
Developing a High-Quality Software Tool
for Fault Tree Analysis

Joanne Bechta Dugan Kevin J. Sullivan and David Coppit

University of Virginia

Department of Electrical Engineering
Thornton Hall, Charlottesville, VA 22903

University of Virginia

Department of Computer Science
Thornton Hall, Charlottesville, VA 22903

jbd@Virginia.edu {sullivan,coppit}@cs.virginia.edu

Abstract

Sophisticated dependability analysis techniques have been developed in academia and research labs, but few
have gained wide acceptance in the industry. To be valuable, such techniques must be supported by software
tools that provide the high levels of usability that users now demand as well as assurances that the techniques
are specified and implemented correctly. Further, it is seldom the case that a single dependability analysis
technique is applicable to an entire system. A good reliability engineer uses different techniques to analyze
different parts of the system, decomposing a large complex model into smaller pieces and applying different
techniques to each submodel. However, the manual decomposition of a system model into non-interacting sub-
models and the application of different approaches and different tools to each, followed by the integration of
the results can be a tedious and error prone process.

We present our approach to developing a high-quality fault tree analysis tool that addresses many of these
concerns. First, the architecture of our tool uses a component-based software design approach that we call
package-oriented programming, in which a handful of large-scale, widely used software components provide
the superstructure that makes the tool usable. Second we use an analysis methodology, based on fault trees, for
automatically detecting independent submodels, solving them separately using appropriate techniques, and
combining the results for system-level analysis. Third, we have used both natural language and formal specifi-
cations for the fault tree gates and their interactions to help insure that the tool is specified and implemented
correctly. Fourth, we exploit the inherent redundancy associated with multiple analysis techniques as an aid in
testing.

The result of our work is the Galileo fault tree analysis tool. We describe the development and analysis of the
tool as a proof of concept for our approach.

1. Introduction

Analysts who are concerned with quantitative assessment of reliability or safety of fault tolerant

computer systems have a variety of mathematical techniques at their disposal, for example fault trees,

Markov and other stochastic processes, and simulation. Each different technique has its relative ad-

vantages and disadvantages, and the attributes of the system under analysis tends to determine which

technique to use. However, it is seldom the case that a single technique is applicable to an entire sys-

2

tem, both because of the size of the system and because of the different attributes of different subsys-

tems. A good reliability engineer thus needs to use different techniques to analyze different parts of a

system, and decomposes a large complex mode into smaller pieces, applying different techniques to

each submodel. Most techniques are supported by software tools to aid analysis, but it can be tedious

and error-prone to manually decompose a system-level model into submodels, apply different analysis

tools to different submodels, and integrate the results. Thus, a system-level dependability analysis tool

must support the integration of several different analysis techniques.

Dependability analysis tools must not only support advanced analytical techniques, but they must

do so with a level of sophistication that users now demand of practical software. Such tools must sup-

port rich functionality, such as graphics, persistent storage, report generation, data management, etc.

The tools must have a level of usability best acquired through serious usability engineering and con-

formance to standard user interface conventions. They should run on industrial computing platforms

of choice—today Windows-based PC workstations. They must be interoperable, i.e., integrate cleanly

with other software systems on those platforms, and with the broader engineering activities of an engi-

neering enterprise. Finally, because markets for such tools are narrow, which rules out volume pricing,

such tools have to be developed at low cost to avoid prohibitive pricing.

In addition to providing analytical sophistication and usability, users require some assurance that

the models they build are interpreted correctly, and that the results that are produced are correct. That

is, the modeling constructs must be precisely defined, so that the analyst has confidence that the model

faithfully represents the system. And the software must faithfully execute the model and produce cor-

rect numerical results. The veracity of the model and its solution is especially important if the tools

are being used to develop a safety-critical application.

 In this paper we present our approach to developing Galileo, a high-quality tool for dynamic fault

tree analysis, which addresses many of these concerns in three important ways. First, our dynamic

fault tree analysis methodology, called DIFtree [1][3], uses a modular approach to fault tree analysis

that combines several different analysis techniques automatically. Second, the architecture of our

software tool uses a component-based software development approach that we call package-oriented

programming. In this style, a handful of large-scale, widely used, volume priced software components

provide the vast bulk of the non-analysis functions at low cost while meeting the critical functional,

usability and interoperability requirements for sophisticated tools [4][5][6]. Third, we use a combina-

3

tion of natural-language and formal specifications for the fault tree gates and their interactions to help

insure that the user builds the correct model and that the model is solved correctly. Further, we exploit

the inherent redundancy associated with multiple analysis techniques as an aid in testing.

The rest of this paper is organized as follows. Section 2 provides background on dynamic fault tree

analysis, package-oriented programming and Galileo. Section 3 discusses the use of natural-language

and formal specifications for fault tree gates. Section 4 characterizes the use of various fault tree

analysis techniques for solution and for testing. Section 5 concludes.

2. Background

2.1 Dynamic fault tree analysis

Fault trees [8] were developed to facilitate unreliability analysis of the Minuteman missile system

[9]. They provide a compact, graphical, easily understood method to analyze system reliability. Tradi-

tional fault trees use Boolean gates to represent how component failures combine to produce system

failure, and are analyzed using cut sets (or other Boolean algebraic methods) or Monte Carlo simula-

tion.

Markov models gradually replaced fault trees as the methodology of choice for reliability analysis

of fault tolerant systems after the concept of coverage was introduced and its importance was noted.

Coverage modeling can be easily incorporated into Markov models and, until recently, was thought to

be difficult to incorporate into fault tree analysis. Further, the complex redundancy management tech-

niques typically used in fault tolerant computer systems (for example prioritized use of spares) can not

be captured in a combinatorial model like a fault tree or reliability block diagram, but that can be in-

corporated easily in a state-based model. The analysis methodology of choice for fault tolerant com-

puter systems is thus frequently based on Markov models. Fault trees remain a popular modeling

choice for reliability analysis of non-fault tolerant systems. Most reliability engineers are well-versed

in fault tree analysis.

Recent work in dynamic fault trees has addressed both limitations and has resulted in a fault tree

analysis approach that is applicable to fault tolerant computer systems and non-fault tolerant systems

as well. Dynamic fault trees add a sequential notion to the traditional fault tree approach: system fail-

4

ures can depend on component failure order as well as combination. Special purpose dynamic fault

tree gates can model dynamic replacement of failed components from pools of spares, failures that oc-

cur only if others occur in certain orders, dependencies that propagate failure in one component to oth-

ers, and situations where failures can occur only in a predefined order. Fault trees with dynamic gates

are typically solved by automatic conversion to the equivalent Markov model [2][3].

Traditional (now called static) fault trees have also benefited from recent research. The use of Bi-

nary Decision Diagrams (BDDs) has facilitated the solution of very large static fault trees. Some

authors have solved fault trees with 210 basic events [17]. A technique for incorporating coverage

modeling into a BDD-based fault tree solution was presented in [10]. This work showed that the need

for coverage modeling does not necessarily demand a Markov model. Thus, for systems that exhibit

no sequence-dependent failure behavior, static fault trees can again be used. The BDD-based ap-

proach is much faster than the Markov chain conversion, and yet can easily incorporate the important

notion of imperfect coverage.

Researchers have also been exploring the use of divide-and-conquer approaches for analyzing fault

trees [11][12][13], since the solution time is exponential in the worst-case. Of particular interest is a

recently published linear-time algorithm, by Dutuit and Rauzy, for finding independent subtrees [13].

The algorithm identifies independent subtrees (subtrees which share no basic events) during a depth-

first traversal of the tree, recording the first and last visit to each node. This recent development pro-

vides the structure needed to combine different solution techniques automatically, as well as providing

a means for developing independent Markov models in a dynamic fault tree. Using Rauzy’s algorithm

[13] on the fault tree model, we can automatically detect independent subtrees, classify them as static

or dynamic, and solve them using the most appropriate method. Even if there are only dynamic sub-

trees, the automatic identification of independent submodels can be of enormous benefit. Compare the

solution of three separate Markov models (each of 1000 states) with the solution of the combined

model, containing a cross-product of each state space (and thus a billion states). Further, the use of a

fault tree model as the overall system model facilitates the automatic combination of the results of the

solution of the submodels.

The DIFTree dynamic fault tree analysis methodology, as originally described [1], is a hybrid

analysis technique that supports automatic decomposition, analysis, and integration of intermediate

results. During traversal, the subtree is marked as dynamic if a dynamic gate is traversed. If a subtree

5

contains no dynamic gates, it is classified as static. After the traversal is completed, the subtree is

solved using a BDD based method if it is static and a Markov-based method if it is dynamic. It fully

supports coverage modeling in both the static and dynamic subtrees. Failure probabilities in static

subtrees may be constant (time-independent) or follow the exponential distribution. Dynamic trees

support only the exponential distribution of time to failure.

Figure 1 illustrates the modularization operation of DIFTree on a hypothetical fault tree containing

two static subtrees and two dynamic subtrees. The static subtrees are solved by automatic conversion

to the equivalent BDD, while the dynamic subtrees are solved by automatic conversion to the equiva-

lent Markov model. Each submodel is solved for the probabilities of covered and uncovered failure,

and is replaced by a basic event in the higher-level mode. (A basic event is characterized by a failure

probability and a coverage factor). The reduced, top-level fault tree is then solved as a static tree with

four basic events, one representing each subtree. This example was described in more detail in [22].

A static subtree can be recursively split into smaller subtrees without loss of accuracy; that is, the

divide and conquer approach to static fault trees does produce an exact solution. However, the further

splitting of dynamic subtrees can lead to inaccuracies. The dynamic subtree requires a Markov solu-

tion, which in turn depends on an exponential time to failure. Since the time to absorption in a

Markov model is not necessarily exponentially distributed, we cannot provide an exact solution if we

subdivide a dynamic subtree. Thus, to avoid the use of an unbounded approximation, DIFtree does

not split dynamic subtrees. We have clearly made a choice of accuracy over performance, as the fur-

ther splitting of a dynamic subtree may substantially improve solution time. We note that Anand &

Somani have presented a similar splitting technique which does split dynamic subtrees, thus making

the choice of performance over accuracy [20].

6

2.2 Package-oriented programming

Package-oriented programming (POP) [4][5][6] is a software development approach involving the

reuse and integration of volume-priced commercial off the shelf software packages. By using com-

mercially developed tools as massive components, POP exploits the vast investments that have already

been spent in their design, construction, and refinement and the tremendous economies obtained by

mass-market software. In particular, users benefit from careful usability engineering, rich functional-

ity, software familiarity, rich interoperability, and reasonable stable execution for the level of com-

plexity, at very low cost.

The domain of tools is a domain in which the POP approach has been shown to be particularly ap-

propriate. Tools consist of algorithmic analysis cores implemented in perhaps a few tens of thousands

of lines of code. However, useful tools also have a “superstructure” supporting such features as textual

and graphical interfaces, report generation, etc., the implementation of which can not be done using an

amount of effort comparable to that required for the analysis cores. POP addresses this problem

through the reuse of large-scale commercial packages, such as Microsoft Word and Visio Corpora-

operator

console
software

console

Operator

Cold Spare Cold Spare

A1 A2

M5
M3

Functional

Dependency

M4
M2M1

Functional

Dependency

Functional

Dependency

MIU 1 MIU 2

type: static
Solved as: BDD

type: static

type: dynamic

independent subtree 2

Independent subtree 1

operator,

console & SW

A processors

and spare

Cold Spare

3/5

memory

units

A

2*Bus

hypothetical system failure

type:dynamic
independent subtree 3 (memories)

Solved as: BDD

Independent subtree 4 (buses)

Solved as: Markov chain

Solved as: Markov chain

Figure 1. An example modularization

7

tion’s technical drawing program, dramatically lowering the cost both to build and to learn to use a

tool and improving its overall usability and interoperability properties.

We used the POP approach to build a tool called Galileo that hosts the analysis techniques that we

have described. By using the POP approach we avoided having to design a tremendous amount of

demanding software from scratch. Instead, we only designed and implemented a fault tree data type

and the underlying analysis techniques, specialized the packages for our purposes, and wrote code to

“glue” the packages together. In all we have built fewer than 30,000 lines of code, a reduction of sev-

eral orders of magnitude compared to a build-from-scratch approach producing a comparable result.

��� The user view of Galileo

Figure 2 presents the user’s view of the Galileo fault tree analysis tool [7]. In the upper left is a

graphical representation of the fault tree whose textual form is viewed in the lower left. The window

on the right is used to display documentation and to contact the tool authors. Each of these views is

integrated into the main Galileo window.

Figure 2. A screenshot of Galileo

8

Figure 2 shows how our architecture uses Visio Corporation’s Visio Technical, Microsoft Word, and

Microsoft Internet Explorer to create the superstructure needed by fault tree analysis tools. Users bene-

fit from the tremendous investment in the design and implementation of these components. For exam-

ple, Word supports find-and-replace; Visio, panning, zooming and cut-and-paste of graphical views,

etc. Visio also allows the user to manipulate the graphical representation of the fault tree, and then

print it or embed it in other documents.

Galileo supports two views of fault trees. The traditional, graphical view allows the engineer to cre-

ate a fault tree using shapes for the various gates, and connectors that model the relationships between

gates. The benefit of this view is that its graphical nature makes it easy to comprehend, although it is

not as easy to edit for some people as the textual view. The textual view describes the same fault tree

using a simple language. The benefit of this approach is easier and faster editing of the fault tree. The

drawback is more difficult comprehension.

Each of the packages we used was specialized for use in our POP-based architecture. For example,

we customized Visio by creating a “stencil” of fault tree shapes and connectors, and by changing the

behavior of mouse clicks to cause the display of information related to each shape for fault tree editing

purposes. None of the packages can be “exited” by the user independently of the overall tool. Internet

Explorer was programmed to display Galileo documentation.

In addition to restricting the components for better integration into our architecture, we added func-

tionality at the user level that integrates the views. We used Microsoft’s Active Document approach

to containing multiple documents (a Visio drawing, a Word document, and an Explorer browser) in an

overall “container” window. The container ensures that the menus of the currently active document

are displayed, and that Galileo-specific menu choices are merged into the menus of the packages. The

Galileo menus allow the user to automatically propagate changes made in the textual view to the

graphical view and vice-versa. The fault tree menu allows the user to indicate that the fault tree repre-

sentation currently being edited is to be solved by the analysis engine.

9

3. Specifying dynamic behavior

Dynamic fault trees [3] augment the standard combinatorial (AND, OR and M-out-of-N) gates with a

special set of dynamic gates to model sequential dependency. The original set of four dynamic gates

(Functional Dependency, Priority-AND, Sequence Enforcing and Cold Spare) has been expanded to

include three more (Hot Spare, Warm Spare and Probabilistic Dependency). The Functional Depend-

ency gate (FDEP) and Probabilistic Dependency (PDEP) gates are used to model (deterministic and

probabilistic, respectively) cascading (or common-cause) failures. The Priority-AND (PAND) and

Sequence-Enforcing (SEQ) gates are used to detect or prevent certain sequences of events. The spare

gates are used to model spare configurations, especially pooled or priority-based spares or those that

have a different failure rate when dormant than when active.

The use of dynamic gates has greatly expanded the class of systems to which fault tree analysis can

be applied, since the sequential behavior characteristic of fault tolerant computer systems can be ef-

fectively captured in a dynamic fault tree. Dynamic fault trees are solved by automatic conversion to

the equivalent Markov model [2]. However, using dynamic fault trees in an industrial setting raised

two concerns. First, how can an analyst be confident that a model is an accurate representation of the

system being analyzed? Second, how can she be confident that the solution is accurate?

Although static fault trees are reasonably well understood, dynamic fault trees involve new and

subtle conceptual modeling constructs that are thus subject to error, as well as demanding implemen-

tation issues. The semantics of the time-dependent fault tree gates and the interactions between them,

in particular, are subtle and subject to misunderstanding. In order to provide a rigorous engineering

basis for debugging the conceptual design, for verifying an implementation, and for producing user

documentation we developed a partial formal specification of dynamic fault trees in the Z language. It

contains formal specifications of static and dynamic gates, how each is evaluated at a given system

state, and the permitted structure of a dynamic fault tree as a composition of basic events and

gates[18]. In addition to providing a rigorously defined starting point for a redesigned software tool,

the specifications helped us to detect and resolve several ambiguities in the gate interactions.

However, the formal specifications of gates does not necessarily help a reliability engineer gain

confidence that the model being built is an accurate representation of the system under study. Formal

specifications can be difficult to read and understand by someone whose expertise lies in a different

10

domain. For this reason, we also developed a set of carefully worded natural language specifications

for each gate, based on the formal specification. These natural language specifications are more com-

plete and precise then they would have been had they not been preceded by the formal specifications

and are useful to reliability engineers building models of complex systems [21].

4. Combining analysis techniques

Our approach to the solution of fault trees automatically decomposes the system level fault tree into

modules, which are solved separately. Our modular approach allows different subtrees to be solved by

different methods: static subtrees can be solved by conversion to an equivalent BDD, while dynamic

subtrees can be solved by conversion to the equivalent Markov chain [1]. Recently we have consid-

ered the addition of a third solution alternative, and have experimented with the use of a Monte-Carlo

simulation engine (MCI-HARP) [19] which uses variance reduction techniques for the analysis of

highly-reliable systems. The use of simulation as a third alternative not only increases the analysis

capabilities of our methodology, but also offers interesting possibilities in terms of multiple solutions

of the same subtree. In this section we discuss the decision criteria for choosing a particular solution

algorithm, and discuss how we exploited the alternatives as an aid in testing.

4.1 Choosing the most appropriate analysis technique

11

Table 1 summarizes the applicability of several dynamic fault tree analysis techniques. The upper

half of the table shows combinations of four characteristics of subtrees: whether a subtree uses con-

stant failure probabilities (as opposed to a distribution of time to failure), whether it has any dynamic

gates, whether it has any cold or warm spare gates and and whether it uses a Weibull time-to-failure

distribution. The lower half describes the abilities of the solution alternatives.

Traditional cut set approaches to fault tree analysis are only applicable to static fault trees and are

generally inferior to the newer BDD based approaches. Markov methods are applicable to dynamic

fault trees with exponential and Weibull time to failure distributions, as long as the subtree does not

combine a Weibull time-to-failure distributions with a cold or warm spare. Simulation presents a vi-

able alternative to the analytical approaches in several interesting situations. The combination of warm

or cold spares and Weibull (or other non-exponential) time to failure distributions defies general-

purpose techniques, but could be handled easily via simulation. For static subtrees, the combinatorics

of the M-out-of-N gate can overwhelm any Boolean algebraic approach if N is large and the inputs are

not statistically identical. One example fault tree from industry used a 4-of-12 gate, where each of the

12 inputs was a 5-of-16 gate; functional dependencies required that each input be considered sepa-

Has Constant
Probability?

don’t care Yes No No No

Static or Dynamic
Tree?

Static Dynamic Dynamic Dynamic Dynamic

Uses a Weibull
Distribution

don’t care don’t care No Yes Yes

Has Cold/ Warm
Spare Gates?

N/A don’t care don't care No Yes

Cut Sets Possible Not Allowed Not Possible Not Possible Not Possible

Binary Decision
Diagrams

Preferred Not Allowed Not Possible Not Possible Not Possible

Markov Chains
Possible if No

Constant
Probabilities

Not Allowed Preferred Possible Infeasible

Monte Carlo
Simulation

Possible Not Allowed Possible Possible Preferred

A
na

ly
tic

al
 T

ec
hn

iq
ue

s
P

ar
am

et
er

s

Table 1: Summary of subtree characteristics and solution methods

12

rately. This model could have been analyzed more easily by simulation, especially since the failure

probabilities of each basic event were not especially small.

Considering simulation as an alternative solution method poses interesting questions with respect to

the preferred method of solution. With only the static (BDD) and dynamic (Markov) classifications,

the choice was simple: choose the BDD solution where possible and the Markov solution where nec-

essary. Some combinations (i.e. constant probability of failure in a dynamic model) are disallowed. If

we add simulation to the set of solvers, some previously disallowed situations (i.e. cold or warm

spares and Weibull time to failure) are now permissible. Further, simulation is applicable to both

static and dynamic subtrees and in some cases (i.e. large combinatorics) may be more attractive than

the analytical approach.

4.2 Solution techniques as an aid in testing

Because we have multiple solution techniques available within a single tool, we can exploit this

flexibility in creating test cases, in two different ways. First, for some trees, multiple solution tech-

niques are applicable, although one may be more efficient than the other. For example, a static fault

tree can often be solved by conversion to a Markov model (if exponential or Weibull time to failure

distributions are used), even though the BDD-based solution is clearly preferred. Because the ap-

proaches used in these solutions are fundamentally different (the BDD solution is based in Boolean

algebra and the Markov approach is based on differential equations), if both solutions produce the

same results, we have a basis for greater confidence that the results are correct. Further, some of the

structures we use degenerate into other structures (but with different solution paths) for specific sets

of parameters. The exponential distribution is a special case of the Weibull and both the cold and hot

spares are special cases of the warm spare. In both the distributional and the spares case, the structure

of the Markov chain is different, but the end result (probability of failure) should be the same. We

have thus created a set of test cases which exploit these similarities.

Second, we can exploit the different solution techniques by creating different fault trees to model

the same scenarios, where one might be static and the other dynamic, or one might contain logical re-

dundancies. For example, some hot spare situations can be adequately modeled using static gates and

some redundancy management scenarios can be modeled either with the hot spare gate or with the

PAND gate.

13

As an example of the use of the diverse solution methods for testing, consider the four fault trees

shown in figure 3. Test case 1 is a static tree which is a simple 3/5 gate with a replicated basic event.

The replicated basic event is used when there are multiple occurrences of statistically identical com-

ponents that do not need to be distinguished. Test case 2 expands the replicated event into distinct ba-

sic events. Test case 3 uses the hot spare gate to model the redundancy more explicitly while Test

case 4 uses the warm spare gate (where the dormancy factor is set to one). The dormancy factor (be-

tween zero and one) represents the reduction in the failure rate which is experienced while the spare is

dormant; zero corresponds to a cold spare and one to a hot spare. The first two test cases are static

models while the second two are dynamic. We can further extend the test set by varying the coverage

parameters (perfect vs. imperfect coverage) and by varying the failure distribution (where the degener-

ate case of the Weibull distribution is the exponential distribution.).

Proc 1

Proc2

Proc 3 Proc 5

Proc 4

Static

Test 2

Proc 1 Proc2 Proc 3

Proc 4 Proc 5

Test 3

Dynamic

Hot Spare Hot SpareHot Spare

Proc 1 Proc2 Proc 3

3/53/5

Test 1

Static

5*Proc

Test 4

Dynamic

Warm Spare Warm SpareWarm Spare

2*Proc

Figure 3. The 4 fault trees in this figure all produce the same numerical result

14

In addition to using the different solvers available in Galileo for testing the analysis, we can com-

pare some static test cases against other fault tree solvers. Figure 4 shows a fault tree (reported in

more detail in [23]) which was solved using Galileo and two commercially available fault tree pack-

ages. What we learned from this test case was that some commercially available packages for fault

tree analysis do not necessarily produce the correct result. In fact, both commercial packages suc-

ceeded in producing the same incorrect result because they were incapable of recognizing internal (i.e.

non-basic) events which fan out (i.e. are used as input to more than one gate).

5. Conclusion

In this paper we have presented our approach to the development of a reliable software tool for de-

pendability analysis. Our approach, which builds on an effective combination of novel reliability en-

gineering and software engineering methodologies, has produced a high-quality software tool for fault

tree analysis using limited resources. We have been concerned not only with achieving a highly us-

2/3 2/3

T CAM A

T IRIS A

Ins A

ICU A

PCDU A

STRUCT A

T IRIS B

T CAM B

T IRIS C

T CAM B

R IRIS A

R CAM A

R IRIS B

R CAM B

R IRIS C

R CAM B

STRUCT B

PCDU B

ICU B

Ins B

STRUCT C

PCDU C

ICU C

Ins C

T LINK BT LINK A T LINK C R LINK A R LINK B R LINK C

Image

Processor

Figure 4. An example fault tree for testing

15

able tool encompassing sophisticated dependability analysis techniques, but also with insuring the fi-

delity of the analysis. Towards this end, we have used both formal and natural language specifications

for parts of the fault tree, and have utilized the inherent redundancy in the implementation to assist in

testing.

Our test efforts against commercially available tools for fault tree analysis highlights the need for

fidelity in the analysis. Both tools that we used for testing are rather popular in the reliability engi-

neering community, both tout their ability to provide an exact (as contrasted with an approximate) so-

lution, yet both made the same fundamental algorithmic error. We believe that our approach to test-

ing, which uses diverse solution methods, will help an analyst gain confidence in the results from our

tool. Instead of always selecting the most efficient solution method, we plan to allow a “solve using

all available methods” mode of solution to provide multiple results from diverse solutions.

Acknowledgements

This work was supported in part by the National Science Foundation under grants MIP 95-28258,

CCR-9502029 (CAREER) and CCR-9506779 and by NASA Langley Research Center and Ames Re-

search Center. We thank reliability engineers at NASA Langley Research Center and Lockheed-

Martin Corporation for their valuable feedback on our tools.

References

[1] Rohit Gulati and Joanne Bechta Dugan, “A modular approach for analyzing static and dynamic fault trees,”

in Proceedings of the Reliability and Maintainability Symposium, January 1997.

[2] Joanne Bechta Dugan, Salvatore Bavuso, and Mark Boyd, “Fault trees and Markov models for reliability

analysis of fault tolerant systems,” Reliability Engineering and System Safety, 39:291-307, 1993.

[3] Joanne Bechta Dugan, Salvatore J. Bavuso and Mark A. Boyd, “Dynamic fault tree models for fault tolerant

computer systems,” IEEE Transactions on Reliability, Volume 41, Number 3, pages 363-377, September

1992.

[4] K.J. Sullivan and J.C. Knight, “Building Programs from Massive Components,” in Proceedings of the 21st

Annual Software Engineering Workshop, Greenbelt, MD, Dec. 4-5, 1996.

16

[5] K.J. Sullivan and J.C. Knight, “Experience Assessing an Architectural Approach to Large-Scale, Systematic

Reuse,” Proceedings of the 18th International Conference on Software Engineering, Berlin, March 1996,

pages 220-229.

[6] Kevin J. Sullivan, Jake Cockrell, Shengtong Zhang, and David Coppit, “Package-oriented programming of

engineering tools,” In Proceedings of the 19th International Conference on Software Engineering, pages

616-617, Boston, Massachusetts, 17-23 May 1997, IEEE.

[7] Kevin J. Sullivan, Joanne Bechta Dugan and David Coppit, “The Galileo Fault Tree Analysis Tool,” Pro-

ceedings of the 29th International Conference on Fault-Tolerant Computing (FTCS-29), 1999.

[8] United States Nuclear Regulatory Commission, Fault Tree Handbook, NUREG-0492, 1981.

[9] H.A. Watson and Bell Telephone Laboratories, “Launch Control Safety Study,” Bell Telephone Laborato-

ries, Murray Hill, NJ USA, 1961.

[10] Stacy A. Doyle and Joanne Bechta Dugan, “Dependability assessment using binary decision diagrams,” In

Proceedings of the IEEE International Symposium on Fault-Tolerant Computing, FTCS-25, June 1995.

[11] P. Chatterjee, “Modularization of fault trees: A method to reduce cost of analysis,” Reliability and Fault

Tree Analysis, SIAM, 1975, pages 101-137.

[12] A. Rosenthal, “Decomposition methods for fault tree analysis,” IEEE Transactions on Reliability, vol. 43,

June 1980, pages 136-138.

[13] Yves Dutuit and Antoine Rauzy, “A linear-time algorithm to find modules in fault trees,” IEEE Transac-

tions on Reliability, September 1996.

[14] K. Brockschmidt, Inside OLE, Microsoft Press, Redmond, WA, second edition, 1995.

[15] Barry W. Boehm and William L. Scherlis, “Megaprogramming,” In Proceedings of the DARPA Software

Technology Conference, pages 63-82. Meridien Corp., Arlington, VA, 1992.

[16] E.J. Henley and H. Kumamoto, Probabilistic Risk Assessment, IEEE Press, 1992

[17] O. Coudert and J.C. Madre, “Fault tree analysis: 1020 prime implicants and beyond,” In Proceedings of the

Reliability and Maintainability Symposium, 1993, pages 240-245.

[18] David Coppit and Kevin J. Sullivan, “Formal specification in collaborative design of critical software

tools,” In Proceedings Third IEEE International High-Assurance Systems Engineering Symposium, pages

13-20, Washington, D.C., 13-14 November 1998. IEEE.

[19] Mark Boyd & Salvatore J. Bavuso, “Simulation modeling for long duration spacecraft control systems,”

Proceedings of the 1993 Reliability and Maintainability Symposium, January 1993, pages 106-113.

17

[20] Anju Anand and Arun K. Somani, “Hierarchical analysis of fault trees with dependencies, using decompo-

sition,” In Proceedings of the 1998 Reliability and Maintainability Symposium, January 1998, pages 69-75.

[21] Ragavan Manian, David Coppit, Kevin J. Sullivan and Joanne Bechta Dugan, “Bridging the gap between

systems and dynamic fault tree models,” Proceedings of the 1999 Reliability and Maintainability Sympo-

sium, January 1999, pages 105-111.

[22] Joanne Bechta Dugan, Bharath Venkataraman and Rohit Gulati, “DIFtree: A software package for the

analysis of dynamic fault tree models,” Proceedings of the 1997 Reliability and Maintainability Sympo-

sium, January 1997, pages 64-70.

[23] Suprasad Amari, Joanne Bechta Dugan and Ravindra Misra, “A separable method for incorporating imper-

fect coverage into combinatorial models,” to appear, IEEE Transactions on Reliability, 1999.

