work-efficiency
and low span (a.k.a., low depth). We present reduced write, work-efficient, low depth Asymmet-
ric NP algorithms for a number of fundamental problems such as reduce, sorting, list contraction,
tree contraction, breadth-first search, ordered filter, and planar convex hull. For the latter two
problems, our algorithms are output-sensitive in that the work and number of writes decrease
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with the output size. We also present a reduced write, low-depth minimum spanning tree algo-
rithm that is nearly work-efficient (off by the inverse Ackermann function). See Table 5.1 for a
summary of results. All these algorithms significantly reduce the number of writes over the best
prior algorithms. While some of these results were relatively straightforward, our algorithms for
tree contraction, sorting, MST, and convex hull are more novel. Our algorithms reveal sever-
al interesting techniques for significantly reducing shared memory writes in parallel algorithms
without asymptotically increasing the number of shared memory reads.

Sorting Most of the existing parallel sorting algorithms (e.g. mergesort, quicksort, many kinds
of sample sort) require O(n log n) writes. We discussed carefully-tuned version of sample sort
that requires O(n log n) reads and operations, O(n) writes, and has O(ω log n) depth w.h.p. The
algorithm contains three rounds of sample sort: one randomized sample sort with n/ log2 n pivots
and over-sampling ratio of log n, and two deterministic sample sort with |A|1/3 splitters where A
is the input of each recursive subproblem.

List and Tree Contraction The tree contraction problem seems to be hard using o(n) writes
for both sequential and parallel cases since all of the previous algorithms requires linear number
of writes. To solve this problem, we proposed three algorithms as tools to construct a new
algorithm. First, we introduced a new parallel list-partitioning algorithm using random sampling,
which uses linear work (time T sequentially for the ARAM) and O(ω log n) depth. Then we
proposed a new tree-partitioning algorithm using the Euler tour of the tree. The main routine is
to call the list-partitioning algorithm and thus the work and depth is the same as the list partition.
Lastly, we discussed a sequential divide-and-conquer tree-contraction algorithm to solve the base
cases using bounded local memory. Combining these three algorithm plus some extra steps, an
arbitrary tree with n nodes can be contracted using linear work (time T sequentially for the
ARAM) and O(ω log n) depth, which seems to be optimal.

Other results We also consider some basic parallel primitives and algorithms [7]. Reduce, i.e.
summing a sequence of values with respect to an associative function, can be done in Θ(n + ω)

work and Θ(ω+log n) depth on the Asymmetric NP model. These bounds may seem impossible
since the processors need to communicate. However, recall that when simulating the Asymmetric
NP on a machine, the forks and joins are in the stack memory and thus we account for the steals
in the cost. We introduced an algorithm of output-sensitive ordered filter, with Θ(n + ωk) work
and Θ(ω log n) depth, which uses our sorting algorithm as a subroutine. Our other results include
minimum spanning tree, which an additional exponential delaying is integrated into Karger, K-
lein and Tarjan’s algorithm [32], BFS, which uses a similar exponential delaying subroutine, and
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output-sensitive planar convex hull that requires non-trivial modifications to previous algorithms.

6 External-Memory and Cache-Oblivious Algorithms
This section introduces our results on External-Memory algorithms and Cache-Oblivious

algorithm [13]. It is shown that several asymptotically-optimal algorithms can each be adapted
to the asymmetric setting with reduced writes (and thus lead to asymptotically better costs on the
asymmetric models).

6.1 External-Memory Algorithms

Recall the definition of an Asymmetric External Memory (AEM) model that has a small primary
memory (cache) of size M and transfers data in blocks of size B to (at a cost of ω) and from
(at unit cost) an unbounded external memory. We show that three asymptotically-optimal EM
sorting algorithms can each be adapted to the AEM with reduced write costs.

Multi-way mergesort An l-way mergesort is a balanced tree of merges with each merge taking
in l sorted arrays and outputting one sorted array consisting of all records from the input. We
assume that once the input is small enough a different sort (the base case) is applied. For l =

M/B and a base case of n ≤ M (using any sort since it fits in memory), we have the standard
EM mergesort. With these settings there are logM/B (n/M) levels of recursion, plus the base
case, each costing O (n/B) memory operations.

Following [37, 41], we adapt multi-way mergesort by merging O(ω)M/B sorted runs at a
time (instead of M/B as in the original EM version). This change saves writes by reducing the
depth of the recursion. However, it s no longer possible to keep the base case in the primary mem-
ory, nor one block for each of the input array during a merge. Hence each merge makes O(ω)

passes over the runs, using an in-memory heap to extract values for the output run for the pass.
The new algorithm takes O (ωn/B) reads and O (n/B) write per level, and logO(ω)M/B (n/M)

levels of recursion Our algorithm and analysis is somewhat simpler than [37, 41].

Sample sort We present an sample sort algorithm on the Asymmetric External Memory model.
Classic sample sort on External Memory model is an l-way randomized sample sort that finds l =

M/B pivots at each level of recursion so that these pivots approximately partition the elements
into l buckets. This algorithm takes O(n/B) reads and writes per level and O(logM/B(n/B))

levels.
Our new sample sort on the Asymmetric External Memory uses O(ω)M/B splitters at each

level of recursion (instead of M/B in the original EM version). Again, the challenge is to both
find the splitters and partition using them while incurring only O (N/B) writes across each level
of recursion. Similar to the mergesort, the processing of each level contains O(ω) phases, and
each phase takeO (N/B) reads, and the overall writes for all phases isO (N/B). In this way, the
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amount of level of recursion decreases to O(logωM/B (n/M)) We also show how this algorithm
can be parallelized to run with linear speedup for up to p = n/M processors.

Heapsort Finally, our third sorting algorithm is a heapsort using a buffer-tree-based priority
queue. A buffer tree [4] is an augmented version of an (a, b)-tree [28], where a = l/4 and b = l

for large branching factor l. In the original buffer tree l = M/B. As an (a, b) tree, all leaves
are at the same depth in the tree, and all internal nodes have between l/4 and l children (except
the root, which may have fewer). Thus the height of the tree is O(1 + logl n). Each INSERT and
DELETE-MIN has an amortized cost of O((1/B)(1 + logl n)).

To reduce the number of writes we instead set l = O(ω)M/B. Compared to the original EM
algorithm, both our buffer-tree nodes and the number of elements stored outside the buffer tree
are larger by a factor of O(ω), which adds nontrivial changes to the data structure: (1) the buffer
tree nodes are larger by a factor O(ω), (2) consequently, the “buffer-emptying” process uses
an efficient sort on O(ωM) elements instead of an in-memory sort on M elements, and (3) to
support the priority queue, O(ωM) elements are stored outside the buffer tree instead of O(M).
With the new buffer tree, we can build a priority queue that supports n INSERT and DELETE-
MIN operations with an amortized cost of O((ω/B)(1 + logωM/B n)) reads and O((1/B)(1 +

logωM/B n)) writes per operation. Using the priority queue to implement a sorting algorithm
trivially results in a sort costing a total of O((ωn/B)(1 + logωM/B n)) reads and O((n/B)(1 +

logωM/B n)) writes.

6.2 Cache-Oblivious Parallel Algorithms

This section presents low-depth cache-oblivious parallel algorithms for sorting and Fast Fourier
Transform, with asymmetric read and write costs [11]. Both algorithms (i) have only polylog-
arithmic depth, (ii) are processor-oblivious (i.e., no explicit mention of processors), (iii) can
be cache-oblivious or cache-aware, and (iv) map to low cache complexity on parallel machines
with hierarchies of shared caches as well as private caches. We also present a linear-depth, cache-
oblivious parallel algorithm for matrix multiplication. All three algorithms use Θ(ω) fewer writes
than reads.

Sorting We show the low-depth, cache-oblivious sorting algorithm from [10] can be adapted
to the asymmetric case. The original algorithm is based on viewing the input as a

√
n×
√
n array,

sorting the rows, partitioning them based on splitters, transposing the partitions, and then sorting
the buckets. The original algorithm incurs O ((n/B) logM (n)) reads and writes. To reduce the
number of writes, our revised version partitions slightly differently: instead of viewing the input
as a
√
n ×
√
n array, we treat it as a

√
ωn ×

√
n/ω array. Then for each row, we take O(ω)

splitters and sort them. Similar to the External-Memory sorting algorithms, we can scan over
the input for O(ω) times and partition the elements into O(

√
ωn) buckets. This process recurses

until the problem size fit into the small memory.
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This new approach does extra reads to reduce the number of levels of recursion. The algorith-
m doesO ((n/B) logωM (ωn)) writes,O ((ωn/B) logωM (ωn)) reads, and has depthO

(
ω log2 (n/ω)

)
w.h.p.

Fast Fourier Transform We now consider a parallel cache-oblivious algorithm for computing
the Discrete Fourier Transform (DFT). The algorithm we consider is based on the Cooley-Tukey
FFT algorithm [20], and our description follows that of [24]. We assume that n at each level
of recursion and ω are powers of 2. The standard cache-oblivious divide-and-conquer algorith-
m [24] views the input matrix as an

√
n×
√
n matrix, and incurs O ((n/B) logM (n)) reads and

writes.

Similar to the sorting algorithm just mentioned, we change the algorithm such that now the
input is treated as a ω

√
n/ω ×

√
n/ω array. Then for each submatrix with size ω ×

√
n/ω, we

apply a brute-force calculation such that each value requires ω reads and operations, and the final
value is written just once. Such computation of the FFT requires O ((n/B) logωM (ωn)) writes,
O ((ωn/B) logωM (ωn)) reads, and has depth O (ω log n log log n).

Matrix Multiplication The standard cubic-work sequential algorithm trivially uses O (n3)

reads and Θ (n2) writes, one for each entry in the output matrix. For the EM model, the blocked
algorithm that divides the matrix into sub-matrices of size

√
M ×

√
M uses O

(
n3/(B

√
M)
)

reads and O (n2/B) writes [14, 24].

Note that the standard cache-oblivious divide-and-conquer algorithm [14, 24] recurses on
four parallel subproblems of size n/2× n/2, resulting in Θ

(
n3/(B

√
M)
)

reads and writes. To

reduce the writes by a factor of Θ (ω), we instead recurse on ω2 parallel subproblems (blocks)
of size n/ω × n/ω. Also, in the first round, we pick an integer b uniformly at random from 1
to blog2 ωc, and recurses on b× b subproblems. This new cache-oblivious matrix multiplication
algorithm requires expected O

(
n3ω/(B

√
M logω)

)
reads and O

(
n3/(B

√
M logω)

)
writes,

and has O (ωn) depth. Comparing with the previous algorithm, the overall read and write cost
of new algorithm expects to be reduced by a factor of O(logω).

7 Directions for Future Work

The previous sections in this thesis already introduce a lot of new results in models and
algorithms. However, there are still plenty of interesting topics remaining to study. Here I list
some of the potential directions for future work, which have some evidences that these problems
should be solvable. Further research beyond these topics may also be considered as time permits.
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7.1 Randomized Incremental Algorithms

In a recent ongoing work, I, together with Belloch, Shun and Sun, systematically studied ran-
domized incremental algorithms and showed that most sequential random incremental algorithms
are in fact parallel. The algorithms that are discussed include sorting; computational geometry
problems of convex hull, Delaunay triangulation, and trapezoidal maps in two dimensions, linear
programming, closest pair, and smallest enclosing disk in constant dimensions; and graph algo-
rithms to compute least-element lists (for graph-distance embeddings) and strongly connected
components.

We analyze the dependence between iterations in each algorithm, and show that the depen-
dence structure is shallow for all of the algorithms, implying high parallelism. We identify three
types of dependencies found in the algorithms studied and present a framework for analyzing
each type of algorithms. The framework is then applied to each of the algorithms to give work-
efficient polylogarithmic-depth parallel algorithms for most of the problems that we study.

It seems that generating the write-efficient versions of these algorithms are optimistic since
they share almost the same computational (dependence) structure, and this structure has some
unique properties (which are described in the paper). For example, all these algorithms try to
“add” some primitives into the current solution of a subset of the primitives, and they can usually
be processed together since they are less likely to have collisions with each other.

In that paper, a new concept is introduced and analyzed: an incremental algorithm can switch
between an online version and an offline version. An online version of an incremental algorithm
is to explicitly add a new randomly-chosen element into the existing configuration in each iter-
ation. An example is to sort by inserting each key into a binary search tree successively. An
offline version, on the other hand, keeps track of all the elements in the whole process. The
corresponding example for sorting is the quicksort: once a pivot is chosen, each element (in
the corresponding sublist) compares with the pivot simultaneously, instead of waiting until its
corresponding iteration.

Both versions are optimal in terms of work (or time complexity sequentially) so previous
research did not emphasize this difference. However, from the example of sorting, we can see
that the offline version usually has relatively lower depth, since each element knows the place
it should be “added” to the configuration immediately in its iteration. Thus the paper mainly
uses the offline version. The problem is that, since the offline version requires to keep track of
all elements in all iterations, it definitely requires more writes. The online version postpones
this tracking process, so that usually only a constant number of writes are required per element.
Thus, the online version is not only more intuitive but also generally requires less writes.

A straightforward question to ask is then:

(Potential Topic 1). Can the randomized incremental algorithms be optimal on both work and
depth, and also write-efficient?
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To solve it, we may want to figure out a hybrid solution of the online and offline versions,
with other tools like exponential delaying.

7.2 Data Structures

The algorithms studied in previous sections are already based on many data structures. For ex-
ample, a write-efficient random binary search tree is used in the sequential sorting algorithm, and
a write-efficient variant of Fibonacci heap is used in the single-source shortest-path algorithm,
both in Section 4. Despite of designing problem-based data structure, it is also interesting to
know whether the commonly-used data structures can be write-efficient, such that we can apply
them directly in the algorithms, just like the symmetric setting (equal read and write cost).

(Potential Topic 2). Can the commonly-used data structures, such as search trees, heaps,
augmented trees, etc., be write-efficient? If so, can they be parallelized?

The answer of sequential solutions seems promising. For example, a red-black tree is a
candidate that each insertion and deletion takes amortized constant work. It seems that AVL tree,
weight-balance tree and treap should all have the property, although further analysis is required.
The parallel version of such algorithms seems much harder, but at least for treap, the solution
should exist.

Balanced binary search tree is useful in many applications and can be used to implement a
priority queue. However, some specific types of heap, like a Fibonacci heap, are still useful in
certain situations, and it is meaningful to know their performance, i.e. the required numbers of
writes, in different applications.

Augmented trees usually require logarithmic writes per operation, which is less efficient in
terms of the number of writes. Similarly to the external sorting algorithms in Section 6, it seems
possible to trade off writes for reads. It is interesting to study the best trade-off point, and the
parallel implementations (to handle concurrency).

These data structures are just some examples that may lead to interesting results. Other data
structures will also be studied if time permits.

7.3 Experiment Verification

In spite of the interesting theoretical results mentioned in this thesis, since the motivation of
this research is driven by practical considerations, it is essential to confirm whether our new
algorithms and techniques actually perform better on the new memory system. Although the
new memory is not available at this time, an internal version for testing might be accessible
soon, and such experiment should get started immediately.
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(Potential Topic 3). Do the new algorithms have better performance on the new memory? If
so, by how much? Also, what techniques generally perform well, and why or why not?

Here we use the sorting algorithm to be an example again, which is one of the most commonly-
used algorithms in all different styles of systems and environments. The classic solutions are
based on quicksort (constant pivots for sequential implementation or multiple pivots for parallel
implementation). The costs of these algorithms in our new models are high, but will they ac-
tually perform well since the latency may be hidden by the caches? Nevertheless, at least for
what I understand, the parallel implementation is very likely to be bottlenecked by writes. The
performances of the classic algorithms will be the baseline to be compared with.

In different sections of this thesis, we mentioned six different new sorting algorithms in vari-
ous settings. For the sequential and parallel sorting algorithm on ARAM, the focus is to minimize
the cost (I/O cost and time) of the algorithm, rather than actually proposing an efficient imple-
mentation. In the experiment, it is also important to discuss the details to write the code so that
they will be both efficient in terms of complexity and real-world performance. For external and
cache-oblivious sorting algorithms, they have already corresponded to efficient implementations,
so it is interesting to know that which of them is faster than others (especially in parallel) and
understand the reasons. Lastly, the final question is, do the new algorithms perform better than
the baseline algorithms, and does the speedup (or reduction on energy consumption) follow our
theoretical analyses?

Similar questions can be ask to other fundamental primitives for algorithm design, like search
trees and graph algorithms including BFS, shortest-path, etc. If the answers of Topic 3 on these
primitives are positive, then a straight-forward but significant next step is to yield a library that
abstracts the interfaces of these problems and provide efficient implementations. In this way,
further algorithm design under this setting can directly use this implementation, rather than con-
structing every subroutine from scratch.

(Potential Topic 4). To write a library that provides efficient implementations of fundamental
algorithms is of significant importance.
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A Motivation: Detail Information of Asymmetric Memory
While DRAM stores data in capacitors that typically require refreshing every few milliseconds,
and hence must be continuously powered, emerging NVM technologies store data as “states” of
the given material that require no external power to retain. Energy is required only to read the cell
or change its value (i.e., its state). While there is no significant cost difference between reading
and writing DRAM (each DRAM read of a location not currently buffered requires a write of the
DRAM row being evicted, and hence is also a write), emerging NVMs incur significantly higher
cost for writing than reading. This large gap seems fundamental to the technologies themselves:
to change the physical state of a material requires relatively significant energy for a sufficient
duration, whereas reading the current state can be done quickly and, to ensure the state is left
unchanged, with low energy. Existing research has shown such asymmetry, for example:
• A cell in Spin-Torque Transfer Magnetic RAM can be read in 0.14 ns but uses a 10 ns

writing pulse duration, using roughly 10−15 joules to read versus 10−12 joules to write [21]
(these are the raw numbers at the materials level).

• A Memristor Resistive RAM cell uses a 100 ns write pulse duration, and an 8MB Mem-
ristor RRAM chip is projected to have reads with 1.7 ns latency and 0.2 nJ energy versus
writes with 200 ns latency and 25 nJ energy [42], over two orders of magnitude differences
in latency and energy.

• Phase-change memory is the most mature of the three technologies, and early generations
are already available as I/O devices. A recent paper [33] reported 6.7 µs latency for a 4KB
read and 128 µs latency for a 4KB write. Another reported that the sector I/O latency and
bandwidth for random 512B writes was a factor of 15 worse than for reads [29]. As a
future memory/cache replacement, a 512MB PCM memory chip is projected to have 16 ns
byte reads versus 416 ns byte writes, and writes to a 16MB PCM L3 cache are projected
to be up to 40 times slower and use 17 times more energy than reads [22].

While these numbers are speculative and subject to change as the new technologies emerge
over time, there seems to be sufficient evidence that writes will be considerably more costly
than reads in these NVMs. Thus, studying write-efficient (parallel) algorithms and systems is of
significant, lasting importance.

Note that, unlike SSDs and earlier versions of phase-change memory products, these emerg-
ing memory products will sit on the processor’s memory bus and be accessed at byte granularity
via loads and stores (like DRAM). Thus, the time and energy for reading can be roughly on par
with DRAM, and depends primarily on the properties of the technology itself relative to DRAM.
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