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I. Introduction
A very common situation in statistical analysis is that we want to
relate the outcome of a random variable y  – the “response variable”
– to the values of some other variables 1, , kx x  – the covariates.
The covariates “explain” the outcome of the variable y  to some
extent, and the deviation between the actual outcome y  and the
explained part ŷ  is the unexplained “residual” or “disturbance
term”. The covariates can either be observational – outcomes that we
do not control – or experimental – results of experiments controlled
by us. They can either be quantitative or qualitative. The
interpretation of the relation under study can either be predictive or
structural. In all cases, the process of modelling these relations and
performing the statistical analyses of the relationships is called
regression analysis.
Before we embark on the topic on regression analysis, we need some
facts on hypothesis testing.
Assume that we want to test if the value of the unknown parameter  is equal to 0.  We can think of it this way: we actually consider
all hypotheses a   for all (feasible) values of .a  We know that
precisely one of these hypotheses is true, the others are false. If we
accept an error rate (probability of a type 1 error; accepting a false
alternative hypothesis) ,  then we can assume that the data we are
using for the test we are going to perform are such that the -p value
for the true hypothesis comes out greater than .  Indeed, the
probability that this -p value comes out at most   is (at most) 
and is hence a risk we are accepting to take. Therefore, any test we
perform for a hypothesis a   that comes out with a -p value at
most   must be false, and hence can be rejected .
Let us look at a simple example. Let us say that x is an observation
of a normally distributed random variable with unknown mean value
θ and variance equal to 1. The null hypothesis is that θ = 0. Assume
that we choose 0.01   and that 2.7.x   Under the null, (2.7 – 0)2
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is an observation of a χ2(1)-variable. The p-value for the null is
Pr(χ2(1) > 7.29) = 0.0069, so we reject the null. But by the same
token, we will reject any hypothesis a   for any 0.a   As a
consequence, we do not only reject that 0,  we accept that 0. 
More specifically, we accept that 0.124 5.276.   We have
inverted  a hypothesis test to a confidence interval.
If we test for more than one parameter value, say 1 2,   and 3 ,  then
we assume that the data are such that when we test for the true value

o1  of 1,  then the p-value for that test will come out 3,  and
similarly for 2  and 3.  The probability for this is at least 1 3 3 1 .      This procedure for treating multiple hypotheses
is called Bonferroni’s method. Hence, we reject the test for any of
the tree parameters that comes out with a p-value 3  (if we test
for three parameter values.) Confidence intervals are treated
similarly; three intervals with confidence level 1 – α/3 have a joint
covering probability of (at least) 1 – α .
Note the difference between testing several values for a single
parameter and testing values for several (say three) parameters. In
the first case, there is precisely one true value, in the second there are
several (three) true values. Bonferroni’s method applies to the
second case.



3

II. The Linear Regression Model
(when everything is almost perfect)
The specification of a linear regression model is

0 , 1, ,k
i ij j ijy x e i n    .

Here yi is an observation of the the dependent  random variable y
whose value depends on the covariates (or explanatory variables) x• j
plus an additional random variable, the residual ei. The covariates
are regarded as deterministic, i.e. fixed in repeated samples, whereas
the residuals are random variables which are assumed to be
independent between observations and such that

2 2 4E( ) 0  and  E( )  and E( )i i i ie e e   
where the σi:s are unknown. The covariate x•0 is the constant 1, and

0  is the intercept.
If we introduce

 0( ), 1, ,i i ikx x x i n   and
0( )tk   

then the model may be written as
i i iy x e 

Sometimes we suppress the observation index i and just write
y x e 

This is the heteroskedastic version of the linear model, meaning that
the variances of the ei :s are not all the same. Traditionally, in
textbooks, one assumes that all σi:s are the same, which is often a
rather unjustified assumption. This is the homoskedastic version of
the model. Historically, this was the standard assumption, since it
simplifies both the theory and the computations. Nowadays, when
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computation is fast and cheap, applied statisticians typically assume
heteroskedasticity since this generalisation comes at no cost.
Unfortunately, many computer software (such as EXCEL) still use
the homoskedastic assumption as the default model (EXCEL has
currently no other option.)
It is convenient to employ matrix notation:

Y X e   where ( ) 0E e   and 2( ) ( )t iE ee D 
where now Y  is an 1n -matrix of random variables, X  is an

( 1)n k  -matrix and e is an 1n -matrix of random variables.
2( )iD   is a diagonal matrix whose diagonal elements are 2i ,

i = 1…n.
The parameters βj are unknown and are to be estimated from data.
The use of the model can either be for prediction, or may be given a
structural interpretation which allows for hypotheses testing.
Here is an example of  a structural interpretation. Assume we want to
assess if females, ceteris paribus, get lower salaries than males, as is
often claimed. We can then estimate the linear model

0 1 1 k ky x x e      

where y  is log(wage), 1x  is an indicator variable (typically called a
dummy) for female (i.e., x1 = 1 for females and x1 = 0 for males,) and
the other covariates are age, years_of_education, years_of_working_
experience, etc.; i.e., characteristics that we believe influence the
wage. Females’ wages are then on average 1exp( )  times that for
males, and we interpret a negative value of 1  as a confirmation of
the claim that females on average get lower wages than males,
ceteris paribus.
A structural interpretation means that we consider the covariates to
influence the dependent variable, but not the other way round. This
need not be the case for a  prediction. For example, assume that we
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want to predict a student’s performance (grading) on a statistics
course, and use his previous grades on mathematics courses he has
taken as covariates. Then, of course, these grades have no influence
on his performance on the statistics course, but they have some
predictive power for obvious reasons: first, they measure some kind
of ability (a “hidden” characteristic) that is also useful in a statistics
course and, secondly, it measures his mathematical knowledge,
which is also useful in a statistics course.
Another example is this: assume we want to assess the engine power
of a car, and use the time it takes for it to accelerate from 0 kmph to
50 kmph and its weight as covariates. Of course, neither the time it
takes to accelerate the car, nor its weight, causes the engine to have a
certain power. Here the impact goes the other way: the power
influences the time it takes to accelerate.
In the first example – women’s wages as compared to men’s – it is
important that we include all covariates we believe influence a
person’s wage.  Otherwise it could be that women on average have
less working experience than men, for example, and this causes them
to get lower wages, whereas gender has no impact on wages. If we
want to assess if gender, ceteris paribus, has an impact on wages,
then we have to be careful with the modelling. If we just want to
make a prediction of a person’s wage, then we need not worry about
if the predictive power of “gender” depends on gender itself, or if it
is just correlates with, say, working experience or education, or
whatever. Most of the problems we will talk about later concern
structural interpretations; it is generally much easier to model and
estimate equations for prediction.
Estimation
The OLS estimate (Ordinary Least Squares) of  , ˆ,  is the valuê  of   that minimises the sum of the squares 2ˆ ˆ ˆ| |te e e  of the
residuals ˆê Y X   . This is achieved by solving  the normal
equations

ˆ 0tX e   
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for ˆ.  Indeed, let   be any other estimate of ,  and define
e Y X    . Let ˆ      . Now

ˆ ˆe Y X X e X        ˆX e  
But ˆandX e are orthogonal (the normal equations), hence, by
“Pythagoras’ theorem”,

2 2 2 2ˆ ˆ| | | | | | | |e X e e   

Q.E.D.
From the normal equations it follows that the OLS estimate of   is

1ˆ ( )t tX X X Y  .
Note that 1 1ˆ ( ) ( ) ( )t t t tX X X X e X X X e       , or

1ˆ ( )t tX X X e   
and hence ̂  is an unbiased estimate of ;  ˆE( )  .
The covariance matrix for ̂  can now be computed:

ˆCov( )  ˆ ˆE[( )( ) ]t    
1 2 1( ) ( ) ( ) .t t tiX X X D X X X 

A consistent estimate of this covariance matrix is
1 2 1ˆˆ ˆCov( ) ( ) ( ) ( )1

t t ti
n X X X D e X X Xn k     . (ii.1)

The factor n/(n – k – 1) needs an explanation. Since we minimise the
sum of squares 2ˆ| |e , we will underestimate the true value 2| | .e  The
factor n/(n – k – 1) is an ad hoc compensation for this.
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The BLUES
For the homoskedastic model, the OLS estimator is the Best Linear
Unbiased EStimator (BLUES). By “linear” is meant an estimator of
the type AY  . We get ,AY AX Ae     so in order that   be
unbiased, whatever value of ,  we must require that .AX I  The
covariance matrix for this estimator is 2tAA  whereas the homo-
skedastic OLS covariance matrix is 1 2( ) ,tX X   as can be seen as
above. We now prove that

1( ) 0t tAA X X   ,
meaning that this matrix is positive definite or semi definite. This
then proves that OLS is the BLUES, in the sense that it minimises
the variances of the individual   estimates, and every linear
combination of these.
Define 10 ( ) .t tA X X X  Note that, since ,AX I

10 0 ( ) .t t tAA A A X X  
Hence

0 00 ( )( )tA A A A  
0 0 0 0t t t tAA AA A A A A   

1( )t tAA X X  
Q.E.D.
However, for the heteroskedastic model, OLS is inefficient. It is
therefore commendable to formulate the regression model in such a
way that it be as close to homoskedastic as possible.
There are estimators that are more efficient, asymptotically and
theoretically, than OLS for the heteroskedastic model, but these are
not as robust as OLS, so in practise, OLS is the estimator of choice.
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Tests and Confidence Intervals for the  :s
The standard error ˆSE( )j  (the estimate of the standard deviation of
the estimator ˆ j ) is the square root of the corresponding diagonal
element of ˆˆCov( ).  This standard error is reported by EXCEL (for
the homoskedastic model) and other programmes that can perform
linear regression analysis. A confidence interval at level 1–α for βj is
 ˆ ˆ(1, 1) SE( )j jF n k     (ii.2)
where Fα(1, n – k – 1) is the α quantile of the F-distribution with one
numerator degrees of freedom and 1n k   denominator degrees of
freedom. An F(1, n – k – 1) -statistic for the hypothesis 0j j   is

20ˆ .ˆSE( )
j j

j
F  


     

The  p-value for the hypothesis is Pr( (1, 1) ).F n k F  
R2 and Effect Size
We run a regression of y on some covariates and compute the sum of
residuals 2ê  and also y on only an intercept, which gives the
residual sum of squares 2ê . The difference between these two sums
of squares is the amount of variation “explained” by the covariates.
The relative size of this “explained” part is denoted R2:

2 2
2

2
ˆ ˆ

ˆ
e eR e





It is a measure of goodness of fit and is called the “coefficient of
determination”. It is also equal to the square of the (sample)
correlation coefficient between y and ˆ.x  See the exercises for other
interpretations of R2. There is also an adjusted R2 (often denoted 2R )
where there is an adjustment for degrees of freedom, such that the
adjusted R2 is somewhat lower than R2.
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This can of course be generalised; indeed, if we run a regression with
and without a certain covariate (or set of covariates) then the effect
size called partial eta squared  is defined as
 2 22

2
ˆ ˆ| | | | ,ˆ| |
e e

e 



or, equivalently
2 22

21
R R

R 


 
where 2R  and 2R  are the coefficients of determination for the full
and the “restricted” regression; ˆ ˆ and e e  corresponding residuals.
It is convenient to compute η2 directly from the output of the full
regression (i.e., all covariates included.) This is done as follows:
Assume that the model is

1 1 2 2y x x e   
(here x1 and x2 are row matrices, and β1 and β2 column matrices) and
we want to compute the effect size of x2. Let W2 be the sub-matrix of

1( )tX X   corresponding to the x2-variables (i.e., the last r rows and
columns, if x2 contains r covariates.)  Define

12 2 2ˆ ˆtq W  .
Now

2 2ˆ ˆq e e  , so 2
2 .ˆ| |
q

e q   (ii.3)
It is a good practise to include η2 in regression output tables.
Hypothesis Testing concerning Several β Values; the F-test
Assume we want to test the null hypothesis that a number r of the

:s  are all equal to zero. A test statistic for the hypothesis is
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12 2 2
1 ˆ ˆˆtF Vr  

which has an approximate F(r, n – k – 1) distribution under the null,
and we reject the hypothesis if F is large. The  p-value for the
hypothesis is Pr(F(r, n – k – 1) > F). The notation is as follows:
Assume that the model is

1 1 2 2y x x e   
and H0 – the hypothesis to be tested – is that β2 = 0 (here x1 and x2are row matrices, and β1 and β2 column matrices) and β2 consists of r
parameters. 2̂V is the estimated covariance matrix for 2̂  (i.e., we
keep the last r columns and the r last rows in the estimated
covariance matrix for ̂  and delete the others.)
We can also compute a confidence set for β2: with confidence level
1 ‒ α , the true parameters β2 lie in the region (an r-dimensional
ellipsoid)

12 2 2 2 2ˆ ˆˆ( ) ( ) ( , 1).tV rF r n k       
Other Linear Restrictions
A general linear restriction may be written

ˆR 
where R  is an ( 1)r k  -matrix and   an 1r  -matrix. The
simplest way to handle this problem is to rewrite the model to
convert the problem to the situation where the hypothesis is that a set
of coefficients is zero. I show how this is done in an example. Let us
say that the hypothesis is that 1 2 1    and 3 42   and that the
model is

5
0 1 j jjy x e   

Define γ2 and γ3 such that β2 = 1 – β1 + γ2 and β3 = 2 β4 + γ3 and
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rearrange:
2 0 1 2 1( )y x x x    

3 4 4 5 5(2 )x x x   
2 2 3 3x x e   

We thus generate a new dependent variable (y – x2) and two new
covariates (x1 – x2) and (2x3 + x4) and employ the F-test on the
hypothesis γ2 = 0 and γ3 = 0. Note that since we have a new dependent
variable, the R2  statistic from this regression is incompatible with
that from the original formulation of the full model.
Prediction
The linear model is often used for prediction. Given the covariates

0x  (a row matrix), the predicted value of the corresponding  y, yp , is
0ˆpy 

where 0̂  is the estimate from
0 0( )y x x e    

This prediction contains two components of uncertainty: the residual,
which is set to zero in the prediction equation, and the fact that the
estimated value 0̂  rather than the true 0  is employed. Thus, the
error in the prediction is

0 0 0ˆpe e    
whose total variance is

20 0ˆVar( ) Var( )pe   
which is estimated to

20 0ˆˆ ˆˆVar( ) Var( )pe   
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where 20̂  is an estimate of 20 0Var( ).e   If the model is homo-
skedastic, an unbiased estimate is

220
ˆ| |ˆ .1
e

n k   
III. The Logit
In some cases yi is a probability. For instance, we might want to
estimate the probability that an unemployed person gets a job during
one month, conditional on covariates like age, education, experience,
gender etc. In this case a linear specification

i iy x 
might be inappropriate. For instance, it may happen that for some
values of the covariates 1 or 0.ix     Two common specifications
are the probit  and the logit specifications. The probit specification is

( )i iy x  
where   is the cumulative normal density function; the logit
specification is

exp( ) ( )1 exp( )
ii i

i
xy p xx
  

In practise they differ very little, so we focus on the latter, since it is
computationally much simpler.
The data on yi are given as dummy variables yi such that yi is equal
to one if the event under study occurred, and zero otherwise. The
estimation is then by Maximum Likelihood, i.e., one maximises the
log-likelihood function

1 ˆln( ) ln[(2 1) ( ) 1 ]n
i i iiL y p x y   

over ˆ.  For testing, one may use the likelihood-ratio test: if ln( )L
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is the log-likelihood function when the restrictions are imposed, then
under the null (i.e., that the restrictions are true)

2ln( ) 2ln( )L L
is approximately a 2 ( )r  variable, where r is the number of
restrictions. One may also use bootstrapping, (see section “The
Bootstrap”.)
Unfortunately, the logit (and probit) is sensitive to misspecifications.
With the logit (or probit) specification the interpretation of the β-
coefficients are less obvious than in the OLS case. A positive value
of a βj implies that the corresponding covariate has a positive
influence on the probability y, but to what degree depends on the
value of the other covariates. However, we can rewrite the
specification as

ln 1
i i

i
y xy     

so we see that the impact of a covariate on the log-odds is measured
by the corresponding β-coefficient.
Exercises
1. Let îe  be the estimated residuals of a regression of iy  onto some

covariates. Show that
2

1 1ˆ ˆ .n n
i i iy e e 

2. We run a regression
0 1 1 2 2 3 3ˆ ˆ ˆ ˆ ˆy x x x e       

where  ̂  denotes estimated values. Next we run the regression
3 0 1 1 2 2ˆ ˆ ˆ ˆ.x x ux      

Prove that ˆ ˆ 0.tu e 
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3. Assume that you run a regression of y onto two covariates 1x and
2:x

0 1 1 2 2 .y x x e     
a) If the estimated regression coefficient for x1 is zero when x2 isregressed on (an intercept and) x1, then the estimated value ofβ1 will be the same as when you leave out x2 from the

regression. Prove that!
b) Prove that this is not true if the coefficient for x1 in the

regression described in a) is different from zero.
c) If the coefficient for x1 is equal to zero, is there any reason to

include the x2 covariate in the regression? (We are only
interested in the β1 coefficient.)

4. When we run a regression 0 1 residualk
j jjy x     we get

a value of R2, which is defined in the text. Show that R2 can also
be described as

2 ˆVar( ) ,Var( )
yR y

where “Var” is the sample variance, and
10ˆ ˆˆ k

j jjy x   .
Furthermore, show that R2 is also equal to the square of the sample
correlation coefficient between ˆ and .y y
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IV. When Everything is Not so Perfect
Multicollinearity
Assume that we run a regression of a variable y, say log of wage, on
dummies1 (male) and (female) and an intercept:

0 1 2log(wage) (male) (female) e     
(so “(male)” is equal to one if the person is a man and zero if it is a
woman, etc.) It is easy to see that the OLS estimate does not have a
unique solution. Indeed, we can add any number a to β1 and β2 and
subtract a from β0 and get the same residuals. The problem is that the
intercept (the covariate 1) and the two dummies are linearly
dependent. The problem is labelled (perfect) multicollinearity. This
is a model specification error which renders OLS estimation
impossible. In the example given here, the remedy is to remove one
of the gender dummies. The coefficient for the remaining dummy
estimates the extra wage persons of this gender enjoys.
More often the problem is imperfect multicollinearity, often just
labelled “multicollinearity”. This means that at least one of the
covariates is is highly correlated with a linear combination of the
other covariates (but not a perfect linear combination of these.)
Say, for instance, that you run a regression of log wage on age,
education (in years) and working experience (in years). The problem
is that age ≈  6 + education + experience for most persons.
Multicollinearity (i.e., imperfect) is not a specification error, it is
just a nuisance, since it causes the standard errors of one or more
more of  the regression coefficients to be very large, and hence the
point estimates of the those coefficients to be very imprecise.
However, these standard errors are decreasing in n, the number of
observations, so the problem with multicollinearity is in a way
equivalent to few observations. See appendix 5.

1 See the section “Model Selection” below.
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Micronumerosity
“Econometrics texts devote many pages to the problem of
multicollinearity in multiple regression, but they say little about the
closely analogous problem of small sample size in estimating a
univariate mean. Perhaps that imbalance is attributable to the lack
of an exotic polysyllabic name for “small sample size.” If so, we can
remove that impediment by introducing the term micronumerosity.”
(Arthur S. Goldberger, A Course in Econometrics, 1991.)
This is said in jest, of course; “micronumerosity” is not a word. But
the problem with few data is a real problem. The classical
assumptions on the regression model is that the error terms ei are
independent and follow a normal distribution with mean zero and a
common variance σ2. We have assumed only independence and
mean zero, plus the extra condition that 4E( ) .ie    In applications
the assumptions on normal distribution and homoskedasticity (see
below) are at best approximately appropriate, so instead we rely on
asymptotics; more precisely the Central Limit Theorem. It is for this
we need the assumption 4E( ) ,ie    but we need also require that the
number of observations is not too small.
If the number of observations n is small, then the asymptotics does
not kick in, so we need to rely on the assumptions on normally
distributed error terms and homoskedasticity. Hence we employ the
homoskedastic formulas for standard errors, confidence intervals and
tests in these cases. See the paragraph “Why do we assume
homoskedasticity in ANOVA?” in section VIII.
Heteroskedasticity
A common assumption is that all residuals ei have the same standard
deviation σ. This assumption is called homoskedasticity. The model
specification is thus

0 , 1, ,k
i ij j ijy x e i n   

where
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2 2E( ) 0 and E( )i ie e  
and the ei:s are independent between observations. When this
specification is employed, the computer programme will compute
standard errors and F-statistics from a covariance matrix which is
estimated as

1 2ˆˆCov( ) ( ) ,tX X s   where (iv.1)
22 ˆ| | .1

es n k  
If the model has heteroskedastic residuals and is misspecified as
homoskedastic, then this causes the standard deviations of the
parameter estimates to be inconsistent and renders the F-test invalid
– the point estimates of the coefficients are still the same, though.
Let us look at an example. 
Assume that y1,…,y2m are observations of a normally distributed
variable with unknown expected value 1  and unknown variance
equal to 1, and that y2m+1,…,y3m are observations of a normally
distributed variable with unknown expected value 2  and unknown
variance equal to 2, and and that all observations are independent.
We want to test the hypothesis that 1 2 ,   or compute a
confidence interval for the difference 1 2.   We express the
situation as a linear regression model:

0 1 , 1, ,3i i iy x e i m     

where x  is a dummy variable for the first 2m  observations, i.e.,
1ix   for 1, ,2i m   and 0ix   for 2 1, ,3 .i m m    The

hypothesis is now that 1 0,   and a confidence interval for 1 2 
is the same as a confidence interval for 1.  The true variance for the
estimate 1̂  is easy to compute, it is equal to 2.5m–1. If the model is
misspecified as a homoskedastic regression model, the asymptotic
value of the estimated variance is 2m–1. Indeed, the estimated
variance is computed as
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2 32 21:2 2 1:3
1 2 1

1 1 1( ) ( )3 2 2
m m

i m i m m
m

y y y ym m m
           

whose expected value is about 2/m for large m. In contrast, the
heteroskedastic estimated variance is

2 32 21:2 2 1:52 21 2 1
3 1 1( ) ( )3 2 4

m m
i m i m m

m
m y y y ym m m 

       
whose expected value is about the correct value 2.5/m for large m.
Remedies for Heteroskedasticity
Reformulate the Model
The first thing to do is to try to reformulate the model so as to get rid
of the heteroskedasticity, see the section “Model Selection”. The
reason for this is that OLS is more efficient if the residuals are close
to homoskedastic.
White’s Consistent Variance Estimator
Halbert White wrote an influential article in 1980 where he gave a
consistent estimator for the covariance matrix for the heteroskedastic
regression model. His covariance estimator is the one in this text
without the leading factor n/(n – k – 1). The estimator in this text is
the default heteroskedasticity robust covariance matrix estimator in
the programme Stata.
Most regression computer programmes have the option to use
“robust errors” or some such, which means employing some variant
of White’s estimator. It is advisable to always use this feature when
available (see however the section “Why do we assume homo-
skedasticity in ANOVA?”)
The Bootstrap
It is a good idea to use bootstrap to test hypotheses and estimate
confidence intervals in case of for example non-normality of the
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residuals, 2SLS (described later) and also in case of logit estimation,
since in these cases the standard methods have poor properties in
small samples. I will describe one way to do this. Let us say that we
want to test if a sub-vector   of   is equal to 0. Let ̂  be the point
estimate of   and let ˆj  ,  j = 1,…, b, be the the corresponding
estimates from the bootstrap resamples (see below). Now estimate a
covariance matrix for ̂  (the accuracy of this estimate is not crucial):

  
1

1 ˆ ˆ ˆ ˆˆ .b t
j j

j
V b     


  

Next compute the constant :c
1ˆ ˆˆtc V 

and compute the number m of  j:s for which
   1ˆ ˆ ˆ ˆˆt

j jV c       
The p-value for rejecting the null hypothesis is now m/b.
If θ is a single parameter, we can compute a confidence interval for it
as ˆ c  
where c  is chosen such that a fraction pb of the *ˆ :sj  falls outside of
the interval ˆ .c   The bootstrap resampling can be done in various
ways, one of which is “wild bootstrap” which is as follows: Let us
say that the data set consists of n data of the form
{(x1, y1),…,(xn,  yn)}, where the xi :s are row vectors. A resample is a
new set of n data  created as follows: After the regression is run,
keep the residuals ˆ ,ie  i = 1,…, n  and then create the bootstrap
resample 1 1{( , ), ,( , )}n nx y x y   such that

with probability 0.5
ˆ2 with probability 0.5

i
i

i i
yy y e
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(i.e., we change the sign of the residual with probability 1/2.) With
these data we run the regression again, and obtain new estimated
parameters 1 .   This is repeated b times (say, 2’000 times,) to give
the bootstrap estimates , 1, , .j j b   

Employed to logit regression, we resample as follows: the resample
is  ( , ) ,i ix y  i = 1,…, n, where

ˆ1 with probability ( )
ˆ0 with probability1 ( ).

i
i

i

p xy p x



   

V. Model Selection
The use of dummy variables
In many model specifications some covariates are qualitative and
then dummy variables come in handy. Assume, for example, that you
want to test if returns to schooling (on wage) is the same for men and
women. You can then specify a model like this:

0 1 2
3 4

ln(wage) (experience) (female)
(education) (female) (education) e

  
 

    
     

Here we assume that the returns to experience is the same for men
and women. The covariate (experience) is work experience in years,
(education) years of schooling. The covariate (female) is a gender
dummy, equal to 1 for women and 0 for men. The coefficient β3measures the returns to schooling for men, and β3 + β4 measures the
returns to schooling for women. The null hypothesis is thus that β4 =
0.
Another example: you want to see if American cars, Japanese cars
and European cars differ in mileage per litre of fuel. You may then
specify the model as

0 1 2mileage engine_power weight      
3 4(American) (Japanese) .e   
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where (American) and (Japanese) are dummies – equal to one for
American cars and zero otherwise, and equal to one for Japanese cars
and zero otherwise, respectively. The benchmark is then European
cars; β3 measures the excess mileage of American cars compared to
European, and β4 the excess mileage of Japanese cars compared to
European, and the null hypothesis is β3 = β4 = 0.
Choice of covariates
In the first case above, maybe we suspect that the returns to
schooling is decreasing, i.e., if we already have many years of
schooling, one more year have less impact on wage compared to if
we are less educated. We can then add the covariate “education
squared”, for example, and expect the coefficient for this covariate to
be negative. Perhaps also a covariate “experience squared” is
warranted.
Assume you want to estimate the expected life time of a person,
depending on his smoking and alcohol habits. In addition to the
natural covariates “smoking” (number of cigarettes per day, for
example) and “alcohol consumption”, you might want to include the
interaction effect (smoking)∙(alcohol consumption).
Assume you want to run a regression of GNP on some explanatory
variables for various countries. Since countries vary a lot in size, it
seems reasonable to assume that this causes heavy hetero-
skedasticity. Use GNP per capita instead.
Sometimes we don’t know which of several covariates should enter
the equation. A common test for this is the AIC (Akaike  Information
Criterion) test. One chooses the model that minimises

2ˆAIC ln(| | ) 2n e k 
where k is the number of coefficients and n the number of
observations. In the case of logit, one minimises

AIC 2ln( ) 2L k  
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where ln( )L  is the log-likelihood function, i.e.,

1 ˆln( ) ln[(2 1) ( ) 1 ].n
i i iiL y p x y   

AIC does not provide a test of a model in the sense of testing a null
hypothesis. The “true model” ‒ the process that generated the data ‒
is unknown to us, and we wish to select, from among the candidate
models, the approximate model that minimises the information loss
relative to the “true model”. This is the one that minimises AIC. We
cannot choose with certainty, but we can minimise the estimated
information loss.
Transformation of variables
In the first example, we used ln(wage) as dependent variable. It is
often warranted to use log of the dependent variable if it is positive
by nature. For instance, in this case the impact of, say, one more year
of  experience is that the wage is multiplied by exp(β1), i.e., it
increases the wage by a certain  percentage, rather than a fixed
pecuniary amount. Note, however, that if we specify a model

ln( ) ,y x e 
then the expected value of y is not exp(xβ ). Indeed, if  e is normally
distributed with variance σ2 then

20.5E( ) .xy e  
The median value of y  is however .xe 

In some cases this specification can be a remedy for
heteroskedasticity. Assume that you consider a model

y x e 
and you suspect that the standard error of e is about proportional to
E(y). Then we can write this as

(1 )y x v 
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where the variance of v is essentially independent of  x.Taking
logarithms gives

ln( ) ln( )y x u 
where u = ln(1+v) whose variance is independent of x. This is thus a
homoskedastic equation, and we might consider replacing ln(xβ) by
the linear specification xβ to get

ln( ) .y x u 
Exercises
1. You want to know how the number of rooms in an apartment

influences its price, and consider the two model specifications:
0 1price (no._of_rooms)  

2(floor_area) resid  

and
0 1price (no._of_rooms) resid    

(i.e., no floor area in the equation)
Discuss the interpretation of 1  in the two models.

2. You want to investigate how much wage increase a person may
expect if he takes a university exam, compared to if he does not.
You run a regression on some data:

0 1log(wage) (univ_exam)  
2 3(work_experience) (female)  

4(immigrant) resid 
Here all variables except (work_experience) are dummies. Do you
see any problems with this? If we replace (work_experience) with
(age), does that in any way change the interpretation of  β1?
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3. A colleague is planning to investigate if a higher tax on beer will
serve to decrease traffic fatalities and proposes to use cross-
sectional data on (US) states to regress traffic fatalities on beer
tax, total miles driven, percent of the population that is aged 18–
25, beer consumption and frequency of police road checks. He will
then take the coefficient for beer tax as a measure of the impact of
tax on beer on traffic fatalities.
What advice would you give him?

4. You run a regression
0 1 1 2 2 3 3 4 4y x x x x e         

and want to test if  3 4 1.    We assume that your
programme only can run “vanilla” regressions. How do you
perform that test?
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VI. Analysis of Observational Data
(econometrics)
Econometrics is concerned with applying statistical methods to
problems where available data are observational rather than
experimental; i.e., they don’t come from controlled and planned
experiments. This is commonly the case in economics, biology,
medicine and social sciences. Astronomy is an example of a natural
science where data typically are observational. Despite the name,
econometrics is thus not confined to the analysis of data in
economics.
The first task is to choose a good statistical model for the problem
under study, and then to perform the statistical analysis of this
model. Hence, both statistical modelling and statistical analysis are
important components of applied econometrics.
There are numerous textbooks on econometrics, many very
comprehensive. However, they typically focus on the technicalities
of estimation, much less on the important issue of modelling. I have
tried to put reasonable emphasis on both aspects.
A book that stands out is Peter Kennedy’s A Guide to Econometrics.
It presupposes that you have basic knowledge about the technicalities
of econometrics, but explains what is going on, and what can go
wrong, and what to do when things look weird, and so on. This is a
book that anyone who is about to do any serious analysis of
observational data should read at least relevant chapters from. I
most strongly recommend this outstanding and unique book!
A special feature of observational data that has to be addressed is the
possible presence of  endogeneity.
Endogeneity
The term “endogeneity” is used whenever the assumptions ( ) 0iE e 
are violated because the expected value of  ei depends on the value of
at least one of the covariates; we say that the residual is correlated
with that covariate. The phenomenon occurs when the regression
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equation is given a structural interpretation, not when it is used for
prediction. Endogeneity may appear in many different forms, but
mathematically the problem is the same. The estimation procedure of
OLS requires that the residual is uncorrelated with the covariates,
and when this is not the case, OLS will not produce consistent
estimates. A positive correlation will over estimate the coefficient, a
negative correlation will under estimate the coefficient (if only one.)
I will go through some common situations when endogeneity arises.
Sample Selection Bias
Bias in data occurs when the probability of being selected to the
sample depends on some other criterion than the values of the co-
variates. For example, if we want to assess if female statistics
students perform better or worse than male students, then one of the
covariates is a dummy for “female”, and hence it is ok to choose an
equal number of female students as male students, even if they are
not equal in number in classes. It is even commendable to make such
a choice. But we must take care so that we don’t select especially
talented female students, but mediocre male students, for instance,
which seems quite obvious.
A common situation is labelled self selection bias. Assume that I
want to assess if my teaching in class helps students to perform
better at the exam. I can then compare the performance of those
students that do attend most of my lectures with the performance of
those who prefer to study in private. Obviously there is a self
selection mechanism at work here. Maybe it is the most talented
students who choose to study in private. Then the covariate
“attendance in class” is correlated with the unobserved characteristic
“talent” which is part of the residual.
Simultaneity
“Simultaneity” is present when the alleged “dependent” variable in
fact also influences one or more of the covariates, i.e., the cause and
effect goes in more than one direction.
Say that we want to assess whether more policemen reduces the
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crime rate. So we run a regression of crime rate on some socio-
economic variables plus the number of policemen per 100’000
inhabitants. But if the residual is large for some reason, it means that
the crime rate is unusually high, and a high crime rate causes
authorities to increase the police force. Hence the residual is
positively correlated with the covariate “number of policemen”.
A more subtle situation is the often given example with “demand”
and “supply” of a commodity. Assume I want to estimate the
“demand curve” for coffee. The “dependent” variable is then “sold
quantity of coffee”, and one of the covariates is “price”. However,
we know from economic theory that if demand goes up, then the
price will also go up. Hence, assume that demand goes up at some
point in time (some observation,) for instance because of an
advertising campaign. This is captured as an residual which is very
large (the residual contains “advertising campaign”.) Then the price
will also go up. Thus, we have a positive correlation between the
residual and the covariate “price”. (We are in fact measuring a
mixture of the demand curve and the supply curve.)
Missing Relevant Covariates
Sometimes the component of the residual that makes it correlate with
some covariate can be identified, and in this case we talk about a
missing relevant covariate. For example, low fuel consumption is a
positive feature of a car, so, ceteris paribus, low fuel consumption
ought to make the car more expensive. However, a regression of
price on fuel consumption would probably result in a positive
coefficient (higher fuel consumption   higher price). However, a
high engine power is also also a positive feature which increases
both fuel consumption and price. The residual will contain “engine
power” which is correlated with the covariate “fuel consumption”. In
this case the remedy is simple: include the missing covariate “engine
power” in the regression.
Measurement Errors
Measurement errors, even unbiased, in the covariates cause
“endogeneity”. Note that (unbiased) measurement errors in the
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dependent variable just add a component in the residual, and do not
cause “endogeneity”. To see why measurement errors in covariates
cause endogeneity, consider the “true” model

y x e 
and let x x    be the measured values of ,x    being the
measurement error. Then the model we regress is

y x e   , where
x x     and  e e  

Obviously, x  and e  are correlated unless 0. 
A remedy for Endogeneity:
Instrumental Variables (2SLS)
We write the model with matrix notation:

.Y X e 
When there is endogeneity, i.e., at least one covariate is
“endogeneous”, meaning that it is correlated with the residual, the by
far most common way to handle the situation is by employing
instrumental variables (or just instruments). We must find new
variables that are well correlated with the endogeneous ones, but
uncorrelated with the residual. The original exogeneous variables
plus the instruments are called the “exogeneous variables”, and the
original exogeneous variables are the included exogeneous variables.
The exogeneous variables must be at least as many as the original
covariates. In other words, we must find at least one instrumental
variable for every endogeneous one.
We denote the matrix of exogeneous variables Z. The number of
columns in Z is hence at least as many as in the matrix X of original
covariates. If  Z  has equally many columns as  X, then the natural
normal equations would be

ˆ 0,tZ e 
which is also what they are. However, if  Z  has more columns than 
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X, it means that there are more equations in the system above than
there are coefficients to be determined, i.e., we have an over
determined system. In order to reduce the number of equations such
that we get a precisely determined system, we project  X onto  Z:

1ˆ ( )t tX Z Z Z Z X
The normal equations are now

ˆ ˆ 0.tX e 
(If  Z  has equally many columns as X, then this is equivalent to the
previous system.) The point estimate of β is thus

1ˆ ˆ ˆ( ) ,t tX X X Y 
and the heteroskedasticity robust covariance matrix estimator is

1 2 1ˆ ˆ ˆ ˆ ˆˆCov( ) ( ) ( ) ( ) .1
t t ti

n X X X D e X X Xn k    
The estimated ̂  is the “Two Stage Least Squares” (2SLS) estimate
of .  It is not unbiased, but it is consistent.
The approximate F-test and confidence intervals are computed as
before.
Weak Instruments
The 2SLS estimator is asymptotically unbiased, but biased in finite
samples. The OLS estimator is also biased, even asymptotically, but
if the 2SLS estimator is not considerably less biased, the OLS
estimator is preferred, since its standard errors are smaller. This
situation is called weak instruments. If we have only one
endogeneous variable to worry about, there is a simple test for weak
instruments:
Run a regression of the endogeneous variable on the included
exogeneous variables of the model, plus the instruments:

1 1 2x x z    
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where x is the endogeneous variable, x1 are the included exogeneous
variables of the model and z are the instruments replacing x. Now
compute the F-statistic for the hypothesis γ2 = 0. This F-statistic
should be large, at least 10 (recommended by Staiger and Stock;) a
smaller value signals a weak instruments problem.
Note that it may be better to have few rather than many instruments
to avoid weak instruments – contrary to intuition!
If we have more than one endogeneous variable in the model, an
appropriate test is more complicated, and we leave that issue here.

Exercises
1. You run a regression

0 1(R&D) residy    
where y  is log(GDP/capita) and (R&D) is the expenditure per
capita spent on Research and Development. You run the
regression on a cross section of countries and get a value for 1.
You want to interpret this value in this way; “If we increase the
expenditure on R&D with x  per capita, then the GDP/capita will
will go up by a factor of 1exp( ).x  ” Discuss this interpretation!

2. Assume that you have the following demand – supply system for
(retail) coffee:

0 1 1(retail_price)dQ e   
0 1(retail_price)sQ   

2 2(wholesale_price_of_coffee_beans) e 
a) Show that (retail_price) is endogeneous (in both equations).
b) Show that (wholesale_price_of coffee_beans) is a possible

instrumental variable for (retail_price) in the demand
equation.
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3. A labour economist wants to assess if participation in a labour
market programme increases the hazard rate to employment for an
unemployed person. He draws a random sample of individuals that
were unemployed at a date two years ago and find that they since
then all have got a job. He runs the OLS regression:

0 1 2ln(duration) (programme) (age)    
3 4(experience) (education)  

5 6(benefit) (income_from_spouse)  
7(female) + residual

Here “experience” is work experience in years, “education”
education in years, “benefit” is a dummy for “eligible for
unemployment benefit”, “income_from_spouse” and “female”
should be self explanatory. The coefficient of interest is of course
β1, since “programme” is a dummy equal to 1 for those who have
volunteered to participate in a labour market programme, and
equal to zero for those who have chosen not to participate. The
economist then takes the estimated value  as a measure of  the
impact of labour market programme on expected unemployment
duration.
Discuss possible problems with this approach.

4. (From Peter Kennedy’s book A Guide to Econometrics) A Korean
friend has regressed the Korean won / US$ exchange rate on its
lagged value, the Korean trade balance, the difference between the
Korean and US inflation rates and the difference between the
Korean and US real interest rates. To his surprise, the coefficient
on the trade balance comes out negative, although all other
coefficients get the expected sign.
Can you explain to him what is going on? What remedy do you
suggest to him? (You might need some basic insight in macro
economics for this exercise.)
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5. You want to see if males and females differ after three years of
study at KTH:s programme on computer science. The issue is if
they differ in the number of credit points they have managed to
collect, on average.
For the purpose, you collect data on 50 male students and 50
female students, and run the regression

0 1(credit_points) (female) e   
(female) is a dummy for female.
a) The fraction of females at KTH:s computer science programme

is only 15%. You have chosen 50 males and 50 females, hence
not a random sample of students. Explain why this does not
cause a “selection bias” in this case.

b) Prove that if you had chosen a random sample of students, then
the standard error of the estimated β1 would presumably be
greater by a factor of about 1.4. (It is hence a good idea to not
sample the students randomly.)
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VII. Analysis of Experimental Data
(Experimental Design and ANOVA)
Now we look at experimental data, i.e., the values of the covariates
in a regression are set in advance of observing the dependent
variable. Most of the problems we may encounter with observational
data – sample selection bias, endogeneity, multicollinearity – are
avoided when we deal with experimental data. Instead some thought
must be put forth in order that we choose a good experimental
design.
Some jargon
The procedure of selecting the values of  the covariates, set in
advance, is called experimental design.
The process of collecting sample data is called an experiment, and
the dependent variable to be measured, y, the response. The object
upon which the response y is measured is called an experimental
unit. The independent variables, i.e., the covariates, are called
factors, and their values, set at the design of the experiment, are
called levels. A treatment is a combination of factor levels applied to
an experimental unit.
For example (from wikipedia,) in 1747, while serving as surgeon on
HMS Salisbury, James Lind carried out a controlled experiment to
develop a cure for scurvy.
Lind selected 12 men from the ship, all suffering from scurvy. Lind
limited his subjects to men who “were as similar as I could have
them”, that is, he provided strict entry requirements to reduce
extraneous variation. He divided them into six pairs, giving each pair
different supplements to their basic diet for two weeks. The
treatments were all remedies that had been proposed:
– A quart of cider every day
– Twenty five gutts (drops) of elixir vitriol (sulphuric acid) three

times a day upon an empty stomach
– One half-pint of seawater every day
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– A mixture of garlic, mustard, and horseradish in a lump the size of
a nutmeg

– Two spoonfuls of vinegar three times a day
– Two oranges and one lemon every day.
There is one factor (supplement to diet) at six levels. The choice of
these levels is the design of the experiment, the effect on the
experimental unit (a man) of the various treatments is the response.
Noise reducing designs
Say for instance that we want to compare the efficiency on learning
to drive a car between two different simulators. Let us say that we let
twelve randomly chosen individuals (“experimental units”) practise
on simulator A (“treatment” A) and twelve randomly chosen
individuals practise on simulator B until they are skilled enough to
be eligible for a driving license. The response, i.e., the number of
hours of practising, will probably vary a lot between individuals
practising on the same simulator (this is the experimental error.)
If we run a regression of hours of practising on an intercept and a
dummy for “simulator B”, such that the coefficient for the dummy
indicates how much longer those who used simulator B needed to
practise compared to those who practised on simulator A, then the
variation of hours of those practising on the same simulator will
show up as the residual in that regression. Smaller residuals give
smaller standard errors of the coefficients. Hence, we would like to
keep this variation as small as possible in order to make a better
inference about the size of that coefficient, i.e., about the relative
efficiency of the two simulators.
Some of the variation in performance might depend on differing ages
of the individuals, since the capacity to learn to drive varies with age.
One way to reduce the variation would thus be to chose individuals
of about the same age, but on the other hand, we might want to
assess the efficiency of the simulators on individuals with varying
ages.
One way to do this is to employ a randomised block design.
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For instance, we may pick four young individuals, four middle aged
and four elderly individuals, and then randomly assign two young
individuals to each of simulator A and B, and similarly two middle
aged and two elderly individuals to each of the two simulators. Each
simulator is thus assigned two young, two middle aged and two
elderly individuals.
Now we run a regression practising hours on an intercept, a dummy
for “middle aged”, a dummy for “elderly” and a dummy for
“simulator B”. Some of the variance of the previous residual has
been captured by the age dummies, hence “explained” by the model.
On the other hand, we have lost two degrees of freedom for the
residual (we had ten in the former and have eight in the current
model), so it is not certain that the standard error has gone down. But
if it has, we have gained some precision in our inference.
Another way to reduce noise is to let more individuals practise on the
simulators. This will reduce the standard errors of the coefficients,
for these are approximately inversely proportional to the square root
of the number of observations. However, this will also increase the
cost of the experiment.
There are several experimental designs to consider in order to extract
the relevant information in an efficient way, such as “Latin square
designs” (see exercise 2 further down) and “incomplete block
designs”. I refer to the literature for these.
One-way ANOVA
When an experiment has been set up, and the data from the
appropriate experiments have been collected, we want to use these
data to make inferences about the population means associated with
the various treatments. The method used to compare the treatment
means is traditionally known as analysis of variance, or ANOVA.
The formulas – one set for each experimental design – were
developed in the early 1900, well before the invention of computers.
These formulas can be seen as special cases of linear regressions,
where the response variable is regressed on dummies for the various
populations and treatments. This is the approach we will use here.
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We begin with an example of a one way anova.
Assume that we measure the contamination of calcium (average parts
per million) at three locations, A, B and C along the Mississippi
River. We take several measurements at each location:

A: 42, 37, 41, 39, 43, 41
B: 37, 40, 39, 38, 41, 39
C: 32, 28, 34, 32, 30, 33

The measurements are modelled to be observations of normally
distributed random variables, ( , ), ( , ),A BN N     ( , ).CN    The
variance σ 2 is due to measurement errors and other chance, and for
the moment we assume they are the same across locations (“homo-
skedasticity”). Now we want to test the hypothesis H0: μA = μB = μCagainst the opposite H1: “at least two population means differ”. We
first run a regression of the measurements on dummies for location B
and C, i.e., we take location A as reference point:

0 1 2( ) ( )y B C e     
The estimated coefficients are thus

0 1 2ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ, ,A B A C A            .
The estimated differences are now computed as

ˆ ˆ ˆ ˆ ˆ ˆ1.5, 9.0, 7.5.B A C A C B             
The last difference is of course obtained as 2 1ˆ ˆ .   The null
hypothesis that all population means are equal is equivalent to
β1 = β2 = 0, whose F-statistic is 32.056, computed with our hetero-
skedasticity consistent formula. However, the tradition in ANOVA
analysis is to assume homoskedasticity, and the computed F-statistic
is in this case

2
2

1
1

R n kF rR
  

where the notation is as before: n = total number of observations
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(= 18), k = number of covariates (= 2) and r = number of coefficients
tested for zero (= 2). In this case F = 36.71. This F-statistic has an
exact F(r, n – k – 1) distribution under the hypothesis “all
observations are independent draws from the same normal
distribution”.
We summarise the result in an ANOVA table (residual df = n – k – 1):

2source -value
location 2 36.71 0.0000 0.830
residual 15

df F p 

In the current case, we of course reject the hypothesis H0 in favour
for H1, i.e., the population means are not all equal. If we had not
rejected H0, the analysis would have ended here.
Multiple comparisons
Since we accept the hypothesis that not all μk:s are equal, it is natural
to investigate which pairs that differ. One way to do this is to
compute confidence intervals for each difference. The individual
standard errors for these differences are computed under the
assumption of homoskedasticity. This is done as follows: First we
compute the standard error of the regression, i.e., an estimate of 
SD(e):

2ˆ| |
1

es n k  
(This number is always reported by the computer software in the
output of the regression.) The standard errors are now

ˆ ˆSE( ) 1 1B A B As n n    ,
etc, where nA is the number of measurements at location A, etc.
According to Bonferroni, if we want to use a total error rate (the
“error” being that at least one interval does not contain the true
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value) of, say, 5%, then we should use a confidence level of
1 – 0.05/3 for each interval.
In the current case, s2 = 3.8, so each standard error is

1 13.8 (6 6 ) 1.1255  
so the confidence intervals are

corresponding point estimate ± 2.6937·1.1255
(here 2.6937 is the square root of the 0.05/3 quantile of the F(1, 15)
distribution.) We summarise in a table:

Confidence intervals,experimental confidencelevel 95% (Bonferroni)
1.5 3.03
9.0 3.03
7.5 3.03

B A
C A
C B

 
 
 

   
   
   

We conclude that μC < μA and μC < μB.
There are other methods for multiple comparisons, as Sheffé’s test
and Tukey’s method. We refer to the literature for these.
Two-way ANOVA
Assume that we want to asses how the the humidity of paper,
produced by a paper machine, varies with the level of speed of the
machine and the use of ingredients. Here is an experiment: Two
measurements were made for each of two levels of speed, and three
different mixture of ingredients. The results are displayed here:

ingredients 1 ingredients 2 ingredients 3
speed 1 7.2 | 7.2 7.8 | 7.2 8.4 | 7.8
speed 2 6.4 | 6.8 7.2 | 7.2 7.8 | 7.6
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We first consider an additive model: let y be the humidity when
speed i is  applied to ingredients j and assume that

2 2 2 3 3 .y x z z e       
Here x2 is a dummy for speed 2, , z2 and z3 dummies for ingredients
2 and 3, and e is a random residual which we assume is (0, ).N 
The benchmark case is thus speed 1 with ingredients 1. We run this
regression, and save the output s2, the residual standard error
(computed as above.) We want to test if

i) speed has an impact on humidity, and
ii) ingredients have an impact on humidity.

We need the F-statistics for
i) β = 0, and
ii) γ2 = γ3 = 0.

Since we assume homoskedasticity, we will compute these F-
statistics accordingly. There are more than one way to do this, but
the simplest way in the current context is

2
2

1,1
n kF r




  
where, as before, n = total number of observations (= 12),
k = number of covariates (= 3) and r = number of coefficients tested
for zero (=1 and 2). The F-statistic follows an F(r, n – k – 1)
distribution under the null.
We summarise in an ANOVA table:

2source -value
speed 1 8.89 0.0175 0.52648
ingredients 2 15.84 0.0017 0.79841
residual 8

df F p 
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The p-values are now individual p-values. If we employ Bonferroni’s
method, we should use twice these p-value as the experimental p-
value, i.e. the risk of making rejecting at least one true hypothesis.
For instance, if we accept an experimental error rate of 2%, we can
not reject the hypothesis that speed has no impact on humidity, since
2·0.0175 exceeds 2%.
What does Akaike say? Does Akaike prefer the smaller model with
only ingredients and no speed factor? As is readily shown, Akaike
prefers the smaller model if (and only if)

2 21 .r ne  
In this case 21 0.2835r ne   for r = 2 and = 0.1535 for r = 1.
Hence, Akaike prefers the full model.
In order to decide whether we should reduce a model or not,
employing the AIC criterion might be of help, but ultimately it is a
subjective decision. In any case, it is usually advisable to reduce the
model if  the standard error of the regression goes down. This is
equivalent to the F-value be less than one.
If we decide to reduce the model, we re-estimate the smaller. If we
have an equal number of replications (two, in the current example),
the estimated coefficients will be exactly the same, but the errors of
these estimates should change slightly. (If F  <  1, they will go down,
since it means that the regression standard error has decreased, so it
was presumably a good idea to reduce the model.)
The coefficient γ2, for instance, is of course the difference between
speed 2 and speed 1, and a confidence interval is computed as before
(ii.2), but with the homoskedastic covariance matrix (iv.1) employed.
Interactions
The previous model is an additive one; the difference between the
mean humidity at speed 1 and speed 2 is constant across ingredients.
A model that gives each combination of speed and ingredients a
unique mean value is one where interaction effects are incorporated:
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2 2 2 3 3 2 2 22
2 3 23 .

y x z z x z
x z e

    


    
 

Here the product x2z2 is a dummy for “speed 2 with ingredients 2”
etc., the benchmark is still “speed 1 with ingredients 1”. The
ANOVA table now looks like this:

2source -value
main 3 10.17 0.0091 0.83571
interactions 2 0.304 0.7484 0.09211
residual 6

df F p 

Here only the row with “interactions” is of any interest. The “main”
row pertains to the coefficients β, γ2 and γ3, i.e., the “main” effects.
However, the F-value, p-value and η2 depend on which benchmark
we use (speed 1 with ingredients 1 in this case.) Let us look at an
example:
Assume that we have two factors, each at two levels. The first has
levels Low and High, the second Cold and Hot. Assume that the true
model is

4 ( ) 4y High Hot e    
i.e., the response is 4 if we employ Low and Cold, and if we increase
Low to High, nothing happens, the response is still 4, and if we keep
Low and increase temperature to High, nothing happens either; the
response is still 4. But if we do both – we change from Low to High
and from Cold to Hot, the the response goes up to 8. In this case,
there are no “main” effects, only an interaction effect (both levels
have to be changed.)
However, in traditional ANOVA modelling, the equation would look
like this:

5 ( )y Low High Cold Hot Low Cold      
( ) ( ) ( )Low Hot High Cold High Hot e      
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You can check that the two equations are equivalent: y = 4 (on
average) for all configurations except for High + Hot which yields
y = 8. But in this case there seems to be “main effects”.
So in order to not give some false impression, I suggest the following
table

2source -value
main 3
interactions 2 0.304 0.7484 0.09211
residual 6

df F p 
  

The only thing we use the table for is to decide if we should exclude
the interaction effects from the model. If we don’t, then we keep also
all main effects, whereas if we do exclude the interactions,  then we
re-estimate the model as an additive one.
Random models
Let us go back to the very first example in the section about one-way
ANOVA. But now our concern is the following: “How much, if at
all, does the contamination of calcium vary across locations in the
Mississippi River?” Phrased differently: If we select a location at
random, then the mean contamination there is a random variable. We
denote that random variable d   where   is the expected value
and (0, ).d N   If we take one measurement at that location, the
observed value is a random variable which we denote

,y d e  
where (0, )e N   and we assume that d  and e  are independent.
The distribution of y is thus 2 2( , ).N   
The data given in the example can now be regarded as observations
of ,y  and our task is to estimate the standard deviation   and
possibly also .  What has changed as compared to the example as
stated in the one-way ANOVA section is that we now think of the
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three locations A, B and C as random draws of locations, not
deterministically selected locations.
We have 18 observations on ,y  but they are obviously not
independent; indeed, observations within a fixed location have the
common component ,d  so their covariance is 2  whereas
observations from different locations are independent (covariance =
0.) The entire covariance matrix for the 18 observations is thus a
block matrix:

0 0
0 0
0 0

A
B

C

B
B

B

     
where AB  is the 6 6 -matrix with 2 2   in the diagonal, and 2
in the off-diagonal entries. Similarly for BB  and .CB  We can now
estimate ,   and   by Maximum Likelihood (ML) estimation, and
also get the standard errors of these estimates in the usual way for
ML-estimation.
In the literature one is often advised a different approach, where we
estimate 2  and 2 2 n   (where n is the number of observations
at each location, which is assumed to be the same across locations)
from linear regressions, and then get an estimate of 2  by taking the
appropriate difference. This is computationally much simpler, but
also much less accurate. This was a reasonable approach when
computational costs were considerable, but today they are negligible,
so this approach should not be employed today.
Mixed models
There are situations where some of the covariates are random and
some deterministic. They are also to be estimated by ML in a similar
manner.
We don’t go into further details on random and mixed models here.
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VIII. ANOVA on Ranked Data
It happens that our dependent data are far from normally distributed,
or that they are just ordered, but not quantitative, like “very bad” <
“rather bad” < “rather good” < “very good”. In this case it is
common practise to rank the data, and then regress them on dummies
for categories.
Let us do this on the Mississippi River data we used earlier. The
lowest value, 28, is given the rank 1, the second lowest, 30, is given
the rank 2 etc,. and the largest value, 43, is given the value 18. Ties
are given their mean ranks, such that 32 has rank 3.5, 37 the rank 7.5,
and 39 the rank 11. We regress these ranks on dummies (for instance
B, C and an intercept, using A as reference.) The resulting R2 =
0.83036. The test variable is now Q = R2 (n – 1)  =  0.83036·17
= 12.34, where n is the number of observations. If all true slope
coefficients are zero (i.e., if the true mean ranks are the same in each
category,) then Q is approximately an observation of a 2 ( 1)r 
variable, where r is the total number of categories, i.e., r = 3 in this
case. Since 2Pr( (2) 12.34)  0.0021,    it is reasonable to reject that
hypothesis.
This test is called the Kruskal-Wallis test, or the H-test. In the
particular case r = 2, it is called Wilcoxon’s rank-sum test, the U-test
or the Mann-Whitney test.
The reason that we have a 2  statistic here, rather than the earlier F-
statistic, is that under the null hypothesis, we know the exact
variance of the residual. One can alternatively employ the F-statistic
with heteroskedasticity correction, and some statisticians claim that
this is more efficient as regards type two errors, but since
Wilcoxon’s and Kruskal-Wallis’ tests are so established, I chose to
put them forth here.
The test can sometimes be used for data in a contingency table, as an
alternative to Pearson’s chi-square test. Here is an example:
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In Connellan, J. et.al., Sex differences in human neonatal social
perception, Infant Behavior & Development 23 (2000), the
researchers write (Abstract)

“Sexual dimorphism in sociability has been documented in
humans. The present study aimed to ascertain whether the
sexual dimorphism is a result of biological or socio-cultural
differences between the two sexes. 102 human neonates, who by
definition have not yet been influenced by social and cultural
factors, were tested to see if there was a difference in looking
time at a face (social object) and a mobile (physical-mechanical
object). Results showed that the male infants showed a stronger
interest in the physical-mechanical mobile while the female
infants showed a stronger interest in the face. The results of this
research clearly demonstrate that sex differences are in part
biological in origin.”

Let us look at the data they use in this report. I refer to the full report
for details. In short, the 102 neonates were presented to look at a
human face and a mechanical mobile, and their interest in each of
these were measured. Here is a presentation of the data:

face no mobilepreference preference preference
males (44)  11 14 19
females (58) 21 27 10

A 2 - test (contingency table) gives the p-value p = 0.016 for the
hypothesis of homogeneity, so this hypothesis is rejected (at 2% risk
level.) Hence, there is a gender difference related to these
preferences. This is the presentation given in the article.
However, the test doesn’t tell us in what way males and females
differ. Let us rank “face preference” < “no preference” < “mobile
preference”. Then “face preference” gets the rank 16.5, “no
preference” the rank 53 and “mobile preference” the rank 88. We
regress these 102 ranks on an intercept (males) and a dummy for
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females. The coefficient for the female dummy comes out negative
(-13.17), R2 = 0.05569. Hence, Q = 0.05569·101 = 5.625, so the p-
value for this coefficient be zero is 2Pr( (1) 5.625) 0.0177.  
Hence, we conclude that males have, on average, more interest in the
mobile compared to the females.
The regression coefficient   for the female dummy has a clear
interpretation: If we draw one male and one female at random, then
Pr(female  > male) – Pr(female  < male) = 2β/(44+58)  =  –0.258.
Here 44 and 58 are the number of males and females, and the
inequality female > male means that the female is more interested in
the mobile than the male is, i.e., the female gets the higher rank.
Why do we assume homoskedasticity in ANOVA?
Heteroskedasticity is a major practical issue encountered in ANOVA
analyses. We have used the heteroskedasticity robust covariance
matrix  suggested by Halbert White in this text, but unfortunately it
doesn’t work well when there are few residual degrees of freedom,
as is always the case in ANOVA analyses. In fact, in the two-way
ANOVA example with interactions above, the heteroskedastic
covariance matrix (ii.1) is singular, and the estimated variance for the
intercept is zero.
Several fixes have been suggested for the F-test, but as of yet there
seems not to have emerged any consensus about any.
As for differences in population means, a natural method – in my
opinion – is to employ Welch’s unequal variance t-test, which is
implemented in all statistical software, and also in (most) statistical
pocket calculators. One then compares each pair of groups in
isolation, where data from the other groups do not enter. Note that
the traditional method uses data from all  groups when s2 is
computed, so for instance in our Mississippi example, when the
confidence interval for μB – μA computed, also data from location C
are involved. One can imagine that if the variance at location C is
different from that in A and B, this introduces an error in the
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estimate. It seems to me that pairwise comparisons with Welch’s
method, together with Bonferroni, often is a reasonable substitute for
one-way ANOVA.
Five Commandments of Applied Statistics
In his book “A Guide to Econometrics” Peter Kennedy gives ten
commandments for applied econometrics. I will cite five of them
here:
Thou shalt not worship complexityComplex methods are often less robust to specification errors. Andall models are to some extent misspecified.
Thou shalt not confuse significance with substanceA large p-value can be due to a large standard deviation of theestimate; the impact can still be substantial. Similarly, a small p-value can be the result of a very precise estimate (e.g., many data);the impact can still be negligible.
Thou shalt ask the right questionsPut relevance before elegance. I.e., it is better to make anapproximate analysis of the right model rather than an exact analysisof an irrelevant.
Thou shalt know the contextYou must be familiar with the phenomenon being investigated inorder to perform a valid statistical analysis.
Thou shalt beware the costs of data mining

“Don’t hunt for statistical significance with a shotgun.”
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Exercises
1. In an experiment designed to evaluate two types of detergents, A

and B, a laboratory ran three loads of washing at each combination
of detergents and water temperatures, and obtained the following
whiteness readings:

detergent detergent 
low temp. 49 48 50 43 41 40
high temp. 46 50 50 44 38 42

A B

Do an ANOVA analysis and test for differences between the
readings due to detergents, temperature and interaction.

2. (Latin Squares) Assume that you want to test three types of glue
(“treatments”), A, B, C, under tree different temperatures, T1, T2,
T3 and three pressures P1, P2, P3. If you want to do no more than
nine experiments, there are at least two possible experimental
designs to consider; see display below.

P1 P2 P3
T1
T2
T3

A B C
B C A
C A B

         
P1 P2 P3

T1
T2
T3

A A C
B A B
B C C

In the left design, we vary two factors between each reading of
glue (A with factors P1,T1 and P3,T2 and  P2,T3, etc.,) whereas
we in the right vary only one factor at a time (A with factors P1,T1
and P2,T1 and P2,T2.) Prove that the left design will give much
smaller (true) variances of the estimated coefficients. In fact, the
variances of the “treatments” (glue) will be three times as large in
the right  design, and the “factor” (pressure and temperature)
variances will be twice as large.
The left, which is obviously the most efficient, is called a  Latin
Square design.
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3. In a randomised block design groups of homogeneous
“experimental units” are employed in order to compare the means
of the populations associated with a number of “treatments”. The
analysis is a two way ANOVA with no interactions. Perform the
analysis in the following example:
Prior to submitting a bid for a construction job, cost engineers
prepare a detailed analysis of the estimated labour and materials
cost required to complete the job.
A company that employs three job cost engineers wanted to
compare the mean level of the engineer’s estimates. Each engineer
estimated the same four randomly selected jobs (jargon: the jobs
are the “blocks”, the engineers the “treatments”.) Here are the
data:

job 1 job 2 job 3 job 4
engineer 1 4.6 6.2 5.0 6.6
engineer 2 4.9 6.3 5.4 6.8
engineer 3 4.4 5.9 5.4 6.3

Perform an ANOVA analysis and test to determine if there is
sufficient evidence for differences among treatment means. Use
error risk 0.05.
Compute also the effect size η2 for the blocking on jobs to assess
how successful it was in reducing the job-to-job variation in the
estimates.

4. 205 males and 195 females were asked to what extent they were in
favour of  a certain community arrangement. Is this arrangement a
good or bad idea? The result was as follows:

very bad rather bad rahter good very good
males 48 91 40 26

females 59 88 32 16
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We want to assess if there is a difference between genders as to
how favourable they are to the arrangement (i.e., are males more
favourable to the arrangement compared to females, or vice
versa?) State a precise hypothesis, perform the test, and decide
what you can accept or not, at an error rate of 5%.
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IX. Appendix.
Some proofs and derivations
1. Tests and confidence intervals
If we have a reasonable amount of data, then the estimated
coefficients ̂  will be approximately normally distributed (Central
Limit Theorem) with mean value β. Hence

2
2

ˆ( )j j
j

 



will be have an approximate χ2(1) distribution. Here 2j  is the
variance of ˆ .j  However, this variance is estimated from data, and
we compensate for this by employing the F(1, n – k – 1) distribution
instead. (This is the exact distribution if the model is homoskedastic
and estimated accordingly, and the residuals are normal.)
By the same token, if ˆ j  is an r-subvector of ˆ,  then

1ˆ ˆtj j jV 

– where Vj is the covariance matrix – has an approximate χ2(r)
distribution. Again, since Vj is estimated, we compensate for this by
employing the F(r, n – k – 1) distribution (with a factor 1/r) instead.
(Also in this case, this is the exact distribution if the model is
homoskedastic, the residuals are normal and ˆjV  is computed from
the covariance matrix (iv.1).)
2. R2 and Effect Size
The definition of η2 is

2 22
2

ˆ ˆ| | | |
ˆ| |

e e
e 



and the proof for the alternative formula (ii.3)
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2
2ˆ| |
q

e q  
is somewhat tricky. But here goes! We use the notation from the
section “R2 and Effect Size”. First we regress the x2 variables on x1:

2 1 ˆ ˆx x u   (A.2.1)
(each component of x2 is thus regressed on x1.)
Here 1 ˆ 0tX U   (normal equations.) Hence, it follows that

 1
1 1

1
ˆˆˆˆ

t
t

t t t
XX X X X UX U

       
1 1 1 1

1 1 1 1

ˆ
ˆ ˆˆ ˆ ˆ

t t
t t t t t
X X X X
X X X X U U

        
and with some calculations one can see that it follows that

1
1( ) ˆ ˆ( )

t
t t

A BX X B U U



     

for some matrices A and B. Hence,
2

2 2 2ˆ ˆ ˆˆ ˆ ˆt tq U U U    .
Now we go back to the regression equation (A.2.1). We know that

1 ˆ 0,tX U   but also that 1 ˆ 0tX e   (normal equations again,) hence
1 2ˆˆ ˆ( ) 0tX U e   . Substituting (A.2.1) into the original equation

yields
1 1 2 2ˆ ˆ ˆˆ ˆ ˆ( )y x u e      

and since 1 2ˆˆ ˆ( ) 0tX U e    the normal equations are satisfied, so this
is the regression result when y is regressed on x1, and 2ˆˆ ˆU e   is the
residual ˆ .e  Now 1 ˆ 0tX e   and 2 ˆ 0tX e  , and since Û  is a linear
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combination of  X1 and X2, it follows that ˆ ˆ 0.tU e   By Pythagoras’
theorem

22 2
2ˆˆ ˆˆ ee U   , i.e., 22 2

2ˆˆˆˆ e .e U q   
It now follows that

2 2 2
2 2

ˆˆ| | | e | ,ˆ ˆ| e | | |
eq

q e 

 

Q.E.D.
3. Estimation of σ2

Note that
1ˆˆ ( )t te Y X Y X X X Y    

1( ( ) )( )t tI X X X X X e  
1( ( ) )t tI X X X X e 

Here
1 1 1Tr( ( ) ) Tr(( ) ) Tr( ) 1t t t t kX X X X X X X X I k      .

Let 1( ( ) ),t tP I X X X X   then Tr( ) 1P n k    and
2ˆ ˆ ˆ ˆˆE(| | ) E( ) E(Tr ( ))t te e e ee 

2E[Tr ( )] Tr ( ( ) )tPee P P I P 
2 2 2 2Tr ( ) Tr ( ) ( 1)P P n k      

Hence, an unbiased estimate of 2  is
2 21 ˆ| |1s en k  
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4. Proof that a positive correlation between the residual and a
covariate will over estimate that coefficient.

The equation is
1 1 2 2y x x e   

where x2 (a single covariate) is correlated with e. Regress x2 on x1:
2 1 ˆ ˆx x u  (A.4.1)

The covariance 2 ˆ ˆCov( , ) Cov( , ) E[ ].tx e u e u e   Now
1 1 2 2ˆ ˆ( )y x u e      ,

hence (normal equations)
2

2ˆ ˆ ˆ ,t tu y u u e   i,e., 2 2 2
ˆ ˆ .ˆ ˆ

t tu y u e
u u  

But by the same token, since ˆ ˆ 0,tu e 
 2 2

ˆˆ ,ˆ
tu y

u   i.e., 2 2 2
ˆˆ .ˆ

tu e
u  

It now follows that if ˆE[ ] 0,tu e   then 2  will be over estimated, etc.
5. On Multicollinearity
We use the notation from appendix 4. Let 22R  be the coefficient of
determination for equation (A.4.1), which is also the square of the
correlation coefficient between x2 and the linear combination 1 ˆ.x 
Hence, if 22R  is close to 1, that indicates multicollinearity. The
calculations in appendix 2 give, after some rearrangements,

2
2 22 2

ˆ 1ˆSE( ) ˆ( 1) ( ) 1n V x R
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where 2ˆ( )V x  is the sample variance of x2 and ̂  the standard error
of the residual.
Note that if 22R  is close to 1, then 2ˆSE( )  is large, and the factor

2 12(1 )R   is called the Variance Inflation Factor (VIF). In some
(older) literature, this factor is taken as a measure of multi-
collinearity, and one can see the rule of thumb that VIF > 10 signals
a problem.
But, as we see from the formula, a large value of  2 12(1 )R   is
compensated by a large value of n. In fact, a large value of

2 12(1 )R   has exactly the same consequence as a small value of n,
i.e., few observations (“micronumerosity”.)
6. Confidence interval for η2

The “true” value of  η2 is
2 22

2 ,   


with obvious notation. Let F be the (homoskedastic) F-statistic for
the null hypothesis β2 = 0. Then F is an observation of an
F(r, n – k – 1, λ) distributed random variable, where λ is the non-
centrality parameter. This parameter is related to η2 as

2 .n
  

Hence we can compute e.g. a 95% confidence interval for η2 as
2 UL

L Un n
    

where λL and λU are computed from
 Pr( ( , 1, ) ) 0.025LF r n k F     and

Pr( ( , 1, ) ) 0.025.UF r n k F   
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