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Module 5: Multiple Regression Analysis 
Tom Ilvento, 

University of Delaware, College of Agriculture and Natural Resources, 
Food and Resource Economics

I
n the last module we looked at the regression model with
a single independent variable helping to explain a single
dependent variable.  We called this a bi-variate or simple

regression because there is only a single independent
variable.  While this is a good place to start, the world is
often more complex than a single explanation or driver for
our model.  Multiple regression allows us to have many
independent variables in a model and examine how each
one uniquely helps to explain or predict a single dependent
variable.

This module will introduce multiple as an extension of bi-
variate regression.  The output of the regression model will
be very similar, except there will be several coefficients to
examine.  In addition, the interpretation of the regression
coefficients will change in multiple regression.  Now we will
look at the effect of an independent variable on a dependent
variable while controlling for the other independent variables
in the model.  The notion of statistical control is a very
important feature in regression and it makes it a powerful
tool when used properly.

BASICS OF MULTIPLE REGRESSION

In review, we said that regression fits a linear function to a
set of data.  It requires that we have a single dependent
variable that we are trying to model, explain, or understand.
The dependent variable must be a quantitative variable
(preferably measured on a continuous level).  Regression
estimates a set of coefficients that represent the effect of a
single variable or a set of independent variables on the
dependent variable.  The independent variables can be
measured on a qualitative level (as in categorical variables
represented by dummy variables), an ordinal level, or at a
continuous level.

 Key Objectives

• Understand how the 
regression model changes
with the introduction of
several independent
variables, including how to
interpret the coefficients

• Understand the assumptions
underlying regression 

• Understand how to use
regression to represent a
nonlinear function or
relationship

• Understand how dummy
variables are interpreted in
multiple regression

In this Module We Will: 

• Run regression using Excel
with many independent
variables

• Look at and interpret the
assumptions in regression

• Estimate a nonlinear
function using regression
and a trend analysis with
seasons represented by
dummy variables
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In multiple regression we have more than one independent
variable in the model.  This allows us  to fit a more
sophisticated model with several variables that help explain
a dependent variable.  For example, catalog sales may be a
function of more than just a person’s salary.  Factors such as
a person’s age, whether they own their home, or the number
of catalogs sent to the person may also help explain sales.

Multiple regression allows us to include additional variables
in the model and estimate their effects on the dependent
variable as well.  In multiple regression we still estimate a
linear equation which can be used for prediction.  For a case
with three independent variables we estimate:

Once we add additional variables into the regression model,
several things change, while much remains the same.  First
let’s look at what remains the same.  The output of
regression will look relatively the same.  We will generate a
R Square for our model that will be interpreted as the
proportion of the variability in Y accounted for by all the
independent variables in the model.  The model will include
a single measure of the standard error which reflects an
assumption of constant variance of Y for all levels of the
independent variables in the model.  

The ANOVA table will look similar in the multiple regression.
The Total Sum of Squares:

will be decomposed into a part explained by our model (Sum
of Squares Regression) and a part unexplained (Sum of
Squares Error or Residual).  These will be divided by their
respective degrees of freedom.  The SSR will be divided by
its degrees of freedom, which is the number of independent
variables in the model (denoted as k).  Once we divide the
sum of squares by the degrees of freedom they are noted as
Mean Squared Regrerssion (MSR) and Mean Squared Error
(MSE).  

The F-test will still be the ratio of the two variances  - MSR
divided by MSE - but the interpretation of the statistical test
follows a null hypothesis that none of the variables in the
model are significantly different from zero.  In other words,
an F-test with a significance level less than .05 indicates that
at least one of the variables in the model helps to explain the
dependent variable.

Much of the output in multiple
regression remains the same - R
Square; the ANOVA Table with
the decomposition of the sums
of squares and the F-test; and
the table of the coefficients.

The F-test in multiple regression
tests to see if at least one of the
i ndependen t  v a r i a b l e s
significantly contributes to
helping to understand the
dependent variable.
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The remainder of the output will also look similar, except
their will be an estimated regression coefficient (slope
coefficient) for each independent variable in the model, along
with a standard error, t-test, p-value, and confidence interval.

The most important change in the multiple regression is that
the coefficients for the independent variables will have a
different interpretation.  This change reflects that the
multivariate relationship of an independent variable with the
dependent variable won’t necessarily be the same as the
bivariate relationship.  If we regress  Y on  X1 and generate
an estimated  slope coefficient, b1, we interpret this
coefficient as the effect of  X1 on Y.  However, if there is
another independent variable in the model, the coefficient is
likely to change (represented by b1*).  The reason for this
change is that in multiple regression, coefficients are
estimated holding constant at the other variables in the
model.  

The slope coefficient for X1 is now the change in Y for a unit
change in X1, holding all other independent variables in the
model constant.  We take into account the other independent
variables when estimating the impact of  X1 by incorporating
the covariance of  X1 with all the other independent variables
in the model.  The way that multiple regression solves for the
coefficients  involves matrix algebra and simultaneous
equation solving, topics beyond the scope of this module.
Excel and other software packages will do this for us and we
need not worry about the actual equations. 

We do need to have a handle on why the coefficients are
different, and their interpretation.  The reason that the
coefficients will change is that often the independent
variables are correlated with each other, and this correlation
may also be shared with the dependent variable.  For
example, one’s age and salary are often related, and they
both are related to catalog sales.  Multiple regression takes
into account the covariance of the independent variables
when estimating the slope coefficients, attempting to
estimate the unique effect of each variable, independent of
the other variables in the model.

Compared to the bivariate regression, controlling for the
other independent variables may:

• Increase the strength of the relationship between an
independent variable ( X1) and the dependent variable (Y)

• Decrease the strength of the relationship
• Reverse the sign (e.g., from positive to negative)
• Leave it relatively unchanged

The biggest change with
multiple regression is that we
est imate several  s lope
coefficients at the same time.

The interpretation of these
coefficients is the effect of a unit
change in the independent
variable on the dependent
variable, holding constant all
other independent variables in
the model.

Controlling for other variables
in the model will likely change
the bivariate relationship
between an independent
variables and the dependent
variable - the relationship could
be strengthened, weakened,
change sign, or remain
relatively unchanged in the
multivariate model.
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In the special case where  X1 is uncorrelated with the other
independent variables in the model (i.e., it is independent of
the other Xs in the model), the bivariate regression estimate
of the b1 will equal the multivariate regression estimate of
b1*.   Otherwise we should expect some change in the
multiple regression estimate.

The ability to estimate the affect of an independent variable
(X1) independent of the other independent variables in the
model is a very powerful and compelling feature of
regression.  It allows us to use “statistical control” as
opposed to control via an experimental design.  If we cannot
use a design to random assign subjects to different
treatments, the next best alternative is to estimate effects
while controlling for other variables in the model.  

For example, if we are interested in understanding the
relationship of education on income, we can’t random assign
different levels of education to men and women; different
age groups; or different racial groups, and then observe the
resulting income.  We have to observe education and
income as it is distributed in the sample. Regression allows
us to estimate the effect of education while controlling for
other factors such as gender, age, or race.  This allows us to
make a better estimate of the effect of education devoid of
the other independent variables in the model. Hence it’s
popularity in the business applications, the social sciences,
medicine, and nutrition.  

However, statistical control in regression comes at a price.
We can never be certain that we are controlling for all the
relevant variables in the model - we may be leaving
something out that is unmeasured or not included in the data
collection.  Leaving out important variables from the model
may is called a specification error and may lead to biased
results.

If there is high correlation between X1 and the other
independent variables we may have a problem estimating
our coefficients .  This is called Collinearity - when X1 highly
correlated with one other independent variable - or
Multi-Collinearity - when X1 is highly correlated with a set of
independent variables.  If there is too much collinearity, it
means we can’t estimate the affect of X1 very well, and our
estimate will be unstable and poor. Extreme collinearity
means the regression can’t be estimated at all!  More will be
discussed about this under the assumptions of the
regression model.

The ability to estimate the affect
of an independent variable (X1)
independent of the other
independent variables in the
model is a very powerful and
compel l ing fea ture  o f
regression.  It allows for
“statistical control.” 

Regression analysis does come
with certain requirements and
assumptions in order to
effectively run the models and
to make statistical inferences.

However, regression analysis is
fairly robust - small departures
from some of the assumptions
do not lead to serious
consequences.
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ASSUMPTIONS UNDERLYING REGRESSION

Regression, like most statistical techniques, has a set of
underlying assumptions that are expected to be in place if we
are to have confidence in estimating a model.  Some of the
assumptions are required to make an estimate, even if the
only goal is to describe a set of data.  Other assumptions are
required if we are going to make an inference from a sample
to a population. 

Requirements of Regression

• Y is measured as a continuous level variable – not a
dichotomy or ordinal measurement

• The independent variables can be continuous,
dichotomies, or ordinal

• The independent variables are not highly correlated with
each other

• The number of independent variables is 1 less than the
sample size, n (preferably n is far greater than the number
of independent variables)

• We have the same number of observations for each
variable – any missing values for any variable in the
regression removes that case from the analysis

Assumptions About the Error Term

We noted in Module 4 that the error term in regression
provides and estimate of the standard error of the model and
helps in making inferences, including testing the regression
coefficients.  To properly use regression analysis there are
a number of criteria about the error term in the model that we
must be able to reasonably assume are true.  If we cannot
believe these assumptions are reasonable in our model, the
results may be biased or no longer have minimum variance.
The following are some of the assumptions about the error
term in the regression model.

• The mean of the Probability Distribution of the Error
term is zero.  

This is true by design of our estimator of Least Squares,
but it also reflects the notion that we don’t expect the error
terms to be mostly positive or negative (over or
underestimate the regression line), but centered around
the regression line.

Assumptions about the error
term in regression are very
important for statistical
inference - making statements
from a sample to a larger
population.



Using Statistical Data to Make Decisions: Multiple Regression Analysis        Page 6

• The Probability Distribution of Error Has Constant
Variance = F2.  

This implies that we assume a constant variance for Y
across all the levels of the independent variables.  This is
called homoscedasticity and it enables us to pool
information from all the data to make a single estimate of
the variance.  Data that does not show constant error
variance is called heteroscedasticity and must be
corrected by a data transformation or Weighted Least
Squares.

• The Probability Distribution of the Error term is
distributed as a normal distribution.  

This assumption follows statistical theory of the sampling
distribution of the regression coefficient and is a
reasonable assumption as our sample size gets larger and
larger.  This enables us to make an inference from a
sample to a population, much like we did for the mean.

• The errors terms are Independent of each other and
with the independent variables in the model.

This means the error terms are uncorrelated with each
other or with any of the independent variables in the
model.  Correlated error terms sometimes occur in time
series data and is known as auto-correlation.  If there is
correlation among the error terms of with error terms and
the independent variables it usually implies that our model
is mis-specified. Another way to view this problem is that
there is still pattern left to explain in the data by including
a lagged variable in time series, or a nonlinear form in the
case of correlation with an independent variable.
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Table 1.  Descriptive Statistics for the MN Apartment Sales Data
PRICE NUMBER AGE LOTSIZE PARK AREA

Mean 290573.52 12.16 52.92 8554.12 2.52 11423.40
Standard Error 42305.83 2.52 5.18 839.86 0.99 2003.87
Median 268000.00 8.00 62.00 7425.00 0.00 7881.00
Mode #N/A 4.00 82.00 #N/A 0.00 #N/A
Standard Deviation 211529.15 12.58 25.89 4199.30 4.93 10019.35
Sample Variance 44744581138.09 158.31 670.49 17634110.11 24.34 100387322.33
Kurtosis 2.80 10.04 -1.40 2.33 6.28 2.19
Skewness 1.61 2.84 -0.48 1.52 2.44 1.71
Range 870700.00 58.00 72.00 16635.00 20.00 36408.00
Minimum 79300.00 4.00 10.00 4365.00 0.00 3040.00
Maximum 950000.00 62.00 82.00 21000.00 20.00 39448.00
Sum 7264338 304 1323 213853 63 285585
Count 25 25 25 25 25 25

A MULTIPLE REGRESSION EXAMPLE

The following example uses a data set for apartment building
sales in a city in Minnesota.  The value of the apartment
building (PRICE) is seen as a function of:

1. The number of apartments in the building (NUMBER)

2. The age of the apartment building (AGE)

3. The lot size that the building is on (LOTSIZE)

4. The number of parking spaces (PARK)

5. The total area is square footage (AREA)

The local real estate commission collected a random sample
of  25 apartment buildings to estimate a model of value.  The
sample size is relatively small, but we will still be able to
estimate a multiple regression with five independent
variables.

The descriptive statistics for the variables in the model are
given in Table 1.  The average sale price of the apartments
was $290,574, but there is considerable variation in the value
of apartments.  The coefficient of variation is 73% indicating
substantial variation.  We want to see if the high variability in
PRICE is a function of the independent variables.    The
other variables also show a lot of variability, and in most
cases the mean is larger than the median indicating outliers
and skew to the data.  The exception is AGE, where there is
one low value pulling the mean below the median.
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Table 2.  The Correlation Matrix for the MN Apartment Sales Data
PRICE NUMBER AGE LOTSIZE PARK AREA

PRICE 1.000
NUMBER 0.923 1.000
AGE -0.114 -0.014 1.000
LOTSIZE 0.742 0.800 -0.191 1.000
PARK 0.225 0.224 -0.363 0.167 1.000
AREA 0.968 0.878 0.027 0.673 0.089 1.000

Apratment Price Versus Area

y = 20.439x + 57094

R2 = 0.9372
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Figure 1.  Scatter Plot of PRICE Versus AGE for MN
Apartments Data

The Correlation Matrix in Table 2 provides some insights into
which of the independent variables are related to PRICE.
The highest correlation with PRICE is for AREA (.968) and
NUMBER (.923).  Both correlations are very high and
positive - as the total area increases, or the number of
apartments increase, so does the price.  LOTSIZE is also
positively correlated with PRICE at .743.  On the other hand,
the number of parking spaces is only positively correlated at
.225 and the age of the building, while negative as might be
expected, is only correlated at -.114.

We will focus on two bivariate relationships before estimating
a multiple regression model SALES and AREA and SALES
and AGE.  We will look at the scatter plot for each one and
the bivariate regression.  Figure 1 shows the scatter plot for
PRICE and AREA.  The relationship is strong, positive and
linear.  The plot also shows the regression line and R Square
for a bi-variate regression.  The model says that every
square foot of space is roughly worth $20 toward the price of
the apartment building.  The fit of the model, with only one
variable, is very good with 94 percent of the variability of
PRICE explained by knowing the area of the apartments.
Clearly, area is an important variable to understand the price
of the apartment building.

A useful strategy in any analysis
is to start simple - i.e., bi-
variate relationships - and them
move to more sophisticated
multi-variate models.

This helps you to see how
relationships can change once
we control for other variables in
the model.
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Price Versus Age

y = -935.29x + 340069

R2 = 0.0131
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Figure 2.  Scatter Plot of PRICE Versus AGE for MN
Apartments Data

Let’s look at one other bi-variate relationship - between
PRICE and AGE.  The correlation is -.114, indicating that as
the age of building increases, the price decreases.  However,
the relationship is very weak.  The scatter plot in Figure 2
shows that the relationship is weak.

If we look at the hypothesis test for the coefficient for AGE
(full Excel output not shown), we find the following
information about the coefficient, standard error, t-test, and
p-value for the regression of PRICE on AGE.

Coeff. Std Error t Stat P-value
Intercept 340068.922 99308.865 3.424 0.002
AGE -935.287 1692.169 -0.553 0.586

The model estimates that for every year old the building is,
the price decreases by $935.  However, the t-statistic is
only -,553 with a p-value of .586.  While the model shows
a negative relationship, based on a hypothesis test for a
sample, I can’t be sure if the real value is any different
from zero.  The R Square of .01 confirms that there is little
going on in the data.  The steps of a formal hypothesis test
are given below.

Null Hypothesis: H0: $AGE = 0

Alternative: Ha: $AGE … 0  two-tailed test

Test Statistic: t* = (-935.29 - 0)/1692.17 = -.55

p-Value: p = .59

Conclusion: Cannot Reject H0: $AGE = 0

In most cases we don’t do the
formal steps in a hypothesis
test for a regression coefficient
- we simply look for t-value
greater than 2, or a p-value
less than .05 in order to
conclude the coefficient is
different from zero.
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Table 3.  Regression Output of PRICE on Five Independent Variables

Regression Statistics
Multiple R 0.990
R Square 0.980
Adjusted R Square 0.975
Standard Error 33217.938
Observations 25

ANOVA

df SS MS F Sig F
Regression 5 1052904750916.02 210580950183.21 190.84 0.00
Residual 19 20965196398.22 1103431389.38
Total 24 1073869947314.24

Coef Std Error t Stat P-value
Intercept 92787.87 28688.252 3.234 0.004
NUMBER 4140.42 1489.789 2.779 0.012
AGE -853.18 298.766 -2.856 0.010
LOTSIZE 0.96 2.869 0.335 0.741
PARKING 2695.87 1576.742 1.710 0.104
AREA 15.54 1.462 10.631 0.000

Now let’s shift to a multiple regression and see what
changes (see Table 3).  We will include five independent
variables in the model - NUMBER, AGE, LOTSIZE, PARK,
and AREA.  The Excel output is given below.  The R
Square for te model is now .98 and the Adjusted R Square
is close, .975.  One way to tell if the fit has really improved
over a simpler model (say for a model with only AREA) is
to see what percent of the variability yet to be explained is
accounted for by the new model.  The model for AREA
alone had an R Square of .9372.  The new model has a R
Square of .98.  The increase is only .0428, but this is 68
percent of the remaining .0628 left to explain (1 - .9372). 
This is a significant improvement in the fit.

The overall F-test for the model (based on a Null
Hypothesis that all the coefficients for the independent
variables are zero) is 190.84 with a p-value of .00.  This
means that something useful is going on in our model and
at least one of the independent variables has a coefficient
different from zero.  We can now turn to the individual
coefficients for our variables to see the direction of the
relationship (the sign of the coefficient), the magnitude of 
the relationship (the size of the coefficient) and to note
which ones show a significant difference from zero (the p-
value).
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As might be expected, only AGE shows a negative
relationship with PRICE - as the apartment building gets
older the PRICE decreases.  The other signs are positive
as might be expected; more of each of the independent
variables should increase the price.  If I focus on the p-
values and use a criterion of .05 as a significance level, I
can see that the coefficients for LOTSIZE and PARK are
not significantly different from zero.  In other words, I do
not have information from this sample to safely conclude
that the coefficients for these variables are any different
from zero.  I should note that this test is based on holding
constant the other independent variables in the model.

The predictive equation from our model is

We want to find the predicted value of an apartment
building with 20 apartments; 50 years old; 2,000 sq ft of lot
size; 20 parking spaces; and 22,000 sq ft of area, our
model says the value is:

Predicted Value = $92,788 + $4,140(20) - $853(50) +
$1(2000) +$2,696(20) + $16(22,000) 

   =  $540,858

Next, let’s focus on the coefficients for AREA and AGE
and compare them to the bi-variate relationship.  The
coefficient for AGE in the multiple regression model  is     
-853 compared with -935 for the simple regression. 
However, now our model says that we have evidence that
the coefficient for AGE is significantly different from zero
(p-value = .01).  Once we controlled for the other variables
in the model, we can safely say that the age of the
apartment has an influence on its value, and that this
relationship is negative.  Controlling for other variables in
the model enabled us to make a better estimate of the
effect of age on the value of an apartment.

The coefficient for AREA has also decreased in the
multiple regression.  Once we control for the other
variables in the model (NUMBER, AGE, LOTSIZE, and
PARK), a unit change in AREA results in a 15.4 unit
change in price (down from 20.4 in the bi-variate
regression).  We still have strong evidence that AREA is
positively related to PRICE, but now our model says the
effect is smaller once we control for the other variables in
the model.

Solving the regression
equation for Y given a set of
values for the  independent
variables allows us to make a
prediction from our model.
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Second Order Polynomial Relationship
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Figure 3.  Second Order Polynomial Relationship

REPRESENTING NONLINEAR RELATIONSHIPS WITH
REGRESSION

We noted earlier that regression is used to estimate linear
relationships and that the regression model is linear in the
parameters.  However, it can be used to represent
nonlinear relationships in the data.  There are many
nonlinear functions that can be estimated with regression.
The following are but two examples, using a polynomial
function and a log function.

Polynomial Regression.  A polynomial expression is an
equation that is linear in the parameters that has an
independent variable that is raised to a power included in
the model.  The equation takes the following general form
(where p reflects the order).

A second order model has X and X2; a third order model
has X, X2 and X3, and so forth.  Figures 3 and 4 show a
second and third order polynomial, respectively.  The
second order relationship shows a single inflection point
where the relationship changes.  In the example in Figure
3, the function increases to a point and then the negative
squared term begins to turn the relationship downward. 
Using calculus, we can solve for the inflection point - in this
case it is at 28.6.  In figure 4 we have a third order
polynomial so there are two inflection points.

All lower order terms must be in the equation in order for
the polynomial function to be represented, but the
statistical test should focus on the highest order term in
the model.  In essence, the test is whether the highest
term in the model is significantly different from zero.  This
tells us if the term is needed in the model, and thus
whether the polynomials fits the data.  

We can represent nonlinear
relationships with regression
under certain circumstances.  
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Third Order Polynomial Relationship
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Figure 4.  Third Order Polynomial Relationship

U.S. Manufacturing Sales Versus Inventory, 
1954 to 1999

y = 0.683x - 13129

R2 = 0.9762
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Figure 5.  Scatter Plot of Sales Versus Inventory with a
Linear Trendline

A polynomial relationship with one of the independent
variables in the model also can be fitted while including
additional variables in the model.  For example, The
relationship between age and income can be thought of as
a polynomial - as age increases income does as well, but
at some point the relationship diminishes and may even
turn down as people reach retirement age.  We could fit a
model with AGE and AGE2 while also including other
variables in the model that influence income, such as
gender and education.

Let’s look at an example of a polynomial relationship.  The
following example is from sales and investments in U.S.
manufacturing from 1954 to 1999.  The data values are in
millions of dollars.  The graph of the relationship between
investment and sales is given in Figure 5.  The relationship
looks linear, and the fitted line and R Square show a very
good fit (R2 = .976).  However, there does appear to be a
slight curve to the relationship.  If you look closely, the
points on the line at the end tend to be above the
regression line while the points in the middle tend to be
below it.  This is an indication of a nonlinear relationship.



Using Statistical Data to Make Decisions: Multiple Regression Analysis        Page 14

Standardized Residuals versus Predicted Y
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Figure 6.  Scatter Plot of Standardized Residuals and
Predicted Y Showing a Non-Random Pattern

One way to see if there is a curve (besides the scatter
plot) is to plot the residuals from the linear regression line. 
The best plot is the standardized residuals (with a mean of
zero and a standard deviation of 1) against the Predicted
values of Y.  This plot should look like a random scatter of
points and show no tendencies or patter to the plot. 
Figure 6 shows the residual plot (Excel can help create
this), and there does appear to be a pattern to the plot.
Values in the middle tend to have negative residuals and
values at the top tend to have positive residuals.  This is a
sign of a nonlinear relationship.  

To test to see if there is a nonlinear relationship, I
calculated a squared inventory variable and included it in
the model along with inventory.  The regression output is
given in Table 4.  We will focus on two key things - R
Square and the significance test for the squared inventory
term.  The R Square for the model increase from .976 to
.991, a near perfect fit.  This represents 63 percent of what
was left to explain from the first order model, a significant
increase.

The coefficient for INVENT SQ is very small, but this is not
unusual for a squared term in the model.  We are squaring
very large numbers and the coefficient reflects this.  The
key issue is whether the coefficient for INVENT SQ is
significantly different from zero.  This requires a t-test or a
check on the p-value.  The formal hypothesis test is:

Null Hypothesis: H0: $ISQ = 0

Alternative: Ha: $ISQ … 0  two-tailed test

Test Statistic: t* = 8.527

p-Value: p = .000  or   p < .001

Conclusion: Reject H0: $ISQ = 0

We can determine if a higher
order polynomial relationship
exists by:

• examining a scatter plot to
see if we can observe a
curve

• looking for a pattern in a
plot of the standardized
residual versus the
predicted Y

• running a regression
model with the higher
order term and testing to
see if it is significantly
different from zero. 
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Table 4.  Regression Output for Polynomial Regression of SALES on INVENT and INVENT SQ

Regression Statistics
Multiple R 0.996
R Square 0.991
Adjusted R Square 0.991
Standard Error 9954.802
Observations 46

ANOVA

df SS MS F Sig. F
Regression 2 478111171319.26 239055585659.63 2412.31 0.00
Residual 43 4261217706.85 99098086.21
Total 45 482372389026.11

Coeff. Std Error t Stat P-value
Intercept 17109.815 4408.482 3.881 0.000
INVENT 0.264 0.050 5.282 0.000
INVENT SQ 8.78566E-07 0.000 8.527 0.000

Y aX X Xb b
k
bk= 1

1
2

2 ...

Based on our test we can conclude that the INVENT SQ
term is significantly different from zero and thus is
important in the model.  This validates our use of the
second order polynomial model to improve our fit, and the
result is in agreement with the increase in R Square.  One
final point should be emphasized. Once we include a
higher order term in the model and find it significant, we
rarely focus on the test for the lower order term(s).  The
lower order terms must be included in the model to make
sense of the polynomial relationship.  

Logarithm Transformation - The Multiplicative or
Constant Elasticity Model.  One transformation of a
multiplicative or constant elasticity model is the use of a
log transformation.  The multiplicative model is in the form:

Taking the natural log of each variable of this type of a
function results in a linear transformation of the form:

Y a b X b X b Xk k= + + + +ln( ) ln( ) ln( ) ... ln( )1 1 2 2

This is also called the constant elasticity model because
we interpret the coefficients as the percentage change in Y
for a 1 percent change in X.  The definition of an elasticity
is the percentage change in Y with a one percent change
in an explanatory variable, denoted as X.  In most cases

Taking logs of the variables
can transform a nonlinear
relationship in one that is
linear in the parameters - but
the data are transformed and
are now in log units.
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Table 5.  Regression Output for Multiplicative Model for Insurance Costs

Regression Statistics
Multiple R 0.999
R Square 0.998
Adjusted R Square 0.997
Standard Error 0.023
Observations 10

ANOVA

df SS MS F Sig F
Regression 2 1.910 0.955 1736.692 0.000
Residual 7 0.004 0.001
Total 9 1.914

Coeff. Std Error t Stat P-value
Intercept 5.339 0.127 41.973 0.000
LNHOME 0.583 0.013 44.683 0.000
LNAUTO 0.409 0.019 21.902 0.000

the elasticity is dependent on the level of X and will
change over the range of X.  However, in this type of
model the elasticity is constant and does not change over
the range of X - it is constant at the level of the estimated
coefficient.  You would only use this model if you believe
the elasticity is a constant. 

We will look at one example of a multiplicative model.  The
data for this example is operating costs at 10 branches of
an insurance company (COSTS) as a function of the
number of policies for home insurance (HOME) and
automobile insurance (AUTO).  We start with the belief
that operating costs increase by a constant percentage in
relation to percentage increases in the respective policies.

This type of model requires us to transform all the
variables by taking the natural logarithm.  This is the
function =LN(value) in Excel.  In order to take a log of a
value it must be greater than zero (it can’t be zero or
negative).  These constraints are not issues in this data. 
Once I convert the data, I use the new variables in a
regression using Excel.  The output is given in Table 5. 

The overall fit of the model is very good with an R Square
of .998.  However, we only have 10 observations in the
data and R Square is sensitive to the number of
observations relative to the number of independent
variables.  The overall F-test is highly significant, as are
both of the independent variables in the model.  All the p-
values are < .001, so we can safely conclude that the
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coefficients are significantly different from 0.  The
interpretation of the coefficients is now slightly different to
reflect the constant elasticity.  In this case we say that
when Home Owner policies increase by 1 percent, the
operating costs increase by .583 percent, and a one
percent the percent increase in Auto policies leads to a
.409 percent increase in operating costs.

It is difficult to validate the logarithm transformation for the
multiplicative model.  While the fit is very good, a similar
model of the original data also yielded an excellent fit (R2 =
.997, data not shown).  In the end it comes down to
whether you believe the assumptions of constant
elasticities truly fits your situation.  That is as much an
issue about your intuition and experience (or more formally
about economic theory) than about comparing models.  

In fact, once you transform the data, you cannot directly
compare the logarithmic model to a model of
untransformed data - it becomes a comparison of apples
and oranges.  However, you can take the anti-log of a
predicted value from your model to transform the result
back to real terms.

Example of a Multiple Regression with Trend and
Dummy Variables.  Data over time often show cyclical or
seasonal trends. These trends can be modeled by the use
of a dummy variable.  For example, four quarters can be
represented by three dummy variables, coded zero and
one to reflect which quarter is being represented.  The
following is an example of a multiple regression using a
linear trend and seasonal dummy variables.  Special
emphasis in this example will be given to interpreting the
dummy variables when another variable (TREND) is in the
model.

The example shows quarterly data for Coca-Cola sales
(given in millions of dollars) from 1986 through 2001.  This
example was taken directly from Data Analysis for
Managers, written by Albright, Winston, and Zappe
(Brooks/Cole, 2004; ISBN: 0-534-38366-1).   A plot of the
data (Figure 7) shows a strong linear trend, but there are
regular fluctuations that show seasonal variations.  A
closer look shows that sales of Coca-Cola are higher in the
second and third quarters when the weather is hotter.  
The linear trend is represented on the graph and R2 for the
model is relatively high - .88.  However, we are going to
see if we can improve the model by including seasonal
dummy variables.

Be careful making model
comparisons when we
transform the data - the
transformed data cannot
always be directly compared
to the original form of the
data.
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Quarterly Sales of Coca-Cola, 1986 to 2001

y = 63.169x + 1603.8

R2 = 0.8789
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Figure 7.  Coca-Cola Sales Showing a Linear Trend
and Seasonal Variations

Table 6.  Regression of Coca-Cola Sales on Trend and Quarters

Regression Statistics
Multiple R 0.970
R Square 0.941
Adjusted R Square 0.937
Standard Error 299.780
Observations 61

ANOVA

df SS MS F Sig F
Regression 4 80821435.3 20205358.8 224.8 0.0000
Residual 56 5032605.1 89867.9
Total 60 85854040.4

Coef Std Error t Stat P-value
Intercept 1435.85 104.24 13.77 0.000
Trend 63.58 2.18 29.14 0.000
Q1 -231.12 107.76 -2.14 0.036
Q2 521.94 109.55 4.76 0.000
Q3 355.48 109.49 3.25 0.002

Since there are four quarters in each year (k=4), we need
to represent quarters with three dummy variables (k-1=3). 
It is somewhat arbitrary which quarter we leave out of the
model to serve as the reference category.  Since I
calculated the dummy variables in order, it was easiest to
leave out the fourth quarter sales in the model.  As a
result, Q4 is the reference category.

The regression analysis is given in Table 6 below.  We can
note that R2 for the model increased to .941, reflecting that
the inclusion of the quarter dummy variables has
increased the fit of the model over the simple trend 

Seasonal variations in data
over time can be modeled
using dummy variables to
represent the quarters.
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analysis.  If we look at the coefficients we can see that
there is still a significant trend in the model (t-stat = 29.14
and p < .001).  

All of the quarter dummy variables are significant at the
.05 level, indicating that we can conclude that sales in Q1,
Q2, and Q3 are all significantly different on average from
Q4 (the reference category).  Specifically, we can see that
Q1 has lower sales that Q4 because the coefficient for Q1
is negative (-231.12).  This means that sales in Q1 tends
to be $231.12 million less than Q4, holding constant the
time period.  In contrast, sales in Q2 and Q3 are
significantly higher than Q4.  If we think about it, these
results make sense.  Sales of soft drink should be related
to the time of year with higher on average sales in warmer
quarters.

As you can see from this model, the interpretation of
dummy variables is relatively the same in a multiple
regression as in it in simple regression, except the
regression estimate of the coefficients takes into account
the other independent variables in the model.  With
dummy variables , we need to interpret the coefficients in
relation to the reference category.  

The test of the coefficients tell us if the mean of one
category is significantly different from the reference
category, and the overall F-test or the increase in R2 tells
us if the overall variable (in this case quarters, represented
by three dummy variables) is important in the model.  In
this example, including quarters in the model through
dummy variables increased R2 from .879 to .941.  This is
an increase to R2 of .062, which represents over 51
percent of the amount left to explain over the first model
(.512 = .062/[1-.879]).  Clearly, adding a seasonal
component into our model through dummy variables has
helped explain an additional source of variability in sales. 
This will aid in making forecasts into the future.

Two keys in assessing the
impact of including dummy
variables in a multiple
regression is whether the
coefficients are significantly
different from zero, and
whether their inclusion in the
model increases R2 in a
meaningful way.
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CONCLUSIONS

Multiple regression involves having more than one
independent variable in the model.  This allows us to
estimate more sophisticated models with many
explanatory variables influencing a single dependent
variable.  Multiple regression also allows us to estimate the
relationship of each independent variable to the dependent
variable while controlling for the effects of the other
independent variables in the model.  This is a very
powerful feature of regression because we can estimate
the unique effect of each variable.  Multiple regression still
uses the property of Least Squares to estimate the
regression function, but it does this while taking into
account the covariances among the independent
variables, through the use of matrix algebra.

Multiple regression requires that the dependent variable is
measured on a continuous level, but it has great flexibility
for the independent variables.  They can be measured as
continuous, ordinal, or categorical as represented by
dummy variables.  There are other requirements in
multiple regression - equal number of observations for
each variable in the model; limits on the number of
independent variables in the model; independent variables
cannot be too highly correlated with each other; and
assumptions about the error terms.  Overall, regression is
fairly robust and violations of some of the assumptions
about error terms may cause minor problems or they can
be managed by transformations of the data or modeling
strategies.  These issues are advanced topics in
regression.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /FRA <>
    /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


