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Automatic Depiction of Onomatopoeia in Animation
Considering Physical Phenomena
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Figure 1: Comparison of input elastic animation (left) with the proposed onomatopoeia animation method, a mechanism for depicting
onomatopoeia in computer-generated animation (right). The proposed onomatopoeia depiction method enables enhancement of character
movement, and strength of collision impact by considering physical phenomena (the 3D models ”Big Buck Bunny” c⃝Blender Foundation).

Abstract

This paper presents a method that enables the estimation and de-
piction of onomatopoeia in computer-generated animation based
on physical parameters. Onomatopoeia is used to enhance physi-
cal characteristics and movement, and enables users to understand
animation more intuitively. We experiment with onomatopoeia de-
piction in scenes within the animation process. To quantify ono-
matopoeia, we employ Komatsu’s [2012] assumption, i.e., ono-
matopoeia can be expressed by n-dimensional vector. We also
propose phonetic symbol vectors based on the correspondence
of phonetic symbols to the impressions of onomatopoeia using a
questionnaire-based investigation. Furthermore, we verify the po-
sitioning of onomatopoeia in animated scenes. The algorithms
directly combine phonetic symbols to estimate optimum ono-
matopoeia. They use a view-dependent Gaussian function to dis-
play onomatopoeias in animated scenes. Our method successfully
recommends optimum onomatopoeias using only physical parame-
ters, so that even amateur animators can easily create onomatopoeia
animation.
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1 Introduction

Japanese cartoon animation (or anime) have been attracting world-
wide attention due to their artistry and unique story-lines. To
present a world view in anime, anime-like physical techniques, such
as sound symbolic and mimetic words are used. Sound symbolism
is a term used in semiotics and linguistics to refer to a direct asso-
ciation between the form and meaning of language; sounds reflect
the properties of the external world. In linguistics, sound-symbolic
words can be classified as follows: phonomime, onomatopoeia, and
psychomimes. Onomatopoeias mimic actual sounds, phenomines
depict nonauditory senses, and psychomimes depict psychological
states or bodily feelings.

Onomatopoeias are often used to enhance the physical characteris-
tics and motion of a character, and enable users to understand un-
realistic anime contents intuitively. Recently, onomatopoeias have
attracted attention in print media and literary work, such as picture
books. However, the automatic selection of optimum onomatopoeia
for a scene has two problems. First, sound-symbolic words are
not only imitative of sound but also cover a much wider range of
meaning. Second, selecting onomatopoeias based on sounds dur-
ing anime creation is very difficult because many production studios
use after-recording which is a general method for recording speech
to accompany the finished visuals of anime films. Thus, animators
must select onomatopoeias only based on character reference and
motion. To maintain quality, significant manual labor is required
even though computer-generated (CG) techniques reduce labor in-
tensity. Moreover, many amateur animators cannot assign optimum
onomatopoeias to animation.

Our goal is to estimate and depict onomatopoeias based on static
and dynamic physical parameters that are computed using CG an-
imation. The main idea of our approach is to formulate empirical
knowledge of sound symbolism. The overall process of the pro-
posed method is as follows:
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Quantification of phonetic symbol

1. Viewing simple CG animations, e.g., ball bouncing, and se-
lecting suitable onomatopoeia. Consequently, onomatopoeias
are associated with computed physical parameters according
to simple animation.

2. Factorizing physical parameters computed in an animation
simulation process into phonetic symbols, and creating a pho-
netic symbols vector matrix.

Onomatopoeia estimation

3. Inputting external parameters computed in an arbitrary ani-
mation and estimating onomatopoeia using phonetic symbol
vectors automatically.

4. Depicting multiple onomatopoeias in three-dimensional (3D)
space under the constraint that they do not overlap.

The proposed method enables automatic estimation and recommen-
dation of optimum onomatopoeias for any CG animation. Further-
more, we enable the creation of animation with more suitable ono-
matopoeia through an editing and relearning function. The pro-
posed method makes the manual labor processes of creating anime-
like animation more efficient. In addition, it is expected that the
proposed method can enable a summarization method for depicted
onomatopoeia.

The remainder of this paper is organized as follows. Related work
is reviewed in Section 2, and we discuss the main ideas underlying
the algorithms used in the proposed method in Section 3. In Section
4, we describe an implementation detail of our prototype system.
Section 5 presents results, and we conclude the paper and discuss
limitations and future work in Section 6.

2 Related Work

2.1 Depicting Cartoon Effects

Recently, research into generating anime-like effects has been pro-
posed. Schmid’s [2010] methods generate anime-like speed lines,
motion blur, and dynamic glyphs by inputting keyframe animation.
However, this method requires rebuilding 3D model-based time se-
ries information. In addition, significant analysis time is required.
Umeda [2012] has proposed a system to depict anime-like effects
based on simple image processing using joint data acquired by a
Microsoft Kinect sensor. This method depicts regular speed lines
and fonts associated with human motion; however, that study did
not focus on anime characters or onomatopoeias.

Dobashi [2005] proposed a real-time physics-based sound simula-
tion method to depict wind noise using fluid simulation and sound
textures. However, it focused only on an object’s shape and did
not reflect physical characteristics which are required to select ono-
matopoeia. Chadwick [2012] proposed a method to generate ac-
celeration noise for a rigid body. This method enables simulation
of the sounds of rigid collision that reflect physical characteristics;
however, sounds were not associated with most onomatopoeia in
anime films.

Specific to caption, Hong [2010] proposed to visualize caption us-
ing image or sound features, and to color fonts considering time
series information. With this method, it is possible to accentuate
animation and video with caption easily; however they use a sound
clustering method, (i.e., a multi-clustering method) to color sub-
title. Unfortunately, it is difficult to classify sounds into various
onomatopoeias.

Table 1: An example of Sound-Symbolism.

Form Motivated
Example of

symbolic words
[a] large large vast grand
[i] small and thin little petit piccolo
[u] dark blue glum
[b] dull impact bang bash bump
[j] up and down movement jump jangle jig
[g] cracking bang, bong
[cr] noisy impact crash crack crunch
[sl] smoothly wet slime slop slip
[sn] quick separation or movement snap snatch

2.2 Analyzing Onomatopoeia

Komatsu [2012] investigated the impression vectors of an alphabet
composing onomatopoeia (sharpness, softness, dynamic, and large-
ness) by subjective experimentation. The most general Japanese
onomatopoeias consist of the repetition of two syllables (e.g.,
MOKO-MOKO and PIYO-PIYO, i.e., the so-called XYXY-type).
Thus, Komatsu assumed that XYXY-type onomatopoeias can be
quantified by the following equation.

I⃗i = ⃗aiCiX + ⃗biViX + ⃗ciCiY + ⃗diViY (1)

Here I⃗i is the ith dimension of onomatopoeia expression vector. ai,
bi, ci, and di are weight coefficients, and C⃗iX and V⃗iX are the i-th
respectively the i-th dimension values of X’s consonant and vowel
and C⃗iY and V⃗iY are the ith dimensional values of Y’s consonant
and vowel vectors. However, Komatsu determined alphabets that
are caused by the impression of onomatopoeias empirically. Fur-
thermore, in a questionnaire-based investigation to comprehend the
multifaceted impression of alphabets, it is difficult for participants
to fill in there 43 pairs of adjectives for alphabets.

In linguistic research, semantic similarities, such as the pronom-
inal words ”the, this, thus, and there” and the consonant sounds
of negation words ”no, not, never, and neither” are observed in
English. This linguistic phenomenon is referred to as sound sym-
bolism. Crystal [2003] defined sound symbolism as a term used in
semiotics and linguistics that refers to a direct association between
the form and meaning of language. The sounds used reflect the
properties of the external world, as is the case with onomatopoeia
and other forms of synesthesia. In addition, Lyons [1977] studies of
phonesthesia and Jespersen’s [1922] model, for example, propose
that [fl-] [sl-] [gl-] are related to ”sound and view,” and [i] and [u]
means ”light” and ”dark” respectively. Bloomfield [1933] showed
that [fl-] is ”moving light (flash, flame)” and ”movement in air (fly,
flap),” and [sl-] is ”smoothly wet (slime, slush, slop).”

Table 1 shows the examples of vowels and consonants related to
motivation and iconicity. Kohler [1927/1947] suggests that voice-
less plosives [p, t, k] indicates ”linear and angular shape,” while
resonance [m, n, r, l] indicates ”roundish shape.” Ullman [1962]
found that symbolic words, such as onomatopoeic words, have
phonetic motivation and iconicity, and Lyons [1977] stated that
onomatopoeia represent non-arbitrary relationship. Sound symbol-
ism studies have confirmed the universality and iconicity of sound-
symbolism. Furthermore, we confirm that the direct association
between the form and meaning of language is the most important
factor in linguistics.

In anime and comics, realistic physical characteristics and smooth
motion are rare; thus, it is difficult to understand object motion

162



Figure 2: Example of onomatopoeia in anime and comic. Top: a
scene from Super Smash Bros c⃝Nintendo Co., Ltd). Bottom: a
comic frame from Klonoa c⃝BANDAI NAMCO Games Inc.).

and unusual stories. Therefore, onomatopoeias help users review
anime information because onomatopoeias reflect the properties of
the external world. However, to create onomatopoeia animation,
animator must select onomatopoeia without sound features because
CG animation is created only based on some physical parameters.
Moreover, there is a large number of onomatopoeia for each unique
anime film; thus we cannot assign optimum onomatopoeia.

We propose a method to quantify the impression vectors of ono-
matopoeia based on sound symbolism, to estimate onomatopoeia
using only physical parameters, and to depict onomatopoeia in a
scene. The proposed method is of great value, and can suggest ono-
matopoeia automatically and create anime-like CG animation. In
addition, the algorithm used in the proposed method can learn the
physical parameters associated with onomatopoeia interactively.

3 Onomatopoeia Depiction Method Princi-
ples

Our quantification of onomatopoeia framework is mainly inspired
by Komatsu’s method. First of all, we assumed that phonetic
symbols can be expressed by n-dimensional vector based on em-
pirical knowledge of sound symbolism, e.g., ”g, z, d, and b are
muddy sounds suggesting big heavy, or dirty.” Any instance of ono-
matopoeia can then be expressed of expression vector (so called
”Onomatopoeia Vector”) by linearly coupling the phonetic sym-
bolism vectors. Therefore, to realize the quantification method for
onomatopoeias, two steps must be achieved 1) determine the num-
bers and types of the dimensions of phonetic symbol vectors, and
2) determine the value for each dimension of the vectors.

Table 2: International Phonetic Alphabet classification of vowels
and consonants.

Name Class Phonetic symbol
close vowel 0 /ı/ /u/

close-mid vowel 1 /e/ /o/
open-mid vowel 2 /æ/ /3/ /2/

open vowel 3 /A/ /a/
voiceless-plosive 4 /p/ /t/ /k/ /Ù/

voiced plosive 5 /b/ /d/ /Ã/ /g/
implosive 6 /á/ /â/ /ä/

voiceless fricative 7 /f/ /T/ /s/ /S/
voiced fricative 8 /v/ /D/ /z/ /Z/

nasal 9 /m/ /n/ /N/
lateral 10 /l/ /j/

approximant 11 /r/ /w/ /h/

Specially, we focus on ”onomatopoeia of two-body collision an-
imations” because collision scenes can benefit from various ono-
matopoeias in anime. Figure 2 shows an example of onomatopoeia
in anime and comic.

3.1 Phonetic Symbol Vectors and String Vectors of
Onomatopoeia

To determine the numbers and types of dimensions of phonetic
vectors, we used the synesthetic knowledge of sound symbolism
of eleven International Phonetic Alphabet (IPA) classifications, for
example plosive consonants suggest ”un-expected phenomena,”
nasal consonants can evoke ”acoustic echo,” and close vowels infer
”small.” Table 2 shows that IPA classification (the ordinal number
of IPA classification). In linguistics, synesthetic sound symbolism
is the use of sound to symbolize object size, shape, and speed [Jes-
persen, 1922]. Then, we assumed that the types of the dimension of
phonetic vectors are ”mass”, ”volume”, ”acceleration” and ”vis-
cosity.”

However, we focus on ”onomatopoeias of two-body collision an-
imations”, as shown in Figure 3. That is, we must consider im-
pression of two objects. We selected the six factors, mass(object
A), volume(object A), acceleration(object A), mass(object B), vis-
cosity(object B), and acceleration(object B), as shown in Table 3.
Therefore six factors became the six dimensions of the phonetic
vectors (n = 6) and onomatopoeia vectors can be expressed as Vec-
tor = (massA, volumeA, accelerationA, massB , viscosityB ,
accelerationB), i.e., V⃗i is expressed as follows.

V⃗i = (v0, v1, · · · , vn)T (2)

Similarly, the phonetic symbol vector T⃗j is expressed as follows.

T⃗j = (t0, t1, · · · , tn)T (3)

j is the class number of IPA classification(as shown in Table 2).
Figure 4 shows that onomatopoeia, ”BANG,” can be quantified by
the linearly coupling the sound symbolism vectors.

The phonetic symbol rules defined by the n×D matrix T . D is the
number of IPA classification (in this paper, D = 11). If we rewrite
them in matrix form treating the vectors as rows, we get matrix T
where

T = (T⃗0, T⃗1, · · · , T⃗D) (4)
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Figure 3: Example of two-body collision animation in
questionnaire-based investigation (Section 3.1). After viewing the
animations, participants answered which onomatopoeia they want
to depict in the scene (Section 3.2).

Table 3: Parameters associated with onomatopoeia.

Physical parameters
Object A mass, volume, acceleration
Object B mass, viscosity, acceleration

To resolve the matrix T , we defined the string vector X⃗i by count-
ing types phonetic symbol of onomatopoeia. The column vector
components are a number of stored phonetic symbols based on the
ordinal number of IPA classifications (as shown in ”class number”
of Table 2). The string vector is expressed as follows.

X⃗i = (x0, x1, · · · , xD)T (5)

Figure 5 shows an example of string vector, ”BANG.”

We suppose the quantification of phonetic matrix T is based only
on one onomatopoeia. V⃗i is computed by linearly coupling the pho-
netic symbol vectors in Eqs(4) and (5), i.e.,

V⃗i = T · X⃗i (6)

3.2 Quantification of Phonetic Symbol

To determine the value for each dimension of phonetic symbol vec-
tors, we performed a questionnaire-based investigation to compre-
hend the correspondence the impressions of onomatopoeia. Specif-
ically, some CG animations (Figure 3: two-body collision anima-
tions) were prepared. Participants answered the impression value
on a 10-point Likert scale to physical parameters of CG animation,
(the value for each dimension of Eq(2)), such as ”large - small”
(volume of object A). Furthermore, participants were asked ”which
onomatopoeia do you want to select for the animation?” Two-body
collision animations are elastic, rigid and character animations. In
this investigation, we get the impression values of physical parame-
ters computed CG animation and the correspondence of string vec-
tors of onomatopoeia Eq(5) to onomatopoeia vectors Eq(2) deter-
mined by impression values. In this paper, the number of partici-
pants are five, and the number of investigation k are twenty three
(k = 23). It took about 20 minutes to complete this investigation.

In Section 3.1, for each pair of onomatopoeias data (string vectors
X⃗i and onomatopoeia vectors V⃗i ), we compute phonetic symbol

Figure 4: Example of onomatopoeia vector V⃗ , BANG, where is
expressed by linearly coupling phonetic symbol vectors, [b], [a],
and [N].

Figure 5: The components of string vector X⃗ are a number of
stored phonetic symbols based on the ordinal number of IPA clas-
sification, and have positive values.

matrix T using Eq(6). However, in this step, we consider k ono-
matopoeias vectors rather than a single onomatopoeia.

In linguistics, since the phonetic symbols of onomatopoeia have
synesthetic sound symbolism, a quantification of phonetic symbol
vectors is conforming with all the individual ideal phonetic symbol
values of onomatopoeia (in general). Therefore, we expand Eqs
(4), (5), and (6) (in Section 3.1), and define X and V to be the
matrix form treating the vectors (k onomatopoeia vectors and string
vectors) as columns, we get X and V where

X = (X⃗0, X⃗1, · · · , X⃗k) (7)

V = (V⃗0, V⃗1, · · · , V⃗k) (8)

A closed form expression for Eq(6) is given by

V ≈ T ·X (9)

In order to compute the phonetic symbol matrix T , we rewrite Eq(9)
for the divergence F between the onomatopoeia vectors V and the
phonetic symbol matrix T and string vectors X ( = TX) in Equa-
tion (10).

F (T ) = ∥V − TX∥2 (10)

The divergence functions are the Frobenius norm. We identify pho-
netic symbol matrix T by minimizing Eq(10). In addition, we as-
sumed that the matrix T are non-negative matrix because the matrix
V and X have no negative elements. That is to say, we assumed that
Eq(10) has the constraint that the matrix T , V and X have no neg-
ative elements. In order to minimize the divergence F (T ), we used
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Table 4: Convergence time to compute phonetic symbol matrix T .

The number of
investigations (k)

The number of dimension
of phonetic vectors (n)

Convergence
time (s)

10 6 0.997
23 6 1.265

the multiplicative update rules, usually minimizing the divergence.
The update rule is expressed as follow.

Tkj ←
∑

i VkiXji∑
i(T⃗k

T
· X⃗i)Xji

(11)

As the result, we can confirm that the vectors for voiceless plosives
[p, t, k] and resonances [m, n, r, l] have more intense values than
vowels. Table 4 shows the convergence time required to compute
the phonetic symbol vector matrix T .

3.3 Estimating Onomatopoeia

In this section, we describe a method to recommend optimum ono-
matopoeia in database for external onomatopoeia vector ⃗Vext de-
termined by physical parameters of an arbitrary CG animation. The
onomatopoeia database is word list of onomatopoeias which con-
sists of 100 collision-related onomatopoeias selected from anime
films that were among the top 10 films by annual DVD and comic
book sales. Firstly, we automatically compute the optimum string
vector ω⃗, i.e., Eq(5), using an external onomatopoeia vector ⃗Vext

and the phonetic symbol matrix T , i.e., Eq(4). Our method enables
us to compute any onomatopoeia vectors. However, if we compute
many onomatopoeia vectors in database, time required for comput-
ing onomatopoeia vectors of database is directly proportional to the
number of words in the database. That is to say, it is difficult to add
an editing and relearning onomatopoeia vectors in database.

Furthermore, for example if there is not implosive sound of ono-
matopoeia in the questionnaire-based investigation (in Section 3.2),
we cannot compute implosive sound vector T⃗6 in phonetic sym-
bol matrix T . We cannot compute onomatopoeia vector which in-
clude implosive sound. Therefore, it is necessary to add a constraint
to non-learning phonetic symbols in the database, e.g., implosive
sound. However, it is difficult for us to set appropriate values for the
constraint because the value for each dimension of onomatopoeia
vector V has a different dimension, e.g., ”mass and viscosity.”

Therefore, we proposed a method to estimate the string vector ω⃗
based on external parameters ⃗Vext rather than computing the ono-
matopoeia vector of any instance of onomatopoeia. Each compo-
nent of the string vector ω⃗ has the same dimensionality in Eq(5),
i.e., it is possible to recommend an onomatopoeia using the string
vector ω⃗ and the constraint penalty function of the phonetic sym-
bols. Furthermore, we need not compute all onomatopoeia vectors
based on the phonetic matrix T . Instead, we can compute string
vectors (5) in the database. Then, we solve the following con-
strained optimization problems for the string vector ω⃗.

f(ω⃗) = | ⃗Vext − T ω⃗|2 (12){
ωi ≥ 0 (i ∈ RD)
8.0 ≥ |ω⃗| ≥ 3.0

The following constraints apply: all string vector components are
positive values and the number of onomatopoeia characters (the
norm of string vector) is more than 3.0 and less than 8.0. We use

the sequential unconstrained minimization technique and a quasi-
Newton method to solve the optimization problem.

Although we can create new onomatopoeias based on string vec-
tor ω⃗ and the combination rules for phonetic symbols, this is out
of scope. The purpose of this study is to quantify and recom-
mend optimum onomatopoeia for inclusion in an animators’ ono-
matopoeia database. Therefore, we focus on selecting optimum
onomatopoeia from a database, i.e., the retrieval of onomatopoeia
composed of æ and N. This process looks like ”Bag-of-features”
[Csurka et al, 2004]. To recommend optimum onomatopoeia, we
calculated the degree of similarity between ω⃗ and the string vector
of onomatopoeia d⃗ in the database. We can present highly simi-
lar onomatopoeia in the database to string vector ω⃗. To calculate
similarity, we defined cost function O(d⃗) based on a binomial for-
mula of Mahalanobis distance and a penalty function f . The cost
function is expressed as follows:

O(d⃗) = |(ω⃗ − d⃗)TS−1(ω⃗ − d⃗)|+ α
∑
j

f(j) (13)

f(j) =

{
1.0 if dj = 0, ωj > 0
0.0 else

where matrix S is a covariance matrix based on string vector of
onomatopoeia in the database and α is empirically set to 0.8.

Moreover, we added an editing function for relearning phonetic
symbol matrix T . By adding (k + 1)th editing data to Eqs(7) and
(8), it is possible to obtain more suitable optimum onomatopoeia.

3.4 View-Dependent Onomatopoeia Depiction

In this section, we describe a method for depicting onomatopoeia
in a CG scene. When onomatopoeias are depicted, it is essential
that they should be rotated on a vertical plane relative to the view-
ing vector. Consequently, we rotate onomatopoeias based on the
quaternion of the viewing vector. In addition, we add functions to
compute the size of onomatopoeia, the render time by the force of
object collision, and the editing font style interactively.

Some expressive font animation approaches that include controlled
rapid rhythmic motions, changes of font size, and rotation have
been studied. However, in many previous methods, it is neces-
sary to input parameter values and waveform behaviors manually
[Lewis et al. 1999][Lee et al. 2002]. Furthermore, it is not possi-
ble to apply these methods to all font behaviors in two-dimensional
CG animation. Therefore, we considered a system to estimate ono-
matopoeia positions in 3D space. First, we analyzed anime films
to determine default onomatopoeia positions. From this analysis,
we assumed that the ith onomatopoeia default position p⃗i reflects
the collision direction. Our primary consideration was that ono-
matopoeias should not overlap. Moreover, onomatopoeias are ro-
tated based on the viewing vector; thus, viewing direction must be
considered. We set a default and shift the ith onomatopoeia position
p⃗i based on the view-dependent distribution of onomatopoeias from
0th to (i− 1)th words. Therefore, we assumed that the distribution
of onomatopoeia is a sum of Gaussian and determine onomatopoeia
position p⃗i by estimating a small distribution. To minimize the ono-
matopoeia value, we defined the cost function E(p⃗i) based on the
distribution from the 0th to (i−1)th onomatopoeia and the viewing
vector. The cost function is expressed as follows:
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Figure 6: Estimating onomatopoeia position p⃗i for depiction in
a scene. When inputting 3th onomatopoeia, we optimize position
p⃗3 using a view-dependent Gaussian based on the 1&2th ono-
matopoeia positions.

E(p⃗i) =

j<i∑
j=1

β(t) exp
( logw · |h⃗ij |2

|ŝij |2
)

(14)

ŝij =
(
2.0− |h⃗ij − q⃗|

|p⃗j − q⃗|

)
· sj

h⃗ij = r⃗j ·
(r⃗j · r⃗i)
|r⃗j |2

− r⃗i

r⃗i = q⃗ − p⃗i

β(t) =

{
kf · t(tmax − t) t ≤ tmax

0.0 else

where tmax is the maximum display time for an onomatopoeia, kf
is the constraint value, and s is the font radius computed accord-
ing to font size and number of the characters. w is the distribu-
tion value of the font boundary, which is empirically set to 0.8. A
quasi-Newton method is used to solve the ith position p⃗i. Figure
6 illustrates the procedure for estimating onomatopoeia position p⃗i
for depiction in a scene.

As a result of our attempt, depiction of onomatopoeias occasion-
ally overlapped. It is assumed that onomatopoeia position can have
been fallen into a local optimum solution in a gradient method. In
future, it is essential to perform stable optimization without a local
solution.

4 Implementation

Our prototype system is written using openFrameworks, an open
source C++ toolkit. With our system, users can control physical
parameters to simulate CG animation and depict optimum ono-
matopoeia automatically. Moreover, we can present highly simi-
lar onomatopoeia in the database to the string vector ω⃗, and edit
onomatopoeia according to user preference. It is possible to update
phonetic symbols matrix T . In addition, we have added anime-
like effects, such as Speed-lines and Impact Mark using Catmull-
Rom spline curves. Furthermore, to select an optimum font for
onomatopoeia automatically, we calculated the font similarity be-
tween optimum onomatopoeia and the pairs of onomatopoeia data
(as shown in Section 3.2) and determined the font type. We use

Table 5: Onomatopoeia estimation results.

Number of onomatopoeia Our method (%)
23 47.8

Levenshtein distance [Marzal et al, 1993] to calculate font similar-
ity.

5 Results and Discussion

In this section, we discuss examples of animations depicting ono-
matopoeia using our proposed method. Our results are presented in
Figures 1, 8 and 9. The figures indicate that onomatopoeias support
the understanding of physical characteristics and character motion.
Onomatopoeias also enhance anime-like effects, i.e., object motion
and collision force.

We have verified the effectiveness of the proposed method by
accuracy evaluation based on the correspondence between ono-
matopoeia string vectors X⃗ and onomatopoeia vectors V⃗i in the
questionnaire-based investigation (as shown in Section 3.2). This
closed test was performed to calculate the classification accuracy of
k onomatopoeias by our method. In the experiments, the number of
onomatopoeias string vectors corresponding to onomatopoeia vec-
tors is twenty-three (k = 23). Table 5 shows the result of classi-
fication estimation for onomatopoeias using the proposed method.
The results were obtained using an empirical rule: any instance
of onomatopoeia can be expressed as an expression vector by lin-
early coupling the phonetic symbol vectors. Thus, it is possible to
recommend onomatopoeia using phonetic symbols. In addition, re-
learning and editing phonetic symbol matrix T can interactively im-
prove the accuracy of onomatopoeia classification. If we apply our
onomatopoeia depiction system to various CG animations, for ex-
ample dance animation, it is necessary to determine the number and
types of dimensions of phonetic vectors for these animations. In fu-
ture, we intend to investigate optimum dimensions of onomatopoeia
vectors for various types of CG animation.

5.1 User Study

We also performed an experiment to assess our method through a
user study. We recruited over 500 Japanese people through crowd-
sourcing. The participants were asked ten questions. Q1: ”I can
feel the strength of collision and sound volume” in a CG anima-
tion (without onomatopoeia) and our proposed method. Q2: ”I
can feel the strength of collision and sound volume in an image.”
Q3: ”It is easy to watch the animation.” Q4 - Q9: ”which of ono-
matopoeia animations is the optimum, our method or randomly
chosen onomatopoeias.” Q10: ”which animation is more visually
noisy in two animations, one animation using view-dependent ono-
matopoeia depiction of our proposed method or the other animation
with screen coordinates based on projection matrix.” The answers
were scored on a 5-point Likert Scale (AB scale). A high score of
Q1 - Q3 means that the participants can understand the collision
information and that the animation with onomatopoeia is more en-
joyable than that without onomatopoeias. A high score of Q4 - Q10
indicates that our proposed method is effective.

Figure 7(a) shows the average distribution histograms of Q1 - Q3
(x-axis is 5-point Likert Scale and y-axis is the answer prevalence
of all participants, so called ”population”). As a result, depicting
onomatopoeias is effective for gaining the dynamism of collision
and motion and making animation enjoyable compared with normal
animation. The mean score of Q1 - Q3 is 2.91 and the sample
deviation of them is 1.09.
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(a) Score prevalence of all participants of our result and non-onomatopoeia
animation(Q1-Q3).

(b) Score prevalence of all participants compared our result with randomly
chosen onomatopoeias (Q4-Q10).

Figure 7: the score prevalence of all participants for each question (5-point Likert Scale and AB Scale).

Table 6: Question items.

No Question

1
I can feel the strength of collision and sound volume in

a CG animation (without onomatopoeia/our result )

2
I can feel the strength of collisions and sound volume

in an image.

3
It is easy to watch the animation.

(without onomatopoeia/our result )

4 - 5
Which onomatopoeia is optimum

in rigid animation? (AB scale)

6 - 7
Which onomatopoeia is optimum

in character animation? (AB scale)

8 - 9
Which onomatopoeia is optimum in elastic animation?

(AB scale)

10
Which onomatopoeia animations are posted in prominent

place? (constraint position/our result) (AB scale)

Moreover, Figure 7(b) shows the average distribution histograms of
Q4 - Q10 (x-axis is 5-point Likert Scale and y-axis is the answer
prevalence of participants, ”population”). The mean score of Q4 -
Q10 is 3.55 and the sample deviation of them is 1.09. The result
shows that the majority of participants thought that the proposed
method is effective for gaining the anime-like information of colli-
sion force and object motion because onomatopoeias clearly reflect
the properties of scenes.

Our prototype system was also evaluated by users who provided in-
dividual feedback: ”depicting onomatopoeias in the scene is more
impressive than a normal CG animation,” and ”I want a function
of editing onomatopoeia positions.” In future, we plan to include
position functions of onomatopoeia in the user interface to create
richer animations.

5.2 Processing Speed

We verified the processing speed of the proposed method. A 64-
bit Windows PC (Intel R⃝CoreTM i7-3770 CPU@3.40GHz 8GB
RAM; NVIDIA GeForce GT 620M 1 GB) was used. A compari-
son of our results with elastic simulation without onomatopoeia for
different vertex models is shown in Table 7. Table 8, on the other
hand, shows a comparison of our result with key-frame animation
(skinning character animation) without onomatopoeias. The results
show that the processing speed is approximately 5% compared with
elastic simulation and keyframe animation.

Table 7: Processing speed (Comparison of our results with elastic
Simulation).

Model
Vertex

no
Our

method (fps)
Shape

matching (fps)
Teapot 530 749.89 762.67
Rabbit 4138 185.47 199.82

The Bunny 16292 52.46 54.75
King Kong 23581 32.84 34.88

Table 8: Processing speed (Comparison of our results with skin-
ning animation).

Model
Vertex

no
Our

method (fps)
Skinning

animation (fps)
Skeleton 4138 58.47 60.98

6 Conclusions and future work

We have presented the method to estimate and depict onomatopoeia
based on physical parameters and sound symbolism in animated
scenes. The prototype system enables the presentation of optimum
onomatopoeia from the onomatopoeia database. The presented
onomatopoeia can be edited according to user preferences. We
proposed phonetic symbol vectors using a known empirical ono-
matopoeia rule, i.e., sound symbolism.

In future, we plan to increase the types of dimensions of ono-
matopoeia vector and focus on different aspects of displaying ono-
matopoeia, such as brightness and color. Since, we recognize that
interactive font editing and positioning functions for onomatopoeia
will help users to create richer animations more efficiently, we in-
tend to address these functions. Such functions are applicable to a
wide range of situations in anime production. We believe our tech-
nique can help animators reduce time, labor, and cost.

The proposed system enables the visualization associated with the
physical characteristics of objects as well as characters or object
motion, e.g., collision frequency. Onomatopoeia is a supporting
tool that can enhance character motion. Moreover, the central
idea of our approach is to associate physical parameters with ono-
matopoeia; therefore, it is assumed that our system could also be
applied to comic-style video summarization systems to help users
find and review required information based on image features. We
intend to apply the proposed approach to live-action films and to
generate comic-style video summarization using onomatopoeia.
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Figure 8: Comparison of input rigid animation, ”drum animation,” (left image) with our result (right image). Therefore, the number of times
balls collide with drums can be determined, and the force of the collision based on onomatopoeia size can be calculated.

Figure 9: Comparison of input keyframe animation, ”a character get a blow on the head,” (left image) with our result (right image).
Depicting onomatopoeia enhances the impact of character movement in an animation scene and enables the effective summarization of
character movement.
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