
120815

Self-Assessment Worksheet

The Building Security In Maturity Model (BSIMM) is the result of a multi-year study of real-

world software security initiatives. We present the model built directly from data observed

in software security initiatives from 78 firms including: Adobe, Aetna, Bank of America,

Capital One, Cisco, Citigroup, Experian, Fannie Mae, Fidelity, HSBC, JPMorgan Chase & Co.,

LinkedIn, PayPal, Qualcomm, Sony Mobile, The Home Depot, U.S. Bank, Vanguard, Visa, and

Wells Fargo.

The BSIMM is a measuring stick for software security. The best way to use the BSIMM is to

compare and contrast your own initiative with the data about what other organizations are

doing contained in the model. You can then identify goals and objectives of your own and

look to the BSIMM to determine which additional activities make sense for you.

For information on obtaining a complete BSIMM assessment of your software security

initiative, contact us through http://bsimm.com/contact/.

BSIMM6 Self-Assessment Worksheet

Copyright® Cigital, Inc. 2008-2015. All rights reserved. Page 2 of 22

Domain Practice Activity Description Activity #
Observed

(Y/N)
G

o
ve

rn
an

ce

 LEVEL 1

S
TR

A
TE

G
Y

 &
 M

E
TR

IC
S

 (
S

M
)

Publish process (roles, responsibilities, plan), evolve as necessary SM1.1

 Create evangelism role and perform internal marketing SM1.2

 Educate executives SM1.3

 Identify gate locations, gather necessary artifacts SM1.4

 LEVEL 2

Publish data about software security internally SM2.1

 Enforce gates with measurements and track exceptions SM2.2

 Create or grow a satellite SM2.3

 Identify metrics and use them to drive budgets SM2.5

 Require security sign-off SM2.6

 LEVEL 3

Use an internal tracking application with portfolio view SM3.1

 Run an external marketing program SM3.2

 LEVEL 1

C
O

M
P

LI
A

N
C

E
 &

 P
O

LI
C

Y
 (

C
P

)

Unify regulatory pressures CP1.1

 Identify PII obligations CP1.2

 Create policy CP1.3

 LEVEL 2

 Identify PII data inventory CP2.1

 Require security sign-off for compliance-related risk CP2.2

Implement and track controls for compliance CP2.3

Paper all vendor contracts with software security SLAs CP2.4

Ensure executive awareness of compliance and privacy obligations CP2.5

LEVEL 3

Create regulator eye-candy CP3.1

Impose policy on vendors CP3.2

Drive feedback from SSDL data back to policy CP3.3

 LEVEL 1

TR
A

IN
IN

G
 (

T)

Provide awareness training T1.1

Deliver role-specific advanced curriculum (tools, technology stacks, bug

parade) T1.5

Create and use material specific to company history T1.6

Deliver on-demand individual training T1.7

LEVEL 2

Enhance satellite through training and events T2.5

Include security resources in onboarding T2.6

Identify satellite through training T2.7

LEVEL 3

Reward progression through curriculum (certification or HR) T3.1

Provide training for vendors or outsourced workers T3.2

Host external software security events T3.3

Require an annual refresher T3.4

Establish SSG office hours T3.5

BSIMM6 Self-Assessment Worksheet

Copyright® Cigital, Inc. 2008-2015. All rights reserved. Page 3 of 22

Domain Practice Activity Description Activity #
Observed

(Y/N)

In
te

lli
g

e
n

ce

 LEVEL 1

A
TT

A
C

K
 M

O
D

E
LS

 (
A

M
)

Build and maintain a top N possible attacks list AM1.1

 Create a data classification scheme and inventory AM1.2

Identify potential attackers AM1.3

Collect and publish attack stories AM1.4

Gather and use attack intelligence AM1.5

Build an internal forum to discuss attacks AM1.6

LEVEL 2

Build attack patterns and abuse cases tied to potential attackers AM2.1

 Create technology-specific attack patterns AM2.2

LEVEL 3

Have a science team that develops new attack methods AM3.1

Create and use automation to do what attackers will do AM3.2

LEVEL 1

S
E

C
U

R
IT

Y
 F

E
A

TU
R

E
S

 &

D
E

S
IG

N
 (

S
FD

)

Build and publish security features SFD1.1

 Engage SSG with architecture SFD1.2

LEVEL 2

Build secure-by-design middleware frameworks and common libraries SFD2.1

Create SSG capability to solve difficult design problems SFD2.2

LEVEL 3

Form a review board or central committee to approve and maintain

secure design patterns SFD3.1

Require use of approved security features and frameworks SFD3.2

Find and publish mature design patterns from the organization SFD3.3

LEVEL 1

S
TA

N
D

A
R

D
S

 &
 R

E
Q

U
IR

E
M

E
N

TS

(S
R

)

Create security standards SR1.1

 Create a security portal SR1.2

Translate compliance constraints to requirements SR1.3

LEVEL 2

Create a standards review board SR2.2

Create standards for technology stacks SR2.3

Identify open source SR2.4

Create SLA boilerplate SR2.5

Use secure coding standards SR2.6

LEVEL 3

Control open source risk SR3.1

 Communicate standards to vendors SR3.2

BSIMM6 Self-Assessment Worksheet

Copyright® Cigital, Inc. 2008-2015. All rights reserved. Page 4 of 22

Domain Practice Activity Description Activity #
Observed

(Y/N)
S

S
D

L
To

u
ch

p
o

in
ts

 LEVEL 1

A
R

C
H

IT
E

C
TU

R
E

 A
N

A
LY

S
IS

 (
A

A
) Perform security feature review AA1.1

 Perform design review for high-risk applications AA1.2

Have SSG lead design review efforts AA1.3

Use a risk questionnaire to rank applications AA1.4

LEVEL 2

Define and use AA process AA2.1

Standardize architectural descriptions (including data flow) AA2.2

Make SSG available as AA resource or mentor AA2.3

LEVEL 3

Have software architects lead design review efforts AA3.1

Drive analysis results into standard architecture patterns AA3.2

 LEVEL 1

C
O

D
E

 R
E

V
IE

W
 (

C
R

)

Use a top N bugs list (real data preferred) CR1.1

 Have SSG perform ad hoc review CR1.2

Use automated tools along with manual review CR1.4

Make code review mandatory for all projects CR1.5

Use centralized reporting to close the knowledge loop and drive training CR1.6

LEVEL 2

Enforce coding standards CR2.2

Assign tool mentors CR2.5

Use automated tools with tailored rules CR2.6

LEVEL 3

Build a factory CR3.2

 Build a capability for eradicating specific bugs from the entire codebase CR3.3

Automate malicious code detection CR3.4

 LEVEL 1

S
E

C
U

R
IT

Y
 T

E
S

TI
N

G
 (

S
T)

Ensure QA supports edge/boundary value condition testing ST1.1

 Drive tests with security requirements and security features ST1.3

LEVEL 2

Integrate black box security tools into the QA process ST2.1

 Share security results with QA ST2.4

Include security tests in QA automation ST2.5

Perform fuzz testing customized to application APIs ST2.6

LEVEL 3

Drive tests with risk analysis results ST3.3

 Leverage coverage analysis ST3.4

Begin to build and apply adversarial security tests (abuse cases) ST3.5

BSIMM6 Self-Assessment Worksheet

Copyright® Cigital, Inc. 2008-2015. All rights reserved. Page 5 of 22

Domain Practice Activity Description Activity #
Observed

(Y/N)
D

e
p

lo
ym

e
n

t
 LEVEL 1

P
E

N
E

TR
A

TI
O

N
 T

E
S

TI
N

G

(P
T)

Use external penetration testers to find problems PT1.1

 Feed results to the defect management and mitigation system PT1.2

Use penetration testing tools internally PT1.3

LEVEL 2

Provide penetration testers with all available information PT2.2

 Schedule periodic penetration tests for application coverage PT2.3

LEVEL 3

Use external penetration testers to perform deep-dive analysis PT3.1

 Have the SSG customize penetration testing tools and scripts PT3.2

 LEVEL 1

S
O

FT
W

A
R

E

E
N

V
IR

O
N

M
E

N
T

(S
E

) Use application input monitoring SE1.1

 Ensure host and network security basics are in place SE1.2

 LEVEL 2

Publish installation guides SE2.2

 Use code signing SE2.4

 LEVEL 3

Use code protection SE3.2

 Use application behavior monitoring and diagnostics SE3.3

 LEVEL 1

C
O

N
FI

G
U

R
A

TI
O

N

M
A

N
A

G
E

M
E

N
T

&

V
U

LN
E

R
A

B
IL

IT
Y

 M
A

N
A

G
E

M
E

N
T

(C
M

V
M

)

Create or interface with incident response CMVM1.1

 Identify software defects found in operations monitoring and feed them

back to development CMVM1.2

 LEVEL 2

Have emergency codebase response CMVM2.1

 Track software bugs found in operations through the fix process CMVM2.2

Develop an operations inventory of applications CMVM2.3

LEVEL 3

Fix all occurrences of software bugs found in operations CMVM3.1

 Enhance the SSDL to prevent software bugs found in operations CMVM3.2

Simulate software crisis CMVM3.3

Operate a bug bounty program CMVM3.4

 Most common activity in each practice

BSIMM6 Self-Assessment Worksheet

Copyright® Cigital, Inc. 2008-2015. All rights reserved. Page 6 of 22

BSIMM Activity Descriptions

Activity Level Activity Description

[SM1.1] 1

Publish process

(roles,

responsibilities,

plan), evolve as

necessary

The process for addressing software security is broadcast to all stakeholders so

that everyone knows the plan. Goals, roles, responsibilities, and activities are

explicitly defined. Most organizations pick and choose from a published

methodology such as the Microsoft SDL or the Cigital Touchpoints and then tailor

the methodology to their needs. An SSDL process evolves as the organization

matures and as the security landscape changes. A process must be published to

count. In many cases, the methodology is published only internally and is

controlled by the SSG. The SSDL does not need to be publicly promoted outside

of the firm to have the desired impact.

[SM1.2] 1

Create evangelism

role and perform

internal marketing

In order to build support for software security throughout the organization,

someone in the SSG plays an evangelism role. This internal marketing function

helps keep executives and all other stakeholders current on the magnitude of the

software security problem and the elements of its solution. Evangelists might

give talks for internal groups including executives, extend invitations to outside

speakers, author white papers for internal consumption, or create a collection of

papers, books, and other resources on an internal website and promote its use.

Ad hoc conversations between the SSG and executives, or an SSG where

“everyone is an evangelist,” do not achieve the desired results. A canonical

example of such an evangelist was Michael Howard’s role at Microsoft just after

the Gates memo.

[SM1.3] 1 Educate executives

Executives are periodically shown the consequences of inadequate software

security and the negative business impact that poor security can have. They’re

also shown what other organizations are doing to attain software security. By

understanding both the problem and its proper resolution, executives come to

support the software security initiative as a risk management necessity. In its

most dangerous form, such education arrives courtesy of malicious hackers or

public data exposure incidents. Preferably, the SSG demonstrates a worst-case

scenario in a controlled environment with the permission of all involved (e.g.,

actually showing working exploits and their business impact). In some cases,

presentation to the Board can help garner resources for an ongoing software

security initiative. Bringing in an outside guru is often helpful when seeking to

bolster executive attention.

[SM1.4] 1

Identify gate

locations, gather

necessary artifacts

The software security process includes release gates/checkpoints/milestones at

one or more points in the SDLC or, more likely, the SDLCs. The first two steps

toward establishing security-specific release gates are: 1) to identify gate

locations that are compatible with existing development practices and 2) to begin

gathering the input necessary for making a go/no-go decision. Importantly at this

stage, the gates are not enforced. For example, the SSG can collect security

testing results for each project prior to release, but stop short of passing

judgment on what constitutes sufficient testing or acceptable test results. The

idea of identifying gates first and only enforcing them later is extremely helpful in

moving development toward software security without major pain. Socialize the

gates, and only turn them on once most projects already know how to succeed.

This gradual approach serves to motivate good behavior without requiring it.

[SM2.1] 2

Publish data about

software security

internally

The SSG publishes data internally on the state of software security within the

organization to facilitate improvement. The information might come as a

dashboard with metrics for executives and software development management.

Sometimes, publication is not shared with everyone in a firm, but rather with the

relevant executives only. In this case, publishing information up to executives

who then drive change in the organization is necessary. In other cases, open

book management and publishing data to all stakeholders helps everyone know

what’s going on, with the philosophy that sunlight is the best disinfectant. If the

organization’s culture promotes internal competition between groups, this

information adds a security dimension to the game.

BSIMM6 Self-Assessment Worksheet

Copyright® Cigital, Inc. 2008-2015. All rights reserved. Page 7 of 22

[SM2.2] 2

Enforce gates with

measurements and

track exceptions

SDLC security gates are now enforced: in order to pass a gate, a project must

either meet an established measure or obtain a waiver. Even recalcitrant project

teams must now play along. The SSG tracks exceptions. A gate could require a

project to undergo code review and remediate any critical findings before

release. In some cases, gates are directly associated with controls required by

regulations, contractual agreements, and other business obligations, and

exceptions are tracked as required by statutory or regulatory drivers. In other

cases, gate measures yield key performance indicators that are used to govern

the process. A revolving door or a rubber stamp exception process does not

count. If some projects are automatically passed, that defeats the purpose of

enforcing gates.

[SM2.3] 2
Create or grow a

satellite

The satellite begins as a collection of people scattered across the organization

who show an above-average level of security interest or skill. Identifying this

group is a step towards creating a social network that speeds the adoption of

security into software development. One way to begin is to track the people who

stand out during introductory training courses (see [T2.7 Identify satellite through

training]). Another way is to ask for volunteers. In a more top-down approach,

initial satellite membership is assigned to ensure complete coverage of all

development/product groups. Ongoing membership should be based on actual

performance. A strong satellite is a good sign of a mature software security

initiative.

[SM2.5] 2

Identify metrics and

use them to drive

budgets

The SSG and its management choose the metrics that define and measure

software security initiative progress. These metrics will drive the initiative’s

budget and allocation of resources, so simple counts and statistics won’t suffice.

Metrics also allow the SSG to explain its goals and its progress in quantitative

terms. One such metric could be security defect density. A reduction in security

defect density could be used to show a decreasing cost of remediation over time.

The key here is to tie technical results to business objectives in a clear and

obvious fashion in order to justify funding. Because the concept of security is

already tenuous to business people, making this explicit tie can be very helpful.

[SM2.6] 2
Require security

sign-off

The organization has an initiative-wide process for accepting security risk and

documenting accountability. A risk acceptor signs off on the state of all software

prior to release. For example, the sign-off policy might require the head of the

business unit to sign off on critical vulnerabilities that have not been mitigated or

SSDL steps that have been skipped. Informal risk acceptance alone does not

count as security sign off, as the act of accepting risk is more effective when it is

formalized (e.g., with a signature, form submission, or something similar) and

captured for future reference. Similarly, simply stating that certain projects never

need a sign-off does not achieve the desired results.

[SM3.1] 3

Use an internal

tracking application

with portfolio view

The SSG uses a centralized tracking application to chart the progress of every

piece of software in its purview. The application records the security activities

scheduled, in progress and completed. It incorporates results from activities such

as architecture analysis, code review, and security testing. The SSG uses the

tracking application to generate portfolio reports for many of the metrics it uses.

A combined inventory and risk posture view is fundamental. In many cases, these

data are published at least among executives. Depending on the culture, this can

cause interesting effects through internal competition. As an initiative matures

and activities become more distributed, the SSG uses the centralized reporting

system to keep track of all of the moving parts.

[SM3.2] 3
Run an external

marketing program

The SSG helps the firm market the software security initiative outside to build

external support. Software security grows beyond being a risk reduction exercise

and becomes a competitive advantage or market differentiator. The SSG might

write papers or books about its SSDL. It might have a public blog. It might

participate in external conferences or trade shows. In some cases, a complete

SSDL methodology can be published and promoted externally. Sharing details

externally and inviting critique can bring new perspectives into the firm.

BSIMM6 Self-Assessment Worksheet

Copyright® Cigital, Inc. 2008-2015. All rights reserved. Page 8 of 22

[CP1.1] 1
Unify regulatory

pressures

If the business or its customers are subject to regulatory or compliance drivers

such as FFIEC, GLBA, OCC, PCI DSS, SOX, HIPAA, or others, the SSG acts as a focal

point for understanding the constraints such drivers impose on software. In

some cases, the SSG creates a unified approach that removes redundancy from

overlapping compliance requirements. A formal approach will map applicable

portions of regulations to control statements explaining how the organization

complies. As an alternative, existing business processes run by legal or other risk

and compliance groups outside the SSG could also serve as the regulatory focal

point. The goal of this activity is to create one set of software security guidance so

that compliance work is completed as efficiently as possible (mostly by removing

duplicates). Some firms move on to guide exposure by becoming directly

involved in standards groups in order to influence the regulatory environment.

[CP1.2] 1
Identify PII

obligations

The way software handles personally identifiable information (PII) could be

explicitly regulated, but even if it isn’t, privacy is a hot topic. The SSG plays a key

role in identifying and describing PII obligations stemming from regulation and

customer expectations. It uses this information to promote best practices related

to privacy. For example, if the organization processes credit card transactions,

the SSG will identify the constraints that the PCI DSS places on the handling of

cardholder data and inform all stakeholders. Note that outsourcing to hosted

environments (e.g., the cloud) does not relax a majority of PII obligations. Also

note, firms that create software products that process PII (but who don’t

necessarily handle PII directly) can get credit by providing privacy controls and

guidance for their customers.

[CP1.3] 1 Create policy

The SSG guides the rest of the organization by creating or contributing to

software security policy that satisfies regulatory and customer-driven security

requirements. The policy provides a unified approach for satisfying the

(potentially lengthy) list of security drivers at the governance level. As a result,

project teams can avoid keeping up with the details involved in complying with all

applicable regulations. Likewise, project teams don’t need to re-learn customer

security requirements on their own. The SSG policy documents are sometimes

focused around major compliance topics such as the handling of PII or the use of

cryptography. In some cases, policy documents relate directly to the SSDL and its

use in the firm. Architecture standards and coding guidelines are not examples of

software security policy. On the other hand, policy that prescribes and mandates

the use of coding guidelines and architecture standards for certain categories of

applications does count. Policy is what is permitted and denied at the initiative

level. If it’s not mandatory, it’s not policy.

[CP2.1] 2
Identify PII data

inventory

The organization identifies the kinds of PII stored by each of its systems and their

data repositories. A PII inventory can be approached in two ways: starting with

each individual application by noting its PII use or starting with particular types of

PII and the applications that touch them. In either case, an inventory of data

repositories is required. When combined with the organization’s PII obligations,

this inventory guides privacy planning. For example, the SSG can now create a list

of databases that would require customer notification if breached.

[CP2.2] 2

Require security

sign-off for

compliance-related

risk

The organization has a formal compliance risk acceptance and accountability

process addressing all software development projects. The SSG might act as an

advisor when the risk acceptor signs off on the state of the software prior to

release. For example, the sign-off policy might require the head of the business

unit to sign off on compliance issues that have not been mitigated or SSDL steps

related to compliance that have been skipped. Signoff should be explicit and

captured for future reference. Any exceptions should be tracked.

[CP2.3] 2

Implement and

track controls for

compliance

The organization can demonstrate compliance with applicable regulations

because its SSDL is aligned with the control statements developed by the SSG

(see [CP1.1 Unify regulatory pressures]). The SSG tracks the controls, shepherds

problem areas, and makes sure auditors and regulators are satisfied. If the

organization’s SDLC is predictable and reliable, the SSG might be able to largely

sit back and keep score. If the SDLC is uneven or less reliable, the SSG could be

forced to take a more active role as referee. A firm doing this properly can

explicitly associate satisfying its compliance concerns to following its SSDL.

BSIMM6 Self-Assessment Worksheet

Copyright® Cigital, Inc. 2008-2015. All rights reserved. Page 9 of 22

[CP2.4] 2

Paper all vendor

contracts with

software security

SLAs

Vendor contracts include a service-level agreement (SLA) ensuring that the

vendor will not jeopardize the organization’s compliance story and software

security initiative. Each new or renewed contract contains a set of provisions

requiring the vendor to address software security and deliver a product or

service compatible with the organization’s security policy (see [SR2.5 Create SLA

boilerplate]). In some cases, open source licensing concerns initiate the vendor

control process. That can open the door for further software security language in

the SLA. Traditional IT security requirements and a simple agreement to allow

penetration testing are not sufficient.

[CP2.5] 2

Ensure executive

awareness of

compliance and

privacy obligations

The SSG gains executive buy-in around compliance and privacy activities.

Executives are provided plain-language explanations of the organization’s

compliance and privacy obligations and the potential consequences for failing to

meet those obligations. For some organizations, explaining the direct cost and

likely fallout from a data breach could be an effective way to broach the subject.

For other organizations, having an outside expert address the Board works

because some executives value outside perspective more than internal

perspective. One sure sign of proper executive awareness is adequate allocation

of resources to get the job done. Be aware that the light and heat typically

following a breach will not last.

[CP3.1] 3
Create regulator

eye-candy

The SSG has the information regulators want. A combination of written policy,

controls documentation, and artifacts gathered through the SSDL gives the SSG

the ability to demonstrate the organization’s compliance story without a fire drill

for every audit. In some cases, regulators, auditors, and senior management are

satisfied with the same kinds of reports, which may be generated directly from

various tools.

[CP3.2] 3
Impose policy on

vendors

Vendors are required to adhere to the same policies used internally. Vendors

must submit evidence that their software security practices pass muster.

Evidence could include results from code reviews or penetration tests. Vendors

may also attest to the fact that they are carrying out certain SSDL processes. In

some cases, a BSIMM score or a vBSIMM score has been used to help ensure that

vendors are complying with the firm’s policies.

[CP3.3] 3

Drive feedback from

SSDL data back to

policy

Information from the SSDL is routinely fed back into the policy creation process.

Policies are improved to find defects earlier or prevent them from occurring in

the first place. Blind spots are eliminated based on trends in SSDL failures. For

example, inadequate architecture analysis, recurring vulnerabilities, ignored

security gates, or choosing the wrong firm to carry out a penetration test may

expose policy weakness. Over time, policies should become more practical and

easier to carry out (see [SM1.1 Publish process (roles, responsibilities, plan),

evolve as necessary]). Ultimately, policies align themselves with the SSDL data

and enhance and improve a firm’s effectiveness.

[T1.1] 1
Provide awareness

training

The SSG provides awareness training in order to promote a culture of software

security throughout the organization. Training might be delivered by SSG

members, by an outside firm, by the internal training organization, or through

eLearning. Course content isn’t necessarily tailored for a specific audience. For

example, all programmers, quality assurance engineers, and project managers

could attend the same ‘Introduction to Software Security’ course. This common

activity can be enhanced with a tailored approach to an introductory course that

addresses a firm’s culture explicitly. Generic introductory courses covering basic

IT security and high-level software security concepts do not generate satisfactory

results. Likewise, providing awareness training only to developers and not to

other roles is also insufficient.

[T1.5] 1

Deliver role-specific

advanced

curriculum (tools,

technology stacks,

bug parade)

Software security training goes beyond building awareness and enables trainees

to incorporate security practices into their work. The training is tailored to the

role of trainees; trainees get information about the tools, technology stacks, or

kinds of bugs that are most relevant to them. An organization might offer four

tracks for engineers: one for architects, one for Java developers, one for Ruby

developers, and a fourth for testers. Tool-specific training is also commonly

observed in a curriculum. Don’t forget that training will be useful for many

BSIMM6 Self-Assessment Worksheet

Copyright® Cigital, Inc. 2008-2015. All rights reserved. Page 10 of 22

different roles in an organization, including QA, product management,

executives, and others.

[T1.6] 1

Create and use

material specific to

company history

In order to make a strong and lasting change in behavior, training includes

material specific to the company’s history. When participants can see themselves

in the problem, they are more likely to understand how the material is relevant to

their work and to know when and how to apply what they have learned. One way

to do this is to use noteworthy attacks on the company as examples in the

training curriculum. Be wary of training that covers platforms not used by

developers (Windows developers don’t care about old Unix problems) or

examples of problems only relevant to languages no longer in common use (Java

developers don’t need to understand buffer overflows in C). Stories from

company history can help steer training in the right direction only if the stories

are still relevant and not overly censored.

[T1.7] 1
Deliver on-demand

individual training

The organization lowers the burden on trainees and reduces the cost of

delivering training by offering on-demand training for individuals across roles.

eLearning is the most obvious choice and can be kept up-to-date through a

subscription model. Online courses must be engaging and relevant to achieve

their intended purpose. For developers, it is also possible to provide training

directly through IDEs right at the time it’s needed. Remember that in some cases,

building a new skill (such as code review) could be better suited for instructor-led

training. Of course, training that sits around on the shelf does nobody any good.

[T2.5] 2

Enhance satellite

through training and

events

The SSG strengthens the social network by holding special events for the satellite.

The satellite learns about advanced topics or hears from guest speakers. Offering

pizza and beer doesn’t hurt. A standing conference call with voluntary attendance

does not address this activity, which is as much about building camaraderie as it

is about sharing knowledge or organizational efficiency. There’s no substitute for

face-to-face meetings, even if they happen only once or twice a year.

[T2.6] 2

Include security

resources in

onboarding

The process for bringing new hires into the engineering organization requires a

module about software security. The generic new hire process covers things like

picking a good password and making sure people don’t tail you into the building,

but this can be enhanced to cover topics such as secure coding, the SSDL, and

internal security resources. The objective is to ensure that new hires enhance the

security culture. Turnover in engineering organizations is generally high. Though

a generic onboarding module is useful, it does not take the place of a timely and

more complete introductory software security course.

[T2.7] 2
Identify satellite

through training

The satellite begins as a collection of people scattered across the organization

who show an above-average level of security interest or skill. Identifying this

group is a step towards creating a social network that speeds the adoption of

security into software development. One way to begin is to track the people who

stand out during training courses (see [SM2.3 Create or grow a satellite]). In

general, a volunteer army may be easier to lead than one that is drafted.

[T3.1] 3

Reward progression

through curriculum

(certification or HR)

Knowledge is its own reward, but progression through the security curriculum

brings other benefits too. Developers, testers, and others see a career advantage

in learning about security. The reward system can be formal and lead to a

certification or official mark in the HR system, or it can be less formal and use

motivators such as praise letters for the satellite written at annual review time.

Involving a corporate training department and/or HR can make security’s impact

on career progression more obvious, but the SSG should continue to monitor

security knowledge in the firm and not cede complete control or oversight.

[T3.2] 3

Provide training for

vendors or

outsourced workers

Spending time and effort helping suppliers get security right at the outset is

easier than trying to figure out what they screwed up later on. In the best case,

outsourced workers receive the same training given to employees. Training

individual contractors is much more natural than training entire outsource firms

and is a reasonable way to start. Of course, it’s important to train everyone who

works on your software regardless of their employment status.

BSIMM6 Self-Assessment Worksheet

Copyright® Cigital, Inc. 2008-2015. All rights reserved. Page 11 of 22

[T3.3] 3

Host external

software security

events

The organization highlights its security culture as a differentiator by hosting

security events featuring external speakers and content. Good examples of this

are Microsoft’s BlueHat and Intel’s Security Conference. Employees benefit from

hearing outside perspectives. The organization as a whole benefits from putting

its security cred on display (see [SM3.2 Run an external marketing program]).

Events open to just certain small groups will not result in the desired change.

[T3.4] 3
Require an annual

refresher

Everyone involved in the SSDL is required to take an annual software security

refresher course. The refresher keeps the staff up-to-date on security and

ensures the organization doesn’t lose focus due to turnover. The SSG might use

half a day to give an update on the security landscape and explain changes to

policies and standards. A refresher can be rolled out as part of a firm-wide

security day or in concert with an internal security conference.

[T3.5] 3
Establish SSG office

hours

The SSG offers help to any and all comers during an advertised lab period or

regularly scheduled office hours. By acting as an informal resource for people

who want to solve security problems, the SSG leverages teachable moments and

emphasizes the carrot over the stick. Office hours might be held one afternoon

per week in the office of a senior SSG member. Mobile office hours are also a

possibility, with visits to particular product or application groups slated by

request.

[AM1.1] 1

Build and maintain a

top N possible

attacks list

The SSG helps the organization understand attack basics by maintaining a living

list of attacks most important to the firm and using it to drive change. This list

combines input from multiple sources: observed attacks, hacker forums, industry

trends, etc. The list does not need to be updated with great frequency and the

attacks can be sorted in a coarse fashion. For example, the SSG might brainstorm

twice per year to create lists of attacks the organization should be prepared to

counter “now,” “soon,” and “someday.” In some cases, attack model information

is used in a list-based approach to architecture analysis, helping to focus the

analysis as in the case of STRIDE.

[AM1.2] 1

Create a data

classification

scheme and

inventory

The organization agrees upon a data classification scheme and uses the scheme

to inventory its software according to the kinds of data the software handles. This

allows applications to be prioritized by their data classification. Many

classification schemes are possible—one approach is to focus on PII. Depending

upon the scheme and the software involved, it could be easiest to first classify

data repositories, then derive classifications for applications according to the

repositories they use. Other approaches to the problem are possible. For

example, data could be classified according to protection of intellectual property,

impact of disclosure, exposure to attack, relevance to SOX, or geographic

boundaries.

[AM1.3] 1
Identify potential

attackers

The SSG identifies potential attackers in order to understand their motivations

and capabilities. The outcome of this exercise could be a set of attacker profiles

including generic sketches for categories of attackers and more detailed

descriptions for noteworthy individuals. In some cases, a third-party vendor

might be contracted to provide this information. Specific and contextual attacker

information is almost always more useful than generic information copied from

someone else’s list.

[AM1.4] 1
Collect and publish

attack stories

To maximize the benefit from lessons that don’t always come cheap, the SSG

collects and publishes stories about attacks against the organization. Over time,

this collection helps the organization understand its history. Both successful and

unsuccessful attacks can be noteworthy. Discussing historical information about

software attacks has the effect of grounding software security in the reality of a

firm. This is particularly useful in training classes to counter a generic approach

over-focused on top 10 lists or irrelevant and outdated platform attacks. Hiding

information about attacks from people building new systems does nothing to

garner positive benefit from a negative happenstance.

BSIMM6 Self-Assessment Worksheet

Copyright® Cigital, Inc. 2008-2015. All rights reserved. Page 12 of 22

[AM1.5] 1
Gather and use

attack intelligence

The SSG stays ahead of the curve by learning about new types of attacks and

vulnerabilities. The information comes from attending conferences and

workshops, monitoring attacker forums, and reading relevant publications,

mailing lists, and blogs. Make Sun Tzu proud by knowing your enemy; engage

with the security researchers who are likely to cause you trouble. In many cases,

a subscription to a commercial service provides a reasonable way of gathering

basic attack intelligence. Regardless of its origin, attack information must be

made actionable and useful for software builders and testers.

[AM1.6] 1

Build an internal

forum to discuss

attacks

The organization has an internal forum where the SSG, the satellite, and others

discuss attacks. The forum serves to communicate the attacker perspective. The

SSG could maintain an internal mailing list where subscribers share the latest

information on publicly known incidents. Dissection of attacks and exploits that

are relevant to a firm are particularly helpful when they spur discussion of

development mitigations. Simply republishing items from public mailing lists

doesn’t achieve the same benefits as active discussion. Vigilance means never

getting too comfortable (see [SR1.2 Create a security portal]).

[AM2.1] 2

Build attack patterns

and abuse cases tied

to potential

attackers

The SSG prepares for security testing and architecture analysis by building attack

patterns and abuse cases tied to potential attackers. These resources don’t have

to be built from scratch for every application in order to be useful. Instead, there

could be standard sets for applications with similar profiles. The SSG will add to

the pile based on attack stories. For example, a story about an attack against

poorly managed entitlements could lead to an entitlements attack pattern that

drives a new type of testing. If a firm tracks fraud and monetary costs associated

with particular attacks, this information can be used to guide the process of

building attack patterns and abuse cases.

[AM2.2] 2

Create technology-

specific attack

patterns

The SSG creates technology-specific attack patterns to capture knowledge about

attacks that target particular technologies. For example, if the organization’s web

software relies on cutting-edge browser capabilities, the SSG could catalogue the

quirks of all the popular browsers and how they might be exploited. Attack

patterns directly related to the security frontier (e.g., mobile security and

wearable computing) can be useful. Simply republishing general guidelines (e.g.,

“Ensure data are protected in transit”) and adding “for mobile applications” on

the end does not constitute technology-specific attack patterns.

[AM3.1] 3

Have a science team

that develops new

attack methods

The SSG has a science team that works to identify and defang new classes of

attacks before real attackers even know they exist. This isn’t a penetration testing

team finding new instances of known types of weaknesses—it’s a research group

innovating new types of attacks. A science team may include well-known security

researchers who publish their findings at conferences like Def Con.

[AM3.2] 3

Create and use

automation to do

what attackers will

do

The SSG arms testers and auditors with automation to do what attackers are

going to do. For example, a new attack method identified by the science team

could require a new tool. The SSG packages the new tool and distributes it to

testers. The idea here is to push attack capability past what typical commercial

tools and offerings encompass and then package that information for others to

use. Tailoring these new tools to a firm’s particular technology stacks and

potential attackers is a really good idea.

[SFD1.1] 1
Build and publish

security features

Some problems are best solved only once. Rather than have each project team

implement all of their own security features (e.g., authentication, role

management, key management, audit/log, cryptography, protocols), the SSG

provides proactive guidance by building and publishing security features for

other groups to use. Project teams benefit from implementations that come pre-

approved by the SSG and the SSG benefits by not having to repeatedly track

down the kinds of subtle errors that often creep into security features. The SSG

can identify an implementation they like and promote it as the accepted solution.

BSIMM6 Self-Assessment Worksheet

Copyright® Cigital, Inc. 2008-2015. All rights reserved. Page 13 of 22

[SFD1.2] 1
Engage SSG with

architecture

Security is a regular part of the organization’s software architecture discussion.

The architecture group takes responsibility for security the same way they take

responsibility for performance, availability or scalability. One way to keep security

from falling out of the discussion is to have an SSG member attend regular

architecture meetings. In other cases, enterprise architecture can help the SSG

create secure designs that integrate properly into corporate design standards.

Proactive engagement by the SSG is key to success.

[SFD2.1] 2

Build secure-by-

design middleware

frameworks and

common libraries

The SSG takes a proactive role in software design by building or providing

pointers to secure-by-design middleware frameworks or common libraries. In

addition to teaching by example, this middleware aids architecture analysis and

code review because the building blocks make it easier to spot errors. For

example, the SSG could modify a popular web framework, such as Spring, to

make it easy to meet input validation requirements. Eventually the SSG can tailor

code review rules specifically for the components it offers (see [CR3.1 Use

automated tools with tailored rules]). When adopting a middleware framework

(or any other widely used software), careful vetting for security before publication

is important. Encouraging adoption and use of insecure middleware does not

help the software security situation. Generic open source software security

architectures, including OWASP ESAPI, should not be considered secure by

design. Bolting security on at the end by calling a library is not the way to

approach secure design.

[SFD2.2] 2

Create SSG

capability to solve

difficult design

problems

When the SSG is involved early in the new project process, it contributes to new

architecture and solves difficult design problems. The negative impact security

has on other constraints (time to market, price, etc.) is minimized. If a skilled

security architect from the SSG is involved in the design of a new protocol, he or

she could analyze the security implications of existing protocols and identify

elements that should be duplicated or avoided. Designing for security up front is

more efficient than analyzing an existing design for security and then refactoring

when flaws are uncovered. Some design problems will require specific expertise

outside of the SSG.

[SFD3.1] 3

Form a review board

or central

committee to

approve and

maintain secure

design patterns

A review board or central committee formalizes the process for reaching

consensus on design needs and security tradeoffs. Unlike the architecture

committee, this group is specifically focused on providing security guidance. The

group also periodically reviews already-published design standards (especially

around cryptography) to ensure that design decisions do not become stale or out

of date.

[SFD3.2] 3

Require use of

approved security

features and

frameworks

Implementers must take their security features and frameworks from an

approved list. There are two benefits: developers do not spend time re-inventing

existing capabilities and review teams do not have to contend with finding the

same old defects in brand new projects. In particular, the more a project uses

proven components, the easier architecture analysis and code review become

(see [AA1.1 Perform security feature review]). Re-use is a major advantage of

consistent software architecture.

[SFD3.3] 3

Find and publish

mature design

patterns from the

organization

The SSG fosters centralized design reuse by collecting design patterns from

across the organization and publishing them for everyone to use. A section of the

SSG website could promote positive elements identified during architecture

analysis so that good ideas are spread. This process should be formalized. An ad

hoc, accidental noticing is not sufficient. In some cases, a central architecture or

technology team facilitates and enhances this activity.

[SR1.1] 1
Create security

standards

Software security requires much more than security features, but security

features are part of the job as well. The SSG meets the organization’s demand for

security guidance by creating standards that explain the accepted way to adhere

to policy and carry out specific security-centric operations. A standard might

describe how to perform authentication using J2EE or how to determine the

authenticity of a software update (see [SFD1.1 Build and publish security

features] for one case where the SSG provides a reference implementation of a

security standard). Standards can be deployed in a variety of ways. In some

cases, standards and guidelines can be automated in development environments

BSIMM6 Self-Assessment Worksheet

Copyright® Cigital, Inc. 2008-2015. All rights reserved. Page 14 of 22

(e.g., worked into an IDE). In other cases, guidelines can be explicitly linked to

code examples to make them more actionable and relevant. Standards that are

not widely adopted and enforced are not really standards.

[SR1.2] 1
Create a security

portal

The organization has a well-known central location for information about

software security. Typically, this is an internal website maintained by the SSG.

People refer to the site for the latest and greatest on security standards and

requirements as well as other resources provided by the SSG. An interactive wiki

is better than a static portal with guideline documents that rarely change.

Organizations can supplement these materials with mailing lists and face-to-face

meetings.

[SR1.3] 1

Translate

compliance

constraints to

requirements

Compliance constraints are translated into software requirements for individual

projects. This is a linchpin in the organization’s compliance strategy—by

representing compliance constraints explicitly with requirements, demonstrating

compliance becomes a manageable task. For example, if the organization

routinely builds software that processes credit card transactions, PCI DSS

compliance could play a role in the SSDL during the requirements phase. In other

cases, technology standards built for international interoperability reasons can

include security guidance. Representing these standards as requirements helps

with traceability and visibility in the case of audit.

[SR2.2] 2
Create a standards

review board

The organization creates a standards review board to formalize the process used

to develop standards and ensure that all stakeholders have a chance to weigh in.

The review board could operate by appointing a champion for any proposed

standard. The onus is on the champion to demonstrate that the standard meets

its goals and to get approval and buy-in from the review board. Enterprise

architecture or enterprise risk groups sometimes take on the responsibility of

creating and managing standards review boards.

[SR2.3] 2
Create standards for

technology stacks

The organization standardizes on specific technology stacks. For the SSG, this

means a reduced workload because the group does not have to explore new

technology risks for every new project. Ideally, the organization will create a

secure base configuration for each technology stack, further reducing the

amount of work required to use the stack safely. A stack might include an

operating system, a database, an application server, and a runtime environment

for a managed language. The security frontier is a good place to find traction.

Currently, mobile technology stacks and platforms as well as cloud-based

technology stacks are two areas where specific attention to security pays off.

[SR2.4] 2 Identify open source

The first step toward managing risk introduced by open source is to identify the

open source components in use across the portfolio. It’s not uncommon to

discover old versions of components with known vulnerabilities or multiple

versions of the same component. Automated tools for finding open source,

whether whole components or large chunks of borrowed code, are one way to

approach this activity. A process that relies solely on developers asking for

permission does not generate satisfactory results. At the next level of maturity,

this activity is subsumed by a policy constraining the use of open source.

[SR2.5] 2
Create SLA

boilerplate

The SSG works with the legal department to create a standard SLA boilerplate

that is used in contracts with vendors and outsource providers to require

software security efforts. The legal department understands that the boilerplate

also helps prevent compliance and privacy problems. Under the agreement,

vendors and outsource providers must meet company software security

standards (see [CP2.4 Paper all vendor contracts with software security SLAs]).

Boilerplate language may call out software security vendor control solutions such

as vBSIMM measurements or BSIMM scores.

[SR2.6] 2
Use secure coding

standards

Secure coding standards help developers avoid the most obvious bugs and

provide ground rules for code review. Secure coding standards are necessarily

specific to a programming language and can address the use of popular

frameworks and libraries. If the organization already has coding standards for

other purposes, the secure coding standards should build upon them. A clear set

of secure coding standards is a good way to guide both manual and automated

code review, as well as beefing up security training with relevant examples.

Remember, guidance does not a standard make.

BSIMM6 Self-Assessment Worksheet

Copyright® Cigital, Inc. 2008-2015. All rights reserved. Page 15 of 22

[SR3.1] 3
Control open source

risk

The organization has control over its exposure to the vulnerabilities that come

along with using open source components. Use of open source could be

restricted to pre-defined projects. It could also be restricted to open source

versions that have been through an SSG security screening process, had

unacceptable vulnerabilities remediated, and made available only through

internal repositories. Legal often spearheads additional open source controls due

to the “viral” license problem associated with GPL code. Getting legal to

understand security risks can help move an organization to practice decent open

source hygiene. Of course, this control must be applied across the software

portfolio.

[SR3.2] 3

Communicate

standards to

vendors

The SSG works with vendors to educate them and promote the organization’s

security standards. A healthy relationship with a vendor cannot be guaranteed

through contract language alone. The SSG engages with vendors, discusses the

vendor’s security practices and explains in concrete terms (rather than legalese)

what the organization expects of the vendor. Any time a vendor adopts the

organization’s security standards, it’s a clear win. When a firm’s SSDL is available

publically, communication regarding software security expectations is easier.

Likewise, sharing internal practices and measures can make expectations very

clear.

[AA1.1] 1
Perform security

feature review

To get started in architecture analysis, center the process on a review of security

features. Security-aware reviewers first identify the security features in an

application (authentication, access control, use of cryptography, etc.) then study

the design looking for problems that would cause these features to fail at their

purpose or otherwise prove insufficient. For example, a system that was subject

to escalation of privilege attacks because of broken access control or a system

that stored unsalted password hashes would both be identified in this kind of

review. At higher levels of maturity, the activity of reviewing features is eclipsed

by a more thorough approach to architecture analysis. In some cases, use of the

firm’s secure-by-design components can streamline this process.

[AA1.2] 1

Perform design

review for high-risk

applications

The organization learns about the benefits of architecture analysis by seeing real

results for a few high-risk, high-profile applications. The reviewers must have

some experience performing detailed design review and breaking the

architecture being considered. In all cases, design review produces a set of

architecture flaws and a plan to mitigate them. If the SSG is not yet equipped to

perform an in-depth architecture analysis, it uses consultants to do this work. Ad

hoc review paradigms that rely heavily on expertise can be used here, though in

the long run they do not scale. A review focused only on whether a software

project has performed the right process steps will not generate expected results.

[AA1.3] 1

Have SSG lead

design review

efforts

The SSG takes a lead role in architecture analysis by performing design review to

build the organization’s ability to uncover design flaws. Breaking an architecture

is enough of an art that the SSG must be proficient at it before they can turn the

job over to the architects, and proficiency requires practice. The SSG cannot be

successful on its own either—it’s likely they’ll need help from architects or

implementers to understand the design. With a clear design in hand, the SSG

might carry out the detailed review with a minimum of interaction with the

project team. At higher levels of maturity, the responsibility for leading review

efforts shifts towards software architects. Approaches to architecture analysis

(and threat modeling) evolve over time. Do not expect to set a process and use it

forever.

[AA1.4] 1

Use a risk

questionnaire to

rank applications

To facilitate security feature and design review processes, the SSG uses a risk

questionnaire to collect basic information about each application so that it can

determine a risk classification and prioritization scheme. Questions might

include, “Which programming languages is the application written in?” “Who uses

the application?” and “Does the application handle PII?” A qualified member of

the application team completes the questionnaire. The questionnaire is short

enough to be completed in a matter of hours. The SSG might use the answers to

bucket the application as high, medium, or low risk. Because a risk questionnaire

can be easy to game, it’s important to put some spot checking for validity and

BSIMM6 Self-Assessment Worksheet

Copyright® Cigital, Inc. 2008-2015. All rights reserved. Page 16 of 22

accuracy into place. An overreliance on self-reporting or automation can render

this activity impotent.

[AA2.1] 2
Define and use AA

process

The SSG defines and documents a process for architecture analysis and applies it

in the design reviews it conducts. The process includes a standardized approach

for thinking about attacks and security properties, and the associated risk. The

process is defined rigorously enough that people outside the SSG can be taught

to carry it out. Particular attention should be paid to documentation of both the

architecture under review and any security flaws uncovered. Tribal knowledge

doesn’t count as a defined process. Microsoft’s STRIDE and Cigital’s ARA are

examples of this process. Note that even these two methodologies for

architecture analysis have evolved greatly over time. Make sure to access up-to-

date sources for architecture analysis information because many early

publications are outdated and no longer apply.

[AA2.2] 2

Standardize

architectural

descriptions

(including data flow)

AA processes use an agreed-upon format for describing architecture, including a

means for representing data flow. This format, combined with an architecture

analysis process, makes architecture analysis tractable for people who are not

security experts. A standard architecture description can be enhanced to provide

an explicit picture of information assets that require protection. Standardized

icons that are consistently used in UML diagrams, Visio templates, and

whiteboard squiggles are especially useful.

[AA2.3] 2

Make SSG available

as AA resource or

mentor

To build an architecture analysis capability outside of the SSG, the SSG advertises

itself as a resource or mentor for teams who ask for help using the AA process to

conduct their own design review and proactively seek projects to get involved

with. The SSG will answer architecture analysis questions during office hours, and

in some cases, might assign someone to sit side-by-side with the architect for the

duration of the analysis. In the case of high-risk applications or products, the SSG

plays a more active mentorship role in applying the AA process.

[AA3.1] 3

Have software

architects lead

design review

efforts

Software architects throughout the organization lead the architecture analysis

process most of the time. The SSG still might contribute to architecture analysis

in an advisory capacity or under special circumstances. This activity requires a

well-understood and well-documented architecture analysis process. Even in that

case, consistency is very difficult to attain because breaking architectures

requires so much experience.

[AA3.2] 3

Drive analysis

results into standard

architecture

patterns

Failures identified during architecture analysis are fed back to the security design

committee so that similar mistakes can be prevented in the future through

improved design patterns (see [SFD3.1 Form a review board or central committee

to approve and maintain secure design patterns]). Security design patterns can

interact in surprising ways that break security. The architecture analysis process

should be applied even when vetted design patterns are in standard use.

[CR1.1] 1

Create a top N bugs

list (real data

preferred)

The SSG maintains a list of the most important kinds of bugs that must be

eliminated from the organization’s code and uses it to drive change. The list helps

focus the organization’s attention on the bugs that matter most. It’s okay to start

with a generic list pulled from public sources, but a list is much more valuable if

it’s specific to the organization and built from real data gathered from code

review, testing, and actual incidents. The SSG can periodically update the list and

publish a “most wanted” report. (For another way to use the list, see [T1.6 Create

and use material specific to company history]). Some firms use multiple tools and

real code base data to build Top N lists, not constraining themselves to a

particular service or tool. One potential pitfall with a Top N list is the problem of

“looking for your keys only under the street light.” For example, the OWASP Top

10 list rarely reflects an organization’s bug priorities. Simply sorting the day’s bug

data by number of occurrences doesn’t produce a satisfactory Top N list because

these data change so often.

[CR1.2] 1
Have SSG perform

ad hoc review

The SSG performs an ad hoc code review for high-risk applications in an

opportunistic fashion. For example, the SSG might follow up the design review

for high-risk applications with a code review. At higher maturity levels, replace ad

hoc targeting with a systematic approach. SSG review could involve the use of

specific tools and services, or it might be manual.

BSIMM6 Self-Assessment Worksheet

Copyright® Cigital, Inc. 2008-2015. All rights reserved. Page 17 of 22

[CR1.4] 1

Use automated

tools along with

manual review

Incorporate static analysis into the code review process to make code review

more efficient and more consistent. The automation doesn’t replace human

judgment, but it does bring definition to the review process and security

expertise to reviewers who are not security experts. A firm may use an external

service vendor as part of a formal code review process for software security. This

service should be explicitly connected to a larger SSDL applied during software

development and not just “check the security box” on the path to deployment.

[CR1.5] 1

Make code review

mandatory for all

projects

Code review is a mandatory release gate for all projects under the SSG’s purview.

Lack of code review or unacceptable results will stop the release train. While all

projects must undergo code review, the review process might be different for

different kinds of projects. The review for low-risk projects might rely more

heavily on automation and the review for high-risk projects might have no upper

bound on the amount of time spent by reviewers. In most cases, a code review

gate with a minimum acceptable standard forces projects that don’t pass to be

fixed and re-evaluated before they ship.

[CR1.6] 1

Use centralized

reporting to close

the knowledge loop

and drive training

The bugs found during code review are tracked in a centralized repository. This

repository makes it possible to do summary reporting and trend reporting for the

organization. The SSG can use the reports to demonstrate progress and drive the

training curriculum (see [SM2.5 Identify metrics and use them drive budgets]).

Code review information can be incorporated into a CSO-level dashboard that

includes feeds from other parts of the security organization. Likewise, code

review information can be fed into a development-wide project tracking system

that rolls up several diverse software security feeds (for example, penetration

tests, security testing, black box testing, white box testing, etc.). Don’t forget that

individual bugs make excellent training examples.

[CR2.2] 2
Enforce coding

standards

A violation of the organization’s secure coding standards is sufficient grounds for

rejecting a piece of code. Code review is objective—it shouldn’t devolve into a

debate about whether or not bad code is exploitable. The enforced portion of the

standard could start out being as simple as a list of banned functions. In some

cases, coding standards for developers are published specific to technology

stacks (for example, guidelines for C++ or Spring) and then enforced during the

code review process or directly in the IDE. Standards can be positive (“do it this

way”) as well as negative (“do not use this API”).

[CR2.5] 2 Assign tool mentors

Mentors are available to show developers how to get the most out of code review

tools. If the SSG is most skilled with the tools, it could use office hours to help

developers establish the right configuration or get started interpreting results.

Alternatively, someone from the SSG might work with a development team for

the duration of the first review they perform. Centralized use of a tool can be

distributed into the development organization over time through the use of tool

mentors.

[CR2.6] 2

Use automated

tools with tailored

rules

Customize static analysis to improve efficiency and reduce false positives. Use

custom rules to find errors specific to the organization’s coding standards or

custom middleware. Turn off checks that aren’t relevant. The same group that

provides tool mentoring will likely spearhead the customization. Tailored rules

can be explicitly tied to proper usage of technology stacks in a positive sense and

avoidance of errors commonly encountered in a firm’s code base in a negative

sense.

[CR3.2] 3 Build a factory

Combine assessment results so that multiple analysis techniques feed into one

reporting and remediation process. The SSG might write scripts to invoke

multiple detection techniques automatically and combine the results into a

format that can be consumed by a single downstream review and reporting

solution. Analysis engines may combine static and dynamic analysis. The tricky

part of this activity is normalizing vulnerability information from disparate

sources that use conflicting terminology. In some cases, a CWE-like approach can

help with nomenclature. Combining multiple sources helps drive better informed

risk mitigation decisions.

BSIMM6 Self-Assessment Worksheet

Copyright® Cigital, Inc. 2008-2015. All rights reserved. Page 18 of 22

[CR3.3] 3

Build a capability for

eradicating specific

bugs from the entire

codebase

When a new kind of bug is found, the SSG writes rules to find it and uses the

rules to identify all occurrences of the new bug throughout the entire codebase.

It‘s possible to eradicate the bug type entirely without waiting for every project to

reach the code review portion of its lifecycle. A firm with only a handful of

software applications will have an easier time with this activity than firms with a

very large number of large apps.

[CR3.4] 3
Automate malicious

code detection

Automated code review is used to identify dangerous code written by malicious

in-house developers or outsource providers. Examples of malicious code that

could be targeted include backdoors, logic bombs, time bombs, nefarious

communication channels, obfuscated program logic, and dynamic code injection.

Although out-of-the-box automation might identify some generic malicious-

looking constructs, custom rules for static analysis tools used to codify

acceptable, and unacceptable code patterns in the organization’s codebase will

quickly become a necessity. Manual code review for malicious code is a good

start, but is insufficient to complete this activity.

[ST1.1] 1

Ensure QA supports

edge/boundary

value condition

testing

The QA team goes beyond functional testing to perform basic adversarial tests.

They probe simple edge cases and boundary conditions. No attacker skills

required. When QA understands the value of pushing past standard functional

testing using acceptable input, they begin to move slowly toward “thinking like a

bad guy.” A discussion of boundary value testing leads naturally to the notion of

an attacker probing the edges on purpose. What happens when you enter the

wrong password over and over?

[ST1.3] 1

Drive tests with

security

requirements and

security features

Testers target declarative security mechanisms derived from requirements and

security features. For example, a tester could try to access administrative

functionality as an unprivileged user or verify that a user account becomes

locked after some number of failed authentication attempts. For the most part,

security features can be tested in a similar fashion to other software features.

Security mechanisms based on requirements such as account lockout,

transaction limitations, entitlements, and so on are also tested. Of course,

software security is not security software, but getting started with features is

easy.

[ST2.1] 2

Integrate black box

security tools into

the QA process

The organization uses one or more black box security testing tools as part of the

quality assurance process. The tools are valuable because they encapsulate an

attacker’s perspective, albeit in a generic fashion. Tools such as IBM Security

AppScan or HP WebInspect are relevant for web applications, and fuzzing

frameworks such as Codenomicon are applicable for most network protocols. In

some situations, other groups might collaborate with the SSG to apply the tools.

For example, a testing team could run the tool, but come to the SSG for help

interpreting the results. Regardless of who runs the black box tool, the testing

should be properly integrated into the QA cycle of the SSDL.

[ST2.4] 2
Share security

results with QA

The SSG routinely shares results from security reviews with the QA department.

Over time, QA engineers learn the security mindset. Using security results to

inform and evolve particular testing patterns can be a powerful mechanism

leading to better security testing. This activity benefits from an engineering-

focused QA function that is highly technical.

[ST2.5] 2

Include security

tests in QA

automation

Security tests run alongside functional tests as part of automated regression

testing. The same automation framework houses both. Security testing is part of

the routine. Security tests can be driven from abuse cases identified earlier in the

lifecycle or tests derived from creative tweaks of functional tests.

[ST2.6] 2

Perform fuzz testing

customized to

application APIs

Test automation engineers customize a fuzzing framework to the organization’s

APIs. They could begin from scratch or use an existing fuzzing toolkit, but

customization goes beyond creating custom protocol descriptions or file format

templates. The fuzzing framework has a built-in understanding of the application

interfaces it calls into. Test harnesses developed explicitly for particular

applications can make good places to integrate fuzz testing.

BSIMM6 Self-Assessment Worksheet

Copyright® Cigital, Inc. 2008-2015. All rights reserved. Page 19 of 22

[ST3.3] 3
Drive tests with risk

analysis results

Testers use architecture analysis results to direct their work. For example, if

architecture analysis concludes, “the security of the system hinges on the

transactions being atomic and not being interrupted partway through,” then torn

transactions will be become a primary target in adversarial testing. Adversarial

tests like these can be developed according to risk profile—high-risk flaws first.

[ST3.4] 3
Leverage coverage

analysis

Testers measure the code coverage of their security tests to identify code that

isn’t being exercised. Code coverage drives increased security testing depth.

Standard-issue black box testing tools achieve exceptionally low coverage,

leaving a majority of the software under test unexplored. Don’t let this happen to

your tests. Using standard measurements for coverage such as function

coverage, line coverage, or multiple condition coverage is fine.

[ST3.5] 3

Begin to build and

apply adversarial

security tests (abuse

cases)

Testing begins to incorporate test cases based on abuse cases. Testers move

beyond verifying functionality and take on the attacker’s perspective. For

example, testers might systematically attempt to replicate incidents from the

organization’s history. Abuse and misuse cases based on the attacker’s

perspective can also be driven from security policies, attack intelligence and

guidelines. This turns the corner from testing features to attempting to break the

software under test.

[PT1.1] 1

Use external

penetration testers

to find problems

Many organizations aren’t willing to address software security until there’s

unmistakable evidence that the organization isn’t somehow magically immune to

the problem. If security has not been a priority, external penetration testers can

demonstrate that the organization’s code needs help. Penetration testers could

be brought in to break a high-profile application to make the point. Over time,

the focus of penetration testing moves from “I told you our stuff was broken” to a

smoke test and sanity check done before shipping. External penetration testers

bring a new set of eyes to the problem.

[PT1.2] 1

Feed results to the

defect management

and mitigation

system

Penetration testing results are fed back to development through established

defect management or mitigation channels, and development responds using

their defect management and release process. The exercise demonstrates the

organization’s ability to improve the state of security. Many firms are beginning

to emphasize the critical importance of not just identifying but, more importantly,

fixing security problems. One way to ensure attention is to add a security flag to

the bug tracking and defect management system. Evolving DevOps and

integrated team structures do not eliminate the need for formalized defect

management systems.

[PT1.3] 1

Use penetration

testing tools

internally

The organization creates an internal penetration testing capability that uses

tools. This capability can be part of the SSG or part of a specialized and trained

team elsewhere in the organization. The tools improve efficiency and

repeatability of the testing process. Tools can include off-the-shelf products,

standard issue network penetration tools that understand the application layer,

and hand-written scripts.

[PT2.2] 2

Provide penetration

testers with all

available

information

Penetration testers, whether internal or external, use all available information

about their target. Penetration testers can do deeper analysis and find more

interesting problems when they have source code, design documents,

architecture analysis results, and code review results. Give penetration testers

everything you have created throughout the SSDL and ensure they use it. If your

penetration tester doesn’t ask for the code, you need a new penetration tester.

[PT2.3] 2

Schedule periodic

penetration tests for

application coverage

Periodically test all applications in the SSG’s purview according to an established

schedule, which could be tied to the calendar or to the release cycle. The testing

serves as a sanity check and helps ensure yesterday’s software isn’t vulnerable to

today’s attacks. High-profile applications might get a penetration test at least

once a year. One important aspect of periodic testing is to make sure that the

problems identified in a penetration test are actually fixed and they don’t creep

back into the build.

[PT3.1] 3

Use external

penetration testers

to perform deep-

dive analysis

The organization uses external penetration testers to do deep-dive analysis for

critical projects and to introduce fresh thinking into the SSG. These testers are

experts and specialists; they keep the organization up to speed with the latest

version of the attacker’s perspective and have a track record for breaking the

BSIMM6 Self-Assessment Worksheet

Copyright® Cigital, Inc. 2008-2015. All rights reserved. Page 20 of 22

type of software being tested. Skilled penetration testers will always break a

system. The question is whether they demonstrate new kinds of thinking about

attacks that can be useful when designing, implementing, and hardening new

systems. Creating new types of attacks from threat intelligence and abuse cases

prevents checklist-driven approaches that only look for known types of problems.

[PT3.2] 3

Have the SSG

customize

penetration testing

tools and scripts

The SSG either creates penetration testing tools or adapts publicly-available tools

so they can more efficiently and comprehensively attack the organization’s

systems. Tools improve the efficiency of the penetration testing process without

sacrificing the depth of problems the SSG can identify. Tools that can be tailored

are always preferable to generic tools. This activity considers both the depth of

tests and their scope.

[SE1.1] 1
Use application

input monitoring

The organization monitors the input to software it runs in order to spot attacks.

For web code, a web application firewall (WAF) can do the job. The SSG could be

responsible for the care and feeding of the system. Incident response is not part

of this activity. Defanged WAFs that write log files can be useful if somebody

reviews the logs periodically. On the other hand, a WAF that’s unmonitored

makes no noise when an application falls in the woods.

[SE1.2] 1

Ensure host and

network security

basics are in place

The organization provides a solid foundation for software by ensuring that host

and network security basics are in place. It is common for operations security

teams to be responsible for duties such as patching operating systems and

maintaining firewalls. Doing software security before network security is like

putting on your pants before putting on your underwear.

[SE2.2] 2
Publish installation

guides

The SSDL requires the creation of an installation guide to help deployment teams

and operators install and configure the software securely. If special steps are

required to ensure a deployment is secure, the steps are outlined in the

installation guide. The guide should include discussion of COTS components. In

some cases, installation guides are distributed to customers who buy the

software. Evolving DevOps and integrated team structures do not eliminate the

need for written guides. Of course, secure by default is always the best way to go.

[SE2.4] 2 Use code signing

The organization uses code signing for software published across trust

boundaries. Code signing is particularly useful for protecting the integrity of

software that leaves the organization’s control, such as shrink-wrapped

applications or thick clients. The fact that some mobile platforms require

application code to be signed does not indicate institutional use of code signing.

[SE3.2] 3 Use code protection

To protect intellectual property and make exploit development harder, the

organization erects barriers to reverse engineering. Obfuscation techniques

could be applied as part of the production build and release process. Employing

platform-specific controls such as Data Execution Prevention (DEP), Safe

Structured Error Handling (SafeSEH), and Address Space Layout Randomization

(ASLR) can make exploit development more difficult.

[SE3.3] 3

Use application

behavior monitoring

and diagnostics

The organization monitors the behavior of production software looking for

misbehavior and signs of attack. This activity goes beyond host and network

monitoring to look for problems that are specific to the software, such as

indications of fraud. Intrusion detection and anomaly detection systems at the

application level may focus on an application’s interaction with the operating

system (through system calls) or with the kinds of data that an application

consumes, originates, and manipulates.

[CMVM1.1] 1

Create or interface

with incident

response

The SSG is prepared to respond to an incident and is regularly included in the

incident response process. The group either creates its own incident response

capability or regularly interfaces with the organization’s existing incident

response team. A regular meeting between the SSG and the incident response

team can keep information flowing in both directions. In many cases, software

security initiatives have evolved from incident response teams who began to

realize that software vulnerabilities were the bane of their existence.

BSIMM6 Self-Assessment Worksheet

Copyright® Cigital, Inc. 2008-2015. All rights reserved. Page 21 of 22

[CMVM1.2] 1

Identify software

defects found in

operations

monitoring and feed

them back to

development

Defects identified through operations monitoring are fed back to development

and used to change developer behavior. The contents of production logs can be

revealing (or can reveal the need for improved logging). In some cases, providing

a way to enter incident triage data into an existing bug tracking system (many

times making use of a special security flag) seems to work. The idea is to close

the information loop and make sure security problems get fixed. In the best of

cases, processes in the SSDL can be improved based on operational data.

[CMVM2.1] 2
Have emergency

codebase response

The organization can make quick code changes when an application is under

attack. A rapid-response team works in conjunction with the application owners

and the SSG to study the code and the attack, find a resolution, and push a patch

into production. Often, the emergency response team is the development team

itself. Fire drills don’t count; a well-defined process is required. A process that has

never been used may not actually work.

[CMVM2.2] 2

Track software bugs

found in operations

through the fix

process

Defects found in operations are fed back to development, entered into

established defect management systems and tracked through the fix process.

This capability could come in the form of a two-way bridge between the bug

finders and the bug fixers. Make sure the loop is closed completely. Setting a

security flag in the bug-tracking system can help facilitate tracking.

[CMVM2.3] 2

Develop an

operations

inventory of

applications

The organization has a map of its software deployments. If a piece of code needs

to be changed, operations can reliably identify all of the places where the change

needs to be installed. Sometimes common components shared between multiple

projects are noted so that when an error occurs in one application, other

applications that share the same components can be fixed as well.

[CMVM3.1] 3

Fix all occurrences

of software bugs

found in operations

The organization fixes all instances of each software bug found during operations

and not just the small number of instances that have triggered bug reports. This

requires the ability to reexamine the entire codebase when new kinds of bugs

come to light (see [CR3.3 Build capability for eradicating specific bugs from entire

codebase]). One way to approach this is to create a rule set that generalizes a

deployed bug into something that can be scanned for using automated code

review.

[CMVM3.2] 3

Enhance the SSDL to

prevent software

bugs found in

operations

Experience from operations leads to changes in the SSDL. The SSDL is

strengthened to prevent the reintroduction of bugs found during operations. To

make this process systematic, the incident response post mortem could include a

“feedback to SSDL” step. This works best when root cause analysis pinpoints

where in the SDLC an error could have been introduced or slipped by uncaught.

An ad hoc approach is not sufficient.

[CMVM3.3] 3
Simulate software

crisis

The SSG simulates high-impact software security crises to ensure software

incident response capabilities minimize damage. Simulations could test for the

ability to identify and mitigate specific threats or, in other cases, could begin with

the assumption that a critical system or service is already compromised and

evaluate the organization’s ability to respond. When simulations model

successful attacks, an important question to consider is the time period required

to clean up. Regardless, simulations must focus on security-relevant software

failure and not on natural disasters or other types of emergency response drills.

If the data center is burning to the ground, the SSG won’t be among the first

responders.

[CMVM3.4] 3
Operate a bug

bounty program

The organization solicits vulnerability reports from external researchers and pays

a bounty for each verified and accepted vulnerability received. Payouts typically

follow a sliding scale linked to multiple factors, such as vulnerability type (e.g.,

remote code execution is worth $10,000 versus CSRF is worth $750), exploitability

(demonstrable exploits command much higher payouts), or specific services and

software versions (widely-deployed or critical services warrant higher payouts).

Ad hoc or short-duration activities, such as capture-the-flag contests, do not

count.

 Most common activity in each practice

BSIMM6 Self-Assessment Worksheet

Copyright® Cigital, Inc. 2008-2015. All rights reserved. Page 22 of 22

Ready to join the growing BSIMM Community?

Go to https://www.bsimm.com/

This work is licensed under the Creative Commons Attribution-Share Alike 3.0 License. To view a copy of this license, visit

http://creativecommons.org/licenses/by-sa/3.0/legalcode or send a letter to Creative Commons, 171 Second Street, Suite 300,

San Francisco, California, 94105, USA.

https://www.bsimm.com/
https://www.bsimm.com/

