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ABSTRACT 
Motivation: The inference of genetic regulatory networks from time-
series gene expression data has been performed with linear models.  
The challenge of this inference problem is solving an underdeter-
mined system in which the number of genes is far greater than the 
number of measurements. LARNA (least absolute regression net-
work analysis) tackles this problem by employing the LASSO (least 
absolute shrinkage and selection operator) technique for simultane-
ous estimation and variable selection.  However, with the availability 
of different data sources (e.g. literature network, transcription factor 
binding information) capturing different parts of the true network, 
integration of this type of prior knowledge with expression data into 
LARNA can potentially improve the variable selection and eventually 
the reconstructed network. 
Results: We propose to integrate prior knowledge into LARNA by 
modifying the  LASSO penalty. The performance of our scheme 
is evaluated on synthetic and real datasets. The evaluation focused 
on part of the network for which no prior knowledge was available. 
Results indicate that the integration of prior knowledge improved in 
reconstructing part of the network without prior knowledge.  
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1 INTRODUCTION  

The behavior of a cell largely depends on the complex interactions 
between genes, proteins and metabolites. The activity (a.k.a. ex-
pression) of a gene is regulated by special proteins, called tran-
scription factors (TFs) that bind to the promoter of the gene. Acti-
vated genes produce specific mRNA molecules that are in turn 
translated into proteins. Proteins perform all kinds of functions, 
e.g. they can act as TFs for other genes, as enzymes catalyzing 
metabolic reactions or as structural elements in the cell. An exam-
ple of a network of molecular interactions is depicted in Figure 1.  

The complete cellular system can be simplified by considering 
only gene, protein or metabolic interactions. Gene networks fo-
cuses on gene interactions and are phenomenological models of 
how the expression level of each gene is influenced by the expres-
sion level of all other genes (Brazhnik, 2002). Here, connections 
between genes are characterized as either direct or indirect (see 
caption to Figure 1 for details). 

Gene networks are important, because they might contain valu-
able information for the pharmaceutical and biotechnology indus-
tries to design novel drugs for complex diseases. They are able to 
describe how cells react to external influences in a concise way by 
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gene connections, which implicitly capture regulatory mechanisms 
at the protein and metabolite space (Gardner, 2005). 

Linear models have been proposed to infer genetic regulatory 
networks from time-series gene expression data in many papers 
(e.g. Chen, 1999; D’Haeseleer, 1999; van Someren, 2006; 
Cosentino, 2007). Linear models assume that the future expression 
level of a gene is a linear combination of the past expression levels 
of all genes. This assumption is only valid near equilibrium, be-
cause the Hartman-Grobman theorem states that the behavior of a 
(biological) nonlinear system around a steady-state is similar to a 
linearised system (Grobman, 1959; Hartman, 1960). 

Despite the fact that linear models are already a strong simplifi-
cation of the underlying biological system, they are still underde-
termined as the number of genes is far greater than the number of 
measured time points. The LASSO method (Tibshirani, 1996) is an 
elegant shrinkage method, which performs feature selection and 
parameter estimation simultaneously. It has previously been ap-
plied to overcome the dimensionality problem during the inference 
of a 100 gene osteoblast differentiation network from eleven time 
points (van Someren, 2006). The approach was called LARNA. 

In this paper, we propose to integrate prior knowledge into the 
linear regression model LARNA (van Someren, 2006) by adjusting 
its shrinkage method such that it can utilize partial information 
about the topology of the true network. A drawback of traditional 
LARNA when trying to infer the right regulator from a group of 
genes that contains highly correlated expression profiles, is that it 
may arbitrarily select one of these genes. Prior knowledge about 
the likelihood of each of these genes as the potential regulator of 
the current target should aid LARNA in selecting the correct gene 
by taking this prior knowledge into account. 

Prior knowledge can be defined as any additional information 
about connections between genes. Transcription factor binding 
information identifies the binding of transcription factors to pro-
moters of genes. Literature networks are build from searching arti-
cles for co-occurrences of pair of genes. Many resources can serve 
as prior knowledge and it is important to integrate them. 

The main goal of this paper is to evaluate whether our approach 
of adding prior knowledge to LARNA has a positive effect in dis-
covering the original network. We evaluate the effect on the parts 
of the networks for which no prior knowledge was given. More-
over, we evaluate whether our approach is able to infer the original 
network when the prior knowledge contains errors. 

Evaluation of our new approach, called adaptive LARNA 
(aLARNA), on real data is difficult, because the underlying true 
gene network is unknown. Therefore, we first estimate its perform-
ance on synthetic datasets. In this way, we can compare the in-
ferred networks with the original network and include (part of) the 
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original network as prior knowledge. We also evaluate how its 
performance is influenced when incorrect connections are put into 
the prior knowledge. 

 

Fig. 1. Gene networks model how the expression level of each gene is 
influenced by the expression level of all other genes at the gene space.  
Gene connections between genes are either direct (physical) or indirect 
(influential). Direct connections between two genes occur when the product 
of one gene acts as a transcription factor and binds to the promoter of the 
other gene in order to regulate its expression level (blue arrow). Indirect 
connections between genes are mediated by protein and metabolic reactions 
and occur in two ways: (1) the product of one gene activates a complex of 
transcription factors, which regulate the expression level of the other gene 
(orange arrow); (2) the product of one  gene catalyzes a metabolic reaction 
in which the transformed metabolite activates a set of TFs and these bind to 
the upstream region of another gene (green arrow). Protein networks model 
the interaction between proteins at the protein space. Protein interactions 
refer to the formation of protein complexes and protein modification by 
signaling enzymes. Metabolic networks model the chemical transforma-
tions of metabolites at the metabolic space.  

We also evaluate aLARNA on a real dataset consisting of mi-
croarray measurements that follow murine stem cells undergoing 
osteoblast differentiation (development towards bone cells). Here, 
the underlying network is unknown and we used a literature net-
work to benchmark aLARNA’s performance. Here, two experi-
mental setups were designed; one to use the literature network as 
prior knowledge and the other to use transcription factor binding 
information as prior knowledge. 

We first introduce the LARNA model and the integration of 
prior knowledge. Next, results on synthetic and real datasets are 
presented and some discussion points are presented. Furthermore, 
we discuss methods to evaluate the performance. Finally, we con-
clude and give directions for future work. 

2 APPROACH 

A linear genetic network model assumes that current gene expres-
sion levels can be predicted by a linear combination of the gene 
expression levels at the previous time point. In matrix notation this 
means that output matrix Y can be predicted by multiplication of 
connectivity matrix A with input matrix X, as follows: 

 ˆ ,= ⋅ +Υ Α Χ ε  (1) 

where  represents the error, m∈ε ( 1)p n× −∈Χ , 
( 1)m n× −∈Υ , m m×∈Α , p is the number of regulatory genes, 

 is the number of target genes and  is the number of time 
points. Input matrix X consists of rows of gene expression profiles, 
with xjk the expression of the j-th gene at the k-th time point. Out-
put matrix Y consists of rows of gene expression profiles, with yik 
the expression of the i-th gene at the (k+1)-th time point. Connec-
tivity matrix A consists of coefficients aij, which represents the 
influence of gene j on gene i, and are only non-zero when gene j 
has an activating (aij > 0) or an inhibiting (aij < 0) effect on gene i. 

m n

LARNA infers the linear genetic network by estimating matrix 
A from input matrix X and output matrix Y. The coefficients of 
matrix A are found row-wisely by minimizing the penalized sum 
of squares via LASSO (Tibshirani, 1996), as follows: 
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Here ai represents the coefficients of the i-th row of matrix A and 
0λ ≥  is a complexity parameter that controls the amount of 

shrinkage. For increasing values of λ , the effect of the 1L  LASSO 
penalty ija∑  causes coefficients to become smaller and conse-
quently to become exactly zero. Thus LASSO performs simultane-
ous parameter estimation and variable selection. Here, we esti-
mated matrix A by adopting the algorithm from (Grandvalet, 
1998), in which LASSO is proven to be equivalent to adaptive 
ridge regression and this is solved by an EM-algorithm. 

Traditionally, the 1L  LASSO penalty applies equal penalties to 
each coefficient (see Supplement S.1), which is undesirable when 
the likelihood of being zero is known beforehand for some particu-
lar coefficients. Therefore, we propose adaptive Least Absolute 
Network Analysis (aLARNA), which exploit this knowledge by 
assigning different weights to these coefficients in the 1L  penalty, 
as follows: 
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where ij (0, ]∈ ∞  represent the weights. The weights give the 
coefficients different penalties to express the a priori influences. A 
strong indication of an existing influence of gene j on gene i re-
ceives a small weight such that the coefficient is less penalised and 
therefore has a higher change to remain in the model. Coefficients 
that are likely to have no influence receive larger weights in order 
to shrink them more strongly towards zero and as a result more 
likely to be removed from the model. 

3 RESULTS 

We evaluate the performance of aLARNA by means of synthetic 
and real datasets. As the underlying networks of synthetic datasets 
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are known this presents an ideal situation for evaluation, because 
we can compare the overlap between the networks inferred by 
aLARNA with the underlying networks. Methods section 5.3 de-
scribes the used performance measures in more detail. The syn-
thetic datasets are used to study the effect of different amounts of 
prior knowledge and different percentages of errors introduced in 
the prior knowledge. The real dataset is used to test aLARNA in a 
realistic situation with severe undersampling, significant measure-
ment noise and an unknown underlying model. 

3.1 Synthetic datasets 

3.1.1 More prior knowledge leads to better sparse networks   
We only present results on the artificial scale-free gene networks 
from Mendes et al (2003). (CenturySF). Experiments have shown 
that regulatory networks are sparse and have a scale-free topology 
(Albert, 2005; Featherstone, 2002; Jeong, 2000).  Results on other 
artificial gene networks were similar and can be found in the Sup-
plement S.5. Methods section 5.1 describes in detail how the syn-
thetic data was generated. 

This experiment evaluates how aLARNA performs when in-
creasing amounts of prior knowledge (0%, 25% and 50% of the 
underlying network) are given. The performance of aLARNA is 
compared to a random reconstruction algorithm (RRA) that ran-
domly assigns connections between genes (see Methods section 
5.7). For both approaches, the performance measures are calculated 
on the part of the network about which aLARNA and RRA re-
ceived no prior knowledge. We call this the no-prior knowledge 
part, which represents 50% of the whole network structure (see 
Methods section 5.6). 

aLARNA and RRA were applied on the 50 CenturySF datasets 
(Methods section 5.1.1) with values of  λ between 10^-4 and 10^7 

and ρ between 0.00 and 1.00, respectively.  Figure 2a shows the 
performance of both approaches by plotting the specificity (SP) 
against the sensitivity (SE). The better a method performs the 
closer its performance will be to the upper-left corner (SP = 1 and 
SE = 1). As expected, the performance of RRA remains on the 45 
degrees line regardless of the amount of prior knowledge. Clearly, 
the use of prior knowledge on one part of the network does not 
affect the performance of RRA on the no-prior knowledge part. 
aLARNA returns a fully connected network when λ is very small 
and therefore SE = 1 and SP = 0. aLARNA sets more coefficients 
to zero as λ increases and this has effects on the sensitivity and 
specificity. One, if the correct coefficients are set to zero, the 
specificity increases. Two, if the wrong coefficients are set to zero, 
the sensitivity decreases. Clearly, LARNA (i.e. aLARNA with 0% 
prior knowledge) outperforms RRA especially for large values of 
λ. 

When specificity is between 0.50 and 0.90, aLARNA performs 
increasingly better for increasing values of prior knowledge. In this 
interval, we observe that aLARNA correctly sets 50% to 90% of 
the coefficients to zero at a sensitivity of 60%. We observe that the 
sensitivity of the pink line is higher in this interval, which indicates 
a better performance with more prior knowledge.  

Figure 2b shows the sensitivity against the positive predictive 
value for the same conditions as in Figure 2a. Clearly, the PPV of 
RRA is constantly 2% regardless the amount of prior knowledge. 
aLARNA’s performance is not always better with more prior 

knowledge. Initially, different percentages of prior knowledge do 
not effect the performance (SE = [0.70, 1.00]) and performance is 
close to that of RRA. In the next interval SE = [0.40, 0.70], differ-
ent percentages of prior knowledge do not have a significant effect 
on aLARNA’s performance. However, when λ is very large and 
sparse networks are inferred, aLARNA with 50% prior knowledge 
reaches a PPV close to 1.00 and outperforms LARNA (PPV = 
0.90). From Figure 2b, we learn that prior knowledge is most help-
ful when sparse networks are inferred by aLARNA. 

increasing λ 

decreasing ρ 

  
(a) 

increasing λ 

decreasing ρ 

(b)  

Fig. 2. Scale-free gene networks: specificity versus sensitivity (a) and 
sensitivity versus PPV (b). 0% (blue lines), 25% (red lines) and 50% (pink 
lines) of the underlying network were given as prior knowledge to 
aLARNA (solid lines) and RRA (dashed lines). aLARNA was evaluated 
with a λ between 10^-4 and 10^7. 

3.1.2 Erroneous prior knowledge In the previous section, 
aLARNA receives faultless prior knowledge to reconstruct the 
original connectivity matrix. Unfortunately, such prior knowledge 
is unlikely to exist when we apply aLARNA in a realistic setting. 
Therefore, we evaluated its performance when errors are intro-
duced into the prior knowledge. The experiment is set up with 50% 
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prior knowledge and with 0%, 5%, 10% and 20% errors, which are 
randomly introduced into the prior knowledge. 

Figure 3 shows that the performance of aLARNA decreases with 
more errors as we would expect. It is interesting to observe that 
with erroneous prior knowledge aLARNA still managed to achieve 
a good PPV score when it returns very spare networks. In Figure 
3b, aLARNA has a PPV score above 0.95 with 5% and 10% errors 
in the prior knowledge when SE = 0.10, while LARNA only scores 
a PPV of 0.90 when SE = 0.10 (Figure 2b). 

 

 

Fig. 3. Performance evaluation of erroneous prior knowledge. (a) sensitiv-
ity versus specificity; (b) and sensitivity versus PPV. Solid lines represents 
the aLARNA’s performance with 0% (pink), 5% (red), 10% (blue) and 
20% (cyan) errors in the prior knowledge. RRA’s performance is shown by 
dashed lines. 

3.2 Real dataset 

Results from two experimental setups are presented to understand 
the effects of different types of prior knowledge (see Methods 
section 5.2).  

3.2.1 Experimental setup 1   aLarna is applied to the osteoblast 
differentiation dataset consisting of 334 genes measured over 52 

time points. As no underlying network is available, a literature 
network was constructed to serve as benchmark as well as (partial) 
prior knowledge (see Methods section 5.4.2). This is a challenging 
task, because the literature network is not precisely the underlying 
network (incomplete and erroneous). Here we also test aLARNA 
with different percentages of prior knowledge. 

aLARNA is evaluated with a λ between 10^-5 and 10^15. Contrary 
to the synthetic dataset, the osteoblast differentiation dataset was 
not normalized. Therefore, a larger λ was needed in order to infer 
sparse networks.  We were unable to choose a smaller λ to infer a 
fully connected network, because of computation limitations in 
Matlab. Therefore, a large part of the performance (SP = [0.00, 
0.90] and SE = [0.43, 1.00]) could not be calculated (Figure 4). 
Since we know from the previous experiments on synthetic data 
that aLARNA with prior knowledge performs best when it returns 
sparse networks, it should not be a problem that we fail to evaluate 
aLARNA’s performance for very small λ values. 

. 

 

Fig. 4. Performance evaluation on real dataset with prior knowledge (ex-
perimental setup 1). Sensitivity versus specificity (a) and sensitivity versus 
PPV (b). 0% (cyan lines), 25% (blue lines) and 50% (red lines) of the lit-
erature network were given as prior knowledge to aLARNA (solid lines) 
and RRA (dashed lines). aLARNA was evaluated with a λ between 10^-5 
and 10^15. 

(a) 

increasing λ 

decreasing ρ 

(b) 

(a) 

increasing λ 

decreasing ρ 

increasing λ 

decreasing ρ 

(b) 

increasing λ 

decreasing ρ 
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In the interval of SE = [0.90, 1.00], aLARNA achieves a higher 
SE with more prior knowledge. So, aLARNA has put fewer coeffi-
cients incorrectly to zero with more prior knowledge. Figure 4b 
shows that aLARNA performs poorly without prior knowledge 
(solid cyan line) though better than RRA. With 25% prior knowl-
edge the performance improves significantly (solid blue line). A 
PPV of 0.90 is reached with 25% prior knowledge. Moreover, a 
PPV close to 1.00 is reached with 50% prior knowledge (solid red 
line) 

3.2.2 Experimental setup 2   In this section, aLarna is applied 
time profiles of 334 target genes and 335 regulatory genes (see 
Methods section 5.2.2). This setup is even more challenging than 
the previous one, because the benchmark is different from the prior 
knowledge. Here, we integrate transcription factor binding infor-
mation and gene expression data and evaluate with a literature 
network. 

Figure 5 shows poor performance from aLARNA with 25% and 
50% prior knowledge. There is very little difference between the 
performance of RRA and aLARNA. Thus, aLARNA does not 
improve with transcription factor binding information as prior 
knowledge. 

 

Fig. 5.  Performance evaluation on real dataset with prior knowledge (ex-
perimental setup 2). Sensitivity versus specificity (a) and sensitivity versus 
PPV (b). 0% (cyan lines), 25% (blue lines) and 50% (red lines) of the lit-
erature network were given as prior knowledge to aLARNA (solid lines) 
and RRA (dashed lines). aLARNA was evaluated with a λ between 10^-5 
and 10^15. 

4 DISCUSSION 

The true network of a real biological system reveals itself trough 
e.g. gene expression data, transcription binding information, pro-
tein-protein interaction data, biological literature. Integration of 
these different data sources is needed, but the problem arises when 
the reconstructed network has to be evaluated. Generally, research-
ers use literature networks as the ground truth, because it offers a 
generic network encompassing all gene connections. However, 
there are two problems with literature networks. One, in literature 
two genes may be connected when e.g. they share similar protein 
sequences even though it is not necessarily a genetic connection. 
Two, an inferred gene connection not contained in the literature 
network requires costly gene knock out experiments in order to 
validate if the inferred connection is indeed false or a new discov-
ered connection (Husmeier, 2003). 

We experienced poor results when we attempted to integrate 
gene expression data with transcription binding information as 
prior knowledge (Section 3.2.2). The problem is caused in several 
ways. Firstly, the literature network is constructed by searching 
through all biological literature and not only osteoblast specific 
literature. This makes the literature network less specific to os-
teoblast differentiation. Secondly, by restricting the regulatory 
genes to only transcription factors even makes the inferred os-
teoblast networks more specific, because most general regulatory 
genes are omitted. Thirdly, the gene expression profiles of the 
regulatory genes are not predictive to the gene expression profiles 
of the target genes. It is reasonable that TF activity profile is very 
far from its gene expression profile. Fourthly, transcription factor 
binding information contains like the literature network more gen-
eral connections between genes. Therefore, it adds little improve-
ment to aLARNA. 

The determination of the weights ijθ is not straightforward (Sup-
plement S.4). On the one hand, the weight assigned to coefficients 
known to be non-zero has most effect on how large the range of 
the sensitivity is when a PPV score close to 1.00 (Figure S4 and 
S5). On the other hand, the weight assigned to coefficients known 
to be zero has smaller effects on the performance of aLARNA, 
especially when errors are present in the prior knowledge (Figure 
S5). It seems that different weights have small effects on the per-
formance of aLARNA when it infers sparse networks. Neverthe-
less, when prior knowledge is available weighting the coefficients 
will always result in better performance than LARNA. 

5 METHODS 

5.1 Data sets 
5.1.1 Synthetic datasets To evaluate the performance of 
aLARNA, artificial gene expression datasets were generated based 
on the artificial gene networks proposed by Mendes et al. (2003). 
The artificial gene networks are defined by sets of ordinary differ-
ential equations (ODEs, see Supplement S.2) and the Jacobians 
(see Supplement S.3) at the steady-state. The change in mRNA 
concentration of the i-th gene over time is described by an ODE, 
which describes the rate of synthesis and degradation of the corre-
sponding mRNA concentration, as follows: 

(b) 

(a) 

increasing λ 

increasing λ and decreasing ρ
 

decreasing ρ 
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where Gi represents the abundance of the mRNA of gene i, 
s(G1,…,Gn) the rate of transcription and b(Gi) the mRNA break-
down rate. 
The set of ODEs were numerically solved in Matlab to generate 
synthetic datasets, each containing n time profiles (one per gene). 
Each time profile consists of 5 subseries of 30 interpolated time 
points. Each subseries was created with initial concentrations all 
near the steady-state concentrations, i.e. they were drawn from a 
uniform distribution with the steady-state concentrations as means, 
as follows: 

                     (5) (0) ( 0.25, 0.25) ( )i iG U G t= − + st

where Gi(tst) represents the mRNA abundance of gene i at the 
steady state. 

Furthermore, to each generated expression value Gaussian noise 
was added. The noise had zero mean and a standard deviation that 
was 5% of the standard deviation of the entire time profile, as fol-
lows: 

 ( ) ( ) (0.00, 0.05* )noise
i i iG t G t N δ= +                 (6) 

where iδ represents the standard deviation of the i-th gene’s time 
profile. 

Before network inference, each gene expression profile was nor-
malized by subtracting the mean and dividing by the standard de-
viation of the gene’s entire expression profile, as follows: 
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=                               (7) 

where noise
iμ  and noise

iδ  represent the mean and standard deviation of 
the i-the gene’s noisy time profile, respectively. 

Mendes et al. (2003) proposed several different series of artifi-
cial genetic networks for evaluation of inference algorithms. We 
used the Century series, because it contains networks with three 
different topologies (random, scale-free and small-world) and a 
large number of network realizations per topology set. For each 
topology, the Century series consists of a set of 50 networks with 
100 genes and 200 connections. The first set, CenturyRND, con-
tains random networks (Erdös, 1959) in which each node has an 
equal probability to be connected to any other node in the network. 
The degree distribution follows a Poisson distribution, which indi-
cates that each node has a degree close to the average degree of the 
network. The nodes of the scale-free networks (Albert, 2000) in the 
second set, called CenturySF, follow a power-law distribution. A 
few nodes have a significantly high degree, whereas most nodes 
have only a few connections. The third set of networks, called 
CenturySW, have small-world topologies (Watts, 1998), where 
each pair of nodes has a small averaged distance. An overview of 
the main properties of the generated datasets that were used is 
depicted in Table 1. 

According to Mendes et al (2003). it is meaningless to use a sin-
gle network per topology due to the fact that the connectivity is 
randomly generated. Therefore, the Century series contains 50 
networks per topology. Thus, for each network (150 in total) we 

generated a synthetic dataset with 100 genes and 150 time points 
(in 5 subseries) and corrupted it with measurement noise followed 
by a gene-wise normalization step. 

Table 1. Properties of the employed artificial gene expression datasets. 
Three different sets of synthetic datasets were employed for performance 
evaluation, i.e. random Erdös networks, scale-free networks and small-
world networks. 

Name Topology Models Genes (n) Links Datasets

CenturyRND Erdös 50 100 200 50 

CenturySF Scale-free 50 100 200 50 

CenturySW Small-world 50 100 200 50 

 
5.1.2  Real dataset  The biological example involves a gene 
expression dataset measured from murein stem-cells undergoing 
osteoblast differentiation stimulated by BMP2 (Bone Morphoge-
netic Protein 2). Embryonic cells treated with BMP2 differentiate 
into bone cells. BMP2 belongs to a group of growth factor (BMPs) 
responsible for cell type differentiation, skeleton formation and 
development of the nervous system. 

The osteoblast dataset consist of gene expression data of 45101 
genes measured with the Affymetrix GeneChip Mouse Genome 
430 2.0 Array (Mouse430-2). Murine stemcells were grown in 
standard differentiation medium with BMP2 which was refreshed 
every 3 days, consequently the amount of active BMP2 peaked at 
time points 0, 73 and 145 hours. Measurements (mixture of triplos 
and duplos) were taken at exponentially increasing time intervals 
after each refreshment covering a total of 34 unique time points 
during a time window between 0 and 200 hours. Hence, we line-
arly interpolated the time points to obtain equal sampling. Data 
was normalized using Rosetta Resolver. Genes were ranked ac-
cording to how significantly they changed over time using an 
ANOVA with each time point as a separate group.  

Time profiles from this dataset were not normalized, because 
this would influence the significance of the time profiles. The 
highest ranked genes have the most informative time profiles. 
Thus, normalization would remove this information from the time 
profiles. 

5.2 Experimental setups with real data 

5.2.1  Experimental setup 1   In the first experimental setup, the 
literature network serves as benchmark and as prior knowledge. 
This is similar to the experiments with synthetic data where the 
benchmark and prior knowledge come from the same resource, 
namely the Jacobian.  

We initially selected the first 500 time profiles representing the 
target and regulatory genes, but ended with 334 time profiles due 
to mapping the time profiles to CoPub identifiers. The CoPub iden-
tifiers are necessarily in order to make use of the literature network 
as benchmark. 
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5.2.2  Experimental setup 2  In the second experimental 
setup, the benchmark and prior knowledge come from different 
resources. The benchmark is the literature network and the prior 
knowledge comes from transcription factor binding information. 
Here, the weights ijθ  contain information about the affinity of 
binding calculated by the Segalscore (see Supplement S.6) 

We selected 321 target genes and 335 regulatory genes based on 
the ranking. The number of target genes was chosen in a similar 
way as in the previous section. However, 13 genes were omitted 
which were transcription factors. Furthermore, the number of regu-
latory genes was determined by selecting those genes from the 
osteoblast dataset, which have CoPub identifiers and are contained 
as transcription factors with a binding motif in the TRANSFAC® 
11.2 database. In order to integrate the prior knowledge most effec-
tively, we decided to select regulatory genes acting as transcription 
factors. 

5.3 Performance measures 

Discovering the correct regulators of target genes is already a diffi-
cult task, thus we did not focus on the strength and type of the 
regulators. The performance is measured by calculating the sensi-
tivity, specificity and the positive predictive value (table 2). The 
sensitivity measures how well the algorithm can retrieve all the 
nonzero coefficients of the true network. The specificity measures 
how well the algorithm can retrieve all the zero coefficients of the 
true network. The positive predictive value measures how much of 
the inferred nonzero coefficients are true nonzero coefficient of the 
true network. Since networks are often sparse, it is important that 
the few inferred non-zero coefficients are indeed non-zero coeffi-
cient of the true network.  

Table 2. Performance measures. True positive (TP) occurs when Jij ≠ 0 and 
Aij ≠ 0. True negative (TN) is when Jij = 0  and Aij = 0. False-positive (FP) 
is when Jij = 0  and Aij ≠ 0. False-negative (FN) is when Jij ≠ 0  and Aij = 0. 

Sensitivity 

true positive rate 

Specificity 

false positive rate 

PPV 

positive predictive value 

TP

TP FN+
 

TN

TN FP+
 

TP

TP FP+
 

 

5.4 Benchmarks 
5.4.1  Synthetic benchmark  The Jacobians calculated at the 
steady-states serve as benchmarks for evaluation. They represent 
the connectivity matrices J of the original networks and are com-
pared to the reconstructed connectivity matrices A inferred by 
aLARNA. The search for non-zero coefficients is already hard, so 
we binarize both the Jacobians and inferred networks with a 
threshold of 10^-3 and lose all information about strength and type 
of regulation. 
 
5.4.2  Literature benchmark  The literature network L is con-
structed by means of the tool CoPub Mapper (Alako, 2005). It 

searches publications in MEDLINE to calculate how often pairs of 
genes are mentioned together by returning two measures: (1) a 
literature count, which represents the number of co-occurrences of 
a pair of genes; (2) a R-scaled value, which specifies how specific 
a pair of genes is.  

We binarized the literature network and the inferred networks 
before calculating the performance. Positive connections between 
genes pairs are assigned if their literature counts ≥ 3 and if their R-
scaled values ≥ 37. The literature network contains no information 
about the direction of regulation and therefore its connectivity 
matrix will be symmetric. For example, a positive connection will 
be represented by two ones in the connectivity matrix: lij=1 and 
lji=1. The inferred networks are thresholded with a value of 10^-3 as 
described before. Furthermore, they are symmetrized in order to fit 
the literature network. Finally, the diagonal entries of both net-
works are omitted, as the literature network contains no self-
feedback loops, and this could influence the results. 

5.5 The values of the weights 

Coefficients in the experiments with synthetic datasets and real 
dataset are penalized with weights θ respectively chosen from the 
sets {0.50, 1.00, 1.50} and {0.05, 1.00, 1.95}, dependent on 
whether the coefficient should receive prior knowledge and if so 
the kind of the prior knowledge (connection or non-connection). 
More details about the determination of the sets are in Supplement 
S.4. The weights in the weighted 1L  penalty are set as follows: 
• When we include only part of the Jacobian or literature net-

work as prior knowledge, then some coefficients will have to 
be weighted as having no prior knowledge. We penalize such 
a coefficient ija  with a neutral weight 1.0ijθ = . In this way 

ija  will be penalized indifferently to a connection or non-
connection in the original network. 

• When 0ijJ ≠  we know gene i is regulated by gene j and thus 
we penalize the corresponding coefficient ija  with a small 

0.50ijθ = . For the literature network we used: 0.05ijθ = . 

• When 0ijJ =  we know gene i is not regulated by gene j and 
thus we penalize the corresponding coefficient ija  with a 
large 1.50ijθ = . For the literature network we used: 

1.95ijθ = . 

5.6 Performance evaluation 

If we would consider the performance of aLARNA on the entire 
network when 50% prior knowledge is given, then it is difficult to 
see whether the inclusion of the prior knowledge improves the 
recovery in more than just the given part of the connectivity ma-
trix. In other words, do coefficients weighted with 0.50 and 1.50 
have a positive effect in discovering the coefficients weighted with 
neutral weights of 1.00.  

In order to clarify this, we compare the performance measures of 
different parts of the connectivity matrix. For convenience we take 
a four-gene network as example. One dataset of the four-gene net-
work is evaluated three times with 0%, 25% and 50% prior knowl-
edge and inferred networks are shown in Figure 6. The left matrix 
(Figure 6) is inferred by aLARNA without prior knowledge. Then 
aLARNA is given 25% prior knowledge (4 blue elements in mid-
dle matrix) to infer the original connectivity matrix. Independent 

7 
 



S.H.J. Yong-A-Poi et al. 

from the values in the Jacobian, we randomly assign one coeffi-
cient per row to be weighted with knowledge from the Jacobian. In 
the right matrix, we randomly assign per row an additional coeffi-
cient to be weighted with prior knowledge in order to reach 50% 
prior knowledge (8 blue elements). 

The red elements in the matrices are the coefficients selected for 
calculating the performance measures. The red elements represent 
the no-prior knowledge part of the matrix. We start by selecting all 
the coefficients without prior knowledge in the 50% case (red ele-
ments in right matrix). Consequently, the same coefficients are 
selected in the 25% (middle matrix) and 0% (left matrix) cases. 
Thus, part of the coefficients without prior knowledge is left out in 
the 25% and 0% case to make the comparison fair, because we 
now only consider the same coefficients without prior knowledge 
in all three setups. 

 

Fig. 6. Performance evaluation on no-prior knowledge part. Top row 
shows three connectivity matrices of a four-gene network with different 
percentages of prior knowledge. The row below shows the same matrices 
with red elements, which are used to calculated the performance measures. 
The red elements represent the no-prior knowledge part, which are used to 
calculate the specificity, the sensitivity and the positive predictive value. In 
the left and right matrices, white elements are left out of the evaluation of 
the no-prior knowledge part even thought they did not receive any prior 
knowledge in order to make the calculated performance measures compa-
rable. 

5.7 Random reconstruction algorithm 

In order to determine if the inferred networks by aLARNA are 
better than randomly generating networks, we also obtain results 
from a random reconstruction algorithm (RRA).  

The RRA generates a connectivity matrix randomly, but takes 
prior knowledge into account when given. We also introduce a 
probability parameter ρ, which controls the connectivity of the 
inferred networks. ρ is in the interval of [0.00 … 1.00] and indi-
cates the probability of a one in the inferred connectivity matrix.  

A full connectivity matrix is returned with ρ = 1.00, because all 
entries of the matrix receives ones (Figure 7: left matrix). As 
ρ→0.00, the RRA randomly adds zeros to the matrix to the no-
prior knowledge part. 50% of the entries in the no-prior knowledge 

part is zero when ρ = 0.50 and 100% of no-prior knowledge entries 
are zero if ρ = 0.00. 

Entries in the prior knowledge part are only set to zero if they 
are zero in the true network. When ρ = 0.50, RRA have found 50% 
of the zeros in the prior knowledge part (Figure 7: middle matrix). 
RRA infers the prior knowledge perfectly when ρ = 0.00 (Figure 7: 
right matrix). 

Random networks

1.00ρ =

 

Fig. 7. Random reconstruction algorithm (RRA). The top matrices shows 
how RRA sets ones to zeros. The matrix below represents the true network. 
When ρ = 1.00, a fully connected network is inferred. As ρ → 0.00 more 
zeros are added to the matrix. Elements without prior knowledge are ran-
domly set to zero. Elements with prior knowledge are only set to zero if 
they are zero in the true network. 

6 CONCLUSION AND FUTURE WORK 

We have shown that integration of prior knowledge into LARNA 
can improve the reconstruction of the underlying network. More-
over, when aLARNA is presented with partial information of the 
underlying network, it effectively infers the part of the network for 
which no prior information was given. aLARNA proves to be most 
effective with sparse networks and it even performs well when 
incorrect connections are present in the prior knowledge. 

As future work, the integration of transcription factor binding 
data was not successful due to several reasons discussed in Section 
4. Prior knowledge that contains more connections related to os-
teoblast differentiation should result in better performance. For 
example, ChIP-chip technology measures the binding of proteins 
and DNA in vivo. Data collected by ChIP-chip during osteoblast 
differentiation therefore reveals more related gene connections. 

In the experiments with synthetic datasets, the Jacobian served 
as benchmark and as prior knowledge. In practice, the benchmark 
should be different than the prior knowledge, because prior knowl-
edge can be acquired from different resources. So, there is a need 

                 0.50ρ =         0.00ρ =  

 Element without prior knowledge 
 Element with prior knowledge 
 

1 1 1 1 
1 1 1 1 
1 1 1 1 
1 1 1 1 

1 0 0 0 
0 1 0 1 
0 0 0 0 
0 0 0 1 

1 0 1 1 
0 1 1 1 
0 0 0 1 
1 0 1 1 

          0%              25%                50%

True network

1 0 1 1 
0 1 0 1 
0 1 0 0 
0 1 0 1  Inferred element without prior knowledge 

 Inferred element with prior knowledge 
 Inferred element without prior knowledge for evaluation 

Performance measures 

1 0 0 1 
1 1 1 0 
0 0 0 1 
0 0 0 0 

1 0 0 1 
1 0 1 0 
0 1 0 1 
0 1 0 0 

1 1 0 0 
0 1 0 0 
1 1 0 0 
1 0 0 1 
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for more realistic synthetic datasets where the biological process is 
modeled at different levels. Zak et al. (2001) introduced a more 
realistic genetic network simulator where the biological process 
was modeled with a hysteric oscillator, a switch and a cascade. 
Here, prior knowledge could be extracted from the transcription, 
translation or post-translational modification level. The size of the 
network is the only disadvantage, because it contains only 10 
genes whereas real gene networks contain far more genes. 

The time between synthesis and activation of a transcription fac-
tor can be large due to different intermediate regulation mecha-
nisms e.g. post-translation modification. The performance of 
aLARNA on the experimental setup of Section 5.2.2 could be im-
proved if the time profiles of the regulatory genes were delayed. 
For example, the expression level of a target gene at time point k is 
a linear combination of the expression levels of all regulatory 
genes at time point k-5. The determination of the previous time 
point can however be a difficult task. 
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SUPPLEMENT 
First, the shrinkage effects imposed by weighting the L1 LASSO 

penalty are analyzed. Next, the ODEs by Mendes et al. (2003) are 
described in detail and how a linearised system is derived from 
them. The determination of weights is described in the next sec-
tion. Furthermore, results with synthetic random and small-world 
networks are presented. Finally, the computation of Segalscore is 
described in detail. 

S.1 Weighting the L1 LASSO penalty 

We used the prostate cancer dataset (Stamey, 1989) to study the 
effects of weighting the L1 LASSO penalty. LASSO applies equal 
penalties to each coefficient. Figure S1 shows how the coefficients 
shrink when LASSO is applied to the dataset. The lweight predic-
tor (green dashed line) is shrunk to zero before the svi predictor 
(pink solid line). 

increasing λ 

 

Fig. S1. Shrinkage of coefficients from the prostate cancer dataset, as λ is 
varied. Coefficients are plotted against shrinkage factor s (standardized λ). 
All predictors are weighted equally with 1.00 in the L1 LASSO penalty. 

When the lweight predictor is weighted with a value of 0.60, we 
penalize this predictor less and hope that it will be shrunk to zero 
at a later stage. In Figure S2, we observe that the lweight predictor 
(green dashed line) is shrunk towards zero after the svi predictor 
(pink solid line). 
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Fig. S2.  Shrinkage of coefficients from the prostate cancer dataset, as λ is 
varied. Coefficients are plotted against shrinkage factor s (standardized λ). 
The lweight predictor is weighted with 0.60 in the L1 LASSO penalty, 
whereas all other predictors are weighted with 1.00. As expected, the 
lweight predictor is shrunk to zero after the svi predictor. 

S.2 Ordinary differential equations 

The ODEs from the artificial gene networks (Mendes, 2003) are 
defined as: 

1 ( 1)( , ..., ) ( ),                      
i

n i S
dG

s G G b G
dt

= −  

where Gi represents the abundance of the mRNA of gene i, 
s(G1,…,Gn) the rate of transcription and b(Gi) the mRNA break-
down rate.  
Regulatory effects of all regulatory genes are represented by the 
rate function s as follows:  

 1 ( 2)( , , ) ( ) (1 ),  
j k

j j k k

m m
j k

n i
m m m m
j j k kj k

S
A

s G G V
I A

β

β α
… = × +

+ +
∏ ∏  

where Vi symbolizes the basal rate of transcription, Ij the inhibitor, 
Aj the activator, α and β the saturation constants of the activators 
and inhibitors and mj regulates the sigmoidicity of the curve. The 
number of regulatory genes per i-th gene is dependent on the net-
work topology. When this number is determined, 50% of the regu-
latory genes are selected as activators and 50% are inhibitors. 

S.3 Jacobian 

This section describes the calculation and importance of the Jaco-
bian for a linear system. Consider the following nonlinear system 
of ODEs: 

( 3)( ).                                  S
dG

f G
dt

=  

 
From this nonlinear system we can calculate the Jacobian by tak-

ing the partial derivatives, as follows: 
 

 

1 1

1

1

( 4),             
n

n n

n

SJ Df

f f
G G

f f
G G

=

∂ ∂⎛ ⎞
⎜ ⎟∂ ∂⎜ ⎟

= ⎜ ⎟
⎜ ⎟∂ ∂⎜ ⎟
∂ ∂⎝ ⎠

 
increasing λ 

where n is the number of ODEs.  
The behavior of a nonlinear system around a steady-state is simi-

lar to a linearised system. The Jacobian at the steady-state needs to 
be calculated in order to define a linearised system. The nonlinear 
system is linearised as follows: 

 ( 5),                                  st S
dG

J G
dt

= ⋅  

where Jst is the calculated Jacobian at the steady-state. Since 
LARNA models a biological system as a linear, the inferred con-
nectivity matrices A are compared to the Jacobian. 

S.4 Determining the values of the weights 

S.4.1  Scale-free gene network The weights ijθ  from equation 
(3) have to be chosen carefully in order to obtain good perform-
ance. When all coefficients receive weights equal to 1, then equa-
tion (3) becomes equation (2), which is LARNA without any prior 
knowledge about the coefficients. Therefore, coefficients without 
prior knowledge will receive weights equal to 1.00 (table S1). 

Coefficients known to be nonzero in the original network re-
ceive weights equal to a value from the open interval (0.00, 1.00), 
because a weight below 1.00 causes the coefficients to be shrunk 
less and thus have a higher probability to be selected. Weights 
close to 0.00 cause the coefficients to be shrunk less, than weights 
close to 1.00. 

Coefficients known to be zero in the original network receive 
weights equal to a value from the interval (1.00, 5.00]. Higher 
weights than 5.00 seems inappropriate, because the coefficients 
would penalised too severe. Weights with a value above 1.00 cause 
the coefficients to be shrunk more and as a result are not selected. 

Table S1. Performance measures. 

 Evalualted values Optimal value 

No prior knowledge 1.00no pk
ijθ − =  1.00no pk

ijθ − =  

Nonzero element in 
true network ( )0.00,1.00conn

ijθ =  0.50conn
ijθ =  

Zero element in true 
network ( ]1.00...5.00no conn

ijθ − = 1.50no conn
ijθ − =  

 
Here, we look for the optimal values to assign the three different 

weights. Coefficients known to be nonzero received weights equal 
to 0.05 and 0.50 in Figure S3a and Figure S3b, respectively. Coef-
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ficients known to be zero receive weights equal to 1.25, 1.50, 1.95 
or 5.00. 

Figure S3b shows better performance than Figure S3a. In Figure 
S3b, there is a wider range (SE = [0.05, 0.37]) where the positive 
predictive value is close to 1.00. Thus, the optimal weight for coef-
ficient known to be nonzero is 0.50. 

It is not straightforward to select the most optimal weight for co-
efficients known to be zero. Figure S3b shows that the perform-
ance with weights 1.95 and 5.00 are similar and also weight 1.50 
results in a good performance. In order to decide which weight to 
select for the coefficients known to be nonzero, the performance is 
evaluated with errors in the prior knowledge and with weight 0.50 
for coefficients known to be nonzero. 

 

Fig. S3. Performances on the scale-free gene networks with different values 
for weighting the coefficients. Both plots consider only the no-prior knowl-
edge part. The two plots show 4 lines, which are the performances with 4 
different values for the weights of coefficients known to be zero. Further-
more, the two plots differ in the values for the weights of the coefficients 
known to be nonzero; (a) the coefficients known to be nonzero receive a 
weight equal to 0.05; (b) the coefficients known to be nonzero receive a 
weight equal to 0.50. Both plots receive 50% of the original network as 
prior knowledge without errors. 

Figures S4a and S4b are similar to Figure S3b, but with respec-
tively 5% and 10% errors in the prior knowledge. Weight 1.50 
results in the best performance with 5% errors (red line in Figure 
S4a). Over the whole range (SE = [0.00, 0.50], it has the highest 
PPV score. In Figure S4b, weight 1.50 results in the second highest 
PPV score in the interval SE = [0.02, 0.05]. Overall, weight 1.50 
gives aLARNA the best performance. 

 

Fig. S4. Performances on the scale-free networks with different values for 
weighting the coefficients. Plots (a) and (b) show the performance on the 
no-prior knowledge part. Each plot represents the performance of aLARNA 
with different values for weighting the coefficients. The different lines in 
each plot represent different values for weighting coefficients known to be 
zero in the original network. Coefficients known to nonzero are weighted 
with 0.50. All plots receive 50% of the original network as prior knowl-
edge. However, aLARNA received prior knowledge with 5% errors in plot 
(a) and with 10% errors in plot (b). 

S.4.2  Osteoblast dataset The same range of weights {0.50, 
1.00, 1.50} was initially used for the osteoblast dataset, but this 
resulted in poor performance (Figure S5). The solid red line always 
obtains a higher SE and PPV score in respectively Figure S5a and 

(a) 

5% error 

(b) 

10% error 

increasing λ 

increasing λ 

(a) 

(b) 

increasing λ 

increasing λ 
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S5b, which shows that more prior knowledge results in better per-
formance. However, the highest PPV score of 0.05 is still a poor 
performance. 

We tried another range of weights (0.05, 1.00, 1.95) and this re-
sulted in good performance (see Figure 3). Here, the coefficients 
are penalized more severely and that has a positive influence. We 
think that the networks inferred with the osteoblast dataset are 
rather different than the literature network. The literature network 
contains general relationships between genes, while networks in-
ferred from the osteoblast dataset contains more specific relation-
ships. By penalizing aLARNA with more stringent weights, we 
force aLARNA to find these general relationships. However, since 
we only take consideration of the no-prior knowledge part, it is 
interesting that general relationships are found without prior 
knowledge about them. So, the osteoblast dataset also contains 
information about general relationships between genes, which are 
apparently important for osteoblast differentiation. 

 

 

Fig. S5. Performances on the osteoblast dataset. Sensitivity versus specific-
ity (a) and PPV versus sensitivity (b). Weights selected from the set {0.50, 
1.00, 1.50} proved to result in poor performance. 

S.5 Results on CenturyRND and CenturySW 

We present the performance of aLARNA on the random (Figure  
S6) and small-world networks (Figure S7). The differences in per-
formance are minimal compared to scale-free networks. Figure 
S7b shows that for small-world networks there is hardly any dif-
ference between 25% and 50% prior knowledge (solid pink and red 
lines). 

 

Fig. S6. Results on CenturyRND: specificity versus sensitivity (a) and 
sensitivity versus PPV (b). 0% (blue lines), 25% (red lines) and 50% (pink 
lines) of the underlying network were given as prior knowledge to 
aLARNA (solid lines) and RRA (dashed lines). aLARNA was evaluated 
with a λ between 10^-4 and 10^7. 

(a) 

(b) 

increasing λ 

increasing λ 

decreasing ρ 

decreasing ρ 

(a) 

increasing λ 

decreasing ρ 

increasing λ 

decreasing ρ 

(b) 
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Fig. S7. Results on CenturySW: specificity versus sensitivity (a) and sensi-
tivity versus PPV (b). 0% (blue lines), 25% (red lines) and 50% (pink lines) 
of the underlying network were given as prior knowledge to aLARNA 
(solid lines) and RRA (dashed lines). aLARNA was evaluated with a λ 
between 10^-4 and 10^7. 

S.6 Segalscore 

The binding sites of transcription factors are represented by nu-
cleotide distribution matrices. These are called motif matrices 
(Figure S8). For each transcription factor the motif matrix was 
obtained from the TRANSFAC® 11.2 database. 

 

Fig. S8. Example of a motif logo (above) and nucleotide distribution matrix 
(under).  

Position weight matrices (PWM) are computed from the motif 
matrices in order to scan upstream sequences of target genes, as 
follows: 

,
, ( 6)ln ,                                 

b j
b j

b

S
f

W
p

=  

where fb,j is the number of occurrences of the possible bases b at 
position j and pb is the background frequency of base b. 

The upstream sequence of a target gene can be scored by a 
PWM at each position of the sequence. 

1

1

( 7)[ ],                              
p

i j i j

j

SSc W S + −

=

= ∑  

Where Si is the base at position i in the upstream sequence, p is 
the size of the motif and W is the PWM. 

The Segalscore scores each gene-motif combination by a value 
between 0 and 1. The larger the Segalscore the more likely a tran-
scription factor binds to the upstream sequence of the target gene. 
This score provides better predictions, because it avoids the prob-
lems arising from high-frequency but meaningless motifs that are 
common in many upstream sequences (Clements, 2007; Segal, 
2003). The Segalscore is computes as follows: 

1

1

1 1

1

( 8)

( . | )
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∑ ∑
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where ζ  is the sigmoid function and n the length of the upstream 
sequence. 

We threshold the calculated Segalscore with a value of 0.95 
(Figure S9). At this threshold, the target gene have a median num-
ber of 6 motifs (TFs) and 77 target genes don’t have motifs. This is 
motivated by [3]: in vertebrates targets are approximately regulated 
by 6 TFs and the number of target genes without motifs should be 
a small as possible. 

(a) 

increasing λ 

B
its

 

Position 
decreasing ρ 

increasing λ 

decreasing ρ 

(b) 
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Fig. S9.  Median number of motifs per gene and number of genes without 
motifs. 
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