HLoader
Summer Student Project Report

Daniel Stein (IT-DB-DBF)

2015 Summer

For 10 weeks —from 15th of June to 21st of August— I was a Summer Student at the
CERN Database Group. This report summarizes my project and my progress.
Supervisors: Kacper Surdy, Zbigniew Baranowski. Project ID: 15465.

1 Task Description

Hadoop framework is becoming a top open source player on field of distributed system offering possibility
of storing and processing big sets of data in a scalable manner. Nowadays it is also gaining momentum at
CERN - there is an increasing interest in solutions based on Hadoop ecosystem in many areas including ex-
periments, accelerator controls archives etc. It appears as a natural replacement of a traditional relational
system whenever ad hoc analytical processing is a dominant part of data workloads.

Some of the systems at CERN already have offline replicas of archive data stored on a Hadoop created
manually by a system administrator. Such process is very often time consuming and requires applying se-
quence of actions on the metadata and data itself.

The goal of the project is to automatize the process of data loading between Oracle database and Hadoop
cluster by creation of a utility that interfaces with both systems via dedicated tools (Apache Sqoop) and applies
all necessary actions in order to delivered ready-to-read data on Hadoop file system for high-end frameworks
(like Impala or Spark). The tool should support incremental data loading on a time scope bases and should be
configurable for each data set separately.

2 Challenges

Based on the task description and the initial consultations, my task was to build an automated, incremental
Oracle-Hadoop data transfer framework and service with the following in mind.

It has to control and monitor data transfers using Sqoop, a CLI tool for bulk data transfer. Its aim is
to take the load off the system administrators by executing the jobs with an automated tool. The system
should improve communication with the users by notifying them about the status of the transfers.

The service should handle failures, retry, notify and prevent in case of an error. By nature security is one
of the main concerns, only authorized data transfers should be executed. It should be easy to use for every
user without help. And most importantly the whole solution has to use the CERN-provided infrastructure.



3 Solution

This problem was so current and acute, two distinct Summer Student tasks have been created. My task descrip-
tion required a more generic solution, while Anirudha Bose —my project partner— got a task concentrating
on CMS Job Monitoring data transfers. The following sections detail our generic solution.

3.1 Overview

The architectural overview in shows both the main parts of the service and also gives an overview of
the interfaces these parts communicate through.

Oracle Databases Client

Hadoop Clusters

REST API

Meta DB

Figure 1: Architectural overview of the solution

Provided Infrastructure The service should bridge the Oracle and Hadoop services at CERN. There is a two
node Oracle 11.2.0.4 cluster with shared NAS as a data storage solution, and several Hadoop clusters. Hadoop
clusters have various hardware configurations ranging form 17 to 63 nodes in a cluster and having 4 to 16
physical CPU cores per node.

Transfer Data When a user contacts the Databases group or the system administrators with a new transfer
request, it usually contains the same set of information: what, when, from where and where to transfer the
data. Based on these parameters, Sqoop jobs can be automatically created for the average, everyday use cases.

Surely there are many, less important configuration parameters, e.g., whether it should be an incremental
update of an existing copy, or just a one time transfer, or the number of map-reduce jobs to spawn.

Execute the Transfer on Behalf of the User After the user provided every necessary information and they
were validated, the system can take over. It schedules and executes the job at the requested time and also
informs the user of the status of their request.

Update when Needed If the user requested incremental updates and the previous, updating transfer was
successful, the service schedules another updating transfer after the given interval.



3.2 Security

While described the expected user experience and workflow, this section details how we imple-
mented the underlying system and made it secure by design.

CERN SSO Authentication The first thing the user has to do in order to use the service is to log in. To
avoid password exchange and the hassle of storing user data and the dangers of authentication, we opted for
the CERN central Single Sign-On. Using this solution also allows us to restrict the user base to a preselected
group of logins managed centrally, without modifying the source code itself.

Authorization After the user has been authenticated, the service lists all the databases and schemas that
the user owns. The FIM database is used for authorization, but only a portion of the owned schemas are
available for the user, since —for security reasons— only the needed databases are configured to be used with
the service.

Kerberos SSH Tunneling When the assigned time comes and the transfer has to be executed, the scheduler
starts an agent that connects to the designated Hadoop cluster. The connection is secured by an SSH tunnel
and authenticated using Kerberos.

Secure Password Input In order to hide the database connection password from the other users of the
cluster machine, Sqoop provides two options. The agent could either enter the password in interactive mode,
meaning the password is not included in the list of running commands, or use a password file. Since the
cluster might not be configured to have a shared, secure folder, we opted for the first solution for the time
being.

3.3 Modularity

The service is not only built to be secure, but to be easy to modify and extend too. In this section we detail
the parts and solutions that make this possible.

DB Connector Agnostic The service uses SQLAlchemy Object-relational Mapping (ORM) technology to
communicate with the underlying service. It supports several dialects, meaning we could choose from
MySQL, Oracle, PostgreSQL, SQLite and many other dialects. Also using the modularity of the framework,
SQLAIlchemy could be replaced with another solution for using NoSQL databases as a backend.

Interchangeable Scheduler For each running instance of the service there is a scheduler working in the
background. Based on the limitations of the infrastructure and the required complexity of the scheduling

algorithm, this module can be replaced.

Flexible Communication with Hadoop While the current solution uses SSH-based communication with
the Hadoop clusters, there is at least one more way to start transfers. Apache Oozie, a workflow scheduler for
Hadoop could also be used for scheduling and running Sqoop jobs.

Besides these modular components, the frontend client and the Sqoop JDBC drivers can also be changed

making the whole solution and framework modular.



3.4 Deployment Infrastructure

This section describes where these modules, the different parts of the solution can and have been deployed
using the infrastructure provided by CERN services.

PostgreSQL On-Demand For the backend database we are using the locally managed PostgreSQL on-
demand service. With SQLAlchemy, abstracting the database access, we could easily move to another un-
derlying service.

Central Web Services Since the backend and the frontend service requires SSO authentication, we opted
for using central web services. From the three available options (AFS (UNIX), DFS (Windows) with 2 different
server versions), we chose DFS with IIS 8.5, since it had Python 2.7 installed. To be able to use Flask (a Python
web server), FastCGI had to be configured. The full stack looks like the following: DFS | Windows > IIS 8.5 >
FastCGI > Python 2.7 > Flask

Separate Agent There are many options for running the agent, since it only requires Python and a few
libraries to run properly. As the SSH tunneling is done using the Paramiko library, a pure python SSH interface,
it could run virtually anywhere. We will probably use an UNIX OpenStack VM for the agent.

Client Hosted with the REST API Using the REST API for the backend makes the client side decoupled from
everything else. Anyone with an SSO cookie can communicate with the interface. The CERN infrastructure
requires to have the interface and the client on the same domain, or the SSO will not work properly. Only for
this reason the client HTML, CSS and JavaScript files are hosted with the REST API.

3.5 Stored Information

shows all the data that we store. We maintain a list of the available Oracle servers and Hadoop
clusters. We keep every parameter the user has provided about the jobs, and for every execution, every transfer
we store the actual status and metainformation. Also, the logs coming from various sources are also stored.

Job_id S

source_server_id
source_schema_name
source_object_name

—o< destination_cluster_id

destination_path
HL_SERVERS
] awner_usemame HL_TRANSFERS
server_id

saeap-nmep transfer_id
server_address

R _
; HL_LOGS
server_name scheduler_transfer_id

Z(jjoop,mcremema\,mem L. b .
—_—— N—— N
cluster_id F— start_time transfer_start log_source
cluster_address interval transfer_last_update log_path
cluster_name job_last_update last_modified_value log_content

Figure 2: Database schema for the backend



3.6 Restrictions, Constraints

For security reasons and the length of the Summer Student program we had to introduce restrictions. For
example we only allow tables and views to be imported, making the Oracle database responsible for evaluating
and checking the queries, whether the user can do what they want. The source databases are also limited,
making gradual introduction for new users and servers possible.

The destination folder structure on the Hadoop clusters is preset, the user could only change a relative
path from the preset base. This serves security with limited access rights and avoids collision and unautho-
rized access. While the Sqoop commands have diverse parameter and switch configurations, our service only
supports a small set of them.

3.7 Current State

This section presents the current state of the parts of the solution. Client developed by Katarzyna is in
progress, in the meanwhile the REST interface can be used for interaction with the backend. The REST API
developed by me is almost ready, the new job processing interface needs a few improvements, and the job mod-
ification interface is missing. Other missing interfaces (for transfers, logs) are easy to make. The Scheduling
part of the agent is developed by Anirudha. It is basically ready, can schedule jobs and update itself after job
description modifications. The Runner part of the agent developed by me is working for initial imports, soon
will be able to execute incremental updates. With some improvements, it will work perfectly with SSH and
REST monitorig.

4 Summary

During the summer we have managed to design and develop an easily expandable framework and service for
transferring data from Oracle to Hadoop. We designed it with automation in mind, minimal administrator
intervention is needed.

4.1 Future Work

While we achieved to finish the core part of the project, there are several extensions we would like to see in
the future. The system could gain from supporting alternative runners like Oozie, or use the now under de-
velopment version of Sqoop. Integration with Hive and resolving the restrictions not responsible for security
is also subject of future work. Releasing the source code on GitHub with an Open Source license could also
mean additional contributors to the framework.

4.2 Contributors

Besides Anirudha Bose and me, many supervisors (Antonio Romero Marin, Domenico Giordano, Kacper Surdy,
Katarzyna Maria Dziedziniewicz-Wéjcik, Manuel Martin Marquez, Zbigniew Baranowski) were working on this
project helping us to achieve what we have, which we are very thankful for.

4.3 Workflow Tools

To coordinate a project of this size, we needed some development and workflow tools. We used the local
GitLab service and GitHub to collaborate, Jira for following the progress of the project, Slack for everyday
communication and Jenkins for testing and CI.



	Task Description
	Challenges
	Solution
	Overview
	Security
	Modularity
	Deployment Infrastructure
	Stored Information
	Restrictions, Constraints
	Current State

	Summary
	Future Work
	Contributors
	Workflow Tools


