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Chapter 1

The Belgian Health Interview Survey

. Background

. Information about the sample

. Information about the design
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1.1 Background

• Conducted in years: 1997 – 2001 – 2004

• Commissioned by:

. Federal government

. Flemish Community

. French Community

. German Community

. Walloon Region

. Brussels Region
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• Executing partners:

. Scientific Institute Public Health–Louis Pasteur

. National Institute of Statistics

. Hasselt University (formerly known as Limburgs Universitair Centrum)

. Website: http://www.iph.fgov.be/epidemio/epien/index4.htm

• Goals:

. Subjective health, from the respondent’s perspective

. Identification of health problems

. Information that cannot be obtained from care givers, such as

∗ Estimation of prevalence and distribution of health indicators

∗ Analysis of social inequality in health and access to health care

∗ Study of possible trends in the health status of the population
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• Domains:

. Complaints and symptoms

. Health status

. Use of health services

. Life style

. Socio-economic variables
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1.2 Differences in Categories Covered

Category 1997 2001 2004

Household questionnaire

Health and society ∗ ∗
Face-to-face interview

Acute affections ∗
Physical activity ∗ ∗
Waiting list ∗
Contacts with primary health care ∗ ∗
Maternal and infantile health ∗
Traumatism, accidents, violence, dog bites ∗ ∗

Written questionnaire

Morbidity ∗
Health complaints ∗ ∗
Knowledge of/and behavior towards HIV/AIDS ∗ ∗
Consumption of other products ∗ ∗
Traumatism, accidents, violence, dog bites ∗
Patient satisfaction ∗
Prevention: diabetes ∗ ∗
Physical activity ∗
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1.3 Overview of Design

• Regional stratification: fixed a priori

• Provincial stratification: for convenience

• Three-stage sampling:

. Primary sampling units (PSU): Municipalities: proportional to size

. Secondary sampling units (SSU): Households

. Tertiary sampling units (TSU): Individuals
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• Over-representation of German Community

• Over-representation of 4 (2) provinces in 2001 (2004):

Limburg Hainaut

Antwerpen Luxembourg

• Sampling done in 4 quarters: Q1, Q2, Q3, Q4
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1.4 Regional Stratification

1997 2001 2004

Region Goal Obt’d Goal Obt’d Goal Obt’d

Flanders 3500 3536 3500+550=4050 4100 3500+450

+ elderly +450=4400 4513

Wallonia 3500 3634 3500+1500=5000 4711 3500+900

+ elderly +450=4850 4992

Brussels 3000 3051 3000 3006 3000

+ elderly +350=3350 3440

Belgium 10,000 10,221 10,000+2050=12,050 12,111 10,000+1350

+ elderly +1250=12,600 12,945
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1.5 Provincial Stratification in 1997

Province sample # sample % pop. %

Antwerpen 945 26.7 27.7

Oost-Vlaanderen 812 23.0 23.0

West-Vlaanderen 733 20.7 19.1

Vlaams-Brabant 593 16.8 17.0

Limburg 453 12.8 13.2

Hainaut 1325 36.5 38.7

Liège 1210 33.3 30.6

Namur 465 12.8 13.2

Brabant-Wallon 356 9.8 10.3

Luxembourg 278 7.6 7.3

Brussels 3051
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1.6 Provincial Stratification in 2001

% in # interviews # # rate p.

Province pop. region theor. round oversp. sum actual groups towns 1000

Antwerpen 1,640,966 27.7 969 950 350 1300 1302 26 19 0.79

Oost-Vlaanderen 1,359,702 22.9 803 850 0 850 874 17 17 0.63

West-Vlaanderen 1,127,091 19.0 665 650 0 650 673 13 13 0.58

Vlaams-Brabant 1,011,588 17.1 598 600 0 600 590 12 12 0.59

Limburg 787,491 13.3 465 450 200 650 661 13 13 0.83

Flanders 5,926,838 100 3500 3500 550 4050 4100 81 74 0.68

Hainaut 1,280,427 39.3 1256 1250 500 1750 1747 35 27 1.37

Liège 947,787 29.0 929 950 0 950 935 19 19 1.00

Namur 441,205 13.5 433 450 0 450 435 9 7 1.02

Brabant Wallon 347,423 10.7 341 300 0 300 291 6 6 0.86

Luxembourg 245,140 7.5 241 250 1000 1250 1303 25 21 5.10

Wallonnia 3,261,982 100 3200 3200 1500 4700 4711 94 80 1.44

German comm. 70,472 1.1 300 300 0 300 294 6 6 4.26

Wallonnia+German 3,332,454 100 3500 3500 1500 5000 5005 100 86 1.50

Brussels 954,460 100 3000 3000 0 3000 3006 60 18 3.14

Belgium 10,213,752 100 10,000 10,000 2050 12,050 12,111 241 178 1.18
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1.7 Provincial Stratification in 2004

Province Goal Obtained

Antwerpen 1100 1171

Oost-Vlaanderen 900 944

West-Vlaanderen 750 814

Vlaams-Brabant 650 561

Limburg 1000 1023

Hainaut 1500 1502

Liège 1200 1181

Namur 550 531

Brabant-Wallon 400 446

Luxembourg 1200 1332

Brussels 3350 3440
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1.8 Overview of Stratification

• Regions (Flanders, Brussels, Wallonia) within the country

• Provinces within a region

• The corresponding selection probabilities factor into the weights of the previous
section

• A full account of stratification requires more than just the introduction of weights,
but including weights that properly reflect stratification is a first and very
important step towards a correct analysis
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1.9 Multi-Stage Sampling: Primary Sampling Units

Towns

• Within each province, order communities ∝ size

• Systematically sample in groups of 50
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• Representation with certainty of larger cities.

For 1997:

. Antwerpen: 6 groups

. Liège and Charlerloi: 4 groups each

. Gent: 3 groups

. Mons and Namur: 2 groups each

. All towns in Brussels

• Representation ensured of respondents, living in smaller towns
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• For 2001, the list of municipalities selected as least once:

Municipality # times selected

min max actual

Antwerpen 7 8 8

Mechelen 1 2 1

Leuven 1 2 1

Gent 2 3 2

Hasselt 1 2 1

Brugge 1 2 1

Liège 3 4 4

Seraing 1 2 1

Verviers 1 2 1

Charleroi 5 6 5

Mons 2 3 3

Municipality # times selected

min max actual

La Louvière 2 3 2

Tournai 1 2 2

Mouscron 1 2 1

Arlon 2 3 3

Marche en Famenne 1 2 2

Aubange 1 2 1

Bastogne 1 2 1

Namur 2 3 3

Eupen 1 2 2

Brussels All towns at least once
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1.10 Multi-Stage Sampling: Secondary Sampling Units

Households

• List of households, ordered following

. statistical sector

. age of reference person

. size of household

• clusters of 4 households selected

• households within clusters randomized

• twice as many clusters as households needed, to account for refusal and
non-responders
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1.11 Multi-stage Sampling: Tertiary Sampling Units

Individual Respondents

• Households of size ≤ 4: all members

• Households of size ≥ 5:

. reference person and partner (if applicable)

. other households members selected on birthday rule in 1997 or by prior
sampling from household members in 2001 and 2004

. maximum of 4 interviews per household
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1.12 Overview of Multi-Stage Sampling and Clustering

• Due to the three-way sampling method used

• Clustering and multi-stage sampling are not the same, even though they often
occur together

• (Artificial) examples where they do not occur together:

. Clustering without multi-stage sampling: select households and then always all
members

. Multi-stage sampling without clustering: select towns, then one household,
then one member within a household
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• Within this study, there are two sources of clustering:

. Households within towns

. Individual respondents within households

• Taking clustering into account can be done in several ways:

. Ad hoc, using the so-called design factor

. Using specific survey analysis methods, when the emphasis is not on the
clustering itself but it is taken into account as a nuisance factor

. Using models for hierarchical (clustered) data, such as linear or generalized
linear mixed models, multi-level models, etc.
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1.13 Weights

• Region

• Province

• Age of reference person

• Household size

• Quarter

• Selection probability of individual within household

• Taking this into account is relatively easy, even with standard software
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1.14 Incomplete Data

• Types of incompleteness in this survey:

. Household level

∗ Households with which no interview was realized

∗ Households which explicitly refused

∗ Households which could not be contacted

. Individual level

. Item level

• In addition, the reason of missingness needs to be considered. For example, is
missingness due to illness of the interviewer, or is it related to the income and
social class of the potential respondent?
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• General missing data concepts as well as survey-specific missing data concepts
need to be combined

• The study of incomplete survey data requires some non-trivial statistical skill
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1.15 Design −→ Analysis

• Weights & selection probabilities

• Stratification

• Multi-stage sampling & clustering

• Incomplete data
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Chapter 2

General Concepts of Surveys

. Census versus survey

. Applications of surveys

. Ingredients of surveys
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2.1 The Census

• (volkstelling, récensement).

• The oldest form of data collection: the Bible reports on the census, for which
everyone had to go back to their native town.

• Original goals: organization of tax payments; political representation.

• Currently: the same, supplemented with collection of a wide variety of relevant
information (race, age, onstitution of households, quality of life,. . . ).

• Censuses are broad: it is hard to go in any depth on a particular topic.

Survey Methods & Sampling Techniques 31



• Census are infrequent: A common periodicity is 10 years (Belgium: 1991,
2001,. . . ).

• Often conducted by the national statistical offices:

. Belgium: National Institute of Statistics (NIS/INS).

. US: Bureau of Census (federal).
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2.2 A Survey Rather Than a Census

• Alternative to census: organization of a well-targetted

survey

with a limited but precise scope.

. “Which are the major themes in the public opinion?” In view of organizing the
election campaigns of political parties.

. ‘‘What are consumers’ demands?” in market research.

. Research on facts, behavior,. . . in sociology, psychology.
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• While originating from the humanities, they are nowadays broadly applied:

. Health Interview Survey: subjective health of population
(NIS/INS; US National Institutes of Health).

. Quality of life in patients with serious ilnesses, such as cancer, AIDS,
Alzheimer.

. For many mental health outcomes, surveys/questionnaires may be the only way
to collect data: schizophrenia (Positive and Negative Symptoms Scale, PANSS;
Brief psychiatric rating scale, BPRS), depression (Hamilton depression scale,
HAMD),. . .

. Unemployment: Statistics about jobs and the employment market.

. Income and expenses: Patterns of consumer behavior and expectations are
important predictors for trends in the economy.
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. Crime research.

∗ Traditionally, police reports were used to compile crime-related statistics.

∗ This leads to a distorted (biased) picture: not all crime is being reported,
especially not the smaller or very common crimes.

∗ The major crimes, where casualties or other victims have to be counted, are
relatively well reported.

∗ Advantage of surveys: not only the crime itself, but also related large
subjective aspects, e.g., feeling (un)safe, can be documented; better
coverage.

. Agriculture: To obtain a good picture of yield, yearly varations, variations on a
longer time scale, etc.

. Housing: Costs, expectations,. . .

. Job satisfaction.
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2.3 Aspects of Surveys

. scientific question

. selection of instruments

. questionnaire design

. other design aspects

. fieldwork organization

. interviewing methods

. sample selection

. analysis methods

• All aspects have an impact on quality, captured through:

. psychometric concepts: reliability, validity,. . .

. statistical concepts: precision, bias,. . .

. general, vaguely defined concepts: accuracy,. . .
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• Surveys almost always result from multi-disciplinary teamwork:

. sociology, psychometrics, statistics, mathematics,. . .

. supplemented with substantive sciences (subject matter areas): medicine,
political sciences, epidemiology, economy and market research,. . .

• Surveys are used for a wide variey of measurement processes and methods of data
collection.

• We will focus on

. Surveys that produce statistics: quantitative, numerical descriptions of
relevant aspects of a study population.

. Data generally arise from respondents’ answers to questions.

. The group of respondents is a small portion of the population: the sample
(steekproef, échantillon).
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• This course’s focus will be on the quantitative design and analysis aspects.

• It is important to study all options which lead to data collection.

• If the survey option is chosen, then all aspects of design, conduct, and analysis
have to be studied and planned very carefully.
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2.4 Who Organizes Surveys?

• Government: central, regional, and local governments; government-sponsored
research institutes: NIH, CDC,. . .

• Research institutes: universities, colleges, other research institutes,. . .

• Private initiave: market research companies,. . .

Survey Methods & Sampling Techniques 39



2.5 Overview of Survey Ingredients

Choice for a survey. A survey is expensive.
Use it when no other source to obtain the data exists:

. The variables/items are not available.

. The variables/items are available, but not in conjunction with other variables.

Example: both health information as well as life style information is available,
but not jointly so.

. Otherwise, avoid requesting information that is already available.
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Standardized measurements.

. Measurement instruments which collect data in a standardized fashion.

. Good psychometric properties:

∗ Are questions designed by experts?

∗ Are literature results available about validity and reliability?

∗ Is the validity and reliability studied for the purpose of this research?

∗ Is question lab being used?

∗ Is a pilot study being undertaken?

Data collection and interviewing.

. Collect information in the same way for all respondents.

. Level and type of training for interviewers:

∗ manual

∗ on-line documentation

∗ hotline
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. The interviewer must not influence the response.

. The interviewer has to ensure that the question is answered with the highest
possible accuracy.

. A good question has to fulfill the following properties:

∗ It has to be possible to ask the question as formulated.

∗ It has to be possible to formulate and answer the question without having to
amplify on it.

∗ If amplification is necessary nevertheless, standardized procedures must exist
as to how this should take place.

Design. Includes:

. definition of population

. sample frame

. probability sampling method

. See next chapter
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Probability sampling.

Analysis methodology. Choose the analysis methodology in accordance with the
design.

Non-response.
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Chapter 3

Population and Sampling

. Non-sampling-based methods

. Sampling

. Key definitions

. Notation

. Examples

. Basic quantities
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3.1 Non-Sampling-Based Methods

3.1.1 Census

• In a census, the entire population is studied:

sample = population

• Theoretically simple ←→ practically complicated and expensive.

• Alternative: a portion of the population.

• How is this portion selected?
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3.1.2 Pilot Study

• Sometimes, only a global picture is required:

. Press reporters or politicians, feeling the pulse of the public opinion.

. Product developers, obtaining a feel for promising products.

• An informal study or pilot study is then sufficient.

• Who is then eligible for interviewing?

. those immediately available: friends, colleagues, mother-in-law,. . .

. volunteers: those who return a form, etc.

• This is largely an exception.

• A pilot study can also be used as a ‘preamble’ to a full-fledged survey:

. To try out the feasibility of the survey, also in terms of fieldwork.

. As a specific device to support sample size calculation.
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3.2 Sampling

• Sampling allows one to obtain a representative picture about the population,
without studying the entire population.

• Two essential questions:

. How is a sample selected?

. How are the resulting sample data analyzed, to allow for statements about the
population?

• In both cases we need statistical sampling theory.
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3.3 Definitions

Survey population: The collection of units (individuals) about which the researcher
wants to make quantitative statements.

Sample frame: The set of units (individuals) that has non-zero probability of being
selected.

Sample: The subset of units that have been selected.

Probability sampling: The family of probabilistic (stochastic) methods by which a
subset of the units from the sample frame is selected.
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Design properties: The entire collection of methodological aspects that leads to
the selection of a sample.

The probability sampling method is the most important design aspect.

Sample size: The number of units in the sample.

Analysis and inference: The collection of statistical techniques by which
population estimands are estimated.

Examples: estimation of means, averages, totals, linear regression, ANOVA,
logistic regression, loglinear models.

Estimand: The true population quantity (e.g., the average body mass index of the
Belgian population).
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Estimator: A (stochastic) function of the sample data, with the aim to “come close”
to the estimand.

Estimate: A particular realization of the estimator, for the particular sample taken
(e.g., 22.37).

We will consider several of these aspects in turn.
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3.4 Population

• A population can be physical and/or geographical, but

• does not have to be an entire country or region.

• A population can be a cohort: all males born in Brussels in 1980.

• There can be geographical, temporal, and definition characteristics at the same
time: all females living in Brussels, diagnosed with breast cancer between from
1990 until 1999 inclusive.
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3.5 Sample Frame

• The sample frame “operationalizes” the population.

. Population: All females living in Brussels, diagnosed with breast cancer
between from 1990 until 1999 inclusive.

. Sample frame: The National Cancer Register for the given years.

• There are three groups of units:

. 1. Belonging to both the population and the sample frame: This fraction
should be as large as possible.

Their probability is ≥ 0 of being selected.

. 2. Belonging to the population but not to the sample frame: Can be damaging
if too large and/or too different units.

Their probability of selection is 0.
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∗ If a selection is based on households, then dormitories, prisons, elderly
homes, and homeless people have no chance of being selected.

∗ Driving licenses (US)

∗ Registered voters

∗ House owners

∗ Phone directories: excludes those without phone and those unlisted.

. 3. Belonging to the sample frame but not to the population: May contribute
to cost, but is not so harmful otherwise.

For example, a survey on elderly can be conducted as follows:

∗ select households from the general population

∗ retain those who are “sufficiently old”

∗ collect data on this subselected sample

∗ But this procedure is clearly inefficient.

If group 1 is sufficiently large, then the sample frame is sufficiently representative.
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• It is important to answer such questions as:

. What percentage is excluded from selection?

. How different are these groups?

• It is possible to opt for a selection scheme with less than full coverage of the
population, if it is sufficiently cheaper.

−→ Statistical and economic arguments have to balanced.
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3.6 Types of Sample Frame

• It is useful to think of a sample frame as a list.

• A list is a broad concept, there are widely different types.

. Static, exhaustive lists:

∗ A single list contains all sample frame units

∗ The list exists prior to the start of the study

. Dynamic lists:

∗ The list is generated together with the sample

∗ For example: all patients visiting a general practitioner during the coming
year

∗ There are implications for knowledge about the selection probability
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. Multi-stage lists:

∗ The natural companion to multi-stage sampling (see PartVII)

• If selection is undertaken based on a list, one has to consider the list’s quality:

. How has the list been composed?

. How does the updating take place?

. Always report:

∗ who cannot be selected?

∗ in what way do those who have selection probability equal to zero differ
from the others?

∗ who did have unknown selection probability

⇒ trustworthy, useful results

Survey Methods & Sampling Techniques 56



3.7 Sampling Methods

• We will study various sampling methods, and their rationale:

Simple random sampling: the standard method; studied to compare other
methods with.

Systematic sampling: chosen to increase precision and/or to ensure sampling
with certainty for a subgroup of units.

Stratification: performed:

. to increase precision of population-level estimates

. to allow for estimation at sub-population level

. a combination of both
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Multi-stage procedures: decrease precision but facilitate fieldwork.

Differential rates: will often result from other sampling methods; the overall
precision will decrease.

Benchmark estimation: may introduce some bias but is aimed to increase
precision; there is a need for external sources.

• All methods, aimed at increasing precision, may actually decrease it in
pathological cases, and vice versa.
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3.8 Selection Probability

• The probability of an individual to be selected:

. Should be known or estimable (consistently)

. Does not have to be constant

. The selection probability may not be known a priori, it is sufficient to know or
estimate it by the time of analysis.

This is natural with dynamic lists.

Example: patients visiting a general practitioner during the coming year, by
asking:

“How frequently have you visited the doctor during the last [time frame]?”
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• If external factors, such as initiatives by respondents, influence the chance of
being included, the integrity of the study is in jeopardy.

So, watch out for

. people who come to a meeting

. people who speak up most

. people who volunteer to respond

. people who are easy to access

• Procedure:

. Attach to each member of the sample frame a non-zero probability of being
selected

. use probabilistic techniques to draw the sample
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3.9 Sample Units

• A study can have units at several levels simultaneously (multi-stage sampling):
towns, households, individuals.

• In such a case, either one or more levels can be of scientific interest:

. Possibility 1: interest only in individuals

. Possibility 2: interest in households and individuals simultaneously
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• Examples of units:

. lots

. dwellings within lots

. appartments within dwellings

. property

. individuals

. children

. families

. households
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3.10 Notation

• Within sampling theory, it is customary to identify population and sample frame:
one speaks about population, but it actually should be sample frame.

• The notational conventions are slightly diffferent than in other areas of statistics.
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• In mathematical statistics, for example, one uses:

. Population:
X ∼ N (µ, σ2)

. Sample (stochastic values):

Xi ∼ N (µ, σ2), i = 1, . . . , n

. Sample (realized values):

xi, i = 1, . . . , n

. Average:

X =
1

n

n∑

i=1
Xi
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• Our conventions:

Quantity Population Sample

Size N n

Unit index I i

Value for a unit XI xi

Average X x

Total X x

Total, estimated

from sample x̂

• Estimators will be studied in Part II and later.
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3.11 A Small Artificial Population

• Population
P = {1, 2, 3, 4}

• Listing of Artificial Population:

I YI

1 1

2 2

3 3

4 4

• I = 1, . . . , 4

• N = 4
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3.11.1 Samples from Artificial Population

• Samples of size n = 1:

. Enumeration:

S1 = { {1},
{2},
{3},
{4} }

. S = 4

. s = 1, 2, 3, 4
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• Samples of size n = 2, with ordering taken into account:

. Enumeration:

S2 = { {1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4},
{2, 1}, {3, 1}, {4, 1}, {3, 2}, {4, 2}, {4, 3},
{1, 1}, {2, 2}, {3, 3}, {4, 4} }

. S = 16

. s = 1, . . . , 16

• Samples of size n = 2, with ordering not taken into account:

. Enumeration:

S2 = { {1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4},
{1, 1}, {2, 2}, {3, 3}, {4, 4} }

. S = 10

. s = 1, . . . , 10
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• S is itself a population, a meta-population of size S.

• A sampling mechanism assigns, to each member of the collection of samples, a
probability of being selected.

• These probabilities are necessary to:

. Study the properties of a sampling methods

. Conduct estimation and statistical inferences

• The population itself can be studied for characteristics.
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3.11.2 Characteristics of the Population

• Population average:

Y =
1

4

4∑

I=1
YI =

1 + 2 + 3 + 4

4
= 2.5

• Population variance:

σ2
Y =

1

4

4∑

I=1
(YI − Y )2 =

(1− 2.5)2 + (2− 2.5)2 + (3− 3.5)2 + (4− 4.5)2

4
= 1.25

• Population total:

Y =
4∑

I=1
YI = 1 + 2 + 3 + 4 = 10
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3.12 Surveytown
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3.12.1 Surveytown

• N = 8

• I = 1, . . . , N = 8

• Two variables:

. XI : number of building lots in block I

. YI : number of dwellings (buildings) in block I
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• Listing of Surveytown:

I XI YI

1 1 1

2 3 2

3 4 3

4 6 4

5 7 5

6 8 6

7 10 7

8 11 8
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• Population totals:

X = 50

Y = 36

There are 50 lots, 36 with dwellings, hence 14 empty lots.

• Population averages:

X = 6.25

Y = 4.50

• Population variances:

σ2
X =

1

8

8∑

I=1
(XI − 6.25)2 = 10.4375

σ2
Y =

1

8

8∑

I=1
(YI − 4.50)2 = 5.25
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3.12.2 Proportion

• The ratio of the number of dwellings to the number of lots:

R = π =
Y

X
=

Y

X
= 0.72

• A proportion can be considered the average of a random variable:

. Define the (related, but different) population of all lots: I = 1, . . . , 50

. Let

ZI =





1 if lot I is built upon

0 if lot I is empty

Then,

Z =
50∑

I=1
ZI = 36

Z =
1

50

50∑

I=1
ZI = 0.72
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• The population variance:

σ2
Z =

1

50

50∑

I=1
(ZI − 0.72)2

=
1

50

[
36(1 − 0.72)2 + 14(0 − 0.72)2

]

=
36

50
· (1− 0.72)2 +

14

50
· (−0.72)2

= 0.72 · (1− 0.72)2 + (1− 0.72) · (0.72)2

= 0.72 · (1− 0.72) · [(1− 0.72) + 0.72]

= 0.72 · (1− 0.72)

= R(1−R) = π(1− π)
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3.13 Population Quantities

• Population average:

Y =
1

N

N∑

I=1
YI

• Population total:

Y =
N∑

I=1
YI
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• Population variance:

. We have calculated before:

σ2
Y =

1

N

N∑

I=1
(YI − Y )2

but we can also calculate:

S2
Y =

1

N − 1

N∑

I=1
(YI − Y )2

. There is a rationale for each one of them:

∗ σ2
Y is compatible with the maximum likelihood principle, and hence

asympotically unbiased

∗ S2
Y is unbiased even in small samples; it follows from the least-squares

principle

. The square root SY (σY ) is the standard deviation.
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• Population covariance:

σXY =
1

N

N∑

I=1
(XI −X)(Yi − Y )

SXY =
1

N − 1

N∑

I=1
(XI −X)(Yi − Y )

• Population correlation:

ρXY =
σXY

σXσY
=

SXY

SXSY
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3.14 Sampling Mechanisms

• Recall that a population P with N members gives rise to

a meta-population S of S samples.

• A sampling mechanism assigns a probability Ps (s = 1, . . . , S) to each sample.

• Obviously, to be valid, the Ps must satisfy:

. Ps ≥ 0, for all s = 1, . . . , S

. ∑S
s=1 Ps = 1
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• For the Artificial Population, with n = 2:

s Sample Probability

1 {1,2} P1

2 {1,3} P2

3 {1,4} P3

4 {2,3} P4

5 {2,4} P5

6 {3,4} P6

7 {1,1} P7

8 {2,2} P8

9 {3,3} P9

10 {4,4} P10
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3.14.1 Sampling With Equal Probabilities

• The simplest mechanism is to assign the same selection probability to each
individual.

• There are two versions:

Without Replacement: Every individual can enter the sample at most once.

With Replacement: Every individual can enter the sample multiple times;
precisely, between 0 and n times.

• Both give rise to Simple Random Sampling (see also Part II).

• For the Artificial Population, with n = 2:
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Ps

s Sample Without With

1 {1,2} 1/6 2/16

2 {1,3} 1/6 2/16

3 {1,4} 1/6 2/16

4 {2,3} 1/6 2/16

5 {2,4} 1/6 2/16

6 {3,4} 1/6 2/16

7 {1,1} 0 1/16

8 {2,2} 0 1/16

9 {3,3} 0 1/16

10 {4,4} 0 1/16
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. Selection without replacement sets the selection probability for all samples with
replication equal to 0.

. Under sampling with replacement, the heterogeneous samples are twice as
likely to be selected as the homogeneous samples.

. The reason is that, for example, {1,2}, can be selected in the orders (1,2) and
(2,1).

. In contrast, {1,1} comes into being in only one way.

. (In general, probability depends on the number of permutations a sequence can
have.)

. The above consideration implies that assigning the same probability of being
selected to an individual is not the same as giving every sample the same
probability of being selected.
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• At any time in the sequence of sample takes, the selection probability of a given
individual is 1/N :

With Replacement: Since at any time there are N “balls in the urn”, the
probability is

1

N

Without Replacement: For an individual to be selected at a given time (take),
let us say t + 1:

N − 1

N
· N − 2

N − 1
· N − 3

N − 2
· . . . · N − t

N − t + 1
· 1

N − t
=

1

N

• Sampling without replacement is the norm:

. Sampling with replacement has lower precision (see later).

. Sampling with replacement is incovenient for the fieldwork.
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3.15 Sample Selection: Remarks

• It is important that samples be taken in a totally random fashion

(or the closest approximation to it that one can accomplish in practice).

• Classical, historic models:

. Balls drawn from an urn (e.g., lotto games)

. Tossing of dies

• Modern, realistic model: computerized pseudo-random generators
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• Samples can be taken for various units simultaneously:

. Households and individuals within households simultaneously.

∗ Select all individuals within a household.
The selection probability of an individual within household h:

1

NHH

with NHH the number of households.

∗ Select one individual within a household.
The selection probability of an individual within household h:

1

NHH
· 1

Mh

with NHH the number of households and Mh the number of individuals
within household h.

. The first probability is constant, the second one depends on the size of the
household.

. This has implications for the analysis.
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3.16 Sample Quantities

• Sample fraction:

f =
n

N

This quantity is relevant only in finite populations.

• Carefully distinguish between three quantities:

Population quantity: a quantity, computed using all N population units.

Sample quantity: the same quantity, computed using the n units selected into
the sample.

Estimate: an “approximation” of the population quantity, using only of the n
sample units.
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Estimate from

sample for

Quantity Population Sample population

Average (mean) Y =
1

N

N∑

I=1
YI y =

1

n

n∑

i=1
yi

Total (sum) Y =
N∑

I=1
YI y =

n∑

i=1
yi ŷ =

N

n
· n∑

i=1
yi
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3.16.1 Example: Artifical Population (Without Replacement)

s Sample Ps ys ys ŷs

1 {1,2} 1/6 1.5 3.0 6.0

2 {1,3} 1/6 2.0 4.0 8.0

3 {1,4} 1/6 2.5 5.0 10.0

4 {2,3} 1/6 2.5 5.0 10.0

5 {2,4} 1/6 3.0 6.0 12.0

6 {3,4} 1/6 3.5 7.0 14.0
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3.16.2 Example: Artificial Population (With Replacement)

s Sample Ps ys ys ŷs

7 {1,1} 1/16 1.0 2.0 4.0

1 {1,2} 2/16 1.5 3.0 6.0

2 {1,3} 2/16 2.0 4.0 8.0

8 {2,2} 1/16 2.0 4.0 8.0

3 {1,4} 2/16 2.5 5.0 10.0

4 {2,3} 2/16 2.5 5.0 10.0

5 {2,4} 2/16 3.0 6.0 12.0

9 {3,3} 1/16 3.0 6.0 12.0

6 {3,4} 2/16 3.5 7.0 14.0

10 {4,4} 1/16 4.0 8.0 16.0
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3.16.3 Some Observations

• When sampling with replacement, two estimates can be obtained that cannot be
obtained when sampling is done without replacement:

. 1.0 and 4.0 for the average

. 4.0 and 16.0 for the total

• These happen to be the most extreme values.

• We now have four estimators:

. The column of all values y is the estimator of the mean, obtained with/without
replacement.

. The column of all values ŷ is the estimator of the total, obtained with/without
replacement.
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• When is an estimator good?

• To answer this question, we study characteristics of the estimators, i.e., the
column of estimates.

• The quantities commonly used are:

. expectation

. variance (precision), leading to the standard error

. bias

. mean square error
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3.17 Expectation and Bias

• Definitions of expectation.

. The expectation is the average of all possible estimates.

. The expectation is the average of the estimator.

• The expectation can be considered the population average of population S.

• Expectation for an estimator ŷ:

E(ŷ) =
S∑

s=1
Psŷs

• This appears to be the notation for the total only, but it holds for every estimator;
for the mean:

E(y) =
S∑

s=1
Psys
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• When all samples are equally likely to be taken, like in simple random sampling
without replacement, then

Ps =
1

S
and

E(ŷ) =
1

S

S∑

s=1
ŷs

• Definition of bias.

. If E(ŷ) = Y , i.e., the expected value of the estimator is equal to the
population value, then the estimator is termed unbiased.

. The bias is Y − E(ŷ).
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3.17.1 Example: Artificial Population

• Expectation for the average under sampling without replacement:

E(y) =
1

S

S∑

s=1
ys

=
1.5 + 2.0 + 2.5 + 2.5 + 3.0 + 3.5

6
= 2.5

• Expectation for the total under sampling without replacement:

E(ŷ) =
1

S

S∑

s=1
ŷs

=
6.0 + 8.0 + 10.0 + 10.0 + 12.0 + 14.0

6
= 10.0
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• Expectation for the average under sampling with replacement:

E(y) =
S∑

s=1
Psys

=
2

16
· [1.5 + 2.0 + 2.5 + 2.5 + 3.0 + 3.5] +

1

16
· [1.0 + 2.0 + 3.0 + 4.0]

=
40

16
= 2.5

• Expectation for the total under sampling with replacement:

E(ŷ) =
S∑

s=1
Psŷs

=
2

16
· [6.0 + 8.0 + 10.0 + 10.0 + 12.0 + 14.0]

+
1

16
· [4.0 + 8.0 + 12.0 + 16.0] =

40

16
= 10.0
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• Summary:

Population Expectation of estimator

Quantity value Without With

Average (mean) 2.5 2.5 2.5

Total (sum) 10.0 10.0 10.0

• The estimators are unbiased, regardless of whether applied with or without
replacement.

• The same computations for n = 1, 3, 4 will equally well produce unbiased
etimators.

• Nevertheless, we feel there is a difference between both: this is where variance
comes in.
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3.18 Variability, Precision, Variance, Standard Error, and
Standard Deviation

• Some definitions:

Variability: (informal term) fluctuation in a quantity.

Precision: (informal term) absence of fluctuation in a quantity.

• The above terminology is too informal to be useful; they combine aspects of bias
and precision.
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• Therefore, we prefer variance and its derived quantities:

Variance: Averaged squared deviation of a random variable around its mean.

Standard deviation: The square root of the variance.

Standard error: In the specific case of an estimator, the standard deviation is
termed standard error.

• Thus:

. The standard deviation is about population P

. The standard error is about meta-population S

. While P is given, we can influence S by selecting a sampling mechanism, a
sample size, and opting for either with replacement or without replacement.
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• The variance of a sample estimator has general form:

σ2
ŷ = E(ŷ − Eŷ)2

=
S∑

s=1
Ps


ŷs −

S∑

s=1
Psŷs



2

• When every sample has the same selection probability:

σ2
ŷ =

1

S

S∑

s=1


ŷs −

1

S

S∑

s=1
ŷs




2
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3.18.1 Example: Artificial Population

• Variance of the average under sampling without replacement:

σ2
y =

1

S

S∑

s=1


ys −

1

S

S∑

s=1
ys




2

= (1.5−2.5)2+(2.0−2.5)2+(2.5−2.5)2+(2.5−2.5)2+(3.0−2.5)2+(3.5−2.5)2

6

=
2.5

6
= 0.4167

• Variance of the total under sampling without replacement:

σ2
ŷ =

1

S

S∑

s=1


ŷs −

1

S

S∑

s=1
ŷs




2

= (6.0−10)2+(8.0−10.0)2+(10.0−10.0)2+(10.0−10.0)2+(12.0−10.0)2+(14.0−10.0)2

6

=
40.0

6
= 6.6667
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• Note that the expectation of the population total is 4 times the expectation of the
population average,

while the variance of the population total is 16 times the variance of the
population average.

• Variance of the average under sampling with replacement:

σ2
y =

S∑

s=1
Ps


ys −

S∑

s=1
Psys



2

= 2

16
· [(1.5− 2.5)2 + (2.0− 2.5)2 + (2.5− 2.5)2 + (2.5− 2.5)2 + (3.0− 2.5)2 + (3.5− 2.5)2]

+ 1

16
· [(1.0− 2.5)2 + (2.0− 2.5)2 + (3.0− 2.5)2 + (4.0− 2.5)2]

=
10.0

16
= 0.6250
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• Variance of the total under sampling with replacement:

σ2
ŷ =

S∑

s=1
Ps


ŷs −

S∑

s=1
Psŷs



2

= 2

16
· [(6.0− 10.0)2 + (8.0− 10.0)2 + (10.0− 10.0)2 + (10.0− 10.0)2 + (12.0− 10.0)2 + (14.0− 10.0)2]

+ 1

16
· [(4.0− 10.0)2 + (8.0− 10)2 + (12.0− 10.0)2 + (16.0− 10.0)2]

=
160.0

16
= 10.0
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• Summary:

Expectation

Population Expectation of estimator

Quantity value Without With

Average (mean) 2.5 2.5 2.5

Total (sum) 10.0 10.0 10.0

Variances

Population Variance of estimator

Quantity value Without With

Average (mean) 1.25 0.4167 0.6250

Total (sum) — 6.6667 10.0000
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• The variance at the population level is not comparable to the variance of the
estimators, except for n = 1.

• The variance of the estimator without replacement is smaller than the variance of
the estimator with replacement.
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3.18.2 Some Concerns

1. The enumeration we have conducted is feasible only in small samples only: we
would need a computationally more parsimonious method in large populations
and/or large samples.

This problem will be tackled now.

2. The calculations seem to need knowledge of the entire population.

In practice, we dispose of a single sample only.

This problem will be tackled in the following part.
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3.19 Algebraic Computation Rather Than Tedious
Enumeration

• The explicit enumeration to calculate these expections is only possible for very
small populations for which the entire population is known:

. Examples where it is possible:

∗ the Artificial Population

∗ Surveytown

. Counterexample where it is not possible:

∗ Belgian Health Interview Survey

• When it is possible, there is actually no point in sampling any longer.

• However, we can derive the expectation through algebraic manipulations, using
the expectation (E) operator.
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• Let us illustrate this for a total:

E(ŷ) = E


N

n

n∑

i=1
yi


 =

N

n

n∑

i=1
Eyi.

• We have reduced the operation to the expectation of a single unit.

• Let us assume every unit has the same probability of being selected:

E(yi) =
1

N

N∑

I=1
YI =

1

N
Y = Y

• Hence, we obtain

E(ŷ) =
N

n

n∑

i=1

1

N
Y = Y

• Conclusion: every sample, taken such that every unit has the same probability of
being selected, is unbiased, regardless of the population and sample sizes, and
whether a sample is taken with or without replacement.
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• Now assume the unit selection probabilities are unequal:

. PI for unit I in the population

. pi for unit i in the sample

• Unbiased estimators are then given by

y =
n∑

i=1

yi

npi

ŷ =
1

N

n∑

i=1

yi

npi
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3.20 When Is an Unbiased Estimator Unbiased?

There are a number of (non-quantitative) conditions:

• The existence of every unit in the population is known.

In survey terms, it means that population=sample frame.
This is never true in practice.

• A truly random sample has been taken.

• All variables we need to know (size of household, income,. . . ) can be collected.

• The values that need to be collected, are collected.

• The sample estimates have been obtained by means of correct calculations.
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• No other errors occured.

• The sample values (the values recorded) are equal to their population values.

• Information is obtained in the same fashion for all individuals.

All deviations have an impact on bias (and possible on the variance).
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3.21 Bias, Variance, and Mean Squared Error

• A triangular relationship:

. Bias: the discrepancy between expectation and the true population value.

. Variance (standard error): the discrepancy between a sample realization and
the expectation.

. What an investigator wants to know: the discrepancy between a sample
realization and the true population value.

• We can place them in a single, triangular relationship:

E(ŷ − Y )2 = E(ŷ − Eŷ + Eŷ − Y )2

= E(ŷ − Eŷ)2 + (Eŷ − Y )2

MSE(ŷ) = σ2
ŷ + [bias(ŷ)]2
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• What an investigator wants to know = MSE = mean square error.

• Variance receives more attention than bias, since it is easier to study algebraically.

• Practically, when conducting a survey, we have to split resources over:

. selecting a sample which is large enough (to reduce variance and hence
standard error)

. the reduction and avoidence of bias

• But, reducing the standard error is routine (sample sizes formulae abound), while
reduction of bias requires insight and the consideration of a lot of aspects, usually
outside the control and/or knowledge of the investigator.
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3.22 Example: Surveytown

• Let us recall a few facts about Surveytown.

• Enumeration:

I XI YI

1 1 1

2 3 2

3 4 3

4 6 4

5 7 5

6 8 6

7 10 7

8 11 8
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• Population totals:

X = 50

Y = 36

• Population averages:

X = 6.25

Y = 4.50

• Population variances:

σ2
X =

1

8

8∑

I=1
(XI − 6.25)2 = 10.4375

σ2
Y =

1

8

8∑

I=1
(YI − 4.50)2 = 5.25
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• Samples (without replacement) of size n = 1:

s Sample Ps ys ŷs (ŷs − Eŷs)
2

1 {1} 1/8 1 8 (8− 36)2

2 {2} 1/8 2 16 (16 − 36)2

3 {3} 1/8 3 24 (24 − 36)2

4 {4} 1/8 4 32 (32 − 36)2

5 {5} 1/8 5 40 (40 − 36)2

6 {6} 1/8 6 48 (48 − 36)2

7 {7} 1/8 7 56 (56 − 36)2

8 {8} 1/8 8 64 (64 − 36)2

Expectation 36

Variance 336 (s.e. 18.33)
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• Samples (without replacement) of size n = 2 (Part A):

s Sample Ps ys ŷs (ŷs −Eŷs)
2

1 {1,2} 1/28 3 12 (12− 36)2

2 {1,3} 1/28 4 16 ...

3 {1,4} 1/28 5 20

4 {1,5} 1/28 6 24

5 {1,6} 1/28 7 28

6 {1,7} 1/28 8 32

7 {1,8} 1/28 9 36

8 {2,3} 1/28 5 20

9 {2,4} 1/28 6 24

10 {2,5} 1/28 7 28

11 {2,6} 1/28 8 32

12 {2,7} 1/28 9 36

13 {2,8} 1/28 10 40

14 {3,4} 1/28 7 28

15 {3,5} 1/28 8 32
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• Samples (without replacement) of size n = 2 (Part B):

s Sample Ps ys ŷs (ŷs − Eŷs)
2

16 {3,6} 1/28 9 36

17 {3,7} 1/28 10 40

18 {3,8} 1/28 11 44

19 {4,5} 1/28 9 36

20 {4,6} 1/28 10 40

21 {4,7} 1/28 11 44

22 {4,8} 1/28 12 48

23 {5,6} 1/28 11 44

24 {5,7} 1/28 12 48

25 {5,8} 1/28 13 52

26 {6,7} 1/28 13 52

27 {6,8} 1/28 14 56 ...

28 {7,8} 1/28 15 60 (60− 36)2

Expectation 36

Variance 144 (s.e. 12.00)

Survey Methods & Sampling Techniques 119



• Consider the biased situation where unit I = 8 has been omitted.

• Biased samples (without replacement) of size n = 2 (Part A):

s Sample Ps ys ŷs (ŷs − Eŷs)
2 (ŷs − Y )2

1 {1,2} 1/21 3 10.5 (10.5− 28)2 (10.5− 36)2

2 {1,3} 1/21 4 14.0 ... ...

3 {1,4} 1/21 5 17.5

4 {1,5} 1/21 6 21.0

5 {1,6} 1/21 7 24.5

6 {1,7} 1/21 8 28.0

8 {2,3} 1/21 5 17.5

9 {2,4} 1/21 6 21.0

10 {2,5} 1/21 7 24.5

11 {2,6} 1/21 8 28.0

12 {2,7} 1/21 9 31.5

14 {3,4} 1/21 7 24.5
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• Biased samples (without replacement) of size n = 2 (Part B):

s Sample Ps ys ŷs (ŷs −Eŷs)
2 (ŷs − Y )2

15 {3,5} 1/21 8 28.0

16 {3,6} 1/21 9 31.5

17 {3,7} 1/21 10 35.0

19 {4,5} 1/21 9 31.5

20 {4,6} 1/21 10 35.0

21 {4,7} 1/21 11 38.5

23 {5,6} 1/21 11 38.5

24 {5,7} 1/21 12 42.0 ... ...

26 {6,7} 1/21 13 45.5 (45.5− 28)2 (45.5− 36)2

Expectation 28

Variance 81.6667

Bias2 + (28− 36)2

MSE = 145.6667

s.e. 9.04 RMSE 12.07
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Part II

Simple Random Sampling
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Chapter 4

General Concepts and Design

. Principle of Simple Random Sampling

. Examples
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4.1 Simple Random Sampling

• The most basic form of sampling

• Used as background, to compare other method with

• Recall the two classical model: drawing balls from an urn:

. one after the other

. independently from one another

. choice between with/without replacement

• General principles already discussed in Chapter 3
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4.1.1 Quantities

• We need the following information:

. Population P

. Population size N

. Sample size n

. Whether sampling is done with or without replacement

• Recall that N and n produce the sample fraction:

f =
n

N
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4.1.2 Number of Samples

S

Data N n Without With

General N n




N

n


 Nn

Artificial Population 4 2 6 16

Surveytown 8 2 28 64

Health Interview Survey 10,000,000 10,000 1034,338 1070,000
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• Note that, for sampling with replacement, we have counted permutations
separately, like in

S2 = { {1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4},
{2, 1}, {3, 1}, {4, 1}, {3, 2}, {4, 2}, {4, 3},
{1, 1}, {2, 2}, {3, 3}, {4, 4} }

• In case we want a formula for unordered pairs only, like in

S2 = { {1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4},
{1, 1}, {2, 2}, {3, 3}, {4, 4} }

the formula becomes:

S =



N − 1 + n

n


 =

(N − 1 + n)!

n! (N − 1)!
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• For the Artificial Population, and n = 2:

S =




4− 1 + 2

2


 =

5!

2! 3!
= 10
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Chapter 5

Analysis

. With and without replacement

. Variance: enumeration, algebraic calculation, and estimation

. Subgroups

. Totals within subgroups
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5.1 With and Without Replacement

• For the artifcial population, we produced the following summary in Chapter 3:

Expectation

Population Expectation of estimator

Quantity value Without With

Average (mean) 2.5 2.5 2.5

Total (sum) 10.0 10.0 10.0

Variances

Population Variance of estimator

Quantity value Without With

Average (mean) 1.25 0.4167 0.6250

Total (sum) — 6.6667 10.0000
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• We derived that, while the expectation is equal to its population value for both
sampling with and without replacement, this is not true for the variances:

. The variance is smaller without replacement than with replacement.

We will show this is always true.

. The sampling variances are different from the population variance.

Notwithstanding this, they are connected.

. The variance resulted from (tedious) enumeration.

Algebraic calculations are possible.
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5.1.1 General Variance Formulae

• Estimators:

. For the average:

y =
1

n

n∑

i=1
yi

. For the total:

ŷ =
N

n

n∑

i=1
yi

• Variances:
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For the Average

Quantity General Artificial Population

Population variance σ2
Y =

1

N

N∑

I=1
(YI − Y )2 1.2500

With replacement σ2
y =

1

n
σ2

Y

1

2
· 1.2500 = 0.6250

Population variance S2
Y =

1

N − 1

N∑

I=1
(YI − Y )2 1.6667

Without replacement σ2
y =

1

n
(1− f )S2

Y

1

2
· 1
2
· 1.6667 = 0.4167
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For the Total

Quantity General Artificial Population

Population variance σ2
Y =

1

N

N∑

I=1
(YI − Y )2 1.2500

With replacement σ2
y =

N 2

n
σ2

Y

16

2
· 1.2500 = 10.0000

Population variance S2
Y =

1

N − 1

N∑

I=1
(YI − Y )2 1.6667

Without replacement σ2
ŷ =

N 2

n
(1− f )S2

Y

16

2
· 1
2
· 1.6667 = 6.6667
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5.1.2 Considerations

• For sampling with replacement, also S2
Y can be used.

• The difference between σ2
Y and S2

Y is irrelevant for moderate to large populations.

• The essential difference between both situations is 1− f .

. If f = 1, then sampling with replacement is equal to the census, and there is
no residual uncertainty (provided measurements yi are equal to their true
values YI , i.e., there is no measurement error).

. f ' 0 if

∗ N is large or infinite

∗ n << N : sample size much smaller than population size

• Note that, if N =∞, estimating the total has no meaning.
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5.1.3 Example: Surveytown

• Previously, the computations for Surveytown have been carried out, for samples of
size n = 1 and n = 2, by enumeration.

• They can now easily be repeated by computation, using the above formulas:

• Population variance: S2
Y = 6

. Samples of size n = 1:

σ2
ŷ =

82

1
×


1− 1

8


× 6 =

64× 7× 6

8
= 336

. Samples of size n = 2:

σ2
ŷ =

82

2
×


1− 2

8


× 6 =

64× 6× 6

2× 8
= 144

• Let us give the frequencies of the estimators for the number of buildings within
Surveytown, based on samples of size 1–8.
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Sample size n

Measure 1 2 3 4 5 6 7 8

Mean 36 36 36 36 36 36 36 36

Range

Minimum 8 12 16 20 24 28 32 36

Maximum 64 60 56 52 48 44 40 36

Variance 336 144 80 48 28.8 16 6.9 0

Standard error 18.3 12 8.9 6.9 5.4 4 2.6 0

Number 8 28 56 70 56 28 8 1

• Observations:

. All estimators are unbiased.

. The extremes and the variance reduce with increasing sample size.

. The variances, calculated from the variance formulae, are in agreement with
those based on enumeration, as should be the case.

. The last column represents the census.
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5.1.4 Graphical Representation of Some of the Estimators
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5.2 Subgroups

• We have focused on averages and totals of (continuous) quantities.

• Let us shift focus to a proportion (fraction, subgroup).

• Indeed, a subgroup is defined by a variable ZI taken values

ZI =





1 if unit I belongs to the subgroup,

0 if unit I does not belong to the subgroup

• The proportion of units belonging to the subgroup, at population level, is denoted
by P or π.

• Often, also the notation Q = 1− P is used.

• The population proportion is defined as

P =
1

N

N∑

I=1
ZI
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and estimated from the sample as

p̂ =
1

n

n∑

i=1
zi

• The population variance is given by:

σ2
Z =

N

N − 1
PQ ' PQ

• The variance for the estimated proportion, without replacement:

σ2
p̂ =

1

n
(1− f )

N

N − 1
PQ

• For (infinitely) large samples and/or with replacement, we have that:

N/(N − 1) ' 1

1− f ' 1

and hence

σ2
p̂ '

1

n
PQ
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5.2.1 Example: Surveytown

• Let us consider the proportion of Surveytown blocks with two or more vacant lots.

• Consider samples of sizes n = 1, . . . , 8

Sample size n

Measure 1 2 3 4 5 6 7 8

Mean 0.625 0.625 0.625 0.625 0.625 0.625 0.625 0.625

Range

Minimum 0 0 0.250 0.400 0.500 0.571 0.625

Maximum 1.000 1.000 1.000 1.000 1.000 0.833 0.714 0.625

Variance 0.234 0.100 0.056 0.034 0.020 0.011 0.005 0

Standard error 0.484 0.317 0.236 0.183 0.142 0.106 0.069 0

Number 8 28 56 70 56 28 8 1

Survey Methods & Sampling Techniques 141



5.2.2 Estimating the Size of a Subgroup

• Consider a population P of size N .

• Assume that a proportion P belongs to a subgroup (subpopulation, e.g., a region).

• The size of the subgroup is then:

Ng = N · P

• It can be estimated from a sample of size n by

n̂g = N · p̂
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with variance

σn̂g = var(n̂g)

= var(Np̂)

= N 2var(p̂)

= N 2 · 1
n
· (1− f ) · N

N − 1
· PQ

• The large sample approximation / version for sampling with replacement:

σn̂g = N 2 · 1

n
PQ
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5.2.3 Estimating a Quantity for a Subgroup

• Often, we want to estimate quantities (average, sum) for a subpoplation:

. The average income of all inhabitants of Flanders

. The total income of all inhabitants of Wallonia

• If we would know Ng, then the problem would not differ for the population
problem already considered.

• However, we usually have to estimate Ng as well, e.g., by means of n̂g, studied
above.

• The population estimand is

Yg =
Ng∑

I=1
YgI
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• Assume we dispose of a sample of size n:

. of which ng units belong to the subgroup

. and for each of which ygi has been recorded

• Then we can construct the estimator:

ŷg =
N

n

ng∑

i=1
ygi

=
N

n
ng




1

ng

ng∑

i=1
ygi




= N
ng

n




1

ng

ng∑

i=1
ygi




= [Np̂] ·



1

ng

ng∑

i=1
ygi




= n̂gyg
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5.2.4 Variance of a Quantity, Estimated for a Subgroup

• We need the variance of the above product:

σ2
ŷg

= var(ŷg) ' var(n̂gyg)

= Y
2
gσ

2
n̂g

+ N 2
gσ

2
Y g

• This formula is different from the one for the size of a subgroup, since we now
have two sources of uncertainty:

. we do not know the size of the subpopulation

. we do not know the value of the average within the subgroup

• The above formula is an approximation, based on the so-called delta method.
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5.2.5 Delta Method

• Assume X and Y are random variables

• Variance of the sum:

var(X + Y ) = var(X) + 2cov(X, Y ) + var(Y )

• Variance of the sum under independence:

var(X + Y ) = var(X) + var(Y )

• Variance of the difference:

var(X − Y ) = var(X)− 2cov(X, Y ) + var(Y )
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• Variance of the difference under independence:

var(X − Y ) = var(X) + var(Y )

• Note that, under independence, sum and difference have the same variance.

• Variance of the product:

var(X · Y ) ' Y 2var(X) + XY cov(X, Y ) + X2var(Y )

or, equivalently

var(X · Y )

X2Y 2
' Y 2var(X)

X2Y 2
+

XY cov(X, Y )

X2Y 2
+

X2var(Y )

X2Y 2

var(X · Y )

X2Y 2
' var(X)

X2
+

cov(X, Y )

XY
+

var(Y )

Y 2

Rvar(X · Y ) ' Rvar(X) + Rcov(X, Y ) + Rvar(Y )
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with

Rvar(X) =
var(X)

X2

Rcov(X, Y ) =
cov(X, Y )

XY

• Variance of the product under independence:

var(X · Y )

X2Y 2
' Y 2var(X)

X2Y 2
+

X2var(Y )

X2Y 2

Rvar(X · Y ) ' Rvar(X) + Rvar(Y )
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• Variance for a general function Z = f (X, Y ) of two random variables:

var(Z) '


∂f (X,Y )

∂X
,
∂f (X,Y )

∂Y







var(X) cov(X, Y )

cov(X, Y ) var(Y )







∂f (X,Y )

∂X

∂f (X,Y )

∂Y




• This method is known as the delta method.
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5.3 Estimating a Variance

• We have constructed variance expressions in two ways:

. Enumeration

. Algebraic computation

• The first one is tedious, since it requires constructing all samples.

• While the second is more convenient, more general, and one can derive general
insight, it cannot be used in practice neither, since it requires knowledge of the
population variance, for which all population units need to be known.

In practice, a variance can neither be enumerated nor
calculated, but it can be estimated.
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• In the expression for the variances, the population quantities are replaced by
estimates, based on the sample:

Quantity Calculated Estimated

Population variance S2
Y =

1

N − 1

N∑

I=1
(YI − Y )2 ŝ2

y =
1

n− 1

n∑

i=1
(yi − y)2

Total σ2
ŷ =

N 2

n
(1− f )S2

Y σ̂2
ŷ =

N 2

n
(1− f )ŝ2

y

Average σ2
y =

1

n
(1− f )S2

Y σ̂2
y =

1

n
(1− f )ŝ2

y
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5.3.1 Example: Artificial Population

• Consider samples of size n = 2, without replacement

• Calculated versus estimated variance:

s Sample σ2
ŷ s2

y σ̂2
ŷ

1 {1,2} 6.6667 0.5000 2.0000

2 {1,3} 6.6667 2.0000 8.0000

3 {1,4} 6.6667 4.5000 18.0000

4 {2,3} 6.6667 0.5000 2.0000

5 {2,4} 6.6667 2.0000 8.0000

6 {3,4} 6.6667 0.5000 2.0000

Mean 1.6667 6.6667

= S2
Y =σ2

ŷ
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• The estimated variance constitues itself a random variable, and apparently is
unbiased (which can be proven).
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5.4 Covariance

• It is equally possible to construct estimators for covariance and correlation.

• For the covariance, the calculated

SXY =
1

N − 1

N∑

I=1
(XI −X)(YI − Y )

is estimated by:

ŝxy =
1

n− 1

n∑

i=1
(xi − x)(yi − y)

• Other quantities, such as correlations, allow for similar manipulations.
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Chapter 6

Sample Size Determination

. Example with continuous outcomes

. Example with binary outcomes

. General expressions
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6.1 Example of Sample Size Determination With
Continuous Outcome

• Suppose we wish to know the number of failings happening withing a group of
N = 1000 small retail stores.

• Regarding precision, it is often easier to make relative statements:

. We know or assume that the relative population standard deviation, is 1, i.e.,

Rvar(Y ) = 1.02

. A relative standard error of 10%=0.1 is requested, i.e.,

Rvar(ŷ) = 0.102.

This means that we want to estimate the population quantity to within 10% of
its value.
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• The relative quantities are in the same relationship than the absolute ones:

Rvar(ŷ) =
1

n

N − n

N
Rvar(Y ),

0.102 =
1

n



1000 − n

1000


 1.02

• Solving for n produces the required sample size:

n = 91
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• If we omit the finite population correction and/or consider sampling with
replacement:

Rvar(ŷ) =
1

n
Rvar(Y ),

0.102 =
1

n
1.02

• Solving for n produces the required sample size:

n = 100

• We therefore see, once more, that sampling with replacement is less precise than
sampling without replacement. It shows here through the need for a larger sample
size.
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6.2 Example of Sample Size Determination for a Proportion

• Suppose we wish to know what proportion of shops sells toys.

• A standard error of 5% is requested.

• We assume the proportion which sells toys is about P = 60% = 0.6.

• Using the variance formula for a binary variable Z:

σ2
Z =

N

N − 1
PQ =

1000

999
(0.6 × 0.4) = 0.24
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and including this in the expression for the variance of the estimated proportion:

σ2
p̂ =

1

n

N − n

N
σ2

Z

(0.05)2 =
1

n

1000 − n

1000
0.24

• Solving for n produces the required sample size:

n = 88
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• If we omit the finite population correction and/or consider sampling with
replacement:

σ2
Z = PQ = 0.6× 0.4 = 0.24

σ2
p̂ =

1

n
σ2

Z

(0.05)2 =
1

n
0.24

• Solving for n produces the required sample size:

n = 96
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6.3 Where Does the Information Come From?

• The information we need in both examples can be divided into two groups:

. Related to what we want to achieve: the (relative) standard error [or (relative)
variance] for the estimator.

This is a completely natural request of information.

. Related to the population quantities:

∗ The (relative) standard deviation [or (relative) variance] of the population
quantity in the continuous case.

∗ The proportion itself in the case of a proportion.

∗ Note that, for the proportion, we actually only need the variance too, but for
binary data the proportion P produces the variance: P (1− P ) = PQ.

• The problem is that the second group of quantities constitutes circularity: we need
information about what we want to estimate, prior to estimation.
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• Therefore, the information has to come from other sources:

Historical information. This refers to studies already conducted about the
same or similar variables, in the same or similar populations.

Expert opinion. Watch out with expert opinion!

Pilot study. A small study, conducted to obtain a (rough) idea about the
precision of the population quantity, or the proportion we want to estimate.

The pilot study can sometimes be integrated into the actual survey that is
subsequently set up.
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• For all of these reasons, a sample size calculation should be seen as a rough
indication only of the required sample.

• The most important considerations for choosing a sample size are:

. A sample size calculation.

. The budget available.

. Constraints on the organization of the fieldwork (e.g., number of interviewers
available).
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6.4 Sample Size Determination: General Expressions

• The above examples may have generated the impression that we have to do
algebraic manipulation every time we perform a sample size calculation.

• This is not necessary: general expressions can be derived once and for all.

• We will study in turn:

. Total and average

. Proportion
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6.4.1 Sample Sizes for Total and Average

• Re-consider the case of the total:

Rvar(ŷ) =
1

n
· N − n

N
· Rvar(Y )

N · n · Rvar(ŷ) = N · Rvar(Y )− n · Rvar(Y )

n[N · Rvar(ŷ) + Rvar(Y )] = N · Rvar(Y )

n =
N · Rvar(Y )

Rvar(Y ) + N · Rvar(ŷ)

• Furthermore, we can consider an expression like this for the variance, rather than
the relative variance:
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• Use the facts that:

Rvar(Y ) =
σ2

Y

Y 2

Rvar(ŷ) =
σ2
ŷ

(NY )2

• Plugging this in and simplifying, produces:

n =
N 2 · σ2

Y

σ2
ŷ + N · σ2

Y

• The same is possible for an average.
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• We obtain the following summary:

Situation Total (ŷ) Average (y)

Without replacement n =
N 2σ2

Y

σ2
ŷ + Nσ2

Y

n =
σ2

Y

σ2
y + (1/N )σ2

Y

With replacement n =
N 2σ2

Y

σ2
ŷ

n =
σ2

Y

σ2
y

N → +∞ — n =
σ2

Y

σ2
y
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6.4.2 Sample Sizes for a Proportion

• Using the expressions for σ2
p̂ and σ2

Z , we obtain:

σ2
p̂ =

1

n
· N − n

N − 1
· PQ

n =
NPQ

σ2
p̂ · (N − 1) + PQ

• When N → +∞ in the above expression, we obtain:

n =
PQ

σ2
p̂
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• When we start from the original expressions for σ2
p̂ and σ2

Z, but ignoring the
correction for sampling without replacement, i.e., turning to sampling with
replacement, we find

σ2
p̂ =

1

n
· PQ

n =
PQ

σ2
p̂

• Just like with the average, sampling with replacement is like sampling from an
infinite population.
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• Let us apply the formula (with replacement for simplicity), for σ2
p̂ = 0.052 like in

the example, for a range of P values:

P Q n

0.0 1.0 0.0

0.1 0.9 36.0

0.2 0.8 64.0

0.3 0.7 84.0

0.4 0.6 96.0

0.5 0.5 100.0

0.6 0.4 96.0

0.7 0.3 84.0

0.8 0.2 64.0

0.9 0.1 36.0

1.0 0.0 0.0
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• A few observations are in place:

. The sample size is not stable over the range [0.3; 0.7].

. The sample sizes are symmetric in P and Q.

But is it realistic to need the same sample size for, say, P = 0.001 and
P = 0.999?

. The sample size is largest for P = 0.5 and then decreases. In fact, it is a
quadratic function in P :

n =
P (1 − P )

σ2
p̂

=
−P 2 + P

σ2
p̂

But wouldn’t we expect a proportion of P = 50% to be the easiest, rather
than the most difficult, to estimate precisely?
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• The reason for the latter two, rather paradoxical results is that we consider the
formula for a constant standard error:

. We require a standard error of 0.05=5% when P = 50%

. We require a standard error of 0.05=5% when P = 1%

• Of course, the latter requirement is easier, since we require a, relatively speaking,
less precise result.

• Thus, the formulas derived can be seen as absolute: in terms of the absolute
standard error.

But since the variance is a function of P , this is less meaningful.
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• Alternatively, let us require a standard error proportional to P :

σ2
p̂ = k2P 2

where k typically ranges in [0,1].

k is a proportionality constant, describing the required precision in relative terms.

• The formula for the sample size can now be rewritten:

n =
NPQ

k2P 2 · (N − 1) + PQ

n =
NQ

k2P · (N − 1) + Q
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• The version for infinite samples and/or sampling with replacement:

n =
1

k2
· Q
P

• Let us again apply this formula (with replacement for simplicity), for k2 = 0.052

like in the example, for a range of P values:

Survey Methods & Sampling Techniques 176



P Q n

0.0 1.0 +∞
0.0001 0.9999 3,999,600.0

0.001 0.999 399,600.0

0.01 0.99 39,600.0

0.1 0.9 3600.0

0.2 0.8 1600.0

0.3 0.7 933.3

0.4 0.6 600.0

0.5 0.5 400.0

0.6 0.4 266.7

0.7 0.3 171.4

0.8 0.2 100.0

0.9 0.1 44.4

1.0 0.0 0.0
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• The observations now become:

. The sample size is quite stable over the range [0.3; 0.7], even over [0.2; 0.8].

. The sample sizes are asymmetric in P and Q.

. The sample size decrease with P ; the largest sample sizes are needed for the
smallest P .

These are now in line with intuition.
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• We obtain the following summary:

Situation Absolute (ŷ) Relative (y)

Without replacement n =
NPQ

σ2
p̂(N − 1) + PQ

n =
NQ

k2P (N − 1) + Q

With replacement n =
PQ

σ2
p̂

n =
1

k2
· Q
P

N → +∞ n =
PQ

σ2
p̂

n =
1

k2
· Q
P
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Part III

A First Perspective on Software
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Chapter 7

General Considerations Regarding Software

. Taxonomy

. Implementations in SAS

. Other software packages
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7.1 Design

• Some software tools are constructed for design purposes.

• The input data base is then the population or, stated more accurately, the sample
frame.

• The output data base is then a sample selected from the input data base,

and taking 0, 1, or more design aspects into account.

• SAS: PROC SURVEYSELECT
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7.2 Analysis

• Not surprisingly, most software tools are geared towards analysis.

• Several views can be taken:

Simple estimators versus model:

Estimating a mean, total, or frequency ←→ Regression, ANOVA

Simple cross-sectional data structure versus complex data structure:

Cross-sectional data ←→ Multivariate, multi-level, clustered, longitudinal data

To survey or not to survey:

Non-survey data (or SRS) ←→ one or more survey-design aspects
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7.3 Analysis With SAS for a Continuous Outcome

Data Survey

Model structure design Method SAS procedure

no simple no mean MEANS

yes simple no linear regression REG

ANOVA ANOVA

GLM

no simple yes mean SURVEYMEANS

yes simple yes linear regression SURVEYREG

ANOVA

yes complex no multivariate regression GLM

MANOVA

yes complex somehow linear mixed model ≡ MIXED

multi-level model
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• The word ‘somehow’ means that some design aspects can be taken into account,
even though the procedure is not built for surveys.

. In fact, most procedures have a ‘weight’ statement, allowing to account for
sampling with unequal probability and the most important consequences of
stratification.

. Methods allowing for hierarchies (linear mixed model, multi-level model) also
accommodate, to a large extent, clustering and multi-stage sampling.

. Methods with a likelihood or Bayesian basis are attractive in the light of
incomplete data (see Part X).

• The above table is not exhaustive:

. not every analysis possiblity is mentioned,

. only the most common ones are mentioned, by way of illustration.

• We can compose a similar table for a binary outcome.
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7.4 Analysis With SAS for a Binary Outcome

Data Survey

Model structure design Method SAS procedure

no simple no proportion FREQ

frequency

yes simple no logistic regression LOGISTIC

probit regression GENMOD

no simple yes proportion SURVEYFREQ

frequency

yes simple yes logistic regression SURVEYLOGISTIC

probit regression

yes complex no generalized estimating GENMOD

equations

yes complex somehow gen. lin. mixed model GLIMMIX

non-linear mixed model NLMIXED
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7.5 Other Software Packages

• Virtually all packages allow to take the survey design somehow into account:

weight: most packages have a weight statement ⇒ correction for unequal
weights and aspects of stratification.

hierarchical data: an increasing number of software packages allow for the
analysis of hierarchical data; these features can be usefully used to take the
multi-stage and/or clustering nature into account.

Examples: MLwiN, GAUSS, R, SAS, SPlus, Stata

• Note that using these features is not without danger: weights in a non-survey
context usually refer to replication: if there are 7 records that are exactly equal,
they are represented only once with a ‘repeat count’ 7.

• Some packages have purposefully written survey design and/or analysis tools.
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7.5.1 STATA

• STATA has a suite of fuctions for the analysis of survey data: the svy* functions:

svydes: for describing strata and PSU’s

svytab: for two-way tables

svymean: for mean estimation

svyprop: for the estimation of a proportion

svyratio: for ratios

svytotal: for totals

svyreg: for linear regression

svyintrg: for censored and interval regression

svylogit: for logistic regression

svymlog: for multinomial logistic regression

svyolog: for probit regression

svyprobt: for probit regression
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svyoprob: for ordered probit regression

svypois: for Poisson regression

svylc: for estimating linear combinations of parameters

svytest: for hypothesis tests

• Design aspects that can be taken into account:

pweight: sampling weights (in sampling with unequal probabilities)

psu: primary sampling units (in multi-stage sampling)

strata: strata (in stratification)

• A general purpose package

• http://www.stata.com/
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7.5.2 SPSS

• SPSS has an interface, called SPSS Complex Samples.

• It comprises two components:

Sampling Plan Wizard: To draw samples from a database (sample frame),
taking the sampling plan (≡ design) into account.

Analysis Preparation Wizard: Performs statistical analysis, taking the
sampling plan (≡ design) into account.

• The following design types can be used with SPSS Complex Samples:

. Stratified sampling

. Clustered sampling

. Multistage sampling
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• A general purpose package

• http://www.spss.com/
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7.5.3 SUDAAN

• One of the primary aims of SUDAAN is the analysis of survey data:

MULTILOG: Fits multinomial logistic regression models to ordinal and nominal
categorical data and computes hypothesis tests for model parameters.

Has GEE (Generalized Estimating Equation) modeling capabilities for
correlated (non-)Gaussian data.

REGRESS: Fits linear regression models to continuous outcomes and performs
hypothesis tests concerning the model parameters.

LOGISTIC: Fits logistic regression models to binary data and computes
hypothesis tests for model parameters.

SURVIVAL: Fits proportional hazards (Cox regression) models to failure time
data.

Survey Methods & Sampling Techniques 192



CROSSTAB: Computes frequencies, percentage distributions, odds ratios,
relative risks, and their standard errors (or confidence intervals) for
user-specified cross-tabulations, as well as chi-square tests of independence and
the Cochran-Mantel-Haenszel chi-square test for stratified two-way tables.

DESCRIPT: Computes estimates of means, totals, proportions, percentages,
geometric means, quantiles. Also allows for contrasts.

RATIO: Estimates generalized ratios of the form

(Summation y) / (Summation x),

where x and y are observed variables.
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• Design aspects that can be taken into account:

. stratification (unlimited number of strata)

. cluster sampling

. multi-stage sampling (unlimited number of stages – this is a powerful and
uncommon feature)

. unequal selection probabilities

. with and without replacement

• Is not a general-purpose package.

• Nevertheless, also deals with longitudinal data, clustered data, and incomplete
data.

• http://www.rti.org/sudaan/
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Chapter 8

SAS and The Belgian Health Interview Survey

. Variables used in this course

. Three continuous variables

. A binary variable
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8.1 Key Variables Used

Body Mass Index (BMI):

. Defined as:

BMI =
weight (kg)

height 2(m2)



kg

m2




. A continuous measure

. Frequently analyzed on the log scale: ln(BMI)

General Health Questionnaire–12 (GHQ-12):

. Comprises 12 questions, yielding a 13 category outcome

. The focus is on mental health

. Can be dichotomized as well
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“Vragenlijst voor Onderzoek naar de Ervaren Gezondheid” (VOEG):

. Dutch instrument, leading to a sum score

. “Questionnaire for Research Regarding Subjective Health Score”

. translated into French for Belgium

. to obtain a more symmetric score, the analysis takes place on the log scale:
ln(VOEG + 1)

Stable General Practioner (SGP):

. “Do you have a steady general practitioner?” (GP)

. Obviously a binary indicator
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8.2 The Belgian Health Interview Survey 1997 Dataset

• Dataset: bmi_voeg.sas7bdat

• Brief description of the variables:

. Design variables:

ID: Individual identification number

HH: Household indicator

WFIN: Weight, combining all sources taken into account

BRU: Indicator for whether respondent lives in Brussels

FLA: Indicator for whether respondent lives in Flanders

WAL: Indicator for whether respondent lives in Wallonia

REGION: Respondent’s region (numerically coded)

REGIONCH: Respondent’s region (character coded)

PROVINCE: Respondent’s province
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. Age and sex:

AGE7: Age; categorical variable with 7 categories

AGEGR1–AGEGR7: Binary indicators (dummies) for each of the 7 age
categories

SEX: Respondent’s sex

. Outcome variables:

BMI: body mass index

LNBMI: natural logarithm of body mass index

VOEG: VOEG score

LNVOEG: natural logarithm of VOEG score

GHQ12: general health questionnaire – 12 items

GHQBIN: dichotomized version of general health questionnaire – 12 items

SGP: indicator for whether respondent has a stable general practitioner
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. Socio-economic status:

EDU3: educational level; categorical variable with 3 categories

EDUHIGH: indicator for whether educational level is high school

EDUPRIM: indicator for whether educational level is primary education

EDUSEC: indicator for whether educational level is secondary education

FA3: income level; categorical variable with 3 categories

INCHIG: indicator for whether income category is high

INCLOW: indicator for whether income category is low

INCMED: indicator for whether income category is medium

. Life style variable:

TA2: indicator for whether or not a respondent smokes
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8.2.1 Coding and Categories for Some of the Variables

mental:

0 good

1 bad

educ:

1 <=Primary

2 Secondary

3 Higher

income:

1 <30000

2 30000-40000

3 40000+

agegroup:

1 15-24

2 25-34

3 35-44

4 45-54

5 55-64

6 65-74

7 75+

province:

1 Antwerpen

2 Vlaams Brabant

3 Limburg

4 Oost Vlaandaren

5 West Vlaanderen

6 Brabant Wallon

7 Hainaut

8 Liege

9 Luxembourg

10 Namur

11 Brussels

12 Eupen

region:

1 Flanders

2 Brussels

3 Wallonia

smoke:

1 Non-smoker

2 Smoker

sex:

1 Male

2 Female
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8.3 Some Tables, Created with STATA

. tab sex

Gender | Freq. Percent Cum.

------------+-----------------------------------

Male | 4140 48.34 48.34

Female | 4424 51.66 100.00

------------+-----------------------------------

Total | 8564 100.00

. tab region

Region | Freq. Percent Cum.

------------+-----------------------------------

Flanders | 2987 34.88 34.88

Brussels | 2571 30.02 64.90

Wallonia | 3006 35.10 100.00

------------+-----------------------------------

Total | 8564 100.00
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. tab edu3

Education | Freq. Percent Cum.

------------+-----------------------------------

<=Primary | 2979 36.29 36.29

Secondary | 2425 29.54 65.82

Higher | 2806 34.18 100.00

------------+-----------------------------------

Total | 8210 100.00

. tab fa3

Income | Freq. Percent Cum.

------------+-----------------------------------

<30000 | 4326 53.03 53.03

30000-40000 | 2701 33.11 86.14

40000+ | 1131 13.86 100.00

------------+-----------------------------------

Total | 8158 100.00

. tab ta2

Smoking | Freq. Percent Cum.

------------+-----------------------------------

Non-smoker | 3725 46.20 46.20

Smoker | 4338 53.80 100.00

------------+-----------------------------------

Total | 8063 100.00
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. tab age7

Age group | Freq. Percent Cum.

------------+-----------------------------------

15-24 | 1150 13.43 13.43

25-34 | 1644 19.20 32.62

35-44 | 1615 18.86 51.48

45-54 | 1297 15.14 66.63

55-64 | 1095 12.79 79.41

65-74 | 1079 12.60 92.01

75+ | 684 7.99 100.00

------------+-----------------------------------

Total | 8564 100.00

. tab sgp

Gen. pract. | Freq. Percent Cum.

------------+-----------------------------------

no | 823 9.65 9.65

yes | 7709 90.35 100.00

------------+-----------------------------------

Total | 8532 100.00
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8.4 Simple Random Sample Analysis

• We will estimate the means of:

. LNBMI

. LNVOEG

. GHQ12

. SGP

• For the geographical entities:

. The country: Belgium

. The regions: Brussels, Flanders, Wallonia
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• Methods used:

. Ordinary mean estimation: PROC MEANS

. Using the survey procedure SURVEYMEANS, under the assumption of SRS
and further

∗ Infinite population

∗ Finite population of N = 10, 000, 000: this is (approximately) the true
Belgian population size

∗ Finite population of N = 8564: this is the actual sample size and thus
mimicks the situation of a census
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8.4.1 Ordinary Mean Estimation

• The following programs can be used:

proc means data=m.bmi_voeg n mean stderr;

title ’SRS means - for Belgium’;

where (regionch^=’’);

var lnbmi lnvoeg ghq12 sgp;

run;

proc means data=m.bmi_voeg n mean stderr;

title ’SRS means - for regions’;

where (regionch^=’’);

var lnbmi lnvoeg ghq12 sgp;

by regionch;

run;

• The options have the following meaning:

. Keywords n, mean, and stderr: request these statistics to be displayed; there is
a variety available.

. WHERE statement: specifies a condition that needs to be satisfied for an
observation to be included.

Here, we omit observations for which region is not defined.
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. VAR statement: specifies the variables for which the statistics are requested.

. BY statement: requests seperate analysis for the groups (here, regions).

• The following output is generated:

SRS means - for Belgium

The MEANS Procedure

Variable N Mean Std Error

---------------------------------------------------

LNBMI 8384 3.1872184 0.0018447

LNVOEG 8250 1.7029508 0.0089543

GHQ12 8212 1.6613492 0.0295842

SGP 8532 0.9035396 0.0031963

---------------------------------------------------
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SRS means - for regions

REGIONCH=Brussels

The MEANS Procedure

Variable N Mean Std Error

---------------------------------------------------

LNBMI 2499 3.1758770 0.0033726

LNVOEG 2412 1.8097483 0.0162057

GHQ12 2397 1.8627451 0.0569024

SGP 2557 0.8056316 0.0078271

---------------------------------------------------

REGIONCH=Flanders

Variable N Mean Std Error

---------------------------------------------------

LNBMI 2933 3.1824771 0.0029933

LNVOEG 2917 1.5163521 0.0152027

GHQ12 2914 1.3853809 0.0462510

SGP 2976 0.9522849 0.0039081

---------------------------------------------------
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REGIONCH=Walloonia

Variable N Mean Std Error

---------------------------------------------------

LNBMI 2952 3.2015302 0.0032165

LNVOEG 2921 1.8011065 0.0145518

GHQ12 2901 1.7721475 0.0510285

SGP 2999 0.9386462 0.0043828

---------------------------------------------------
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8.4.2 Mean Estimation With Survey Procedure

• It is possible, and advisable, to use the SURVEYMEANS procedure:

proc surveymeans data=m.bmi_voeg mean stderr;

title ’SRS means - infinite population for Belgium and regions’;

where (regionch^=’’);

domain regionch;

var lnbmi lnvoeg ghq12 sgp;

run;

• The options are the same as in the MEANS procedure. Additionally:

. DOMAIN option: requests separate analyses for each of the domain variable
levels (here, regions).

It is similar to the BY statement, except that, at the same time, an analysis for
the entire population (here, Belgium) is conducted.

Thus, one SURVEYMEANS call replaces both MEANS calls at the same time.
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• The output generated is:

SRS means - infinite population for Belgium and regions

The SURVEYMEANS Procedure

Number of Observations 8564

Statistics

Std Error

Variable Mean of Mean

--------------------------------------------

LNBMI 3.187218 0.001845

LNVOEG 1.702951 0.008954

GHQ12 1.661349 0.029584

SGP 0.903540 0.003196

--------------------------------------------
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Domain Analysis: REGIONCH

Std Error

REGIONCH Variable Mean of Mean

--------------------------------------------------------

Brussels LNBMI 3.175877 0.003372

LNVOEG 1.809748 0.016203

GHQ12 1.862745 0.056894

SGP 0.805632 0.007826

Flanders LNBMI 3.182477 0.002993

LNVOEG 1.516352 0.015201

GHQ12 1.385381 0.046246

SGP 0.952285 0.003908

Walloonia LNBMI 3.201530 0.003216

LNVOEG 1.801107 0.014550

GHQ12 1.772148 0.051023

SGP 0.938646 0.004382

--------------------------------------------------------

• Note that the results are identical to those obtained with ordinary mean
estimation, as it should.
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• An important advantage is that also finite sampling corrections can be used:

. When we want to take into account the size of the Belgian population, change
the first line to:

proc surveymeans data=m.bmi_voeg total=10000000 mean stderr;

. The output then changes to:
SRS means - 1st finite population for Belgium and regions

The SURVEYMEANS Procedure

Number of Observations 8564

Statistics

Std Error

Variable Mean of Mean

-------------------------------------------

LNBMI 3.187218 0.001844

LNVOEG 1.702951 0.008950

GHQ12 1.661349 0.029572

SGP 0.903540 0.003195

-------------------------------------------
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Domain Analysis: REGIONCH

Std Error

REGIONCH Variable Mean of Mean

--------------------------------------------------------

Brussels LNBMI 3.175877 0.003371

LNVOEG 1.809748 0.016196

GHQ12 1.862745 0.056870

SGP 0.805632 0.007823

Flanders LNBMI 3.182477 0.002992

LNVOEG 1.516352 0.015194

GHQ12 1.385381 0.046226

SGP 0.952285 0.003906

Walloonia LNBMI 3.201530 0.003215

LNVOEG 1.801107 0.014544

GHQ12 1.772148 0.051001

SGP 0.938646 0.004380

--------------------------------------------------------

. As is clear here and in the overview tables to follow, the impact of the
population is negligible since, for practical purposes:

N = 10, 000, 000 ' +∞
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. For the sake of illustration, suppose we actually conducted a census in a
population of N = n = 8564.

. The first line then changes to:

proc surveymeans data=m.bmi_voeg total=8564 mean stderr;

. The output becomes:
SRS means - census-finite population for Belgium and regions

The SURVEYMEANS Procedure

Number of Observations 8564

Statistics

Std Error

Variable Mean of Mean

-------------------------------------------

LNBMI 3.187218 0

LNVOEG 1.702951 0

GHQ12 1.661349 0

SGP 0.903540 0

-------------------------------------------
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Domain Analysis: REGIONCH

Std Error

REGIONCH Variable Mean of Mean

--------------------------------------------------------

Brussels LNBMI 3.175877 0

LNVOEG 1.809748 0

GHQ12 1.862745 0

SGP 0.805632 0

Flanders LNBMI 3.182477 0

LNVOEG 1.516352 0

GHQ12 1.385381 0

SGP 0.952285 0

Walloonia LNBMI 3.201530 0

LNVOEG 1.801107 0

GHQ12 1.772148 0

SGP 0.938646 0

--------------------------------------------------------

. As we have seen before, when N = n, it follows that f = 1 and hence the
standard error vanishes.
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8.4.3 Overviews

Logarithm of Body Mass Index

Analysis Procedure Belgium Brussels Flanders Wallonia

SRS MEANS 3.187218(0.001845) 3.175877(0.003372) 3.182477(0.002993) 3.201530(0.003216)

SRS SURVEYMEANS 3.187218(0.001845) 3.175877(0.003372) 3.182477(0.002993) 3.201530(0.003216)

SRS (N = 107) SURVEYMEANS 3.187218(0.001845) 3.175877(0.003371) 3.182477(0.002992) 3.201530(0.003215)

SRS (N = 8546) SURVEYMEANS 3.187218(0.000000) 3.175877(0.000000) 3.182477(0.000000) 3.201530(0.000000)

Logarithm of VOEG Score

Analysis Procedure Belgium Brussels Flanders Wallonia

SRS MEANS 1.702951(0.008954) 1.809748(0.016203) 1.516352(0.015201) 1.801107(0.014550)

SRS SURVEYMEANS 1.702951(0.008954) 1.809748(0.016203) 1.516352(0.015201) 1.801107(0.014550)

SRS (N = 107) SURVEYMEANS 1.702951(0.008950) 1.809748(0.016196) 1.516352(0.015194) 1.801107(0.014544)

SRS (N = 8546) SURVEYMEANS 1.702951(0.000000) 1.809748(0.000000) 1.516352(0.000000) 1.801107(0.000000)

General Health Questionnaire – 12

Analysis Procedure Belgium Brussels Flanders Wallonia

SRS MEANS 1.661349(0.029584) 1.862745(0.056894) 1.385381(0.046246) 1.772148(0.051023)

SRS SURVEYMEANS 1.661349(0.029584) 1.862745(0.056894) 1.385381(0.046246) 1.772148(0.051023)

SRS (N = 107) SURVEYMEANS 1.661349(0.029572) 1.862745(0.056870) 1.385381(0.046226) 1.772148(0.051001)

SRS (N = 8546) SURVEYMEANS 1.661349(0.000000) 1.862745(0.000000) 1.385381(0.000000) 1.772148(0.000000)
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Stable General Practitioner (0/1)

Analysis Procedure Belgium Brussels Flanders Wallonia

SRS MEANS 0.903540(0.003196) 0.805632(0.007826) 0.952285(0.003908) 0.938646(0.004382)

SRS SURVEYMEANS 0.903540(0.003196) 0.805632(0.007826) 0.952285(0.003908) 0.938646(0.004382)

SRS (N = 107) SURVEYMEANS 0.903540(0.003195) 0.805632(0.007823) 0.952285(0.003906) 0.938646(0.004380)

SRS (N = 8546) SURVEYMEANS 0.903540(0.000000) 0.805632(0.000000) 0.952285(0.000000) 0.938646(0.000000)
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8.4.4 What Comes Later?

• At the end of most chapters, we will re-estimate the means, accounting for the
design feature under consideration.

• In Part IX, we will consider:

. All design features combined

. Frequency tables

. Linear regression

. Logistic regression

. The use of analysis tools for complex data structures
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Part IV

Systematic Sampling
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Chapter 9

General Concepts and Design

. Principle of systematic sampling

. Examples
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9.1 Systematic Sampling

• At first sight, a relatively simple variation to SRS.

• Earlier, SRS was labor-intensive, especially for long lists.

Systematic sampling was an “equivalent” but simpler method.

• It is always done without replacement.
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• Essentially done to increase precision:

. The units are ordered according to a variable that is related with the survey
variable Y ; say from small to large.

. By ‘jumping’ through the list, one ensures that small, medium, and large units
are all present.

. With SRS, it is possible, purely by chance, to have imbalance.

. While this does not create bias, it does make the resulting estimators variable.
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9.1.1 Quantities and Procedure

• We need the following information:

. Population P

. Population size N

. Sample size n

. A list of the population units

• The sample fraction

f =
n

N
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• Write the sample fraction as

f =
1

g

• We then say that 1 in g = f−1 units is selected.

• Two quantities describe the procedure:

. The random start: a random number s, uniformly drawn between 1 and g.

. The jump: g, which follows by design.
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9.1.2 Example

• N = 8500

• n = 100

• Then,

f =
n

N
=

100

8500
=

1

85

and hence g = 85, the jump.

• Generate a random start; let us say, s = 17.
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i General Example

1 s 17

2 s + 1× g 17 + 1× 85 = 102

3 s + 2× g 17 + 2× 85 = 187

4 s + 3× g 17 + 3× 85 = 272

... ... ...

i s + (i − 1) · g 17 + (i − 1)× 85

... ... ...

100 17 + 99 × 85 = 8432
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9.1.3 Number of Samples

S

Data N n SRS Systematic

General N n




N

n




N

n
=

1

f
= g

Artificial Population 4 2 6 2

Surveytown 8 2 28 4

Health Interview Survey 10,000,000 10,000 1034,338 1000
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• There obviously is a huge difference between the number of SRS’s and the
number of systematic samples.

• The reason is that there is a relatively small number of samples possible, given the
list.

• At the same time, the number of possible lists will be huge for large populations
(e.g., Belgian population).

• Enumeration formulas for the number of lists are not very elegant, since a lot of
different lists will give rise to the same samples.

Neither are they very relevant.
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9.1.4 Example: Artificial Population

• Consider the three lists that give rise to different samples:

L1 = (1 2 3 4)

L2 = (1 3 2 4)

L3 = (1 2 4 3)

• All other lists (there are 24 permutations of 4 numbers) produce the same samples
as one of the three lists above.
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• The sampling mechanism then is:

Ps

Systematic

s Sample SRS L1 L2 L3

1 {1,2} 1/6 0 1/2 0

2 {1,3} 1/6 1/2 0 0

3 {1,4} 1/6 0 0 1/2

4 {2,3} 1/6 0 0 1/2

5 {2,4} 1/6 1/2 0 0

6 {3,4} 1/6 0 1/2 0

• Thus, all 6 samples that can be realized with SRS (without replacement), can be
realized with systematic sampling too.
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• However, for a given list, only 2 samples are possible.

• The expectations for the average:

L1 : E(y) =
1

2
· [2.0 + 3.0] = 2.5

L2 : E(y) =
1

2
· [1.5 + 3.5] = 2.5

L3 : E(y) =
1

2
· [2.5 + 2.5] = 2.5

• Hence, all three lists produce unbiased estimators.
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• The variances:

L1 : σ2
y =

(2.0 − 2.5)2 + (3.0 − 2.5)2

2
=

0.5

2
= 0.25

L2 : σ2
y =

(1.5 − 2.5)2 + (3.5 − 2.5)2

2
=

2.0

2
= 1.00

L3 : σ2
y =

(2.5 − 2.5)2 + (2.5 − 2.5)2

2
=

0.0

2
= 0.00

• Recall that the variance under SRS was 0.4167.

• Thus, some lists decrease the variance, while others increase the variance.

• (Note that L3 is a somewhat special case, owing to the fact that the list is very
small.
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• Note that the average of the three variances is:

0.25 + 1.00 + 0.00

3
= 0.4167

• Thus, there are two views possible:

. Conditional view: The variance under systematic sampling is a function of the
list chosen: it is important to choose a good list.

. Marginal view: The variance, averaged (marginalized) over all lists, is the same
as under SRS without replacement.

• The second fact sometimes leads to the statement that the computations and
procedures under systematic sampling are exactly the same as with SRS: this is
true under one view only.
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9.2 A Good List in Practice

• A list is good if the variable used for ordering is as close to monotonically
(increasing or decreasing) related to the survey variable Y as possible.

. Health Interview Survey: towns ordered from large to small in terms of their
population.

. Health Interview Survey: households ordered in terms of their statistical sector,
HH size, and age of reference person.

• A bad list shows cyclic behavior in synchrony with the jump:

. The train time table: if you select every 5th train, in a station with exactly 5
trains an hour.

. Blocks in cities in the Americas: the regular block patron may play tricks on
the survey scientist.
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9.3 Example: Surveytown

• Let us add a third variable ZI to the exisiting ones XI and YI:

. XI : number of building lots in block I

. ZI : number of newspapers delivered in block I

. YI : number of dwellings (buildings) in block I
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• Listing of Surveytown:

I XI ZI YI

1 1 8 1

2 3 1 2

3 4 6 3

4 6 10 4

5 7 4 5

6 8 3 6

7 10 7 7

8 11 11 8

• One of our estimands is the population total Y = 36
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• Construct lists based on XI an ZI:

LX = (1 2 3 4 5 6 7 8)

LZ = (2 6 5 3 7 1 4 8)

• Consider systematic samples of size n = 2:

• Sample fraction and jump:

f =
2

8
=

1

4

and hence g = 4
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• This produces the following samples:

LX = (1 2 3 4 | 5 6 7 8)

LX = (1 2 3 4 | 5 6 7 8)

LX = (1 2 3 4 | 5 6 7 8)

LX = (1 2 3 4 | 5 6 7 8)

and

LZ = (2 6 5 3 | 7 1 4 8)

LZ = (2 6 5 3 | 7 1 4 8)

LZ = (2 6 5 3 | 7 1 4 8)

LZ = (2 6 5 3 | 7 1 4 8)
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• In summary, the samples are:

SX = { {1, 5}, {2, 6}, {3, 7}, {4, 8} }

SZ = { {1, 6}, {2, 7}, {3, 8}, {4, 5} }

• The following two pages present:

. sample probabilities Ps

. estimates ŷs

for

. SRS,

. systematic sampling with list LX

. systematic sampling with list LZ
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Ps ŷs

Systematic Systematic

s Sample SRS LX LZ SRS LX LZ

1 {1,2} 1/28 0 0 12

2 {1,3} 1/28 0 0 16

3 {1,4} 1/28 0 0 20

4 {1,5} 1/28 1/4 0 24 24

5 {1,6} 1/28 0 1/4 28 28

6 {1,7} 1/28 0 0 32

7 {1,8} 1/28 0 0 36

8 {2,3} 1/28 0 0 20

9 {2,4} 1/28 0 0 24

10 {2,5} 1/28 0 0 28

11 {2,6} 1/28 1/4 0 32 32

12 {2,7} 1/28 0 1/4 36 36

13 {2,8} 1/28 0 0 40

14 {3,4} 1/28 0 0 28

15 {3,5} 1/28 0 0 32

16 {3,6} 1/28 0 0 36
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Ps ŷs

Systematic Systematic

s Sample SRS LX LZ SRS LX LZ

17 {3,7} 1/28 1/4 0 40 40

18 {3,8} 1/28 0 1/4 44 44

19 {4,5} 1/28 0 1/4 36 36

20 {4,6} 1/28 0 0 40

21 {4,7} 1/28 0 0 44

22 {4,8} 1/28 1/4 0 48 48

23 {5,6} 1/28 0 0 44

24 {5,7} 1/28 0 0 48

25 {5,8} 1/28 0 0 52

26 {6,7} 1/28 0 0 52

27 {6,8} 1/28 0 0 56

28 {7,8} 1/28 0 0 60

Expectation 36 36 36

Variance 144 80 32

Standard error 12.00 8.94 2.83
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• The expectations for the total:

LX : E(y) =
1

4
· [24 + 32 + 40 + 48] =

144

4
= 36

LZ : E(y) =
1

4
· [28 + 36 + 36 + 44] =

144

4
= 36

• Hence, both lists produce unbiased estimators.

• The variances:

LX : σ2
y =

(24− 36)2 + (32 − 36)2 + (40 − 36)2 + (48− 36)2

4
=

320

4
= 80

LZ : σ2
y =

(36− 36)2 + (28 − 36)2 + (36 − 36)2 + (44− 36)2

4
=

128

4
= 32

• Recall that the variance under SRS was 144.

• Both lists increase precision by reducing the variance, but LZ more spectacularly
so.
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Chapter 10

Analysis

. Estimators

. Variances

. The intra-class correlation

. Sample size determination
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10.1 Estimators

Quantity SRS SYS

Total ŷ =
N

n

n∑

i=1
yi ŷ =

N

n

n∑

i=1
yi

Average ŷ =
1

n

n∑

i=1
yi ŷ =

1

n

n∑

i=1
yi

Proportion ẑ =
1

n

n∑

i=1
zi ẑ =

1

n

n∑

i=1
zi

• The estimators under SRS and SYS are identical.
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10.2 Variances

• Recall the confusion between a conditional and marginal view.

• Several authors suggest using the same formulas for estimating the variance under
SYS as under SRS, acknowledging that the true population variance may be
different:

. Scheaffer, Mendenhall, and Ott (1990)

• Several authors consider corrections, in terms of intra-class correlation:

. Kish (1965)

. Lehtonen and Pahkinen (1995)

. Knottnerus (2003)
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• Some of these corrections are a bit awkward to calculate in practice.

• The availability of modern software tools has made the task a bit easier.

• We will present formulas, based on a combination of the various proposals.

. Given a list, there are g samples, equal to the jump.

. Each of these g samples can be seen as a cluster.

. The idea is that, with a good list, ‘small’, ‘medium’, and ‘large’ units are
represented in all samples (clusters).

. This implies that, within a cluster, the units are maximally different.

. This implies that, within a cluster, there is negative correlation ρ.

. Therefore, a key quantity is the within-cluster correlation ρ.

• Overview of the variances:
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Quantity SRS SYS

Pop. var. ŝ2
y =

1

n− 1

n∑

i=1
(yi − y)2 ŝ2

y,sys =
1

n− 1

n∑

i=1
(yi − y)2 · [1 + (n− 1)ρ]

Total σ̂2
ŷ =

N 2

n
(1− f )ŝ2

y σ̂2
ŷ =

N 2

n
(1− f )ŝ2

y,sys

Average σ̂2
y =

1

n
(1− f )ŝ2

y σ̂2
y =

1

n
(1− f )ŝ2

y,sys

Proportion σ2
p̂ =

1

n

N − n

N − 1
p̂q̂ σ2

p̂ =
1

n

N − n

N − 1
p̂q̂ · [1 + (n− 1)ρ]
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10.3 The Intra-Cluster Correlation

• The intra-cluster (intraclass) correlation can be derived in several ways:

. Using ANOVA sums of squares

. Using a hierarchical model

• We will illustrate the latter.
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• Assume the model:

YIJ = µ + bI + εIJ

. YIJ is the population quantity for subject J in cluster (sample) I

. µ is the overall mean (population average)

. µ + bI is the cluster-specific average:

bI ∼ N (0, τ 2)

. εIJ is an individual-level deviation:

εIJ ∼ N (0, λ2)

. The following terminology is commonly used:

∗ µ is a fixed effect (fixed intercept).

∗ bI is a random effect (random intercept).

∗ εIJ is a residual deviation (‘error’ in samples).
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• This is an instance of a linear mixed model.

• We can then show that:

var(YIJ) = var(bI + εIJ) = var(bI) + var(εIJ) = τ 2 + λ2

cov(YIJ, YIJ ′) = cov(bI + εIJ , bI + εIJ ′) = var(bI) = τ 2

and hence

ρ = corr(YIJ , YIJ ′) =
τ 2

λ2 + τ 2
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• Given this, we can also specificy the model as:




YI1

YI2

...

YIn




∼ N







µ

µ
...

µ




,




λ2 + τ 2 τ 2 . . . τ 2

τ 2 λ2 + τ 2 . . . τ 2

... ... . . . ...

τ 2 τ 2 . . . λ2 + τ 2







This is called the compound-symmetry model.

• Practically, we can fit such a model in SAS.
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10.3.1 Example: Surveytown

• Let us consider both lists LX and LZ .

• The population is entered into a dataset by cluster (sample).

• A program to display the data:

proc print data=m.surveytown01;

title ’Listing Surveytown - List LX’;

run;
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with listings

Listing Surveytown - List LX

Obs sample y

1 1 1

2 1 5

3 2 2

4 2 6

5 3 3

6 3 7

7 4 4

8 4 8

Listing Surveytown - List LZ

Obs sample y

1 1 1

2 1 6

3 2 2

4 2 7

5 3 3

6 3 8

7 4 4

8 4 5
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• The linear mixed model can now be fitted as follows:

proc mixed data=m.surveytown01 method=ml;

title ’Intraclass correlation Surveytown - List LX’;

class sample;

model y = / solution;

repeated / subject=sample type=cs rcorr;

run;

with a similar program for the second sample.

• A perspective on the statements and options:

. CLASS statement: states that the variable SAMPLE is an indicator, and not a
continuous variable.
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. MODEL statement: specifies the fixed effects; the intercept comes by default,
so there is no reason to specify it.

∗ ‘solution’ option: requests outputting of the fixed effects.

. ‘REPEATED’ statement: used to specify the variance-covariance structure.

∗ ‘subject=’ option: specifies the level of independent replication; samples in
our case.

∗ ‘type=’ option: specifies the covariance structure, compound symmetry
(CS) in our case.

∗ ‘rcorr’ option: requests outputting of the corresponding correlation matrix.
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• A selection of the output for LX :

. The correlation:

Intraclass correlation Surveytown - List LX

The Mixed Procedure

Estimated R Correlation

Matrix for sample 1

Row Col1 Col2

1 1.0000 -0.5238

2 -0.5238 1.0000

∗ The correlation is ρLX
= −0.5238.
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∗ Note the title ‘Matrix for sample 1’: this is all right, since the matrix is
common to all 4 samples.

. The fixed effects:

Solution for Fixed Effects

Standard

Effect Estimate Error DF t Value Pr > |t|

Intercept 4.5000 0.5590 3 8.05 0.0040

∗ The value µ = 4.5 is the proper population average, indeed.

. Recall the connection between both variances:

ŝ2
y,sys = σ2

ŷ[1 + ρ(n− 1)]

Survey Methods & Sampling Techniques 259



. However, this is assuming there is no correlation in the SRS case, but this is
not true, since the corresponding panel for the SRS case is:

Estimated R Correlation

Matrix for sample 1

Row Col1 Col2

1 1.0000 -0.1429

2 -0.1429 1.0000

. Hence, the correlation here is ρSRS(without) = −0.1429.

. However, the correlation for SRS with replacement is ρSRS(with) = 0.

. The reason is that selection without replacement forces sample units to be
different, hence the negative correlation.
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• Similar output for LZ

. Correlation and mean:

Intraclass correlation Surveytown - List LZ

Estimated R Correlation

Matrix for sample 1

Row Col1 Col2

1 1.0000 -0.8095

2 -0.8095 1.0000

Solution for Fixed Effects

Standard

Effect Estimate Error DF t Value Pr > |t|

Intercept 4.5000 0.3536 3 12.73 0.0010

. The correlation is ρLZ
= −0.8095, more negative than with LZ , underscoring

that the variance reduction is more important here.
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• Return to the relationship between the variances, and rewrite it as:

σ2
ŷ,SRS(with)

1+ρSRS(with)(n−1)
=

σ2
ŷ,SRS(without)

1+ρSRS(without)(n−1)
=

σ2
ŷ,L1

1+ρLX
(n−1)

=
σ2
ŷ,L2

1+ρLZ
(n−1)

168
1+0.0000×(2−1)

= 144
1−0.1429×(2−1)

= 80
1−0.5238×(2−1)

= 32
1−0.8095×(2−1)
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10.3.2 Example: Artificial Population

• The intra-cluster correlations for the three lists of the Artificial Population

Method Variance ρ Relationship

SRS (without) 0.4167 -0.33 0.4167
1−0.33×(2−1)

= 0.6250

SRS (with) 0.6250 0.00 0.6250
1+0.00×(2−1) = 0.6250

SYS(L1) 0.2500 -0.60 0.2500
1−0.60×(2−1)

= 0.6250

SYS(L2) 1.0000 0.60 1.0000
1+0.60×(2−1) = 0.6250

SYS(L3) 0.0000 -1.00 undetermined

Survey Methods & Sampling Techniques 263



• The variance of SRS with replacement can be seen as a ‘norm’, which is recovered
by all methods, when correction for the within-sample correlations.

• If samples are heterogeneous, we obtain a negative correlation, which is a good
thing, since it decreases the variance of the estimator.

• Note that the first and second lists have precisely opposite effects.
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10.4 Sample Size Calculation

• Consider the case of an average.

• The variance takes the form:

σ2
y =

1

n



N − n

N


 σ2

Y · [1 + (n− 1)ρ]

• Algebraic manipulation, and ordering the terms along the powers of n produces:

ρσ2
Y n2 + [Nσ2

y −Nρσ2
Y + (1− ρ)σ2

Y ]n − N (1− ρ)σ2
Y = 0

which is a quadratic equation.
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• It is straightforward to solve such an equation for n.

• Even though a closed form exists, it is not an elegant expression.

• Similar quadratics exist for a total and a proportion.

• Let us consider the case of sampling with replacement and/or sampling.
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• Overview for sampling without replacement:

. Average:

[ρσ2
Y ]n2 + [Nσ2

y −Nρσ2
Y + (1 − ρ)σ2

Y ]n − N (1− ρ)σ2
Y = 0

. Total:

[N 2ρσ2
Y ]n2 + [Nσ2

ŷ −N 3ρσ2
Y + N 2(1− ρ)σ2

Y ]n − N 3(1− ρ)σ2
Y = 0

. Proportion (absolute):

[ρPQ]n2 + [(N − 1)σ2
p̂ −NρPQ + (1− ρ)PQ]n − N (1− ρ)PQ = 0

. Proportion (relative):

[ρQ]n2 + [(N − 1)k2P −NρQ + (1− ρ)Q]n − N (1− ρ)Q = 0

• Overview for Sampling with replacement and/or N → +∞:
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Quantity SRS SYS

Total n =
N 2σ2

Y

σ2
ŷ

n =
N 2σ2

Y (1− ρ)

σ2
ŷ − ρN 2σ2

Y

Average n =
σ2

Y

σ2
y

n =
σ2

Y (1− ρ)

σ2
y − ρσ2

Y

Proportion (absolute) n =
PQ

σ2
p̂

n =
PQ(1− ρ)

σ2
p̂ − ρPQ

Proportion (relative) n =
Q

k2P
n =

Q(1− ρ)

k2P − ρQ
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10.4.1 Illustration of the Correlation’s Impact

• Re-consider the example of sample size determination for a proportion.

• P = 0.6⇒ Q = 0.4

• σ2
p̂ = 0.052

• The expression for large sample becomes

n =
0.24(1 − ρ)

0.052 − 0.24ρ

• We also solve the corresponding quadratic, assuming N = 10, 000.
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n n

With/ Without With/ Without

ρ N → +∞ (quadr.) ρ N → +∞ (quadr.)

-1.00 1.98 1.98 0.00 96.00 95.99

-0.90 2.09 2.09 0.01 2376.00 770.41

-0.80 2.22 2.22 0.02 -102.26 4844.34

-0.70 2.39 2.39 0.03 -49.53 6545.19

-0.60 2.62 2.62 0.04 -32.45 7404.51

-0.50 2.94 2.94 0.05 -24.00 7921.86

-0.40 3.41 3.41 0.10 -10.05 8959.48

-0.30 4.19 4.19 0.20 -4.22 9479.44

-0.20 5.70 5.70 0.40 -1.54 9739.65

-0.15 7.17 7.17 0.60 -0.68 9826.42

-0.10 9.96 9.96 0.80 -0.25 9869.81

-0.08 11.94 11.94 0.90 -0.11 9884.27

-0.06 15.05 15.05 0.96 -0.04 9891.50

-0.04 20.63 20.62 0.97 -0.03 9892.62

-0.02 33.53 33.50 0.98 -0.02 9893.72

-0.01 49.47 49.35 0.99 -0.01 9894.79

0.00 96.00 95.99 1.00 0.00 9895.84
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• The quantities for ρ = 0 correspond to SRS.

• ρ < 0 produces smaller sample sizes than SRS.

• ρ > 0 produces larger sample sizes, but only the quadratic formula makes sense
now.
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Part V

Benchmark (Ratio) Estimators

Survey Methods & Sampling Techniques 272



Chapter 11

General Concepts and Design

. Principle of benchmark estimation

. Connection with estimation of a ratio

. Examples
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11.1 Benchmark Estimation is a Cuckoo’s Egg

• SRS, SYS, and later STRAT and CLUST are sampling methods.

• Benchmark estimation is an (enhanced) estimation method, in two steps:

. Step 1: Estimate a population quantity using a conventional method (e.g.,
SRS).

. Step 2: Construct a second estimator, using the first estimator and a so-called
benchmark as input.
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11.1.1 Example

• Suppose a survey of farm yield is conducted.

• Suppose (SRS) estimators are available for two quantities:

. X : total planting area for wheat:

x̂ = 3.75 million ha

. Y : total wheat yield
ŷ = 6.00 million tonnes

.⇒ R = Y
X

: wheat yield per ha

⇒ r̂ =
ŷ

x̂
=

6.00

3.75
= 1.60 tonnes/ha

• Hence, we considered an estimator of a ratio.

• Note that both numerator and denominator have random error attached to them.
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11.1.2 The General Principle

• Suppose we are confronted with a discrepancy:

. From the survey we conclude that the planting area is x̂ = 3.75 million ha.

. From a census we conclude that the planting area is x̂b = 4.00 million ha.

• It is sensible to assume the census is the gold standard (or at least more accurate).

• The original estimator for Y can now be corrected:

• We can then obtain a precise estimate of yield by multiplying the estimated ratio
r̂ with the census quantity:

ŷb = r̂ · x̂b =
ŷ

x̂
· x̂b =

6.00

3.75
× 4.00 = 6.40 million tonnes

. The subscript b refers to benchmark.
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. We use a benchmark x̂b (in the ideal case, it is the true population quantity)
to replace the original estimator ŷ with a hopefully improved benchmark
estimator ŷb.

. In the literature, the benchmark estimator is traditionally called ratio estimator;
due to the potential confusion between estimator of a ratio and ratio estimator,
we prefer benchmark estimator.

• Some assumptions need to be verified for the benchmark estimator to be “better”:

. (Unbiased) estimators x̂ and ŷ need to vary around the true population
quantities in a proportional fashion: when x̂ is large, ŷ must be too, and vice
versa.

. The benchmark must not be too variable.

. Both of these conditions will be formalized.

. They imply that benchmarks can, but not always will, improve precision, or at
least MSE.
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• It will be shown that the benchmark estimator can be biased and still useful to use.

• A benchmark estimator can be applied to averages and totals alike.

• The technique is easy to apply given the required benchmark information is
available.
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Chapter 12

Analysis

. Estimators

. Variances

. Extensions

. Sample size determination
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12.1 Estimators

• General expressions

• Application to one sample from Surveytown:

. The Y sample is:

{1, 2}
. The corresponding X sample is:

{1, 3}

Survey Methods & Sampling Techniques 280



Quantity Expression Estimator Expression

Total Y SRS estimator ŷ =
N

n

n∑

i=1
yi

Average Y SRS estimator y =
1

n

n∑

i=1
yi

Ratio R =
Y

X
=

Y

X
Estimator of ratio r̂ =

ŷ

x̂
=

y

x

Total Y Benchmark estimator ŷb = r̂ · x̂b =
ŷ

x̂
x̂b

Average Y Benchmark estimator yb =
1

N
ŷb
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Quantity Expression Estimator Expression

Total Y = 36 SRS ŷ =
8

2
× (1 + 2) = 12

Total X = 50 SRS x̂ =
8

2
(1 + 3) = 16

Ratio R =
Y

X
= 0.72 SRS r̂ =

ŷ

x̂
=

12

16
= 0.75

Total Y = 36 Benchmark ŷb = r̂ · x̂b =
12

16
× 50 = 37.5
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12.2 Example: Surveytown

• Re-consider both auxiliary variables, as in Section 9.3:

. XI : number of building lots in block I

. ZI : number of newspapers delivered in block I

. YI : number of dwellings (buildings) in block I

• Recall the listing of Surveytown:
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I XI ZI YI

1 1 8 1

2 3 1 2

3 4 6 3

4 6 10 4

5 7 4 5

6 8 3 6

7 10 7 7

8 11 11 8

• Consider the estimators based on SRS without replacement, of size n = 2:

. SRS for Y

. Benchmark estimator for Y , based on benchmark X

. Benchmark estimator for Y , based on benchmark Z
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s Y -sample ŷ X-sample x̂ r̂x ŷb=X Z-sample ẑ r̂z ŷb=Z

1 {1,2} 12 {1,3} 16 0.75 37.50 {8,1} 36 0.33 16.67

2 {1,3} 16 {1,4} 20 0.80 40.00 {8,6} 56 0.29 14.29

3 {1,4} 20 {1,6} 28 0.71 35.71 {8,10} 72 0.28 13.89

4 {1,5} 24 {1,7} 32 0.75 37.50 {8,4} 48 0.50 25.00

5 {1,6} 28 {1,8} 36 0.78 38.89 {8,3} 44 0.56 31.82

6 {1,7} 32 {1,10} 44 0.73 36.36 {8,7} 60 0.53 26.67

7 {1,8} 36 {1,11} 48 0.85 37.50 {8,11} 76 0.47 23.68

8 {2,3} 20 {3,4} 28 0.71 35.71 {1,6} 28 0.71 35.71

9 {2,4} 24 {3,6} 36 0.67 33.33 {1,10} 44 0.55 27.27

10 {2,5} 28 {3,7} 40 0.70 35.00 {1,4} 20 1.40 70.00

11 {2,6} 32 {3,8} 44 0.73 36.36 {1,3} 16 2.00 100.00

12 {2,7} 36 {3,10} 52 0.69 37.50 {1,7} 32 1.13 56.25

13 {2,8} 40 {3,11} 56 0.71 35.71 {1,11} 48 0.83 41.67

14 {3,4} 28 {4,6} 40 0.70 35.00 {6,10} 64 0.44 21.88

15 {3,5} 32 {4,7} 44 0.73 36.36 {6,4} 40 0.80 40.00

16 {3,6} 36 {4,8} 48 0.75 37.50 {6,3} 36 1.00 50.00

17 {3,7} 40 {4,10} 56 0.71 35.71 {6,7} 52 0.77 38.46
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s Y -sample ŷ X-sample x̂ r̂x ŷb=X Z-sample ẑ r̂z ŷb=Z

18 {3,8} 44 {4,11} 60 0.73 36.67 {6,11} 68 0.65 32.35

19 {4,5} 36 {6,7} 52 0.69 34.62 {10,4} 56 0.64 32.14

20 {4,6} 40 {6,8} 56 0.71 35.71 {10,3} 52 0.77 38.46

21 {4,7} 44 {6,10} 64 0.69 34.38 {10,7} 68 0.65 32.35

22 {4,8} 48 {6,11} 68 0.71 35.29 {10,11} 84 0.57 28.57

23 {5,6} 44 {7,8} 60 0.73 36.67 {4,3} 28 1.57 78.57

24 {5,7} 48 {7,10} 68 0.71 35.29 {4,7} 44 1.09 54.55

25 {5,8} 52 {7,11} 72 0.72 36.11 {4,11} 60 0.87 43.33

26 {6,7} 52 {8,10} 72 0.72 36.11 {3,7} 40 1.30 65.00

27 {6,8} 56 {8,11} 76 0.74 36.84 {3,11} 56 1.00 50.00

28 {7,8} 60 {10,11} 84 0.71 35.71 {7,11} 72 0.83 41.67

Expectation 36 50 0.72 36.15 50 0.81 40.37

Variance 144 296.89 74 · 10−5 1.85 296.89 15 · 10−2 383.84

s.e. 12 1.36 19.59

Bias 0 0.15 4.37

MSE 144 1.87 402.90

RMSE 12 1.37 20.07

Survey Methods & Sampling Techniques 286



• Benchmark X decreases the MSE enormously.

• Benchmark Z dramatically increasees the MSE.

• Like with lists in SYS, and with mechanisms to follow: the impact of benchmark
estimation, relative to SRS, can be beneficial or detrimental.

• Consider a graphical comparison of both benchmark estimators with SRS:
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• The increased spread of estimates with Z, relative to X , also follows from the
regression lines through the origin of YI on XI, on the one hand:
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and ZI on XI on the other hand:
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• We observe two differences:

. In the Z case the deviations are larger than in the X case: precision.

. The line does not seem as appropriate in the Z case than in the X case: bias.

• In what follows, we will more formally study the conditions as to when this occurs.
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12.2.1 Other Sample Sizes

• Let us consider benchmark estimators, based on X , for sample sizes
n = 1, 2, 4, 6, 8:

Sample size n

Measure 1 2 4 6 8

Population estimand Y 36 36 36 36 36

Expectation E(ŷb=X) 37.343 36.150 36.038 36.008 36

Bias 1.343 0.150 0.038 0.008 0

Range: lowest estimate 33.333 33.333 34.615 35.366 36

Range: highest estimate 50.000 40.000 37.500 36.765 36

Variance Var(ŷb=X) 25.189 1.850 0.380 0.125 0

Mean square error 26.993 1.874 0.381 0.125 0

Standard error 5.019 1.360 0.616 0.353 0

Root mean square error 5.196 1.369 0.617 0.353 0
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• The ratio estimator is biased.

• Both bias and variance decrease with increasing sample size: asymptotically
unbiased.

• The variance is considerably smaller than for ŷ.
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12.3 General Variance Formulae

• Let us display the formulas for two approaches:

. Simple random sampling

. Benchmark estimation

• and for three quantities:

. average

. total

. ratio

• Note that for a ratio, by definition Y and X are used simultaneously, hence it is
only listed in the benchmark column.
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With replacement

Quantity SRS Benchmark

Pop. var. σ2
Y =

1

N

N∑

I=1
(YI − Y )2 σ2 =

1

N

N∑

I=1
(YI −RXI)

2

y σ2
y =

1

n
σ2

Y σ2
y,b.m.

=
1

n
σ2

ŷ σ2
y =

N 2

n
σ2

Y σ2
ŷ,b.m.

=
N 2

n
σ2

r̂ — σ2
r̂ =

1

X
2

1

n
σ2
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Without replacement

Quantity SRS Benchmark

Pop. var. S2
Y =

1

N − 1

N∑

I=1
(YI − Y )2 S2 =

1

N − 1

N∑

I=1
(YI −RXI)

2

y σ2
y =

1

n
(1− f )S2

Y σ2
y,b.m.

=
1

n
(1− f )S2

ŷ σ2
y =

N 2

n
(1− f )S2

Y σ2
ŷ,b.m.

=
N 2

n
(1− f )S2

r̂ — σ2
r̂ =

1

X
2

1

n
(1− f )S2
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12.3.1 Example: Surveytown

• In Part II, we calculated the variances of SRS estimators, taken without
replacement, for n = 1 and n = 2.

• Let us double these up for benchmark estimation.

• The population variance, necessary for SRS: S2
Y = 6.

• For benchmark estimation, δI = YI −RXI needs to be calculated:
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I XI YI R δI = YI −RXI

1 1 1 0.72 0.28

2 3 2 0.72 -0.16

3 4 3 0.72 0.12

4 6 4 0.72 -0.32

5 7 5 0.72 -0.04

6 8 6 0.72 0.24

7 10 7 0.72 -0.20

8 11 8 0.72 0.08

• The corresponding variance: S2 = 0.0466
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. Samples of size n = 1:

SRS: σ2
ŷ =

82

1
×


1− 1

8


× 6 =

64× 7× 6

8
= 336

B.M.: σ2
ŷ,b.m.

=
82

1
×


1− 1

8


× 0.0466 =

64× 7× 0.0466

8
= 2.61

. Samples of size n = 2:

SRS: σ2
ŷ =

82

2
×


1− 2

8


× 6 =

64× 6× 6

2× 8
= 144

B.M.: σ2
ŷ,b.m.

=
82

2
×


1− 2

8


× 0.0466 =

64× 6× 0.0466

2× 8
= 1.12

• We see, once more, there is a large beneficial impact in using X as a benchmark.
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12.3.2 Relationship Between Variances

• Using that Y = RX , we can rewrite S2:

S2 =
1

N − 1

N∑

I
[(YI − Y )−R(XI −X)]

2

= S2
Y − 2RSY X + R2S2

X

• This can be used to rewrite the variances of the estimators:

σ2
r̂ =

1

X
2(σ

2
ŷ − 2Rσŷx̂ + R2σ2

x̂)

σ2
ŷr

= σ2
ŷ − 2Rσŷx̂ + R2σ2

x̂

where

σŷx̂ = E(ŷ − Eŷ)(x̂ − Ex̂) =
N 2

n

N − n

N
SY X
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12.4 Bias of a Benchmark Estimator

• We repeatedly used the quantities:

δI = YI −RXI

as a basis for variance estimation.

• This can be seen as a regression relationship:

YI = 0 + R XI + δI

• It clearly is a very particular linear regression:

linear regression through the origin
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• This is a (sometimes strong) assumption.

• For example, if the true regression relationship is of the general linear type:

YI = α + β XI + εI

• The regression can be displayed graphically:
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• The biases can be expressed as:

bias(r̂) ' R(V 2
x̂ − Vŷx̂) ' α · 1

X
· 1

n
· (1− f ) · V 2

Y

bias(ŷr̂) ' Y (V 2
x̂ − Vŷx̂) ' α · N

n
· (1− f ) · V 2

Y

• The bias decreases with:

. α (and disappears if α = 0);

. increasing n (and disappears when f = 1, i.e., n = N ).

• This implies that both estimators are consistent.
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• A good benchmark X should be (roughly) proportional to the survey variable Y .

• In many situations, the fixed cost comes in the way of proprotionality, even though
linearity would be satisfied.

• In what follows, we will briefly consider appropriate extensions of the benchmark
estimator.
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12.5 Estimating the Variance

• Like in the SRS case (page151f), we first replace the calculated population-level
variances by estimates:

ŝ2
y =

1

n− 1

n∑

i=1
(yi − ŷ)2

ŝ2
x =

1

n− 1

n∑

i=1
(xi − x̂)2

ŝyx =
1

n− 1

n∑

i=1
(yi − ŷ)(xi − x̂)
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• Next, the calculated variances of the estimators are replaced by estimates
variances of the estimators:

σ̂2
r̂ =

1

X
2 ·

1

n
· (1− f ) · (ŝ2

y − 2r̂ŝyx + r̂2ŝ2
x)

σ̂2
ŷb.m.

=
N 2

n
· (1− f ) · (ŝ2

y − 2r̂ŝyx + r̂2ŝ2
x)

σ̂2
yb.m.

=
1

n
· (1− f ) · (ŝ2

y − 2r̂ŝyx + r̂2ŝ2
x)
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12.6 Asymptotic Relative Efficiency (ARE)

• We have seen:

. the benchmark estimator based on X is more efficient than SRS;

. the benchmark estimator based on Z is less efficient than SRS.

• Efficiency is defined as the variance ratio and can be expanded as follows:
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ARE−1 =
σ2

ŷb.m.

σ2
ŷ

=
N2

n
(1− f )

(
S2

Y − 2RSY X + R2S2
X

)

N2

n
(1 − f )S2

Y

=

(
S2

Y − 2RSY X + R2S2
X

)

S2
Y

=



S2

Y
Y 2 − 2Y

X
ρY XSXSY

Y 2 + Y 2

X2
S2

X
Y 2




S2
Y

Y 2

=

(
V 2

Y − 2ρY XVXVY + V 2
X

)

V 2
Y

= 1− 2ρY X
VX

VY
+



VX

VY




2
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• We then have that

ARE−1 ≤ 1 ⇐⇒ −2ρY XV + V 2 ≤ 0

⇐⇒ −2ρY X + V ≤ 0

⇐⇒ V

2
≤ ρY X

⇐⇒ ρY X ≥
1

2

VX

VY
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• Thus, a benchmark is good if:

. (Efficiency:) the survey and benchmark variables are sufficiently highly
correlated;

. (Efficiency:) the benchmark is sufficiently precise, relative to the precision of
the survey variable;

. (Bias:) The regression relationship between survey and benchmark variables
passes (approximately) through the origin.
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12.7 Extensions of Benchmark Estimators: Regression and
Difference Estimators

• The definition of the ratio implies

ŷ = rx̂

• The construction of the benchmark estimator implies

ŷb.m. = rX
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• These two facts, taken together, allow us to derive the following relationship:

ŷb.m. = ŷ + ŷb.m. − ŷ

ŷb.m. = ŷ + rX − rx̂

ŷb.m. = ŷ + r(X − x̂)

• Interpretation: the ratio r implies a correction of the SRS estimator ŷ, using the
discrepancy between two quantities:

. X , the known population total and

. x̂, the unbiased estimate
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• The same is true for the mean

yb.m. = y + r(X − x)

• Note that this relationship is related to the regression relationship at population
level:

YI = 0 + R XI + δI

• These considerations give rise to a wider class of estimators.
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12.7.1 Difference and Regression Estimators

Estimator Expression Parameters

Benchmark ŷb.m. = ŷ + r(X − x̂) r: ratio

Difference ŷdiff = ŷ + d(X − x̂) = αN + dX d: arbitrary

Regression ŷreg = ŷ + β(X − x̂) = αN + βX α: intercept

β: slope
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• The latter relationship follows from the fact that

ŷ − βx̂ =
N

n

n∑

i=1
yi − β

N

n

n∑

i=1
xi

=
N

n




n∑

i=1
yi − βxi




=
N

n




n∑

i=1
α + βxi + εi − βxi




=
N

n




n∑

i=1
α + εi




=
N

n
(nα + 0)

= N · α
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• The regression estimator for the mean:

yreg = y + β(X − x) = α + βX

• Variance computations are rather straightforward in these cases, too.
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12.7.2 Some Comments

• Benchmarks are, in many instances, relatively easy to find.

• When a single benchmark is used for a series of estimates, then the corrections
from unbiased estimators towards ratio estimators will occur in a consistent,
comparable fashion.

• In many settings, fixed costs are involved, implying that then regression estimators
may be more desirable than benchmark estimators.

• When relationships are non-linear, further extension is needed.
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12.8 Sample Size Determination

• We presented a summary for the SRS case on page 169.

• We now merely have to replace the population variances (e.g., S2
Y ) with the

benchmark-estimation version (e.g., S2).

• It is sensible to use S2 rather than σ2 in the formulas without replacement.

• A tabular representation:
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Situation Total (ŷb.m.) Average (yb.m.) Ratio (r̂)

Without r. n =
N 2σ2

σ2
ŷb.m.

+ Nσ2
n =

σ2

σ2
yb.m.

+ (1/N )σ2
n =

V 2

V 2
r̂ + (1/N )V 2

With r. n =
N 2σ2

σ2
ŷb.m.

n =
σ2

σ2
yb.m.

n =
V 2

V 2
r̂

N → +∞ — n =
σ2

σ2
yb.m.

n =
V 2

V 2
r̂
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Part VI

Stratification
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Chapter 13

General Concepts and Design

. Principles of stratification

. Post-stratification

. Examples
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13.1 Stratification

• We have seen that SRS is unbiased, but can be rather variable:

some samples, and hence some estimates, can be extreme:

. containing by chance a undue amount of large or small units

. containing by chance an unusual fraction of males and females

. containing by chance an unusual fraction of Brussels, Flemish, or Walloon
residents
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• We have already seen two ways of compensating for this:

. Systematic sampling: by streamlining the sample frame as a monotonic list,
‘small’ and ‘large’ units both occur in roughly the right proportions.

. Benchmark estimation: by correction an SRS estimator, in a second phase,
using a more precise piece of information stemming from a larger survey, a
census, a register,. . .

• The auxiliary variables typically used in the above mechanisms (e.g., X in
Surveytown), can also be used in a further correcting mechanism:

. Stratification: partition the population in subgroups according to the levels of
an auxiliary variable, so that the survey variable is more homogenous within
such a subgroup, or stratum, than in the population as a whole.
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• The effect of stratification is that ‘extreme’ samples are assigned probability 0,
just like in SYS and BENCH.

• It will be shown that, while stratification is intended for increase in precision, it is
technically possible for the reverse effect to occur, like in SYS and BENCH.

• The condition for STRAT to work better than SRS is that the correlation between
stratifying variable and survey variable should be positive (see further).

• Clearly, such stratifying variables need to be known prior to the sampling process
commences.
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• Typical candidates for stratification:

. age

. sex

. geographical information

. size of units

. socio-economic status

. educational level

. occupational status

. type of activity/occupation

• The number of stratifying variables and the number of categories per stratifying
variable should not be too large.
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• Suppose, we use all stratifying variables listed above, with the number of
categories in parenthesis:

. age (5)

. sex (2)

. geographical information (12)

. size of units (5)

. socio-economic status (4)

. educational level (4)

. occupational status (4)

. type of activity/occupation (5)

• Then, the number of strata is

H = 5× 2× 12× 5× 4× 4× 4× 5 = 192, 000
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Assuming that an overall sample size of n = 10, 000 is required, it will be hard to
ensure all strata contribute, for example, the same number of units, since we
would need

nh =
10, 000

192, 000
= 0.0521

units per stratum!

• We have clearly over-stratified.

• The difference between SRS and stratification diminishes for increasing sample
sizes.
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13.1.1 Two Reasons for Stratification

Goal 1: to increase precision

• Example: better precision for the Belgian estimator, based upon regional
stratification.

Goal 2: to obtain inferences about the strata (as well)

• Example: interest in Brussels, Flemish, and Walloon estimators.

• We will see that these different goals have differential implications for sample size
calculations.
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13.2 Stratified Samples

13.2.1 Quantities

• As before, we need the following information:

. Population P

. Population size N

. Sample size n

. Whether sampling is done with or without replacement
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• In addition, we need:

. The strata indicators h = 1, . . . , H

. The number of subjects in stratum h: I = 1, . . . , Nh, with

N =
H∑

h=1
Nh

. YhI is the survey variable value for subject I in stratum h

. This defines the subpopulations, or population strata, Ph

. The way the sample of n units is allocated to the strata: nh, with

n =
H∑

h=1
nh
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. We can calculate the stratum-specific sample fraction:

fh =
nh

Nh

. One sometimes writes the samples sizes as a vector:

n = (n1, n2, . . . , nh, . . . , nH)

∗ For example, n = (4, 3) implies there are two strata, 4 units are selected
from the first stratum, and 3 units are selected from the second stratum.
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13.2.2 Number of Samples

• Calculate the number of samples that can be obtained within a stratum: Sh

• The number of stratified samples that can be taken from the entire population
then simply is

S =
H∏

h=1
Sh = S1 × · · ·SH
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13.2.3 Example of Stratification

• Consider a list of school children.

• Stratify according to:

. school district

. study year

• Take a sample of 10% out of every stratum h, formed as a school district by study
year combination.

• We then have a 10% sample, not only overall, but within every stratum.
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13.3 Post-stratification

• Stratification can be done at two levels:

. design stage: stratify when selecting the sample

. analysis stage: construct stratified estimators, by:

∗ first: constructing estimators for each stratum

∗ second: combining these in an estimator for the entire population

• Whether or not the method is applied at either one of the stages can be used for
characterizing a method:

At design stage

No Yes

At analysis stage No SRS Problematic

Yes Post-stratification Stratification
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• Post-stratification is defined as the stratified analysis of a sample that was taken
in an un-stratified way.

(Slightly more general: Post-stratification is defined as an analysis that used
strictly more stratifying variables than at design stage.)

• The advantage over SRS is, typically, increase of precision, but not as much as full
stratification.

• The intuitive reasons is that:

. yes: by constructing stratum-specific estimators that are then combined,
important sources of variability are controlled.

. no: the sample size per stratum is not fixed by design, unlike in full
stratification; hence, the variability in the sample size contributes to the overall
variability.
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• The problematic case:

. does not take the design into account at analysis stage;

. this is problematic for surveys

. this is problematic for retrospective (case-control) studies

. this is fine for randomized studies
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13.4 Example: Artificial Population

• Similar to the illustration in Section 9.1.4, consider two stratifications of the
artificial population:

Ps1 = (1 2 | 3 4)

Ps2 = (1 4 | 2 3)

• In both cases, 4 samples of size n = (1, 1) are possible.
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• The sampling mechanisms then are:

Ps

Stratified

s Sample SRS Ps1 Ps2

1 {1,2} 1/6 0 1/4

2 {1,3} 1/6 1/4 1/4

3 {1,4} 1/6 1/4 0

4 {2,3} 1/6 1/4 0

5 {2,4} 1/6 1/4 1/4

6 {3,4} 1/6 0 1/4
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• Stratification Ps1 is good in the sense that it prohibits the most extreme, outer
samples.

• Stratification Ps2 is bad in the sense that it prohibits the most moderate, middle
samples.

• The expectations for the average:

Ps1 : E(y) =
1

4
· [2.0 + 2.5 + 2.5 + 3.0] = 2.5

Ps2 : E(y) =
1

4
· [1.5 + 2.0 + 3.0 + 3.5] = 2.5

• Hence, both stratifications produce unbiased estimators.
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• The variances for SRS (without), SRS (with), SYS, and STRAT:

SRS (without) : σ2

y =
(1.5− 2.5)2 + (2.0− 2.5)2 + (2.5− 2.5)2 + (2.5− 2.5)2 + (3.0− 2.5)2 + (3.5− 2.5)2

6

=
2.5

6
= 0.4167

SRS (with) :
2

16
· [(1.5− 2.5)2 + (2.0− 2.5)2 + (2.5− 2.5)2 + (2.5− 2.5)2 + (3.0− 2.5)2 + (3.5− 2.5)2]

+
1

16
· [(1.0 − 2.5)2 + (2.0− 2.5)2 + (3.0− 2.5)2 + (4.0− 2.5)2] =

10.0

16
= 0.6250

L1 : σ2

y =
(2.0− 2.5)2 + (3.0− 2.5)2

2
=

0.5

2
= 0.25

L2 : σ2

y =
(1.5− 2.5)2 + (3.5− 2.5)2

2
=

2.0

2
= 1.00

L3 : σ2

y =
(2.5− 2.5)2 + (2.5− 2.5)2

2
=

0.0

2
= 0.00

Ps1 : σ2

y =
(2.0− 2.5)2 + (2.5− 2.5)2 + (2.5− 2.5)2 + (3.0− 2.5)2

4
=

0.5

4
= 0.125

Ps2 : σ2

y =
(1.5− 2.5)2 + (2.0− 2.5)2 + (3.0− 2.5)2 + (3.5− 2.5)2

4
=

2.5

4
= 0.625
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• Recall: some lists decrease the variance, while others increase the variance.

• Equally: some stratifications decrease the variance, while others increase the
variance.
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13.5 Example: Surveytown

• In Section 9.3, two lists were considered:

LX = (1 2 3 4 5 6 7 8)

LZ = (2 6 5 3 7 1 4 8)

based on, respectively,

. XI : number of building lots in block I

. ZI : number of newspapers delivered in block I
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• In the same spirit, we can stratify the population in two ways:

PsX = ( 1 2 3 4 | 5 6 7 8 )

PsZ = ( 2 6 5 3 | 7 1 4 8 )

• Selecting, as usual, samples of size n = 2, implies that we have 4× 4 = 16
possible samples in each case

SsX =


 {1, 5}, {1, 6}, {1, 7}, {1, 8},

{2, 5}, {2, 6}, {2, 7}, {2, 8},

{3, 5}, {3, 6}, {3, 7}, {3, 8},

{4, 5}, {4, 6}, {4, 7}, {4, 8}



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SsZ =


 {2, 1}, {2, 4}, {2, 7}, {2, 8},

{3, 1}, {3, 4}, {3, 7}, {3, 8},

{5, 1}, {5, 4}, {5, 7}, {5, 8},

{6, 1}, {6, 4}, {6, 7}, {6, 8}




• Let us enumerate the samples:
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Ps ŷs

Systematic Stratified Systematic Stratified

s Sample SRS LX LZ PsX PsZ SRS LX LZ PsX PsZ

1 {1,2} 1/28 0 0 0 1/16 12 12

2 {1,3} 1/28 0 0 0 1/16 16 16

3 {1,4} 1/28 0 0 0 0 20

4 {1,5} 1/28 1/4 0 1/16 1/16 24 24 24 24

5 {1,6} 1/28 0 1/4 1/16 1/16 28 28 28 28

6 {1,7} 1/28 0 0 1/16 0 32 32

7 {1,8} 1/28 0 0 1/16 0 36 36

8 {2,3} 1/28 0 0 0 0 20

9 {2,4} 1/28 0 0 0 1/16 24 24

10 {2,5} 1/28 0 0 1/16 0 28 28

11 {2,6} 1/28 1/4 0 1/16 0 32 32 32

12 {2,7} 1/28 0 1/4 1/16 1/16 36 36 36 36

13 {2,8} 1/28 0 0 1/16 1/16 40 40 40

14 {3,4} 1/28 0 0 0 1/16 28 28

15 {3,5} 1/28 0 0 1/16 0 32 32

16 {3,6} 1/28 0 0 1/16 0 36 36
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Ps ŷs

Systematic Stratified Systematic Stratified

s Sample SRS LX LZ PsX PsZ SRS LX LZ PsX PsZ

17 {3,7} 1/28 1/4 0 1/16 1/16 40 40 40 40

18 {3,8} 1/28 0 1/4 1/16 1/16 44 44 44 44

19 {4,5} 1/28 0 1/4 1/16 1/16 36 36 36 36

20 {4,6} 1/28 0 0 1/16 1/16 40 40 40

21 {4,7} 1/28 0 0 1/16 0 44 44

22 {4,8} 1/28 1/4 0 1/16 0 48 48 48

23 {5,6} 1/28 0 0 0 0 44

24 {5,7} 1/28 0 0 0 1/16 48 48

25 {5,8} 1/28 0 0 0 1/16 52 52

26 {6,7} 1/28 0 0 0 1/16 52 52

27 {6,8} 1/28 0 0 0 1/16 56 56

28 {7,8} 1/28 0 0 0 0 60

Expectation 36 36 36 36 36

Variance 144 80 32 40 160

Standard error 12.00 8.94 2.83 6.32 12.65
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• The expectations for the total:

PsX : E(y) =
1

16
· [24 + 28 + · · · + 44 + 48] =

576

16
= 36

PsZ : E(y) =
1

16
· [12 + 16 + · · · + 52 + 56] =

576

16
= 36

• Hence, both lists produce unbiased estimators.

• The variances:

PcX : σ2
y =

(24 − 36)2 + (28− 36)2 + · · · + (44 − 36)2 + (48 − 36)2

16
=

640

16
= 40

PcZ : σ2
y =

(12 − 36)2 + (16− 36)2 + · · · + (52 − 36)2 + (56 − 36)2

16
=

2560

16
= 160

• Recall that the variance under SRS was 144.

• PsX decreases variability dramatically, while PsZ increases variability, relative to
SRS.
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• This underscores that homogeneous strata have a beneficial impact, while
heterogeneous strata have a detrimental effect.
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Chapter 14

Analysis

. Estimators

. Variances

. Examples
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14.1 Population Quantities and Estimators

• The general principle for estimation is:

. Construct an estimator for each stratum separately.

. Combine the stratum-specific estimators to a population-level estimator.

• Let Y take value YhI for unit I in stratum h.

• Let Yh be the total within stratum h.

• Let Y h be the average within stratum h.
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14.1.1 The Population Total

• The population total simply is:

Y =
H∑

h=1
Yh =

H∑

h=1

Nh∑

I=1
YhI

• It follows as the unweighted sum of the stratum-specific totals.

• It follows as the double sum of the population units.
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14.1.2 The Population Average

• The average within stratum h:

Y h =
1

Nh
Yh =

1

Nh

Nh∑

I=1
YhI

• The derivation of the population average needs a bit of algebra:

Y =
1

N
Y

⇒ Y =
1

N

H∑

h=1
Yh

⇒ Y =
1

N

H∑

h=1

Nh∑

I=1
YhI

⇒ Y =
1

N

H∑

h=1

Nh

Nh

Nh∑

I=1
YhI

⇒ Y =
H∑

h=1

Nh

N




1

Nh

Nh∑

I=1
YhI




⇒ Y =
H∑

h=1

Nh

N
Y h

⇒ Y =
H∑

h=1
WhY h
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• The population average follows as the weighted sum of the stratum-specific
averages.

• The weights

Wh =
Nh

N
,

H∑

h=1
Wh = 1

are proportional to the population within a stratum.

• We can rewrite the average as:

Y =

H∑

h=1
WhY h

H∑

h=1
Wh
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14.1.3 Estimators

• The total of the sub-sample within stratum h:

yh =
nh∑

i=1
yhi

• Estimator for the stratum-specific total:

ŷh =
Nh

nh

nh∑

i=1
yhi =

Nh

nh
yh

• Estimator for the population total:

ŷ =
H∑

h=1
ŷh

. It is the unweighted average of the stratum-specific totals.
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• Estimator for the stratum-specific average:

yh =
1

nh

nh∑

i=1
yhi =

1

nh
yh

• Estimator for the population average:

y =
1

N
ŷ =

1

N

H∑

h=1
ŷh =

H∑

h=1

Nh

N
yh

. The estimator for the population average is a weighted sum of the
stratum-specific averages.
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14.2 Ratios

• A stratum-specific ratio is given by

Rh =
Yh

Xh
=

Yh

Xh

• The link with the population-level ratio is not immediately straightforward.

• Let us also consider estimators.

. The combination with benchmark estimation will be discussed.

. Two different options will be considered.
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14.2.1 Ratios per Stratum

• The estimators are:

r̂h =
ŷh

x̂h
=

yh

xh

r̂ =
ŷ

x̂
=

y

x
=

H∑

h=1
ŷh

H∑

h=1
x̂h
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14.2.2 Stratum-by-stratum Benchmark Estimator

• Consider the stratum-specific ratios rh and construct the stratum-specific
benchmark estimator for the total:

ŷb.m.,h = r̂hXh

• Combine these to produce the overall benchmark estimator for the total:

ŷb.m. =
H∑

h=1
ŷb.m.,h =

H∑

h=1
r̂hXh
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14.2.3 Across-stratum Benchmark Estimator

• First, construct the overall ratio r̂.

• Immediately produce the overal benchmark estimator for the total:

ŷb.m. = rX

• The stratum-by stratum benchmark estimator 6= the across-stratum benchmark
estimator.
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14.2.4 Some Comments

• It appears the stratum-specific benchmark estimator uses the information more
subtly, and therefore is to be preferred.

• This is not always the case.

• Thus, prefer the across-stratum benchmark estimator when one or both of the
following conditions apply:

. The stratum-specific sample sizes nh are very variable and/or very small.

. The benchmark X is known at population level but not (or not precise
enough) at stratum level (Xh).
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14.3 Variance

• We now need three steps:

. Derive the population variance per stratum.

. Produce a corresponding estimator.

. Use these in estimators for the stratum-specific variances.

. Combine the results in expressions for the overall population.
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Stratum-Level Quantities

Quantity Calculated Estimated

Pop. var. S2
hY =

1

Nh − 1

Nh∑

I=1
(YhI − Y h)

2 ŝ2
hy =

1

nh − 1

nh∑

i=1
(yhi − yh)

2

Total σ2
ŷh

=
N 2

h

nh
(1− fh)S

2
hY σ̂2

ŷh
=

N 2
h

nh
(1− fh)ŝ

2
hy

Average σ2
yh

=
1

nh
(1− fh)S

2
hY σ̂2

yh
=

1

nh
(1− fh)ŝ

2
hy
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Population-Level Quantities

Quantity Calculated Estimated

Population variance S2
Y =

H∑

h=1
S2

hY ŝ2
y =

H∑

h=1
ŝ2

hy

Total σ2
ŷ =

H∑

h=1
σ2
ŷh

σ̂2
ŷ =

H∑

h=1
σ̂2
ŷh

Average σ2
y =

H∑

h=1
w2

hσ
2
yh

σ̂2
y =

H∑

h=1
w2

hσ̂
2
yh
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• For the estimators combining benchmark estimation with stratification, the
following expressions need to be used:

Estimator Calculated Estimated

Stratum-by S2
h =

1

Nh − 1

Nh∑

I=1
(YhI − RhXhI)

2 ŝ2
h =

1

nh − 1

nh∑

i=1
(yhi − r̂hxhi)

2

-stratum ' S2
hY − 2RhShY X + R2

hS
2
hX ' ŝ2

hy − 2r̂hŝhyx + r̂2
hŝ

2
hx

Across S2
h =

1

Nh − 1

Nh∑

I=1
(YhI − RXhI)

2 ŝ2
h =

1

nh − 1

nh∑

i=1
(yhi − r̂xhi)

2

-stratum ' S2
hY − 2RShY X + R2S2

hX ' ŝ2
hy − 2r̂ŝhyx + r̂2ŝ2

hx
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• There is a problem with the latter estimator:

. All strata have r in common.

. Hence, the strata-specific estimators are not entirely independent of one
another.

. This results in an (often small) underestimation of the variance (i.e., false
precision).

Survey Methods & Sampling Techniques 366



14.4 Example: Artificial Population

• In Section 10.3.2, the intra-cluster (intraclass) correlations were calculated for
SRS (without and with replacement), and SYS (lists L1, L2, and L3).

• Using similar programs, but now for the stratified sampling mechanisms of
Section 13.4, we can expand the table:
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Method Variance ρ Relationship

SRS (without) 0.4167 -0.33 0.4167
1−0.33×(2−1) = 0.6250

SRS (with) 0.6250 0.00 0.6250
1+0.00×(2−1)

= 0.6250

SYS(L1) 0.2500 -0.60 0.2500
1−0.60×(2−1)

= 0.6250

SYS(L2) 1.0000 0.60 1.0000
1+0.60×(2−1) = 0.6250

SYS(L3) 0.0000 -1.00 undetermined

STRAT(Ps1) 0.1250 -0.80 0.1250
1−0.80×(2−1) = 0.6250

STRAT(Ps2) 0.6250 0.00 0.6250
1+0.00×(2−1)

= 0.6250

• Note that the smallest variance is obtained, apart for pathological list L3, for the
good stratification.

• Bad stratification annihilates the beneficial effect of sampling without
replacement, and effectively returns to the variance of SRS with replacement.
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• This underscores that stratification, even though typically used for its beneficial
impact on precision, can effectively decrease precision.

• This can be illustrated by partitioning the variance.

• To this effect, consider a classical ANOVA decompostion.

• First, construct a simple dataset, as follows:

Obs stratum1 stratum2 y

1 1 1 1

2 1 2 2

3 2 2 3

4 2 1 4
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• We can now construct ANOVA decompositions using PROC GLM:

proc glm data=m.artif04;

title ’GLM - ANOVA table - Non-stratified’;

model y = ;

run;

proc glm data=m.artif04;

title ’GLM - ANOVA table - Good stratification’;

class stratum1;

model y = stratum1;

run;

• The model for the bad stratification is evidently completely analogous.
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• Output for the non-stratified case is:

GLM - ANOVA table - Non-stratified

Sum of

Source DF Squares Mean Square F Value Pr > F

Model 1 25.00000000 25.00000000 15.00 0.0305

Error 3 5.00000000 1.66666667

Uncorrected Total 4 30.00000000

• For the good stratification, we obtain:

GLM - ANOVA table - Good stratification

Sum of

Source DF Squares Mean Square F Value Pr > F

Model 1 4.00000000 4.00000000 8.00 0.1056

Error 2 1.00000000 0.50000000

Corrected Total 3 5.00000000

Source DF Type III SS Mean Square F Value Pr > F

stratum1 1 4.00000000 4.00000000 8.00 0.1056
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• For the bad stratification:

GLM - ANOVA table - Bad stratification

Sum of

Source DF Squares Mean Square F Value Pr > F

Model 1 0.00000000 0.00000000 0.00 1.0000

Error 2 5.00000000 2.50000000

Corrected Total 3 5.00000000

Source DF Type III SS Mean Square F Value Pr > F

stratum2 1 0 0 0.00 1.0000

• It is intriguing that in the second case, no variability is attributed to the
stratification variable, while the reverse is true in the first case.
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• We can look at the same problem in a different way, by considering the linear
mixed model the systematic sampling part:

YIJ = µ + bI + εIJ

. YIJ is the population quantity for subject J in stratum I

. µ is the overall mean (population average)

. µ + bI is the stratum-specific average:

bI ∼ N (0, τ 2)

. εIJ is an individual-level deviation:

εIJ ∼ N (0, σ2)

• The sources of variability in the ANOVA table correspond to τ 2 and σ2 and can be
estimated using PROC MIXED.
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. The program for the non-stratified case is, in fact, nothing but a linear
regression:

proc mixed data=m.artif04 method=ml;

title ’Artificial Population - Non-stratified’;

model y = / solution;

run;

. The variance component is:

Cov Parm Estimate

Residual 1.2500
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. The corresponding program for the first stratification is:

proc mixed data=m.artif04 method=ml;

title ’Artificial Population - Good stratification’;

class stratum1;

model y = / solution;

random stratum1;

run;

. We obtain two variance components:

Cov Parm Estimate

stratum1 0.7500

Residual 0.5000

. The sum of the variances is the same as in the non-stratified case, as it should,
but a part of the variability is taken out by the stratification.

This same phenomenon lead to a negative within-sample correlation, as seen
above.
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. The program for the bad stratification is, of course analogous, and produces:
Cov Parm Estimate

stratum2 0

Residual 1.2500

. Like in the ANOVA table, we see that apparently no variability is associated to
stratification. Yet, the variance actually changed, when the estimator was
studied.

In fact, it increased, and this is possible only by assigning a negative
component of variability to the second stratum.
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. We can allow for this by adding the ‘nobound’ option to the program:

proc mixed data=m.artif04 method=ml nobound;

title ’Artificial Population - Bad stratification - Nobound’;

class stratum2;

model y = / solution;

random stratum2;

run;

. The result changes to:
Cov Parm Estimate

stratum2 -1.2500

Residual 2.5000

. Indeed, while the total variability is still left unchanged, the stratification is
now clearly seen to be responsible for an increase in error variance, since it
adds to the variability, rather than taking away from it.
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14.5 Example: Surveytown

• Also for this example, we can calculate the within-cluster (actually now,
within-strata) correlation.

• Using the SAS procedure MIXED, the intra-cluster correlation can be calculated,
based on the datasets:

Listing Surveytown - Strat. based on X

Obs sample y

1 1 1

2 1 5

3 2 1

4 2 6

5 3 1

6 3 7

...

31 16 4

32 16 8

Listing Surveytown - Strat. based on Z

Obs sample y

1 1 2

2 1 1

3 2 2

4 2 4

5 3 2

6 3 7

...

31 16 6

32 16 8
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• The correlations are:

ρPsX
= −0.7619

ρPsZ
= −0.0476

• In Part IV, we obtained relationships between variances, which we can now extend:

σ2
ŷ,SRS(with)

1+ρSRS(with)(n−1)
=

σ2
ŷ,SRS(without)

1+ρSRS(without)(n−1)
=

σ2
ŷ,LX

1+ρLX
(n−1)

=
σ2
ŷ,LZ

1+ρLZ
(n−1)

=
σ2
ŷ,PsX

1+ρPsX
(n−1)

=
σ2
ŷ,PsZ

1+ρPsZ
(n−1)

168
1+0.0000×(2−1)

= 144
1−0.1429×(2−1)

= 80
1−0.5238×(2−1)

= 32
1−0.8095×(2−1)

= 40
1−0.7619×(2−1)

= 160
1−0.0476×(2−1)
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• Additionally, we can calculate the variance decomposition, based on both
stratifications.

• In analogy with the Artificial Population, construct the dataset:

Obs stratumx stratumz y

1 1 2 1

2 1 1 2

3 1 1 3

4 1 2 4

5 2 1 5

6 2 1 6

7 2 2 7

8 2 2 8
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• Likewise, the following program can be used:

proc mixed data=m.surveytown04 method=ml nobound;

title ’Surveytown - Variance decomposition stratification X’;

class stratumx;

model y = / solution;

random stratumx;

run;

• Replace ‘X’ by ‘Z’ for the second stratification, and simply omit stratum and the
RANDOM statement for the unstratified case.

Survey Methods & Sampling Techniques 381



• We obtain the following variance decompositions at population level:

Source No Stratif. Stratif. X Stratif. Z

Stratum 3.5833 -1.4167

Residual 5.2500 1.6667 6.6667

Total 5.2500 5.2500 5.2500

Within-stratum correlation 0.0000 0.6825 -0.2698

• Note that the within-stratum correlation at population level is not the same
concept as the within-stratified-samples correlation.
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. The correlation within the population strata is positive for PsX

⇒ the strata are homogeneous

⇒ samples taken have a unit from the first stratum and one from the second
stratum and hence are heterogeneous

⇒ the correlation between units within a sample decreases relative to SRS,
with beneficial impact on the estimator.

. The correlation within the population strata is negative for PsZ

⇒ the strata are heterogeneous

⇒ samples taken have a unit from the first stratum and one from the second
stratum and hence are homogeneous

⇒ the correlation between units within a sample increases relative to SRS,
with detrimental impact on the estimator.
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14.5.1 Combining Benchmark Estimation With Stratification

• Let us compare 3 ways of applying benchmark estimation:

. Not combined with stratification, as in Section 12.2.

. Combined with stratification in the across-stratum fashion.

. Combined with stratification in the stratum-by-stratum fashion.
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Stratification

Measure No Across S-by-s

Population estimand Y 36 36 36

Expectation E(ŷb=X) 36.150 36.137 38.357

Bias 0.150 0.137 2.357

Range: lowest estimate 33.333 34.375 35.867

Range: highest estimate 40.000 38.889 43.000

Variance Var(ŷb=X) 1.850 1.491 5.216

Mean square error 1.874 1.510 10.773

Standard error 1.360 1.221 2.284

Root mean square error 1.369 1.229 3.282
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• Note that here the stratifying variable and the benchmark variable are one and the
same.

• We should not draw too broad a conclusion from it.

• Nevertheless, stratum-by-stratum benchmark estimation performs worse than
ordinary benchmark estimation.
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14.6 Example: The Belgian Health Interview Survey

• Taking stratification into account, the means are recomputed for

. LNBMI

. LNVOEG

. GHQ12

. SGP

• The following program can be used:

proc surveymeans data=m.bmi_voeg mean stderr;

title ’stratified means - infinite population for Belgium and regions’;

where (regionch^=’’);

domain regionch;

strata province;

var lnbmi lnvoeg ghq12 sgp;

run;
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• We include the stratification design aspect by way of the STRATA statement.

• The output takes the usual form, with now all design aspects listed:

stratified means - infinite population for Belgium and regions

The SURVEYMEANS Procedure

Data Summary

Number of Strata 12

Number of Observations 8560

Statistics

Std Error

Variable Mean of Mean

-------------------------------------------

LNBMI 3.187218 0.001840

LNVOEG 1.702951 0.008801

GHQ12 1.661956 0.029452

SGP 0.903540 0.003116

-------------------------------------------
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Domain Analysis: REGIONCH

Std Error

REGIONCH Variable Mean of Mean

--------------------------------------------------------

Brussels LNBMI 3.175877 0.003373

LNVOEG 1.809748 0.016206

GHQ12 1.864301 0.056939

SGP 0.805632 0.007827

Flanders LNBMI 3.182477 0.002989

LNVOEG 1.516352 0.015207

GHQ12 1.385857 0.046211

SGP 0.952285 0.003902

Walloonia LNBMI 3.201530 0.003217

LNVOEG 1.801107 0.014427

GHQ12 1.772148 0.050823

SGP 0.938646 0.004366

--------------------------------------------------------

• We summarize the results, compare them to SRS (and foreshadow future
analyses):
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Logarithm of Body Mass Index

Analysis Belgium Brussels Flanders Wallonia

SRS 3.187218(0.001845) 3.175877(0.003372) 3.182477(0.002993) 3.201530(0.003216)

Stratification 3.187218(0.001840) 3.175877(0.003373) 3.182477(0.002989) 3.201530(0.003217)

Clustering 3.187218(0.001999) 3.175877(0.003630) 3.182477(0.003309) 3.201530(0.003429)

Weighting 3.185356(0.002651) 3.171174(0.004578) 3.180865(0.003870) 3.198131(0.004238)

All combined 3.185356(0.003994) 3.171174(0.004844) 3.180865(0.004250) 3.198131(0.004403)

Logarithm of VOEG Score

Analysis Belgium Brussels Flanders Wallonia

SRS 1.702951(0.008954) 1.809748(0.016203) 1.516352(0.015201) 1.801107(0.014550)

Stratification 1.702951(0.008801) 1.809748(0.016206) 1.516352(0.015207) 1.801107(0.014427)

Clustering 1.702951(0.010355) 1.809748(0.018073) 1.516352(0.017246) 1.801107(0.016963)

Weighting 1.634690(0.013233) 1.802773(0.021831) 1.511927(0.019155) 1.803178(0.020426)

All combined 1.634690(0.014855) 1.802773(0.023135) 1.511927(0.021409) 1.803178(0.023214)

Survey Methods & Sampling Techniques 390



General Health Questionnaire – 12

Analysis Belgium Brussels Flanders Wallonia

SRS 1.661349(0.029584) 1.862745(0.056894) 1.385381(0.046246) 1.772148(0.051023)

Stratification 1.661956(0.029452) 1.864301(0.056939) 1.385857(0.046211) 1.772148(0.050823)

Clustering 1.661349(0.032824) 1.862745(0.062739) 1.385381(0.052202) 1.772148(0.055780)

Weighting 1.626201(0.044556) 1.924647(0.076313) 1.445957(0.061910) 1.858503(0.078566)

All combined 1.626781(0.048875) 1.924647(0.080508) 1.446286(0.068931) 1.858503(0.084047)

Stable General Practitioner (0/1)

Analysis Belgium Brussels Flanders Wallonia

SRS 0.903540(0.003196) 0.805632(0.007826) 0.952285(0.003908) 0.938646(0.004382)

Stratification 0.903540(0.003116) 0.805632(0.007827) 0.952285(0.003902) 0.938646(0.004366)

Clustering 0.903540(0.003963) 0.805632(0.009766) 0.952285(0.004709) 0.938646(0.005284)

Weighting 0.932702(0.003498) 0.782448(0.011563) 0.954757(0.004722) 0.943191(0.005417)

All combined 0.932702(0.003994) 0.782448(0.013836) 0.954757(0.005379) 0.943191(0.006159)

• We can make the following observations, when comparing stratification to SRS:

. The impact on point estimates is minor.

. The impact on standard errors is minor, and goes in both directions, with the
dominant direction a slight reduction of standard error.
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Chapter 15

Sample Size Determination and Allocation

. General principles

. Proportional allocation

. Optimal allocation

. Cost optimal allocation

. Compromise allocation
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15.1 General Principles

• In a stratified setting, there are two aspects related to sample size:

. Sample size determination: calculation of the overal sample size n.

. Sample size allocation: the split of the sample size n over the strata:
(n1, . . . , nH).

• Two distinct precision requirements can be put forward:

. Precision at the population level: the sample sizes nh are determined so as to
reach a certain level of precision for the entire population.

. Precision at stratum level: the sample sizes nh are determined to reach a
certain level of precision for the strata separately.
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. These different requirements will produce different results.

. Compromise allocation: refers to the situation where both the population and
the stratum level are of importance.

A compromise between two different allocations is then aimed for.

• A taxonomy of allocations is considered, based on which information is taken into
account:
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Types of allocation

Stratum-specific

Allocation size Nh Var. Sh cost Ch

Proportional allocation yes no no

Optimal allocation yes yes no

Cost-optimal allocation yes yes yes

• Optimal allocation will differ from proportional allocation when the variability of
the survey variable differs a lot between strata.

In practice, for many variables this is not the case.
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• Cost-optimal allocation starts from a differential cost between the strata:

C = C0 +
H∑

h=1
nhCh

. C0: fixed costs (overhead)

. Ch: average variable cost per unit in stratum h

. C: total cost

• Cost-optimal allocation will differ a lot from optimal allocation when the variable
cost is different from stratum to stratum.

This may happen, for example, if strata are regions, with some very rural, others
very urbanized.
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15.2 Sample Allocation

• Let us illustrate the calculations for the case of optimal allocation, when focus is
on the entire population.

• Optimal allocation is reached for

fh =
nh

Nh
∝ Sh

and hence

nh ∝ NhSh
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• Requiring that the nh sum to a pre-fixed n, turns the proportionality result in an
equality:

nh = n
NhSh

∑
h NhSh

• These results imply that we have more units

. in larger strata

. in strata with higher variability
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• An overview of all proportionalities:

Proportionalities

Focus on

Allocation population strata compromise

Proportional nh ∝ Nh nh ∝ 1 nh ∝ N k
h

Optimal nh ∝ Nh · SY h nh ∝ SY h nh ∝ N k
h · SY h

Cost-optim. nh ∝ Nh · SY h ·
1√
Ch

nh ∝ SY h ·
1√
Ch

nh ∝ N k
h · SY h ·

1√
Ch
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• For compromise allocation, one would typically choose 0 ≤ k ≤ 1.

• Some special values deserve attention:

. k = 0 corresponds with focus on the strata

. k = 0.5 is a common choice

. k = 1 corresponds with focus on the population

• The corresponding allocations are:
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Allocation

Focus on

Allocation population strata compromise

Proportional nh = n · Nh

N
nh =

n

H
nh = n · Nk

h∑H
h=1

Nk
h

Optimal nh = n · NhSY h
∑H

h=1
NhSY h

nh = n · SY h
∑H

h=1
SY h

nh = n · Nk
hSY h

∑
h=1H Nk

hSY h

Cost-opt. nh = n ·
NhSh

(
1√
Ch

)

∑H
h=1

NhSh

(
1√
Ch

) nh = n ·
Sh

(
1√
Ch

)

∑H
h=1

Sh

(
1√
Ch

) nh = n ·
Nk

hSh

(
1√
Ch

)

∑H
h=1

Nk
hSh

(
1√
Ch

)
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15.2.1 Example: The Belgian Health Interview Survey

• Let us illustrate this for the Belgian Health Interview Survey:

. Consider proportional allocation.

. Let n = 10, 000.

. For compromise allocation, set k = 0.5.

Allocations for Belgian Health Interview Survey

Focus on

Region Nh population strata compromise

Brussels 1,000,000 1000 3333.33' 3000 1929.93'2000

Flanders 6,000,000 6000 3333.33' 3500 4727.34'4750

Wallonia 3,000,000 3000 3333.33' 3000 3342.73'3250

Survey Methods & Sampling Techniques 402



15.3 Sample Size Determination

• Combined with the sample allocation, an allocation method also yields a specific
sample size determination expression.

• Let us present these for the total:
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Sample size for total

Allocation n

Proportional allocation n =
N 2S2

Y

σ2
ŷ + NS2

Y

Optimal allocation n =




H∑

h=1
NhSY h



2

σ2
ŷ +

H∑

h=1
NhS

2
Y h

Cost-optimal allocation n =




H∑

h=1
NhSY h

√
Ch







H∑

h=1
NhSY h




1√
Ch







σ2
ŷ +

H∑

h=1
NhS

2
Y h
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15.3.1 Impact on Variance

• The various allocation methods have differing impacts on the variance of the
estimators.

• Let σ2
Y be the variance of the survey variable in the population as a whole.

• The variances for the total can then be expressed as on the following page.

. The variance seems to decrease with a larger number of effects taken into
account.

. However, we have illustrated, using the Artificial Population and Surveytown,
that the variance can increase in some cases.

. This is because the additional variance components can be negative, as we
have demonstrated numerically using the SAS procedure MIXED.
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Variance for total estimator

Allocation σ2
ŷ

Simple random sampling σ2
ŷ = N2

n (1− f )σ2
Y

Proportional allocation σ2
ŷ = N2

n
(1− f )[σ2

Y − σ2(Y h)]

Optimal allocation σ2
ŷ = N2

n
(1− f )

{
[σ2

Y − σ2(Y h)]− σ2(ShY )
}

Cost-optimal allocation (more complicated)
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15.4 Illustration

• Consider a population subdivided into 5 strata.

• All three quantities vary across population strata: Nh, Sh, and Ch.

• Consider all three allocation methods.
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Stratum

Quantity 1 2 3 4 5 Total

Population

Nh 2600 1200 750 300 150 5000

Sh 0.730 1.399 1.722 2.311 2.912

Ch 10.79 11.63 29.72 45.03 62.89

Proportional allocation

nh 1356 626 391 167 78 2608

Cost 14,631 7280 11,621 7070 4905 45,507

Optimal allocation

nh 673 596 458 247 150 2124

Cost 7262 6931 13,612 11,122 9434 48,361

Cost-optimal allocation

nh 925 789 380 164 89 2347

Cost 9981 9176 11,294 7385 5597 43,433
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Part VII

Multi-Stage Sampling and Clustering
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Chapter 16

General Concepts and Design

. The concepts of multi-stage sampling and clustering

. Various ways of selecting multi-stage samples

. Examples
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16.1 Multi-Stage Sampling and Clustering

• Informal definition of both concepts:

. Multi-stage sampling: a hierarchy of units is selected:

∗ starting with primary sampling units (PSU),

∗ within with secondary sampling units (SSU) are sub-selected,

∗ within which tertiary sampling units (TSU) are subselected,

∗ etc.

. Clustering: refers to the fact that several non-independent units (stemming
from a ‘cluster’) are simultaneously selected.
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• Examples of multi-stage sampling:

Unit Schools Belgian HIS

PSU school town

SSU class household

TSU pupil individual

• Both concepts go hand in hand, but are not the same:

. Multi-stage sampling but not clustering: select only one household in a town,
and only one individual within a household.

. Clustering without multi-stage sampling: select households from a list of
households, and then include all household members. Since there is no
sub-selection taking place, this is a one-stage procedure, but there clearly is
clustering.
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• Some levels are included for sampling convenience only, with no direct scientific
interests:

. schools and classes

. towns in HIS

• At least one level is of direct scientific interest: target sampling units:

. pupils

. individuals in HIS, but also, to some extent, household

• The latter situation arises when:

. some information exists at household level and is objective: number of rooms
in the household’s residence,. . .

. some information is personal: political preference, religious beliefs,. . .
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• Multi-stage sampling also goes hand in hand with weighting, since primary and
secondary units may have different sizes and/or sub-units may be selected with
unequal probability (see Part VIII).

• The rationales for conducting multi-stage sampling:

. Multi-stage ‘lists’ may be easy to work with: while there is no list of all pupils,
there is a list of all schools and every school has got a list of its pupils.

. To facilitate the fieldwork: when multi-stage sampling leads to clusters, often
geographically close, interviewers will be able to organize their work more
efficiently.

• When multi-stage sampling induces clustering and the within-cluster correlation is
positive (cf. systematic sampling) the precision will go down.

This typically is the situation that happens in practice.

It is aimed for to counter-balance the statistical precision loss by a stronger
increase in fieldwork efficiency, so that overall there is a gain.
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16.2 Multi-Stage Sampling: the Relative Approach

• Assume a two-stage sample of size n is to be taken out of a population of size N .

• The sample fraction then is

f =
n

N

• This can be done by taking

. a fraction f1 of the PSU

. a fraction f2 of the SSU

. so that

f = f1 · f2
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• Clearly, given f1 and f , it follows that f2 = f/f1.

• In other words, two-stage sampling introduces one degree of freedom into the
design.

• In general, for K-stage sampling:

f = f1 · f2 · . . . · fK

introducing K − 1 degrees of freedom.

• SRS can be seen as a special case: one-stage sampling, introducing K − 1 = 0
degrees of freedom.

• Indeed, SRS is fixed by merely specifying f .
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16.2.1 Example

• Goal: sample of students in Flemish schools in the Brussels Region.

• There is no complete list, but there is available:

. a list of all schools

. in each school there is a list of students

• Assume the details are:

. PSU: schools

. SSU: N = 20, 000 students

. required sample size: n = 2000 students

. sample fraction: f = 0.1
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Selection probabilities

Stage 1: f1 Stage 2: f2 Total: f

a. 1
1

× 1
10

= 1
10

b. 1
2

× 1
5

= 1
10

c. 1
5 × 1

2 = 1
10

d. 1
10

× 1
1

= 1
10

• When going towards d, the ‘cluster size’ (students from the same school)
increases, with a detrimental impact on precision, but a beneficial impact on
fieldwork.

• When going towards a, the cluster size decreases, with a detrimental impact on
the fieldwork, but a beneficial impact on the survey’s precision.
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• All four example mechanisms produce the required sample fraction and hence
sample size.

• Each student has the same selection probability of 1/10.

• Every school has the same probability of being selected.

• The number of students per school is proportional to the school size.

• The latter property can be inconvenient:

. The fieldwork burden in large schools may be too heavy.

. Fieldwork hard to organize with unequal PSU sizes.

. It is hard to fully control the overall sample size.

• For these reasons, the above relative selection is often replaced by an absolute one.
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16.3 Multi-Stage Sampling: the Absolute Approach

• This is commonly referred to as area probability sampling, but it applies more
generally, for example also to the school example studied above.

• Suppose we would apply the above mechanism to a city:

. PSU: There are 400 blocks.

. SSU: There are N = 20, 000 houses in the blocks taken together.

. Sample size: n = 2000

. Sample fraction: f = 0.1
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• This is the same setting as in the table above, and hence these mechanisms could
be used.

• The same burden as described above is bestowed on the fieldwork.

• When the size of the schools, blocks, etc. is available, an alternative, absolute
approach is possible.
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16.3.1 Description of Area Probability Sampling

• Assume N , n, and hence f are prespecified.

• Fix the number of SSU taken per PSU: nc.

• Construct a cumulative list of the number of SSU per PSU.

• Conduct systematic selection within the cumulative list, with jump

g =
1

f
· nc

• For every hit, select nc SSU from the corresponding PSU.
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16.3.2 Example

• Return to the above example with:

. PSU: There are 400 blocks.

. SSU: There are N = 20, 000 houses in the blocks taken together.

. Sample size: n = 2000

. Sample fraction: f = 0.1

. Cluster size: nc = 10

• The jump is then:

g =
1

f
· nc =

1

0.1
× 10 = 100

• Assume the random start, taken between 1 and 100, is s = 70.
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• We would then select the blocks where encompassing the cumulative numbers 70,
170, 270, 370,. . .

block # houses cumulative hits

1 43 43 -

2 87 130 70

3 109 239 170

4 27 266 -

5 15 281 270

... ... ... ...

• We selected blocks 2, 3, 5.
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• Select 10 houses in each of those blocks.

• If the number of houses within each block were correct, then simple random or
systematic sampling could be done and the overall selection probability would be
preserved:

block houses prob.(1) prob.(2) prob.(tot)

2 87 87/100 10/87 1/10

3 109 109/100 10/109 1/10

5 15 15/100 10/15 1/10

• But: the number of houses is often reported slightly inaccurately.
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• This problem can be solved by determining only the selection rate:

cluster size

# houses
=

10

87
=

1

8.7

• For this particular block, 1 per 8.7 houses is to be selected.

• If a block is larger, then more houses are selected

Otherwise, less houses are selected

• What about “empty areas”?

⇒ Combine with neighboring areas, to enable selection if the area turns out to be
non-empty.
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16.4 Cluster Samples

• Population level:

. Population P

. PSU:

∗ M : number of PSU

. SSU:

∗ N : number of SSU

∗ NI: number of SSU within PSU I (within cluster I)

N =
M∑

I=1
NI
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. Survey variable:

∗ YIJ: value for SSU J within cluster I

∗ YI: sum within cluster I

YI =
NI∑

J=1
YIJ

∗ Y : overall sum

Y =
M∑

I=1
YI =

M∑

I=1

NI∑

J=1
YIJ
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• Sample level:

. PSU:

∗ m: number of selected PSU

. SSU:

∗ n: number of SSU

∗ Ni: number of SSU within selected PSU i

∗ ni: number of SSU selected from the selected PSU i

n =
m∑

i=1
ni
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. Survey variable:

∗ yij: value for selected SSU j within selected cluster i

∗ yi: sum within selected cluster i over the selected SSU

yi =
ni∑

j=1
yijp

∗ y: sum over all selected SSU within all selected PSU

y =
m∑

i=1
yi =

m∑

i=1

ni∑

j=1
yij
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. Sample fractions:

∗ At the first stage:

f1 =
m

M

∗ At the second stage:

f2i =
ni

Ni

∗ Simple cluster sampling:

ni = Ni ⇒ f2i = 1

All SSU within a selected PSU are included.

∗ Self-weighted sampling:

f2i =
ni

Ni
=

n

N
The number of SSU selected is proportional to the cluster size and hence
the second-stage sample fraction is constant.
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16.5 Example: Artificial Population

• Consider three ways of clustering the Artificial Population Units:

Pc1 =

 {1, 3}, {2, 4}




Pc2 =

 {1, 2}, {3, 4}




Pc3 =

 {1, 4}, {2, 3}




• In all three cases, only two samples of size n = 2 are possible.

• These samples correspond to the lists L1, L2, and L3, respectively.
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• The sampling mechanisms are:

Ps

Systematic / Clustering

L1 L2 L3

s Sample SRS P1 P2 P3

1 {1,2} 1/6 0 1/2 0

2 {1,3} 1/6 1/2 0 0

3 {1,4} 1/6 0 0 1/2

4 {2,3} 1/6 0 0 1/2

5 {2,4} 1/6 1/2 0 0

6 {3,4} 1/6 0 1/2 0

• Note that this strong connection between the two mechanisms is a by-product of
the artificial population being so small.
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• All calculations made for the 3 SYS lists, are also applicable to these three ways of
clustering.

• When the emphasis is on lists, there are only 6 possible samples, resulting from 3
essentially different lists (there are other lists, but these will produce the same
samples).

• This is not true for clustering, for example:

Pc4 = ({1}, {2, 3, 4})
is a possible way of defining two clusters, giving rise to 2 possible samples of
unequal size (see Part VIII).
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• We have stated before that:

. Lists typically increase precision, although the reverse may happen.

. Clustering typically decreases precision, although the reverse may happen.

• But now, both mechanisms produce the same 3 situations, how can this be
reconciled?

. The natural list choice is L1: units are ordered monotonically.

. The natural clustering choice is Pc2: clusters contain units that are more
similar.

• Recall that all three lists are unbiased; hence, the same holds for all three ways of
clustering.
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• The variances for SRS (without), SRS (with), SYS, STRAT, and CLUST:

SRS (without) : σ2

y =
(1.5− 2.5)2 + (2.0− 2.5)2 + (2.5− 2.5)2 + (2.5− 2.5)2 + (3.0− 2.5)2 + (3.5− 2.5)2

6

=
2.5

6
= 0.4167

SRS (with) :
2

16
· [(1.5− 2.5)2 + (2.0− 2.5)2 + (2.5− 2.5)2 + (2.5− 2.5)2 + (3.0− 2.5)2 + (3.5− 2.5)2]

+
1

16
· [(1.0 − 2.5)2 + (2.0− 2.5)2 + (3.0− 2.5)2 + (4.0− 2.5)2] =

10.0

16
= 0.6250

L1 ≡ Pc1 : σ2

y =
(2.0− 2.5)2 + (3.0− 2.5)2

2
=

0.5

2
= 0.25

L2 ≡ Pc2 : σ2

y =
(1.5− 2.5)2 + (3.5− 2.5)2

2
=

2.0

2
= 1.00

L3 ≡ Pc3 : σ2

y =
(2.5− 2.5)2 + (2.5− 2.5)2

2
=

0.0

2
= 0.00

Ps1 : σ2

y =
(2.0− 2.5)2 + (2.5− 2.5)2 + (2.5− 2.5)2 + (3.0− 2.5)2

4
=

0.5

4
= 0.125

Ps2 : σ2

y =
(1.5− 2.5)2 + (2.0− 2.5)2 + (3.0− 2.5)2 + (3.5− 2.5)2

4
=

2.5

4
= 0.625
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Chapter 17

Analysis

. Estimators

. Variances

. Examples

. Sample size determination
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17.1 Estimators

. We will focus on the two-stage case.

. Quantities can be estimated at two levels:

. Within a PSU

. For the entire population

. The expressions depend on the sample fraction at the SSU level, since this is not
constant, with two special cases:

. self-weighting: f2i is constant

. simple cluster sampling: f2i is constant and equal to one (entire cluster
sampled)

. We will present expressions for totals.

. Averages follow simply through dividing by N .
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Estimators for Total

Total within SSU ŷi =
Ni

ni

ni∑

j=1
yij

Population total

General ŷ =
M

m

m∑

i=1
ŷi =

M

m

m∑

i=1

Ni

ni

ni∑

j=1
yij

Self-weighted ŷ =
M

m

N

n

m∑

i=1

ni∑

j=1
yij =

1

f
· y

Simple cluster ŷ =
M

m

m∑

i=1

Ni∑

J=1
yiJ
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17.2 Variances

• We will present expressions for totals.

• Expressions for averages simply follow from dividing the variances for the
estimators by 1/N 2.

• Note that the simple cluster expression is a special case of the self-weighted
expression, since for simple cluster sampling f2 = 1 so that the second terms
vanish.

• Expressions for non-self-weighted samples exist as well: versions of these will be
discussed in Part VIII.
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Variances for Total

Quantity Calculated Estimated

Population S2
1Y =

1

M − 1

M∑

I=1
(YI − Y )2 ŝ2

1y =
1

m− 1

m∑

i=1
(yI − y)2

S2
2Y =

1

N

M∑

I=1

NI

NI − 1

NI∑

J=1
(YIJ − Y I)

2 ŝ2
2y =

1

n

m∑

i=1

ni

ni − 1

ni∑

j=1
(yij − yi)

2

Self-weighted σ2
ŷ =

M2

m
(1− f1)S

2
1Y σ̂2

ŷ =
M2

m
(1 − f1)ŝ

2
1y

+
M2

m

N
2

n
(1− f2)S

2
2Y +

M2

m

N
2

n
(1− f2)ŝ

2
2y

Simple cluster σ2
ŷ =

M2

m
(1− f1)S

2
1Y σ̂2

ŷ =
M2

m
(1 − f1)ŝ

2
1y
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17.3 Example: Artificial Population

• In Section 14.4, the intra-cluster (intraclass) correlations were calculated for SRS
(without and with replacement), SYS (lists L1, L2, and L3), and STRAT (Ps1

and Ps1).

• Given the identication between clustering and systematic sampling in this case, we
can preserve the table:
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Method Variance ρ Relationship

SRS (without) 0.4167 -0.33 0.4167
1−0.33×(2−1)

= 0.6250

SRS (with) 0.6250 0.00 0.6250
1+0.00×(2−1)

= 0.6250

SYS(L1)≡CLUST(Pc1) 0.2500 -0.60 0.2500
1−0.60×(2−1)

= 0.6250

SYS(L2)≡CLUST(Pc2) 1.0000 0.60 1.0000
1+0.60×(2−1) = 0.6250

SYS(L3)≡CLUST(Pc3) 0.0000 -1.00 undetermined

STRAT(Ps1) 0.1250 -0.80 0.1250
1−0.80×(2−1) = 0.6250

STRAT(Ps2) 0.6250 0.00 0.6250
1+0.00×(2−1) = 0.6250
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17.4 Example: Surveytown

• In Section 9.3, two lists were considered:

LX = (1 2 3 4 5 6 7 8)

LZ = (2 6 5 3 7 1 4 8)

based on, respectively,

. XI : number of building lots in block I

. ZI : number of newspapers delivered in block I

Survey Methods & Sampling Techniques 444



• In Section 13.5, two stratifications were considered, based on the same
information:

PsX = ( 1 2 3 4 | 5 6 7 8 )

PsZ = ( 2 6 5 3 | 7 1 4 8 )

• Carrying the idea further, assume we have two ways of defining clusters:

PcX =

 {1, 2}, {3, 4}, {5, 6}, {7, 8}




PcZ =

 {1, 7}, {2, 6}, {3, 5}, {4, 8}




• Selecting, as usual, samples of size n = 2, implies that every sample reduces to
just a single cluster:
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ScX =


 {1, 2}, {3, 4}, {5, 6}, {7, 8}





ScZ =


 {1, 7}, {2, 6}, {3, 5}, {4, 8}




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Ps ŷs

Systematic Clustered Systematic Clustered

s Sample SRS LX LZ PcX PcZ SRS LX LZ PcX PcZ

1 {1,2} 1/28 0 0 1/4 0 12 12

2 {1,3} 1/28 0 0 0 0 16

3 {1,4} 1/28 0 0 0 0 20

4 {1,5} 1/28 1/4 0 0 0 24 24

5 {1,6} 1/28 0 1/4 0 0 28 28

6 {1,7} 1/28 0 0 0 1/4 32 32

7 {1,8} 1/28 0 0 0 0 36

8 {2,3} 1/28 0 0 0 0 20

9 {2,4} 1/28 0 0 0 0 24

10 {2,5} 1/28 0 0 0 0 28

11 {2,6} 1/28 1/4 0 0 1/4 32 32 32

12 {2,7} 1/28 0 1/4 0 0 36 36

13 {2,8} 1/28 0 0 1/4 0 40 40

14 {3,4} 1/28 0 0 0 1/4 28 28

15 {3,5} 1/28 0 0 0 0 32

16 {3,6} 1/28 0 0 0 0 36
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Ps ŷs

Systematic Clustered Systematic Clustered

s Sample SRS LX LZ PcX PcZ SRS LX LZ PcX PcZ

17 {3,7} 1/28 1/4 0 0 0 40 40

18 {3,8} 1/28 0 1/4 0 0 44 44

19 {4,5} 1/28 0 1/4 0 0 36 36

20 {4,6} 1/28 0 0 0 0 40

21 {4,7} 1/28 0 0 0 0 44

22 {4,8} 1/28 1/4 0 0 1/4 48 48 48

23 {5,6} 1/28 0 0 1/4 0 44 44

24 {5,7} 1/28 0 0 0 0 48

25 {5,8} 1/28 0 0 0 0 52

26 {6,7} 1/28 0 0 0 0 52

27 {6,8} 1/28 0 0 0 0 56

28 {7,8} 1/28 0 0 1/4 0 60 60

Expectation 36 36 36 36 36

Variance 144 80 32 320 48

Standard error 12.00 8.94 2.83 17.89 6.93
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• The expectations for the total:

PcX : E(y) =
1

4
· [12 + 28 + 44 + 60] =

144

4
= 36

PcZ : E(y) =
1

4
· [32 + 32 + 32 + 48] =

144

4
= 36

• Hence, both lists produce unbiased estimators.

• The variances:

PcX : σ2
y =

(12 − 36)2 + (28− 36)2 + (44− 36)2 + (60 − 36)2

4
=

1280

4
= 320

PcZ : σ2
y =

(32 − 36)2 + (32− 36)2 + (32− 36)2 + (48 − 36)2

4
=

192

4
= 48

• Recall that the variance under SRS was 144.

• PcX increases variability dramatically, while PsZ decreases variability, relative to
SRS.
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• Yet, PcX is the more common, with positive correlation, that we will see in
practice.

• Using the SAS procedure MIXED, the intra-cluster correlation can be calculated,
based on the datasets:

Surveytown - Clust. based on X

Obs sample y

1 1 1

2 1 2

3 2 3

4 2 4

5 3 5

6 3 6

7 4 7

8 4 8

Surveytown - Clust. based on X

Obs sample y

1 1 1

2 1 2

3 2 3

4 2 4

5 3 5

6 3 6

7 4 7

8 4 8

Survey Methods & Sampling Techniques 450



• The correlations are:

ρPcX
= 0.9048

ρPcZ
= −0.7143

• In Parts IV and VI, we obtained relationships between variances, which we can
now extend:

σ2
ŷ,SRS(with)

1+ρSRS(with)(n−1)
=

σ2
ŷ,SRS(without)

1+ρSRS(without)(n−1)
=

σ2
ŷ,LX

1+ρLX
(n−1)

=
σ2
ŷ,LZ

1+ρLZ
(n−1)

=
σ2
ŷ,PsX

1+ρPsX
(n−1)

=
σ2
ŷ,PsZ

1+ρPsZ
(n−1)

=
σ2
ŷ,PcX

1+ρPcX
(n−1)

=
σ2
ŷ,PcZ

1+ρPcZ
(n−1)

168
1+0.0000×(2−1)

= 144
1−0.1429×(2−1)

= 80
1−0.5238×(2−1)

= 32
1−0.8095×(2−1)

= 40
1−0.7619×(2−1)

= 160
1−0.0476×(2−1)

= 320
1+0.9048×(2−1)

= 48
1−0.7143×(2−1)
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Rank Method Variance ρ

1 SYS (LZ) 32 -0.81

2 CLUST (PcZ) 48 -0.71

3 STRAT (PsX) 40 -0.76

4 SYS (LX) 80 -0.52

5 SRS (without) 144 -0.14

6 STRAT (PsZ) 160 -0.05

7 SRS (with) 168 0.00

8 CLUST (PcX) 320 +0.90
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17.5 Example: The Belgian Health Interview Survey

• Taking stratification into account, the means are recomputed for

. LNBMI

. LNVOEG

. GHQ12

. SGP

• The following program can be used:

proc surveymeans data=m.bmi_voeg mean stderr;

title ’two-stage (clustered) means - inf. pop. - Belgium and regions’;

where (regionch^=’’);

domain regionch;

cluster hh;

var lnbmi lnvoeg ghq12 sgp;

run;
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• The program includes the CLUSTER statement to acknowledge the two-stage
nature of the sampling.

• Note that including three or more stages is not possible.

• While it would be possible to include a finite sample correction, as we have seen,
the impact is so negligible that it has been omitted.

• The output takes the usual form, with now clustering information listed:

two-stage (clustered) means - infinite population for Belgium and regions

The SURVEYMEANS Procedure

Data Summary

Number of Clusters 4663

Number of Observations 8564
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Statistics

Std Error

Variable Mean of Mean

-------------------------------------------

LNBMI 3.187218 0.001999

LNVOEG 1.702951 0.010335

GHQ12 1.661349 0.032824

SGP 0.903540 0.003963

-------------------------------------------

Domain Analysis: REGIONCH

Std Error

REGIONCH Variable Mean of Mean

--------------------------------------------------------

Brussels LNBMI 3.175877 0.003630

LNVOEG 1.809748 0.018073

GHQ12 1.862745 0.062739

SGP 0.805632 0.009766

Flanders LNBMI 3.182477 0.003309

LNVOEG 1.516352 0.017246

GHQ12 1.385381 0.052202

SGP 0.952285 0.004709

Walloonia LNBMI 3.201530 0.003429

LNVOEG 1.801107 0.016963

GHQ12 1.772148 0.055780

SGP 0.938646 0.005284

--------------------------------------------------------
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• The summary:

Logarithm of Body Mass Index

Analysis Belgium Brussels Flanders Wallonia

SRS 3.187218(0.001845) 3.175877(0.003372) 3.182477(0.002993) 3.201530(0.003216)

Stratification 3.187218(0.001840) 3.175877(0.003373) 3.182477(0.002989) 3.201530(0.003217)

Clustering 3.187218(0.001999) 3.175877(0.003630) 3.182477(0.003309) 3.201530(0.003429)

Weighting 3.185356(0.002651) 3.171174(0.004578) 3.180865(0.003870) 3.198131(0.004238)

All combined 3.185356(0.003994) 3.171174(0.004844) 3.180865(0.004250) 3.198131(0.004403)

Logarithm of VOEG Score

Analysis Belgium Brussels Flanders Wallonia

SRS 1.702951(0.008954) 1.809748(0.016203) 1.516352(0.015201) 1.801107(0.014550)

Stratification 1.702951(0.008801) 1.809748(0.016206) 1.516352(0.015207) 1.801107(0.014427)

Clustering 1.702951(0.010355) 1.809748(0.018073) 1.516352(0.017246) 1.801107(0.016963)

Weighting 1.634690(0.013233) 1.802773(0.021831) 1.511927(0.019155) 1.803178(0.020426)

All combined 1.634690(0.014855) 1.802773(0.023135) 1.511927(0.021409) 1.803178(0.023214)
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General Health Questionnaire – 12

Analysis Belgium Brussels Flanders Wallonia

SRS 1.661349(0.029584) 1.862745(0.056894) 1.385381(0.046246) 1.772148(0.051023)

Stratification 1.661956(0.029452) 1.864301(0.056939) 1.385857(0.046211) 1.772148(0.050823)

Clustering 1.661349(0.032824) 1.862745(0.062739) 1.385381(0.052202) 1.772148(0.055780)

Weighting 1.626201(0.044556) 1.924647(0.076313) 1.445957(0.061910) 1.858503(0.078566)

All combined 1.626781(0.048875) 1.924647(0.080508) 1.446286(0.068931) 1.858503(0.084047)

Stable General Practitioner (0/1)

Analysis Belgium Brussels Flanders Wallonia

SRS 0.903540(0.003196) 0.805632(0.007826) 0.952285(0.003908) 0.938646(0.004382)

Stratification 0.903540(0.003116) 0.805632(0.007827) 0.952285(0.003902) 0.938646(0.004366)

Clustering 0.903540(0.003963) 0.805632(0.009766) 0.952285(0.004709) 0.938646(0.005284)

Weighting 0.932702(0.003498) 0.782448(0.011563) 0.954757(0.004722) 0.943191(0.005417)

All combined 0.932702(0.003994) 0.782448(0.013836) 0.954757(0.005379) 0.943191(0.006159)
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• We can make the following observations, when comparing clustering to SRS:

. The point estimates are invariant; clustering only affects the precision
estimates.

. The impact on LNBMI is small, a bit higher on LNVOEG, considerable on
GHQ-12, and large on SGP.

. The reason is that a variable like BMI, while open to genetic and
environmental factors, and therefore within-family association, changes a lot
between individuals.

In contrast, whether or not there is a stable GP, a family GP, is virtually a
HH-level decision.
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17.6 Sample Size Determination

• General expressions are complicated.

• They are similar to SRS for simple cluster sampling (next page).

• Expressions for sampling with equal probability: Levy and Lemeshow (1999,
p. 317).
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Situation Total (ŷ) Average (y)

Without replacement m =
M 2σ2

1Y

σ2
ŷ + Mσ2

1Y

m =
σ2

1Y

σ2
y + (1/M )σ2

1Y

With replacement m =
M 2σ2

1Y

σ2
ŷ

m =
σ2

1Y

σ2
y

M → +∞ — m =
σ2

1Y

σ2
y
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Chapter 18

Complex-Model-Based Analysis

. General principles

. Linear mixeld models (LMM)

. Generalized estimating equations (GEE)

. Generalized linear mixed models (GLMM)

. Application to the Belgian Health Interview Survey
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18.1 Principles

• Analysis methods in Chapter 17 are based on incorporating the multi-stage and/or
cluster aspects of the design into simple estimators (mean, total, proportion).

• Modern analysis tools for hierarchical data can be used.

• We have to distinguish between methods for continuous and binary data.

• In the binary data case, there are several non-equivalent options.
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18.2 Linear Mixed Models

• An instance of this model was used in Part IV, where we considered the set of
potential systematic samples as clusters.

• Virtually the same model can be used for mean (and total) estimation:

Yij = µ + bi + εij

. Yij is the observation for subject j in cluster i

. µ is the overall, population mean

. µ + bi is the cluster-specific average:

bi ∼ N (0, τ 2)
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. εij is an individual-level deviation:

εij ∼ N (0, σ2)

. We also term bi the cluster-specific deviation

. The following terminology is commonly used:

∗ µ is a fixed effect (fixed intercept).

∗ bi is a random effect (random intercept).

∗ εij is a residual deviation (‘error’ in samples).

• This is an instance of a linear mixed model.

• Verbeke and Molenberghs (2000)
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• Several extensions are possible:

. The mean µ can be expanded into a regression function (see Part IX).

. The single random effect can be supplemented with more random effects.

. The model can be formulated for three and more levels as well.

. For example,

Yijk = µ + bi + cij + εijk

∗ Yijk is the observation for subject k in household j in town i

∗ µ is the overall, population mean

∗ bi is the town-level effect

∗ cij is the household-level effect

∗ εij is the individual-level deviation
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. Typical distributional assumptions:

bi ∼ N (0, τ 2
town

)

cij ∼ N (0, τ 2
HH
)

εijk ∼ N (0, τ 2
ind
)

. This is a three-level model.

. When µ and/or bi and/or cij are made functions of covariates, we have a
so-called multi-level approach.

linear mixed model ≡ multi-level model
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• Parameter estimation:

. maximum likelihood (ML)

. restricted maximum likelihood (REML): small-sample correction of ML, to
reduce small-sample bias

• Targets of inference:

. fixed effects (e.g., µ)

. variance components (e.g., τ 2
town

, τ 2
HH
, and τ 2

ind
)

. random effects (e.g., bi and cij)

• Implementation via PROC MIXED
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18.2.1 Example: the Belgian Health Interview Survey

• Implementation of the basic, SRS analysis in PROC MIXED, to compute the
means for LNBMI, can be done with the following programs (Belgium and
regions):

proc mixed data=m.bmi_voeg method=reml;

title ’Survey mean with PROC MIXED, for Belgium’;

title2 ’SRS’;

where (regionch^=’’);

model lnbmi = / solution;

run;

proc mixed data=m.bmi_voeg method=reml;

title ’Survey mean with PROC MIXED, for regions’;

title2 ’SRS’;

where (regionch^=’’);

by regionch;

model lnbmi = / solution;

run;
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• This is a special version of the linear mixed model, without random effects, hence
ordinary linear regression.

• The following statements and options deserve attention:

. The WHERE and BY statements have their usual meaning.

. The MODEL statement specifies the mean structure:

∗ The intercept µ is included by default; this is why the right hand side of the
equality sign is empty.

∗ The ‘solution’ option requests estimates, standard errors,. . . for the fixed
effects.
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• Let us discuss selected output:

Survey mean with PROC MIXED, for Belgium

SRS

The Mixed Procedure

Dimensions

Covariance Parameters 1

Columns in X 1

Columns in Z 0

Subjects 1

Max Obs Per Subject 8564

Number of Observations

Number of Observations Read 8564

Number of Observations Used 8384

Number of Observations Not Used 180

. There is only one covariance parameter, the variance.

. Columns in X: the number of fixed effects; there is only one, the intercept.

. Columns in Z: the number of random effects; there are none.

. The number of subject s is not relevant when there is no hierarchy.
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. The number of observations per subject, since there is no subject specification,
is the actual number of measurements.

. Observations are not used whenever key variables are missing, e.g., when
LNBMI is not available.

Covariance Parameter

Estimates

Cov Parm Estimate

Residual 0.02853

Solution for Fixed Effects

Standard

Effect Estimate Error DF t Value Pr > |t|

Intercept 3.1872 0.001845 8383 1727.76 <.0001

. The covariance parameter is σ2, the estimated population variance.

. The intercept is the population average µ.

Survey Methods & Sampling Techniques 471



• The output for each of the regions separately takes entirely the same format.

• The version including clustering, i.e., a household-level random effect:

proc mixed data=m.bmi_voeg method=reml;

title ’Survey mean with PROC MIXED, for Belgium’;

title2 ’Two-stage (clustered)’;

where (regionch^=’’);

model lnbmi = / solution;

random intercept / subject=hh;

run;

• An additional statement is included:

. The RANDOM statement specifies the random effect bi:

∗ The keyword ‘intercept’ needs to be used (unlike in the MODEL statement).

∗ The ‘subject’ option specifies the level of independent replication.
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• The output changes:

Survey mean with PROC MIXED, for Belgium

Two-stage (clustered)

The Mixed Procedure

Dimensions

Covariance Parameters 2

Columns in X 1

Columns in Z Per Subject 1

Subjects 4663

Max Obs Per Subject 4

Number of Observations

Number of Observations Read 8564

Number of Observations Used 8384

Number of Observations Not Used 180

. There now are two covariance parameters, σ2 and τ 2.

. The ‘number of subjects’ is the number of households.

. The ‘max obs per subject’ is the (maximum) number of individuals within a
household.

. More observations are not used, since an additional variable in use, household
(hh), which can be missing, too.
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Covariance Parameter Estimates

Cov Parm Subject Estimate

Intercept HH 0.004289

Residual 0.02425

Solution for Fixed Effects

Standard

Effect Estimate Error DF t Value Pr > |t|

Intercept 3.1880 0.001991 4593 1601.34 <.0001

. There still is one population average estimated, µ̂ = 3.1880(0.0020).

. Both variance components are present:
̂
σ2 = 0.0243
̂
τ 2 = 0.0043

ρ̂ =
τ 2

σ2 + τ 2
=

0.0043

0.0243 + 0.0043
= 0.15

Survey Methods & Sampling Techniques 474



• The correlation ρ is the intra-cluster (intra-household) correlation.

• Note that the intra-household correlation depends on the endpoint; it is different
for different variables.

For example, for LNVOEG (details of output not shown), it changes to:

ρ̂LNVOEG =
τ 2

σ2 + τ 2
=

0.1804

0.4801 + 0.1804
= 0.27

• Summary of the various methods for mean estimation on LNBMI:
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Logarithm of Body Mass Index

Analysis Procedure Belgium Brussels Flanders Wallonia

SRS SURVEYMEANS 3.1872(0.0018) 3.1759(0.0034) 3.1825(0.0030) 3.2015(0.0032)

SRS MIXED 3.1872(0.0018) 3.1759(0.0034) 3.1825(0.0030) 3.2015(0.0032)

Stratification SURVEYMEANS 3.1872(0.0018) 3.1759(0.0034) 3.1825(0.0030) 3.2015(0.0032)

Clustering SURVEYMEANS 3.1872(0.0020) 3.1759(0.0036) 3.1825(0.0033) 3.2015(0.0034)

Clustering MIXED 3.1880(0.0020) 3.1761(0.0036) 3.1840(0.0033) 3.2022(0.0034)

Weighting SURVEYMEANS 3.1853(0.0027) 3.1712(0.0046) 3.1809(0.0039) 3.1981(0.0042)

Weighting MIXED 3.1854(0.0018) 3.1712(0.0034) 3.1809(0.0030) 3.1981(0.0032)

All combined SURVEYMEANS 3.1853(0.0040) 3.1712(0.0048) 3.1809(0.0043) 3.1981(0.0044)

Clust+Wgt MIXED 3.1865(0.0023) 3.1706(0.0039) 3.1817(0.0036) 3.1994(0.0038)

• SRS: Whether the procedure SURVEYMEANS or MIXED is used does not make
any difference.

• Clustering: There is a small difference between SURVEYMEANS and MIXED for
the parameter estimate, but not for the standard error.

This is due to a different handling of incomplete data.
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• Note that it is also possible to use the SURVEYREG procedure:

proc surveyreg data=m.bmi_voeg;

title ’Mean. Surveyreg, two stage (clustered), for regions’;

by regionch;

cluster hh;

model lnbmi = ;

run;

• The statements are self-explanatory, for example:

. Removing the BY statement produces the results for Belgium.

. Removing the CLUSTER statement leads to SRS.

. There is no right hand side in the model in the MODEL statement, since we
only want a mean≡intercept, which is included by default.
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. A selection from the output for Belgium, where clustering is taken into account:

Mean. Surveyreg, two stage (clustered), for Belgium

The SURVEYREG Procedure

Regression Analysis for Dependent Variable LNBMI

Data Summary

Number of Observations 8384

Mean of LNBMI 3.18722

Sum of LNBMI 26721.6

Design Summary

Number of Clusters 4594

Estimated Regression Coefficients

Standard

Parameter Estimate Error t Value Pr > |t|

Intercept 3.18721840 0.00199922 1594.23 <.0001
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∗ The data summary usefully contains the mean and the total.

∗ The regression coefficient, which in this case also is the mean, is
self-explanatory.

. Thus, results reported for SURVEYMEANS can also be considered as resulting
from SURVEYREG.
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18.3 Generalized Estimating Equations

• When an outcome is binary, one can calculate a proportion π, which is the
probability to belong to a group, to have a certain characteristic, etc.

• Alternatively, the logit can be calculated:

β = logit(π) = ln



π

1− π


 ,

π =
eβ

1 + eβ

• The model can then be written as:

logit[P (Yi = 1)] = β
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• Estimation of β typically proceeds through maximum likelihood estimation, which
necessitates numerical optimization, since no closed form exists.

• For SRS, this can be implemented the SAS procedures LOGISTIC and GENMOD

• For the clustered case, the correlation can be incorporated into the model:

logit[P (Yij = 1)] = β,

Corr(Yij, Yik) = α

• Note that we now need the double index again: i for household, j for individual
within household.

• β is the logit of the population proportion.

• α is the correlation between the outcome of two individuals within the same
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household.

• Full maximum likelihood estimation is tedious.

• Liang and Zeger (Biometrika 1986) have developed a convenient estimation
method: generalized estimating equations (GEE).

• A way to think about it is: correlation-corrected logistic regression.

• It can also be implemented using the SAS procedure GENMOD.
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18.3.1 Example: the Belgian Health Interview Survey

• We will estimate the mean (probability) for SGP:

. For Belgium and the regions.

. Under SRS and two-stage (cluster) sampling.

. Using:

∗ PROC SURVEYLOGISTIC for survey-design-based regression.

∗ PROC GENMOD for GEE.

• A PROC SURVEYLOGISTIC program for the two-stage case and for the regions
is:

proc surveylogistic data=m.bmi_voeg;

title ’22. Mean. Surveylogistic, two-stage (clustered), for regions’;

by regionch;

cluster hh;

model sgp = ;

run;
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• The following statements deserve attention:

. The BY statement has the same meaning as in PROC MEANS.

. Dropping it produces estimates for Belgium.

. The CLUSTER statements has the same meaning as in PROC
SURVEYMEANS.

. Dropping it produces SRS estimates.

. The MODEL specifies the outcome, SGP in our case.

. There are no covariates and there is an intercept by default, which is why the
right hand side is empty.
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• Let us discuss selected output, for SRS and for Belgium:

15. Mean. Surveylogistic, SRS, for Belgium

The SURVEYLOGISTIC Procedure

Model Information

Data Set M.BMI_VOEG

Response Variable SGP

Number of Response Levels 2

Model Binary Logit

Optimization Technique Fisher’s Scorng

Number of Observations Read 8564

Number of Observations Used 8532

Response Profile

Ordered Total

Value SGP Frequency

1 0 823

2 1 7709

Probability modeled is SGP=0.

NOTE: 32 observations were deleted due to missing values for the response or explanatory

variables.
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. The ‘two response levels’ refers to the fact that we have a dichotomous
outcome, and we are given the raw frequencies of these, together with
information about missingness.

. The optimization method is Fisher’s scoring, an iterative method: logistic
regression and its extensions like survey-design-based logistic regression
requires iterative optimization.

Analysis of Maximum Likelihood Estimates

Standard Wald

Parameter DF Estimate Error Chi-Square Pr > ChiSq

Intercept 1 -2.2372 0.0367 3721.3534 <.0001

. The parameter estimate is a negative value!

. This is because the logit of the probability of not having a stable GP is
modeled:

logit[P (Yij = 0)] = β
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where Yij = 0 if respondent j in househoold i does not have a stable GP.

. It then follows that

π̂ =
e−β̂

1 + e−β̂
=

e2.2372

1 + e2.2372
= 0.9035

which is the same value as obtained with PROC SURVEYMEANS.

. The standard error for π follows from the delta method:

σ̂π̂ = π̂[1− π̂]σ̂β̂ = 0.9035 × 0.0965 × 0.0367 = 0.0032

which is the same value as obtained with PROC SURVEYMEANS.

. When clustering is taken into account, we obtain
̂β = −2.2372(s.e. 0.0455) ⇒ π̂ = 0.9035(s.e. 0.0040)

This too, coincides with the SURVEYMEANS result.

• Conclusion: estimating a proportion (and s.e.) with PROC SURVEYMEANS ≡
estimating the logit of the proportion (and s.e.) with PROC SURVEYLOGISTIC.
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This is true for every collection of design aspects taken into account.

• Switching to GEE with PROC GENMOD, for the two-stage case and the regions:

proc genmod data=m.bmi_voeg;

title ’30. Mean. GEE logistic regression, for regions’;

title2 ’Two-stage (clustered)’;

by regionch;

class hh;

model sgp = / dist=b;

repeated subject = hh / type=cs corrw modelse;

run;

• The following statements deserve attention:

. The BY statement has the same meaning as before.

. Dropping it produces estimates for Belgium.

. The MODEL specifies the outcome, SGP in our case.
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∗ Since there are no covariates and since the intercept is included by default,
the right hand side is empty.

∗ The ‘dist=b’ option specified a Bernoulli distribution, which comes with the
logit link as the default link function.

∗ This specification is necessary since the procedure also performs linear
regression, Poisson regression, probit regression, etc.

. Clustering is now accounted for in a different way, through the so-called
marginal correlation structure:

∗ The REPEATED statement ensures we are using GEE.

∗ The ‘subject=’ option specifies the independent blocks, effectively ensuring
a two-stage analysis with HH and individuals.

∗ The ‘type=’ option specifies the correlation structure, which here is
compound symmetry, i.e., all correlations within a household are assumed
equal.

∗ Even if this is not true, the resulting estimates and standard errors are still
valid!
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This is a main advantage of the method.

∗ The ‘corrw’ option requests printing of the correlation structure (also named
the working correlation structure.

∗ The ‘modelse’ option requests an alternative set of standard errors, valid
only when the correlation structure is correctly specified.

It is advisable to always use the other set of standard errors: named the
robust, sandwich, or empirically corrected standard errors.

∗ The CLASS statement is needed, since the subject variable needs to be a
class variable.

. Dropping the REPEATED and CLASS statements produces SRS estimates.
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• Let us discuss selected output, for SRS and for Belgium:

25. Mean. GEE logistic regression, for Belgium

SRS

The GENMOD Procedure

Model Information

Data Set M.BMI_VOEG

Distribution Binomial

Link Function Logit

Dependent Variable SGP

Number of Observations Read 8564

Number of Observations Used 8532

Number of Events 823

Number of Trials 8532

Missing Values 32

Response Profile

Ordered Total

Value SGP Frequency

1 0 823

2 1 7709

PROC GENMOD is modeling the probability that SGP=’0’. One way to change this to model the

probability that SGP=’1’ is to specify the DESCENDING option in the PROC statement.
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. The ‘book keeping’ information is similar to the one produced by PROC
SURVYELOGISTIC.

Analysis Of Parameter Estimates

Standard Wald 95% Confidence Chi-

Parameter DF Estimate Error Limits Square Pr > ChiSq

Intercept 1 -2.2372 0.0367 -2.3091 -2.1653 3721.79 <.0001

. The parameter estimate and standard error is exactly the same as with PROC
SURVEYLOGISTIC.

. Hence, also the derived probability and its standard error is the same.

• Let us switch to the output for the clustered case, where genuine GEE is used,
through the REPEATED statement.

• The output is more extensive than in the above case, which was in fact merely
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ordinary logistic regression.

• The same book keeping information is provided and we do not print it again.
But more information is produced:

29. Mean. GEE logistic regression, for Belgium

Two-stage (clustered)

GEE Model Information

Correlation Structure Exchangeable

Subject Effect HH (4663 levels)

Number of Clusters 4663

Clusters With Missing Values 30

Correlation Matrix Dimension 4

Maximum Cluster Size 4

Minimum Cluster Size 0

. This information is geared towards the two-level structure of the model.

. The maximum cluster size refers, again, to the fact that at most 4 individuals
per household are interviewed.
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• Three sets of parameter estimates are produced:

Analysis Of Initial Parameter Estimates

Standard Wald 95% Confidence Chi-

Parameter DF Estimate Error Limits Square Pr > ChiSq

Intercept 1 -2.2372 0.0367 -2.3091 -2.1653 3721.79 <.0001

Analysis Of GEE Parameter Estimates

Empirical Standard Error Estimates

Standard 95% Confidence

Parameter Estimate Error Limits Z Pr > |Z|

Intercept -2.1504 0.0435 -2.2358 -2.0651 -49.39 <.0001

Analysis Of GEE Parameter Estimates

Model-Based Standard Error Estimates

Standard 95% Confidence

Parameter Estimate Error Limits Z Pr > |Z|

Intercept -2.1504 0.0425 -2.2337 -2.0671 -50.59 <.0001
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. The initial estimates are equal to the SRS ones; they are included to start up
the iterative GEE estimation process.

They should not be used for inferences.

. The model-based estimates are valid only when the working correlation is
correct.

They should not be used for inferences.

. The empirically corrected estimates are the proper GEE estimates.

They are the ones to be used for inferences.

. In our case, the latter two sets are very similar, indicating that a common
within-HH correlation is sensible.

. The within-HH correlation is estimated and part of the output as well:

Exchangeable Working

Correlation

Correlation 0.4522999388
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• Note that now the parameter estimates are different from their
SURVEYLOGISTIC counterparts. We now have:

̂β = −2.1504(s.e. 0.0435) ⇒ π̂ = 0.8957(s.e. 0.0041)

Nevertheless, they are close to each other.

• We can expand the summary table for SGP with our new analyses:
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Stable General Practitioner (0/1) — Marginal Models

Analysis Procedure Par. Belgium Brussels Flanders Wallonia

SRS SURVEYMEANS π 0.9035(0.0032) 0.8056(0.0078) 0.9523(0.0039) 0.9386(0.0044)

SRS SURVEYLOGISTIC. −β 2.2372(0.0367) 1.4219(0.0050) 2.9936(0.0860) 2.7278(0.0761)

SRS SURVEYLOGISTIC. π 0.9035(0.0032) 0.8056(0.0078) 0.9523(0.0039) 0.9386(0.0044)

SRS GENMOD −β 2.2372(0.0367) 1.4219(0.0050) 2.9936(0.0860) 2.7278(0.0761)

SRS GENMOD π 0.9035(0.0032) 0.8056(0.0078) 0.9523(0.0039) 0.9386(0.0044)

Strat. SURVEYMEANS π 0.9035(0.0031) 0.8056(0.0078) 0.9522(0.0039) 0.9386(0.0044)

Strat. SURVEYLOGISTIC −β 2.3272(0.0358) 1.4219(0.0050) 2.9936(0.0859) 2.7278(0.0758)

Strat. SURVEYLOGISTIC π 0.9035(0.0031) 0.8056(0.0078) 0.9522(0.0039) 0.9386(0.0044)

Clust. SURVEYMEANS π 0.9035(0.0040) 0.8056(0.0098) 0.9523(0.0047) 0.9386(0.0053)

Clust. SURVEYLOGISTIC −β 2.2372(0.0455) 1.4219(0.0624) 2.9936(0.1037) 2.7278(0.0918)

Clust. SURVEYLOGISTIC π 0.9035(0.0040) 0.8056(0.0098) 0.9523(0.0047) 0.9386(0.0053)

Clust. GENMOD −β 2.1504(0.0435) 1.3784(0.0591) 2.9188(0.1019) 2.6470(0.0890)

Clust. GENMOD π 0.8957(0.0040) 0.7987(0.0095) 0.9488(0.0050) 0.9338(0.0055)

Wgt. SURVEYMEANS π 0.9327(0.0035) 0.7824(0.0116) 0.9548(0.0047) 0.9432(0.0054)

Wgt. SURVEYLOGISTIC −β 2.6290(0.0557) 1.2800(0.0679) 3.0494(0.1093) 2.8096(0.1011)

Wgt. SURVEYLOGISTIC π 0.9327(0.0035) 0.7824(0.0116) 0.9548(0.0047) 0.9432(0.0054)

Wgt. GENMOD −β 2.6290(0.0642) 1.2800(0.0813) 3.0494(0.1245) 2.8096(0.1150)

Wgt. GENMOD π 0.9327(0.0040) 0.7824(0.0138) 0.9548(0.0054) 0.9432(0.0062)

All SURVEYMEANS π 0.9327(0.0040) 0.7824(0.0138) 0.9548(0.0054) 0.9432(0.0062)

All SURVEYLOGISTIC −β 2.6290(0.0636) 1.2800(0.0813) 3.0494(0.1245) 2.8096(0.1150)

All SURVEYLOGISTIC π 0.9327(0.0040) 0.7824(0.0138) 0.9548(0.0054) 0.9432(0.0062)

Cl.+Wt. GENMOD −β 2.5233(0.0659) 1.2014(0.0839) 2.9693(0.1284) 2.7251(0.1186)

Cl.+Wt. GENMOD π 0.9258(0.0045) 0.7688(0.0149) 0.9512(0.0060) 0.9385(0.0068)
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• In summary, we note the following:

. SURVEYLOGISTIC consistently produces the same estimates as
SURVEYMEANS for the probability, upon transformation.

. SRS: GEE (GENMOD) produces the same estimates and standard errors as the
other methods.

. Clustering: GEE (GENMOD) produces slightly different estimates and standard
errors.

. Whatever method chosen, the inferences will be the same.

. The advantage of the SURVEYMEANS procedure is that direct estimates are
obtained; no need to transform.

. The advantage of the modelling procedures is that they allow for more complex
models, as we will see in Part IX.
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18.4 Generalized Linear Mixed Models

• We already considered two models to account for clustering:

. The LMM, through random effects:

. Yij = µ + bi + εij

. bi ∼ N (0, τ 2)

. εij ∼ N (0, σ2)

. GEE, through marginal correlation:

. P (Yij = 1) = eβ

1+eβ

. Corr(Yij, Yik) = α
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• Aspects of both can be combined, to produce the generalized linear mixed model
(GLMM):

P (Yij = 1) =
eβ+bi

1 + eβ+bi

bi ∼ N (0, τ 2)

• There are a few important differences:

. Unlike with the LMM and GEE, it is not straightforward to calculate/obtain
the intra-cluster correlation.

. ML is an obvious candidate for parameter estimation.
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. But: the likelihood contribution for cluster (household) i is:

Li =
∫ ni∏

j=1

yij · eβ+bi

1 + eβ+bi
· ϕ(bi|τ 2) dbi

where ϕ(bi|τ 2) is the normal density.

. There exists no closed-form solution for this integral.

• The stated problem has led to two main approximation approaches:

. Numerical integration: implemented in the SAS procedure NLMIXED.

∗ Allows for high accuracy.

∗ Time consuming.

∗ A bit harder to program.

. Taylor series expansions: implemented in the SAS procedure GLIMMIX.

∗ Bias due to poor approximation.

∗ As easy to use as the MIXED and GENMOD procedures.
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18.4.1 Example: the Belgian Health Interview Survey

• We will estimate the mean (probability) for SGP:

. For Belgium and the regions.

. Under SRS and two-stage (cluster) sampling.

. Using PROC GLIMMIX for the GLMM.

. Using PROC NLMIXED for the GLMM.
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• A PROC GLIMMIX program for the two-stage case and for the regions is:

proc glimmix data=m.bmi_voeg;

title ’42. Mean. GLMM, for regions’;

title2 ’with proc glimmix’;

title3 ’two-stage (cluster)’;

nloptions maxiter=50;

by regionch;

model sgp = / solution dist=b;

random intercept / subject = hh type=un;

run;

• The following statements deserve attention:

. The MODEL specifies the outcome, SGP in our case.

∗ Since there are no covariates and since the intercept is included by default,
the right hand side is empty.

∗ The ‘dist=b’ option specifies a Bernoulli distribution, which comes with the
logit link as the default link function.
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∗ This specification is necessary since the procedure also performs linear
regression, Poisson regression, probit regression, etc.

. Like in the MIXED procedure, we specify clustering through the RANDOM
statement:

∗ The ‘subject=’ option specifies the independent blocks, effectively ensuring
a two-stage analysis with HH and individuals.

∗ The ‘type=’ option specifies the correlation structure, which here is
unstructured.

This actually does not matter here, since there is only one random effect,
and then the ‘covariance structure’ simply is the variance of this single
random effec.

∗ Unlike in GENMOD, we do not need the CLASS statement, although it is
fine to include it for HH: it simply has no impact in this situation.

. Dropping the RANDOM statement produces SRS estimates.
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• Let us discuss selected output, for SRS and for Belgium:

37. Mean. GLMM, for Belgium

with proc glimmix

SRS

The GLIMMIX Procedure

Model Information

Data Set M.BMI_VOEG

Response Variable SGP

Response Distribution Binomial

Link Function Logit

Variance Function Default

Estimation Technique Maximum Likelihood

Number of Observations Read 8564

Number of Observations Used 8532

Dimensions

Columns in X 1

Columns in Z 0

Subjects (Blocks in V) 1

Max Obs per Subject 8532

. Similar book keeping information than with the GENMOD and MIXED
procedures is provided.
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. The X and Z columns have the same meaning as in the MIXED procedure.

Iteration History

Objective Max

Iteration Restarts Evaluations Function Change Gradient

0 0 4 2736.7999556 . 227.8632

1 0 3 2706.9270419 29.87291375 20.39023

2 0 3 2706.6515674 0.27547449 0.218305

3 0 3 2706.6515354 0.00003204 0.000026

4 0 8 2706.6515354 -0.00000000 0.000026

Convergence criterion (GCONV=1E-8) satisfied.

. The iteration panel gives details about the numerical convergence.

. A similar panel actually is given for GENMOD too, but thre it is less relevant.

. Here, it is best to monitor it, especially since the number of iterations is by
default equal to 20.

. It is therefore better to increase it, has we have done using the NLOPTIONS
statement.
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Parameter Estimates

Standard

Effect Estimate Error DF t Value Pr > |t|

Intercept 2.2372 0.03667 8531 61.01 <.0001

. The parameter estimates are the same as with the SURVEYLOGISTIC and
GENMOD procedures.

. This is to be expected with SRS, since in this case everything reduces to
ordinary logistic regression.

. We therefore still find:

̂β = −2.2372( s.e. 0.0367) ⇒ π̂ = 0.9035( s.e. 0.0032)
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• Let us switch to the output for the clustered case:

41. Mean. GLMM, for Belgium

with proc glimmix

two-stage (cluster)

The GLIMMIX Procedure

Dimensions

G-side Cov. Parameters 1

Columns in X 1

Columns in Z per Subject 1

Subjects (Blocks in V) 4663

Max Obs per Subject 4

Iteration History

Objective Max

Iteration Restarts Subiterations Function Change Gradient

0 0 4 40394.419563 0.92175167 1.2E-6

1 0 4 41863.211127 0.56258530 0.003163

...

12 0 1 42683.59837 0.00000019 0.000012

13 0 0 42683.598628 0.00000000 1.407E-6

Convergence criterion (PCONV=1.11022E-8) satisfied.
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. A portion of the book keeping information that has changed is displayed.

. There now is 1 random effect: 1 column in the Z matrix.

. The convergence was a little more difficult, necessitating 13 iterations.

Covariance Parameter Estimates

Cov Standard

Parm Subject Estimate Error

UN(1,1) HH 1.7506 0.1215

Solutions for Fixed Effects

Standard

Effect Estimate Error DF t Value Pr > |t|

Intercept 2.3723 0.04431 4661 53.54 <.0001

. We obtain the following probability:
̂β = −2.3723( s.e. 0.0443) ⇒ π̂ = 0.9147( s.e. 0.0035)

. The estimate for β is supplemented with an estimate for the random effects
variance: τ̂ 2 = 1.75 with s.e. 0.12.
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. ̂β and its standard error is not very different from what was obtained with the
GENMOD procedure.

. The latter is a subtle point, we will return to it after having discussed the
NLMIXED program and output.

• We can now consider the NLMIXED program, allowing for clustering and intended
for the regions:

proc nlmixed data=m.bmi_voeg;

title ’36. Mean. GLMM, for regions’;

title2 ’Two-stage (clustered)’;

by regionch;

theta = beta0 + b;

exptheta = exp(theta);

p = exptheta/(1+exptheta);

model sgp ~ binary(p);

random b ~ normal(0,tau2) subject=hh;

estimate ’mean’ exp(beta0)/(1+exp(beta0));

run;
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• The following statements deserve attention:

. Dropping the BY statement produces the analysis for Belgium.

. The procedure is very different from virtually all other SAS procedures: it is
programming statements based.

. The MODEL statement specifies:

∗ the outcome (SGP)

∗ what distribution it follows (binary ≡ Bernoulli in this case)

∗ the parameter (p = π)

∗ The parameter p itself is modeled through user-defined modeling statements.

∗ ‘theta’ refers to the linear predictor:

θ = β0 + bi

∗ Then, the logistic transformation is applied to it.

∗ Note that the programming statements are certainly not uniquely defined.
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We could make the following replacement:

theta = beta0 + b;

exptheta = exp(theta);

p = exptheta/(1+exptheta);

--> p = exp(beta0 + b)/(1+exp(beta0 + b));

and reach the same result.

. the RANDOM statement specifies the random-effects structure:

∗ The ‘subject=’ option specifies the independent blocks, effectively ensuring
a two-stage analysis with HH and individuals.

∗ The random effect itself is part of the programming statements.

∗ It is then declared to follow a distribution, always the normal distribution in
this procedure, in the RANDOM statement.

∗ The mean and variance of this normal distribution are open to programming
statements, too.
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. Dropping the RANDOM statement produces SRS estimates.

. The ESTIMATE statement allows for the estimation of additional, perhaps
non-linear, functions of the fixed effect.

This allows for the direct calculation of the probabilities π from the
parameter β.
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• Let us discuss selected output, for SRS and for Belgium:

33. Mean. GLMM, for Belgium

SRS

The NLMIXED Procedure

Specifications

Data Set M.BMI_VOEG

Dependent Variable SGP

Distribution for Dependent Variable Binary

Optimization Technique Dual Quasi-Newton

Integration Method None

Dimensions

Observations Used 8532

Observations Not Used 32

Total Observations 8564

Parameters 1

Iteration History

Iter Calls NegLogLike Diff MaxGrad Slope

1 2 2725.83958 769.9091 158.5903 -21656.3

2 4 2707.66728 18.1723 39.41302 -22.7041

3 5 2706.66115 1.006124 3.77702 -2.24629

4 6 2706.65154 0.009614 0.078502 -0.01883

5 7 2706.65154 4.144E-6 0.000161 -8.3E-6

NOTE: GCONV convergence criterion satisfied.
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. Very similar book keeping information is provided.

. There is no integration done here, since there are no random effects.

Parameter Estimates

Standard

Parameter Estimate Error DF t Value Pr > |t| Alpha Lower Upper

beta0 2.2372 0.03667 8532 61.01 <.0001 0.05 2.1653 2.3091

Additional Estimates

Standard

Label Estimate Error DF t Value Pr > |t| Alpha Lower Upper

mean 0.9035 0.003196 8532 282.70 <.0001 0.05 0.8973 0.9098

. The parameter estimate for β is the same as in all previous situations, again in
line with expectation.

. The additional estimate is the value for π we had obtained before: we do not
have to calculate it ‘by hand’ now, nor do we have to apply the delta method
ourselves.
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• Let us switch to the output for the clustered case:

35. Mean. GLMM, for Belgium

Two-stage (clustered)

The NLMIXED Procedure

Specifications

Data Set M.BMI_VOEG

Dependent Variable SGP

Distribution for Dependent Variable Binary

Random Effects b

Distribution for Random Effects Normal

Subject Variable HH

Optimization Technique Dual Quasi-Newton

Integration Method Adaptive Gaussian

Quadrature

Dimensions

Observations Used 8532

Observations Not Used 32

Total Observations 8564

Subjects 4662

Max Obs Per Subject 4

Parameters 2

Quadrature Points 5
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Iteration History

Iter Calls NegLogLike Diff MaxGrad Slope

1 2 2599.27784 879.9741 207.2481 -15933

2 4 2476.0613 123.2165 52.73273 -69.296

3 6 2408.63443 67.42687 10.91307 -48.9939

4 8 2398.94442 9.690011 7.353038 -7.55216

5 10 2398.55311 0.391314 2.985487 -0.44299

6 12 2398.51796 0.035144 0.95577 -0.03342

7 14 2398.51452 0.003439 0.041302 -0.00531

8 16 2398.51451 9.34E-6 0.000327 -0.00002

NOTE: GCONV convergence criterion satisfied.

. There is a random effect now, and consequently the so-called ‘adaptive
Gaussian quadrature’ method, for numerical integration is used.

The method is efficient but time consuming.

. The iteration process has been relatively straightforward.
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Parameter Estimates

Standard

Parameter Estimate Error DF t Value Pr > |t| Alpha Lower Upper

beta0 4.3770 0.1647 4661 26.57 <.0001 0.05 4.0541 4.6999

tau2 7.8282 0.6424 4661 12.19 <.0001 0.05 6.5688 9.0875

Additional Estimates

Standard

Label Estimate Error DF t Value Pr > |t| Alpha Lower Upper

mean 0.9876 0.002018 4661 489.31 <.0001 0.05 0.9836 0.9915

. The model is the same as in the GLIMMIX case, but the estimates are totally
different.

. Let us bring together several estimates for the clustered-data case and for
Belgium:
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Estimate (s.e.)

Method Procedure β̂ π̂

Marginal approaches

logistic SURVEYMEANS — 0.9035 (0.0040)

logistic SURVEYLOGISTIC 2.2372 (0.0455) 0.9035 (0.0040)

GEE GENMOD 2.1504 (0.0435) 0.8957 (0.0040)

Random-effects approaches

GLMM GLIMMIX 2.3723 (0.0443) 0.9147 (0.0035)

GLMM NLMIXED 4.3770 (0.1647) 0.9876 (0.0020)

. This difference is spectacular and requires careful qualification.

. Note that the ‘true’ value is the number of people in the dataset with a stable
GP divided by the total number of people:

pragmatic estimate of π =
7709

7709 + 823
= 0.9035

which, of course, is in agreement with all of the SRS analyses.
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. Further:

∗ The survey-design based procedures are spot on.

∗ GEE is a little different, but close.

∗ GLIMMIX is a little different, but close, with the deviation going the other
way.

∗ NLMIXED is spectacularly different.

. The strong differences can be explained as follows:

∗ Consider our GLMM:

Yij|bi ∼ Bernoulli(πij), log




πij

1− πij


 = β0 + bi
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∗ The conditional means E(Yij|bi), are given by

E(Yij|bi) =
exp(β0 + bi)

1 + exp(β0 + bi)

∗ The marginal means are now obtained from averaging over the random
effects:

E(Yij) = E[E(Yij|bi)] = E




exp(β0 + bi)

1 + exp(β0 + bi)


 6= exp(β0)

1 + exp(β0)

. Hence, the parameter vector β in the GEE model needs to be interpreted
completely differently from the parameter vector β in the GLMM:

∗ GEE: marginal interpretation

∗ GLMM: conditional interpretation, conditionally upon level of random effects

. In general, the model for the marginal average is not of the same parametric
form as the conditional average in the GLMM.
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. For logistic mixed models, with normally distributed random random
intercepts, it can be shown that the marginal model can be well approximated
by again a logistic model, but with parameters approximately satisfying

̂
β

RE

̂
β

M
=
√

c2τ 2 + 1 > 1, τ 2 = variance random intercepts

c = 16
√

3/(15π)

. For our case:

̂
β

RE

̂
β

M
=

4.3770

2.1504
= 2.0354

√
c2τ 2 + 1 =

√
0.58812 × 7.3232 + 1 = 1.8795

. The relationship is not exact, but sufficiently close.
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. The interpretation of the random-effects-based β is:

The logit of having a stable GP for someone with HH-level effecgt bi = 0.

. The interpretation of the random-effects-based π is:

The probability of having a stable GP for someone with HH-level effect bi = 0.

. Thus, the probability corresponding to the average household is different from
the probability averaged over all households.

. All of these relationships would also hold for the GLIMMIX procedure, if it
were not so biased!

• We can further expand the summary table for SGP with our new analyses:
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Stable General Practitioner (0/1) — Marginal and Random-effects Models

Analysis Procedure Par. Belgium Brussels Flanders Wallonia

SRS SURVEYMEANS π 0.9035(0.0032) 0.8056(0.0078) 0.9523(0.0039) 0.9386(0.0044)

SRS SURVEYLOGISTIC −β 2.2372(0.0367) 1.4219(0.0050) 2.9936(0.0860) 2.7278(0.0761)

SRS SURVEYLOGISTIC π 0.9035(0.0032) 0.8056(0.0078) 0.9523(0.0039) 0.9386(0.0044)

SRS GENMOD −β 2.2372(0.0367) 1.4219(0.0050) 2.9936(0.0860) 2.7278(0.0761)

SRS GENMOD π 0.9035(0.0032) 0.8056(0.0078) 0.9523(0.0039) 0.9386(0.0044)

SRS GLIMMIX β 2.2372(0.0367) 1.4219(0.0050) 2.9936(0.0860) 2.7278(0.0761)

SRS GLIMMIX π 0.9035(0.0032) 0.8056(0.0078) 0.9523(0.0039) 0.9386(0.0044)

SRS NLMIXED β 2.2372(0.0367) 1.4219(0.0050) 2.9936(0.0860) 2.7278(0.0761)

SRS NLMIXED π 0.9035(0.0032) 0.8056(0.0078) 0.9523(0.0039) 0.9386(0.0044)

Strat. SURVEYMEANS π 0.9035(0.0031) 0.8056(0.0078) 0.9522(0.0039) 0.9386(0.0044)

Strat. SURVEYLOGISTIC −β 2.3272(0.0358) 1.4219(0.0050) 2.9936(0.0859) 2.7278(0.0758)

Strat. SURVEYLOGISTIC π 0.9035(0.0031) 0.8056(0.0078) 0.9522(0.0039) 0.9386(0.0044)

Clust. SURVEYMEANS π 0.9035(0.0040) 0.8056(0.0098) 0.9523(0.0047) 0.9386(0.0053)

Clust. SURVEYLOGISTIC −β 2.2372(0.0455) 1.4219(0.0624) 2.9936(0.1037) 2.7278(0.0918)

Clust. SURVEYLOGISTIC π 0.9035(0.0040) 0.8056(0.0098) 0.9523(0.0047) 0.9386(0.0053)

Clust. GENMOD −β 2.1504(0.0435) 1.3784(0.0591) 2.9188(0.1019) 2.6470(0.0890)

Clust. GENMOD π 0.8957(0.0040) 0.7987(0.0095) 0.9488(0.0050) 0.9338(0.0055)

Clust. GLIMMIX β 2.3723(0.0441) 1.5213(0.0628) 3.1433(0.0988) —

Clust. GLIMMIX π 0.9147(0.0034) 0.8207(0.0092) 0.9586(0.0039) —

Clust. NLMIXED β 4.3770(0.1647) 3.4880(0.3134) 8.4384(1.5434) 6.9047(0.8097)

Clust. NLMIXED π 0.9876(0.0020) 0.9703(0.0090) 0.9998(0.0003) 0.9990(0.0008)
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Stable General Practitioner (0/1) — Marginal and Random-effects Models

Analysis Procedure Par. Belgium Brussels Flanders Wallonia

Wgt. SURVEYMEANS π 0.9327(0.0035) 0.7824(0.0116) 0.9548(0.0047) 0.9432(0.0054)

Wgt. SURVEYLOGISTIC −β 2.6290(0.0557) 1.2800(0.0679) 3.0494(0.1093) 2.8096(0.1011)

Wgt. SURVEYLOGISTIC π 0.9327(0.0035) 0.7824(0.0116) 0.9548(0.0047) 0.9432(0.0054)

Wgt. GENMOD −β 2.6290(0.0642) 1.2800(0.0813) 3.0494(0.1245) 2.8096(0.1150)

Wgt. GENMOD π 0.9327(0.0040) 0.7824(0.0138) 0.9548(0.0054) 0.9432(0.0062)

Wgt. GLIMMIX β 2.6290(0.0557) 1.2800(0.0679) 3.0494(0.1093) 2.8096(0.1011)

Wgt. GLIMMIX π 0.9327(0.0035) 0.7824(0.0116) 0.9548(0.0047) 0.9432(0.0054)

All SURVEYMEANS π 0.9327(0.0040) 0.7824(0.0138) 0.9548(0.0054) 0.9432(0.0062)

All SURVEYLOGISTIC −β 2.6290(0.0636) 1.2800(0.0813) 3.0494(0.1245) 2.8096(0.1150)

All SURVEYLOGISTIC π 0.9327(0.0040) 0.7824(0.0138) 0.9548(0.0054) 0.9432(0.0062)

Cl.+Wgt. GENMOD −β 2.5233(0.0659) 1.2014(0.0839) 2.9693(0.1284) 2.7251(0.1186)

Cl.+Wgt. GENMOD π 0.9258(0.0045) 0.7688(0.0149) 0.9512(0.0060) 0.9385(0.0068)

Cl.+Wgt. GLIMMIX β 7.8531(0.1105) 5.1737(0.1906) 9.8501(0.1962) 8.7535(0.1850)

Cl.+Wgt. GLIMMIX π 0.9996(0.0000) 0.9944(0.0011) 0.9999(0.0000) 0.9998(0.0000)

• In summary, we note the following:

. Compared to the marginal approaches, β and π are not generally interpretable
as meaningful population quantities.

. In some cases, this has even lead to estimation issues:
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∗ When parameters are unstable and or diverge, one may need to include the
PARMS statement into the NLMIXED code. For example,

PARMS beta0=3.0 tau2=4.0;

∗ Nevertheless, the NLMIXED based estimates for π approach the boundary
of the [0, 1] interval when clustering is accounted for.

. It is possible to derive the marginal parameters, but this involves extra
numerical integration.

. Relative to the integration-based NLMIXED estimates, the GLIMMIX
estimates are biased downwards.

. Important uses for the GLMM method:

∗ When estimates are required at more than one level at the same time, e.g.,
town and/or HH and/or individual.

∗ As a flexible tool for regression, rather than for simple population-level
estimates (means, totals).
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Part VIII

Weighting
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18.5 General Concepts and Design

. The concept of weighting

. Weighting in the context of stratification

. Weighting in the context of clustering

. Selection proportional to size (PPS)

. Self-weighting

. Examples
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18.6 General Principles

• Weighting arises naturally in a variety of contexts:

. With stratification: different strata have different selection probabilities.

. With clustering: weights differ within and between clusters.

. In general: units are given probabilities of selection, e.g., proportional to their
size.

• We will consider the main ones in turn.
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• Estimators for averages and total then take the form:

y =

n∑

i=1
wiyi

n∑

i=1
wi

,

ŷ = N ·
n∑

i=1
wiyi

n∑

i=1
wi

.

• The unweighted expressions result from setting all wi equal to a constant.

Due to the division by the sum of weights, the actual constant is not important,
but sensible choices are 1 or 1/n.
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18.7 Weighting and Stratification

• There are two main reasons why selection probabilities are different between strata:

. A subgroup is of interest and not oversampling would lead to too small a
sample size.

Example: German Region in the Belgian HIS.

. Strata are given equal sample sizes for comparative purposes, but also an
estimate for the entire population is required.

Example: Brussels, Flanders, and Wallonia in the Belgian HIS.

. Units are then reweighted to ensure proper representativity.
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18.7.1 Example

• Suppose a certain subgroup represents 10% of the population.

• With an unweighted scheme (SRS or stratified), this group will also contribute
10% to the sample, on average.

• If we need a sample which includes 100 individuals of the subgroup, then a total
sample of 1000 individuals has to be selected.

• Enlarging the subgroup with 50% implies scaling up from 100 to 150, and hence
500 additional interviews for the entire sample are needed.

• It is perfectly possible that 50 extra interviews in the subgroup are essential, but
that the other 450 are redundant.
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• A solution is to increase the selection probability for the subgroup, relative to the
others.

Quantity Majority Minority

Population 4500 500

Percentage 90 10

Sample portion 1/10 1/5

Number selected 450 100

Unweighted percentage in sample 81.8 18.2

Weight 1 1/2

Weighted number in sample 450 50

Weighted percentage in sample 90 10
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• Unfortunately, it is not always possible to pre-determine whether a respondent
belongs to the majority or to the minority.

• This implies that determining the weight is difficult.

• As a surrogate, entire quarters (or other geographical entities) which are known to
have large minority populations can be oversampled.

• This procedure works, since the weighting is done at the quarter level, hence
producing correct weights, such as in the example above.

• If one calculates the subsample selection probability carefully, then it can be
ensured that the sample will contain a sufficient number of minority members.
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18.7.2 Example: Artificial Population

• In Section 13.4, stratification was considered

Ps1 = (1 2 | 3 4)

Ps2 = (1 4 | 2 3)

• Samples were selected proportional to the stratum size: 1 out of 2 units in each:
n = (1, 1).

• Consider a third stratification:

Ps3 = (1 | 2 3 4)

• Retain the sample size n = (1, 1)
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• The sampling mechanisms then are:

Ps

Stratified

s Sample SRS Ps1 Ps2 Ps3

1 {1,2} 1/6 0 1/4 1/3

2 {1,3} 1/6 1/4 1/4 1/3

3 {1,4} 1/6 1/4 0 1/3

4 {2,3} 1/6 1/4 0 0

5 {2,4} 1/6 1/4 1/4 0

6 {3,4} 1/6 0 1/4 0
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• The corresponding estimators are:

ŷ

Stratified

s Sample SRS Ps1 Ps2 Ps3

1 {1,2} 6 6 7

2 {1,3} 8 8 8 10

3 {1,4} 10 10 13

4 {2,3} 10 10

5 {2,4} 12 12 12

6 {3,4} 14 14
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• The expectations for the total:

Ps1 : E(y) =
1

4
· [8 + 10 + 10 + 12] = 10

Ps2 : E(y) =
1

4
· [6 + 8 + 12 + 14] = 10

Ps2 : E(y) =
1

4
· [7 + 10 + 13] = 10

• Hence, also the third stratification produces an unbiased estimator.
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• Very important:

The estimates differ depending on the sampling mechanism.

• Indeed, the sample {1, 2} produces 6 in the unweighted case and 7 in this
weighted case.

• This is because the weighted expression is used. For example:

ŷ = 4 ·
1

1/1
+ 2

1/3
1

1/1
+ 1

1/3

.

• The weights are the inverse of the selection probability.
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• The variances for SRS (without), SRS (with), and STRAT:

SRS (without) : σ2

y =
(6− 10)2 + (8− 10)2 + (10− 10)2 + (10− 10)2 + (12− 10)2 + (14− 10)2

6

=
40

6
= 6.667

SRS (with) :
2

16
· [(6− 10)2 + (8− 10)2 + (10− 10)2 + (10− 10)2 + (12− 10)2 + (14− 10)2]

+
1

16
· [(4− 10)2 + (8− 10)2 + (12− 10)2 + (16− 10)2] =

160

16
= 10.000

Ps1 : σ2

y =
(8− 10)2 + (10− 10)2 + (10− 10)2 + (12− 10)2

4
=

8

4
= 2.000

Ps2 : σ2

y =
(6− 10)2 + (8− 10)2 + (12− 10)2 + (14− 10)2

4
=

40

4
= 10.000

Ps3 : σ2

y =
(7− 10)2 + (10− 10)2 + (13− 10)2

3
=

18

3
= 6.000
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18.8 Weighting and Multi-Stage Sampling / Clustering

• In multi-stage sampling and clustering, subunits may be selected with differential
probabilities.

Example: Household members in the Belgian HIS.

• In addition, entire clusters may be selected with variable probabilities.

Example: Towns in the Belgian HIS.

• Just like in the stratified case, this needs to be taken into account via weights.
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18.8.1 Example

• Consider a selection of households from a population with two household types:

. 1000 2-person households of married couples.

. 1000 1-person households of singles.

• Obviously:

. 50% of the households consist of married couples.

. 66.7% of the people are married.

• Select a sample of 100 households, and then one person per household.

• We expect, on average, in the sample:

. 50 married persons.

. 50 unmarried persons.
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• If the survey question is: “Are your married?” then a naive estimate would
produce: ẑ = 50% are married, which is wrong.

• Weighting the answers by the relative selection probabilities:

ẑ1 =
50 · 1 · 1

1/2
+ 50 · 0 · 1

1/1

50 · 1
1/2

+ 50 · 1
1/1

=
100

150
= 0.667

• In case we want to assess the proportion of married households, then no weighting
is necessary:

ẑ2 =
50 · 1 + 50 · 0

50 + 50
=

50

100
= 0.5
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18.8.2 Example: Artificial Population

• In Section 16.5 we considered three ways of clustering:

Pc1 = ({1, 3}, {2, 4})

Pc2 = ({1, 2}, {3, 4})

Pc3 = ({1, 4}, {2, 3})

• Let us add another one:

Pc4 = ({1}, {2, 3, 4})
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• The sampling mechanisms for the original clusterings were:

Ps

Clustering

s Sample SRS P1 P2 P3

1 {1,2} 1/6 0 1/2 0

2 {1,3} 1/6 1/2 0 0

3 {1,4} 1/6 0 0 1/2

4 {2,3} 1/6 0 0 1/2

5 {2,4} 1/6 1/2 0 0

6 {3,4} 1/6 0 1/2 0
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• We cannot merely add the new samples, since they have a different, and in fact
differing sample size:

Sc4 = { {1}, {2, 3, 4} }

• Let us decide to change the selection probabilities so as to comply with selection
proportional to size (PPS):

s Sample Ps ŷ

1 {1} 1/4 4

2 {2,3,4} 3/4 12

• The expectation of the total:

Pc4 : E(y) =
1
4
× 4 + 3

4
× 12

1
4 + 3

4

= 10

Survey Methods & Sampling Techniques 546



• The variances for SRS (without), SRS (with), SYS, STRAT, and CLUST:

SRS (without) : σ2

y =
(6− 10)2 + (8− 10)2 + (10− 10)2 + (10− 10)2 + (12− 10)2 + (14− 10)2

6

=
40

6
= 6.667

SRS (with) :
2

16
· [(6− 10)2 + (8− 10)2 + (10− 10)2 + (10− 10)2 + (12− 10)2 + (14− 10)2]

+
1

16
· [(4− 10)2 + (8− 10)2 + (12− 10)2 + (16− 10)2] =

160

16
= 10.000

Pc1 : σ2

y =
(8− 10)2 + (12− 10)2

2
=

8

2
= 4.000

Pc2 : σ2

y =
(6− 10)2 + (14− 10)2

2
=

32

2
= 16.000

Pc3 : σ2

y =
(10− 10)2 + (10− 10)2

2
=

0.0

2
= 0.000

Pc4 : σ2

y =
1

4
(4− 10)2 +

3

4
(12− 10)2 = 9 + 3 = 12.000
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18.8.3 Example: Surveytown

• In Section 17.4, two clusterings were added to the designs already considered prior
to that section:

PcX =

 {1, 2}, {3, 4}, {5, 6}, {7, 8}




PcZ =

 {1, 7}, {2, 6}, {3, 5}, {4, 8}




• Samples of size n = 2 evidently were composed of a single cluster.

• The list of samples, next to some of the other designs (stratification not shown,
but to be found in Sections 13.5 and 14.5):
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Ps ŷs

Systematic Clustered Systematic Clustered

s Sample SRS LX LZ PcX PcZ SRS LX LZ PcX PcZ

1 {1,2} 1/28 0 0 1/4 0 12 12

2 {1,3} 1/28 0 0 0 0 16

3 {1,4} 1/28 0 0 0 0 20

4 {1,5} 1/28 1/4 0 0 0 24 24

5 {1,6} 1/28 0 1/4 0 0 28 28

6 {1,7} 1/28 0 0 0 1/4 32 32

7 {1,8} 1/28 0 0 0 0 36

8 {2,3} 1/28 0 0 0 0 20

9 {2,4} 1/28 0 0 0 0 24

10 {2,5} 1/28 0 0 0 0 28

11 {2,6} 1/28 1/4 0 0 1/4 32 32 32

12 {2,7} 1/28 0 1/4 0 0 36 36

13 {2,8} 1/28 0 0 1/4 0 40 40

14 {3,4} 1/28 0 0 0 1/4 28 28

15 {3,5} 1/28 0 0 0 0 32

16 {3,6} 1/28 0 0 0 0 36
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Ps ŷs

Systematic Clustered Systematic Clustered

s Sample SRS LX LZ PcX PcZ SRS LX LZ PcX PcZ

17 {3,7} 1/28 1/4 0 0 0 40 40

18 {3,8} 1/28 0 1/4 0 0 44 44

19 {4,5} 1/28 0 1/4 0 0 36 36

20 {4,6} 1/28 0 0 0 0 40

21 {4,7} 1/28 0 0 0 0 44

22 {4,8} 1/28 1/4 0 0 1/4 48 48 48

23 {5,6} 1/28 0 0 1/4 0 44 44

24 {5,7} 1/28 0 0 0 0 48

25 {5,8} 1/28 0 0 0 0 52

26 {6,7} 1/28 0 0 0 0 52

27 {6,8} 1/28 0 0 0 0 56

28 {7,8} 1/28 0 0 1/4 0 60 60

Expectation 36 36 36 36 36

Variance 144 80 32 320 48

Standard error 12.00 8.94 2.83 17.89 6.93
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• These clusterings provided unbiased estimators.

• Variances were:

PcX : σ2
y =

(12 − 36)2 + (28− 36)2 + (44− 36)2 + (60 − 36)2

4
=

1280

4
= 320

PcZ : σ2
y =

(32 − 36)2 + (32− 36)2 + (32− 36)2 + (48 − 36)2

4
=

192

4
= 48

• We noted that PcX increases variability dramatically, while PsZ decreases
variability, relative to SRS,

But also: that PcX is the more common choice in practice, with positive
correlation, that we will see in practice.

• The relative positions of the methods were:
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Rank Method Variance ρ

1 SYS (LZ) 32 -0.81

2 CLUST (PcZ) 48 -0.71

3 STRAT (PsX) 40 -0.76

4 SYS (LX) 80 -0.52

5 SRS (without) 144 -0.14

6 STRAT (PsZ) 160 -0.05

7 SRS (with) 168 0.00

8 CLUST (PcX) 320 +0.90
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• It is possible to reduce variability when using clustering, while using a more
relatistic method than switching to not-being-used-in-practice PcZ .

• This consists of ensuring clusters are:

. of variable size (number of blocks)

. homogeneous in the survey variable (number of buildings)

• As an example, consider one further clustering:

Pc3 =

 {1, 2, 3}, {4}, {5}, {6}, {7a}, {7b}, {8a}, {8b}



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Precisely, we:

. regroup small blocks

. leave medium sized blocks

. dissect large blocks

Cluster Blocks Y

1 1,2,3 6

2 4 4

3 5 5

4 6 6

5 7a 3

6 7b 4

7 8a 4

8 8b 4
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• Let us first take samples of size n = 1:

Sample s Blocks Y ŷ

1 1,2,3 6 48

2 4 4 32

3 5 5 40

4 6 6 48

5 7a 3 24

6 7b 4 32

7 8a 4 32

8 8b 4 32
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• The expectation is:

E(ŷ) =
1

8
[48 + 32 + 40 + 48 + 24 + 32 + 32 + 32] = 36

• This means we have an unbiased estimator.

• The variance is:

Pc3 : σ2
ŷ =

(48 − 36)2 + (32 − 36)2 + · · · + (32 − 36)2 + (32 − 36)2

8
=

512

8
= 64

• The corresponding variance for SRS with n = 1 was 336.
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• Let us take samples of size n = 2:

Sample s Clusters Blocks ŷ

1 {1,2} 1,2,3,4 40

2 {1,3} 1,2,3,5 44

... ... ... ...

27 {6,8} 7b,8b 32

28 {7,8} 8a,8b 32

• The list of estimates is

{ 40, 44, 48, 36, 40, 40, 40, 36, 40, 28, 32, 32, 32, 44,

32, 36, 36, 36, 36, 40, 40, 40, 28, 28, 28, 32, 32, 32 }
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• The expectation easily follows as

E(ŷ) =
1

28
[40 + 44 + · · · + 32 + 32] = 36

• The variance is:

Pc3 : σ2
ŷ =

(40− 36)2 + (44 − 36)2 + · · · + (32− 36)2 + (32− 36)2

8

=
768

28
= 27.4286

• The corresponding variance for SRS with n = 2 was 144.

• Just as before, we can calculate the within-sample correlations, which now is

ρPc3
= −0.8367
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• Placing the new estimator among the list of estimators with n = 2 produces:

Rank Method Variance ρ

0 CLUST (Pc3) 27 -0.84

1 SYS (LZ) 32 -0.81

2 CLUST (PcZ) 48 -0.71

3 STRAT (PsX) 40 -0.76

4 SYS (LX) 80 -0.52

5 SRS (without) 144 -0.14

6 STRAT (PsZ) 160 -0.05

7 SRS (with) 168 0.00

8 CLUST (PcX) 320 +0.90
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• The new estimator is the best one of all!

• Thus, selection proportional to size, as is done here through regrouping the units,
can be a very powerful tool to control variability.

Survey Methods & Sampling Techniques 560



Chapter 19

Analysis

. Selection Proportional to Size

. Self-weighting

. Horvitz-Thompson estimator

. Examples
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19.1 Selection Proportional to Size and Self-Weighting

• Define an estimator of the cluster-specific total as:

ŷi =
1

fi

ni∑

j=1
yij =

1

fi
· yi

• Define an estimator for the population total as:

ŷ =
m∑

i=1

1

m
· 1

πi
ŷi

=
m∑

i=1

1

m
· 1

πi
· 1

fi

ni∑

j=1
yij

=
m∑

i=1

1

m
· 1

πi
· 1

fi
· yi
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where

. fi is the sample fraction in selected cluster i

. πi is the probability to select cluster i

. yij is the value of the survey variable for subject j in cluster i

Survey Methods & Sampling Techniques 563



19.1.1 Self-Weighting

• Self-weighting is defined by requiring

f = n · πi · fi

to be constant.

• Hence, the estimator for the total reduces to:

ŷ =
m∑

i=1

1

m
· 1

πi
· 1

fi

ni∑

j=1
yij

=
m∑

i=1

1

f

ni∑

j=1
yij

=
1

f
· y
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• For the Belgian Health Interview Survey:

πi ∝ ti (town size)

fi ∝
50

ti

⇒ n · πi · fi ∝ n · ti ·
50

ti
a constant

Hence: the selection of respondents within towns is self-weighting.
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19.1.2 Variances for PPS

Quantity Expression

Pop. var. 1 S2
1Y =

M∑

I=1
πI




YI

MπI
− Y




2

=
1

M 2

M∑

I=1
πI



YI

πI
− Y




2

Pop. var. 2 S2
2Y =

N
2

N − n
· M∑

I=1

NI

N
· NI − n

NI
· 1

NI − 1

NI∑

J=1
(YIJ − Y J)2

PPS (with) σ2
ŷ =

M 2

m
S2

1Y +
M 2

m
· N

2

n
·

1− n

N


S2

2Y

PPS (without) σ2
ŷ =

M 2

m

M∑

I=1
πI



1− nπI

1− πI


 ·




YI

MπI
− Y


 +

M 2

m
· N

n
·

1− n

N


S2

2Y
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19.2 The Horvitz-Thompson Estimator

• The Horvitz-Thompson (HT) is general and broadly applicable.

• It can be a bit unstable at times.

• Alternatives, such as the Hansen-Hurwitz estimator exist.

• Let

. yi: total for cluster i (which can simply be an individual in the non-clustered
case)

. πi: probability of selecting cluster i

. v: number of distinct clusters sampled

Survey Methods & Sampling Techniques 567



• Note that v ≤ m, with equality holding when sampling without replacement.

• The Hovitz-Thompson estimator takes the form:

ŷHT =
v∑

i=1

yi

πi

• The variance:

σ2
ŷHT

=
M∑

I=1

1− πI

πI
Y 2

I +
M∑

I=1

∑

J 6=I



πIJ − πIπJ

πIπJ


 YIYJ

=
M∑

I=1

1− πI

πI
Y 2

I + 2
M−1∑

I=1

M∑

J=I+1



πIJ − πIπJ

πIπJ


 YIYJ

with now in addition

. πIJ : probability of simultaneously selecting clusters I and J into the sample.
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19.3 The Artificial Population and Horvitz-Thompson

• We will consider three situations

. SRS without replacement

. SRS with replacement

. Selection with unequal probabilities

• In all cases, n = 2 will be maintained.
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19.3.1 SRS Without Replacement

• The clusters in the population are:

P =



 {1}, {2}, {3}, {4}





• with samples:

S =



 {1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}





• The probability of selecting a ‘1’ (or any other unit) is

πI =
3

6
=

1

2
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• The estimator:

ŷHT =
y1

1/2
+

y2

1/2
= 2(y1 + y2) = 2 · y

• The variance:

σ2
ŷHT

=
4∑

I=1

1− πI

πI
Y 2

I + 2
3∑

I=1

4∑

J=I+1



πIJ − πIπJ

πIπJ


 YIYJ

= T1 + T2

with
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T1 =
4∑

I=1

1− 1/2

1/2
Y 2

I

=
4∑

I=1
Y 2

I

= 12 + 22 + 32 + 42

= 30

πIJ = P (selecting two units simultaneously)

= 2 · 1
4
· 1
3

=
1

6
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πIJ − πIπJ

πIπJ
=

1/6 − 1/2× 1/2

1/2× 1/2

= −1

3

T2 = −2× 1

3
× (1 · 2 + 1 · 3 + 1 · 4 + 2 · 3 + 2 · 4 + 3 · 4)

=
−2× 35

3

Hence,

σ2
ŷHT

= T1 + T2 = 30− 70

3
=

20

3
= 6.667
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• In Section 3.18.1 we obtained:

σ2
ŷ =

1

S

S∑

s=1


ŷs −

1

S

S∑

s=1
ŷs




2

= (6.0−10)2+(8.0−10.0)2+(10.0−10.0)2+(10.0−10.0)2+(12.0−10.0)2+(14.0−10.0)2

6

=
40.0

6
= 6.6667
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19.3.2 SRS With Replacement

• The clusters in the population are:

P =



 {1}, {2}, {3}, {4}





• with samples:

S =



 {1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}

{1, 1} ≡ {1}, {2, 2} ≡ {2}, {3, 3} ≡ {3}, {4, 4} ≡ {4}



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• The probability of selecting a ‘1’ (or any other unit) is

πI =
1

4
· P (sample with 1 element) +

1

2
· P (sample with 2 elements)

=
1

4
· 4

16
+

1

2
· 12

16
=

7

16

• The estimator:

. In a sample with one element:

ŷHT =
y1

7/16
=

16

7
· y1

. In a sample with two elements:

ŷHT =
y1

7/16
+

y2

7/16
=

16

7
· (y1 + y2)

Survey Methods & Sampling Techniques 576



• Enumeration of the estimator:

s Sample Ps ŷ ŷHT

1 {1,2} 2/16 6.0 48/7=6.86

2 {1,3} 2/16 8.0 64/7=9.14

3 {1,4} 2/16 10.0 80/7=11.43

4 {2,3} 2/16 10.0 80/7=11.43

5 {2,4} 2/16 12.0 96/7=13.71

6 {3,4} 2/16 14.0 112/7=16.00

7 {1,1} 1/16 4.0 16/7=2.29

8 {2,2} 1/16 8.0 32/7=4.57

9 {3,3} 1/16 12.0 48/7=6.86

10 {4,4} 1/16 16.0 64/7=9.14
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• The expectation of the estimator:

E(ŷHT ) =
1

16



48

7
+

64

7
+

80

7
+

80

7
+

96

7
+

112

7


 +

2

16



16

7
+

32

7
+

48

7
+

64

7




=
70

7

= 10

• Thus, the estimator is unbiased, but different from before.

• The variance:

σ2
ŷHT

=
4∑

I=1

1− πI

πI
Y 2

I + 2
3∑

I=1

4∑

J=I+1



πIJ − πIπJ

πIπJ


 YIYJ

= T1 + T2
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with

T1 =
4∑

I=1

1− 7/16

7/16
Y 2

I

=
9

7
(12 + 22 + 32 + 42)

=
270

7

πIJ = P (selecting two units simultaneously)

=
2

16
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πIJ − πIπJ

πIπJ
=

2/16− 7/16× 7/16

7/16× 7/16

= −15

49

T2 = −2× 15

49
× (1 · 2 + 1 · 3 + 1 · 4 + 2 · 3 + 2 · 4 + 3 · 4)

= −2× 15 × 35

7

= −150

7

Hence,

σ2
ŷHT

= T1 + T2 =
270 − 150

7
=

120

7
= 17.143
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• In Section 3.18.1 we obtained:

σ2
ŷ =

S∑

s=1
Ps


ŷs −

S∑

s=1
Psŷs



2

= 2

16
· [(6.0− 10.0)2 + (8.0− 10.0)2 + (10.0− 10.0)2 + (10.0− 10.0)2 + (12.0− 10.0)2 + (14.0− 10.0)2]

+ 1

16
· [(4.0− 10.0)2 + (8.0− 10)2 + (12.0− 10.0)2 + (16.0− 10.0)2]

=
160.0

16
= 10.0

• Hence, the HT estimator is different and less efficient than the ordinary SRS
estimator with replacement.
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19.3.3 Selection With Unequal Probabilities

• Consider the following set of selection probabilities for the units:

Unit pi

1 1/2

2 1/6

3 1/6

4 1/6
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• Probability of selecting the various samples:

Sample ps Sample ps

{1,2} 1/2× 1/3 = 1/6 {3,1} 1/6× 3/5 = 1/10

{1,3} 1/2× 1/3 = 1/6 {3,2} 1/6× 1/5 = 1/30

{1,4} 1/2× 1/3 = 1/6 {3,4} 1/6× 1/5 = 1/30

{2,1} 1/6× 3/5 = 1/10 {4,1} 1/6× 3/5 = 1/10

{2,3} 1/6× 1/5 = 1/30 {4,2} 1/6× 1/5 = 1/30

{2,4} 1/6× 1/5 = 1/30 {4,3} 1/6× 1/5 = 1/30
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• The probabilities of selecting the various units into the samples:

π1 =
1

6
+

1

6
+

1

6
+

1

10
+

1

10
+

1

10
=

4

5

π2 = π3 = π4 =
1

6
+

1

10
+

1

30
+

1

30
+

1

30
+

1

30
=

2

5
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• The estimator:

Sample ŷHT πIJ

{1,2} 1
4/5 + 2

2/5 = 25
4

1
6 + 1

10 = 4
15

{1,3} 1
4/5

+ 3
2/5

= 35
4

1
6

+ 1
10

= 4
15

{1,4} 1
4/5

+ 4
2/5

= 45
4

1
6

+ 1
10

= 4
15

{2,3} 2
2/5 + 2

2/5 = 50
4

1
30 + 1

30 = 1
15

{2,4} 2
2/5

+ 4
2/5

= 60
4

1
30

+ 1
30

= 1
15

{3,4} 3
2/5

+ 4
2/5

= 70
4

1
30

+ 1
30

= 1
15
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• The expectation of the estimator:

E(ŷHT ) =
4

15
×



25

4
+

35

4
+

45

4


 +

1

15
×



50

4
+

60

4
+

70

4




=
600

60

= 10

• The variance:

σ2
ŷHT

=
4∑

I=1

1− πI

πI
Y 2

I + 2
3∑

I=1

4∑

J=I+1



πIJ − πIπJ

πIπJ


 YIYJ

= T1 + T2

with
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T1 =



1− 4/5

4/5


 · 12 +



1− 2/5

2/5


 · (22 + 32 + 42)

=
175

4

T2 = 2 ·
(
π1J − π1πJ

π1πJ

)
· (1 · 2 + 1 · 3 + 1 · 4) + 2 ·

(
πIJ − πIπJ

πIπJ

)

I,J≥2

· (2 · 3 + 2 · 4 + 3 · 4)

= 2 ·

4/15− 4/5× 2/5

4/5× 2/5


 · (1 · 2 + 1 · 3 + 1 · 4) + 2 ·


1/15 − 2/5× 2/5

2/5× 2/5


 · (2 · 3 + 2 · 4 + 3 · 4)

= 2

(
−1

6
× 9− 7

12
× 26

)
= −100

3

Hence,

σ2
ŷHT

= T1 + T2 =
175

4
− 100

3
=

125

12
= 10.417
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Chapter 20

Example: The Belgian Health Interview Survey

. Design-based estimation for LNBMI, LNVOEG, GHQ12, and SGP

. Regression-based estimation for the continuous LNBMI

. Logistic regression-based estimation for the binary SGP
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20.1 Estimation of Means

• Taking weighting into account, the means are recomputed for

. LNBMI

. LNVOEG

. GHQ12

. SGP

• The following program can be used:

proc surveymeans data=m.bmi_voeg mean stderr;

title ’weighted means - infinite population for Belgium and regions’;

where (regionch^=’’);

domain regionch;

weight wfin;

var lnbmi lnvoeg ghq12 sgp;

run;
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• The program includes the weights by means of the WEIGHT statement.

• While it would be possible to include a finite sample correction, as we have seen,
the impact is so negligible that it has been omitted.

• The output takes the usual form, with weighting information listed:

weighted means - infinite population for Belgium and regions

The SURVEYMEANS Procedure

Data Summary

Number of Observations 8564

Sum of Weights 6957597.07

Statistics

Std Error

Variable Mean of Mean

-------------------------------------------

LNBMI 3.185356 0.002651

LNVOEG 1.634690 0.013233

GHQ12 1.626201 0.044556

SGP 0.932702 0.003498

-------------------------------------------
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Domain Analysis: REGIONCH

Std Error

REGIONCH Variable Mean of Mean

----------------------------------------------------------

Brussels LNBMI 3.171174 0.004578

LNVOEG 1.802773 0.021831

GHQ12 1.924647 0.076313

SGP 0.782448 0.011563

Flanders LNBMI 3.180865 0.003870

LNVOEG 1.511927 0.019155

GHQ12 1.445957 0.061910

SGP 0.954757 0.004722

Walloonia LNBMI 3.198131 0.004238

LNVOEG 1.803178 0.020426

GHQ12 1.858503 0.078566

SGP 0.943191 0.005417

----------------------------------------------------------

• Note that the weights were chosen so that they recombine the entire population.

• The fact that the sum is not around 10 million is due to empty strata.

• The sum of the weights does not matter for genuine survey procedures, such as
the SURVEYMEANS procedure used here.
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• It does matter for some of the model-based procedures, as we will see further in
this chapter.

• We summarize the results and compare them to SRS (and still foreshadow a bit):

Logarithm of Body Mass Index

Analysis Belgium Brussels Flanders Wallonia

SRS 3.187218(0.001845) 3.175877(0.003372) 3.182477(0.002993) 3.201530(0.003216)

Stratification 3.187218(0.001840) 3.175877(0.003373) 3.182477(0.002989) 3.201530(0.003217)

Clustering 3.187218(0.001999) 3.175877(0.003630) 3.182477(0.003309) 3.201530(0.003429)

Weighting 3.185356(0.002651) 3.171174(0.004578) 3.180865(0.003870) 3.198131(0.004238)

All combined 3.185356(0.003994) 3.171174(0.004844) 3.180865(0.004250) 3.198131(0.004403)

Logarithm of VOEG Score

Analysis Belgium Brussels Flanders Wallonia

SRS 1.702951(0.008954) 1.809748(0.016203) 1.516352(0.015201) 1.801107(0.014550)

Stratification 1.702951(0.008801) 1.809748(0.016206) 1.516352(0.015207) 1.801107(0.014427)

Clustering 1.702951(0.010355) 1.809748(0.018073) 1.516352(0.017246) 1.801107(0.016963)

Weighting 1.634690(0.013233) 1.802773(0.021831) 1.511927(0.019155) 1.803178(0.020426)

All combined 1.634690(0.014855) 1.802773(0.023135) 1.511927(0.021409) 1.803178(0.023214)
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General Health Questionnaire – 12

Analysis Belgium Brussels Flanders Wallonia

SRS 1.661349(0.029584) 1.862745(0.056894) 1.385381(0.046246) 1.772148(0.051023)

Stratification 1.661956(0.029452) 1.864301(0.056939) 1.385857(0.046211) 1.772148(0.050823)

Clustering 1.661349(0.032824) 1.862745(0.062739) 1.385381(0.052202) 1.772148(0.055780)

Weighting 1.626201(0.044556) 1.924647(0.076313) 1.445957(0.061910) 1.858503(0.078566)

All combined 1.626781(0.048875) 1.924647(0.080508) 1.446286(0.068931) 1.858503(0.084047)

Stable General Practitioner (0/1)

Analysis Belgium Brussels Flanders Wallonia

SRS 0.903540(0.003196) 0.805632(0.007826) 0.952285(0.003908) 0.938646(0.004382)

Stratification 0.903540(0.003116) 0.805632(0.007827) 0.952285(0.003902) 0.938646(0.004366)

Clustering 0.903540(0.003963) 0.805632(0.009766) 0.952285(0.004709) 0.938646(0.005284)

Weighting 0.932702(0.003498) 0.782448(0.011563) 0.954757(0.004722) 0.943191(0.005417)

All combined 0.932702(0.003994) 0.782448(0.013836) 0.954757(0.005379) 0.943191(0.006159)
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20.1.1 Discussion

• Unlike with stratification and clustering, the impact is major and differential
between outcomes.

• Recall that an unweighted analysis implicitly assumes the following incorrect facts:

. the Brussels, Flemish, and Walloon populations are roughly equal

. members within a household have roughly the same selection probability

. (other components of the weights are relatively unimportant)

• Weighting reduces precision: this is reflected throughout in larger standard errors.

They all increase, roughly, by a factor 1.5.
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• Let us discuss each of the four outcomes:

. LNBMI:

∗ The regional estimates are relatively stable.

∗ The Belgian estimate is stable, too.

∗ This is a coincidence, as can be seen from the following rounded
computations:

General: µ̂Bel = wBruµ̂Bru + wFlaµ̂Fla + wWalµ̂Wal

Unweighted: µ̂Bel =
1

3
3.18 +

1

3
3.18 +

1

3
3.20 = 3.1867

Weighted: µ̂Bel =
1

10
3.18 +

6

10
3.18 +

3

10
3.20 = 3.1860

∗ Hence, the weights shift a low between Flanders and Brussels, but these
regions have the same average, as a coincidence.
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. LNVOEG:

∗ Here, the situation is rather different:

General: µ̂Bel = wBruµ̂Bru + wFlaµ̂Fla + wWalµ̂Wal

Unweighted: µ̂Bel =
1

3
1.8 +

1

3
1.5 +

1

3
1.8 = 1.7

Weighted: µ̂Bel =
1

10
1.8 +

6

10
1.5 +

3

10
1.8 = 1.6

∗ Since the two smaller regions have a higher average, the unweighted Belgian
average is higher than the weighted Belgian average.

∗ This also implies there is a larger impact on the standard error for Belgium.

The standard errors for the regions increase with 35, 26, and 40%, while the
standard error for Belgium increases with 48%, more than for each of the
regions separately.

This is because there are two sources of additional variation: (1) variability
in the weights; (2) variability between the regional means.
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. GHQ-12:

∗ The phenomenon is similar to what was observed for LNVOEG.

. SGP:

∗ The phenomenon is not as extreme, since Brussels and Wallonia are rather
different: they do not reinforce each other.

∗ But still, weighting downplays the low Brussels estimate and upgrades the
high Flemish estimate, producing a higher Belgian average.
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20.2 Regression-Based Estimation for LNMBI

• Like before, the procedures SURVEYREG and MIXED can be used to take
weighting into account.

• PROC SURVEYREG code is:

proc surveyreg data=m.bmi_voeg;

title ’15. Mean. Surveyreg, weighted, for Belgium’;

weight wfin;

model lnbmi = ;

run;

with straightforward syntax and output (for Belgium):

Estimated Regression Coefficients

Standard

Parameter Estimate Error t Value Pr > |t|

Intercept 3.18535629 0.00265138 1201.39 <.0001
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• PROC MIXED code is:

proc mixed data=m.bmi_voeg method=reml;

title ’25. Survey mean with PROC MIXED, for Belgium;

title2 ’weighted’;

where (regionch^=’’);

weight wfin;

model lnbmi = / solution;

run;

• There is no need for a RANDOM statement, since no clustering is taken into
account.

• The relevant portion of the output for Belgium is:

Solution for Fixed Effects

Standard

Effect Estimate Error DF t Value Pr > |t|

Intercept 3.1854 0.001836 8383 1734.72 <.0001

Survey Methods & Sampling Techniques 599



• While the estimate is similar, the standard error is considerably smaller.

• An overview of the results:

Logarithm of Body Mass Index

Analysis Procedure Belgium Brussels Flanders Wallonia

SRS SURVEYMEANS 3.1872(0.0018) 3.1759(0.0034) 3.1825(0.0030) 3.2015(0.0032)

SRS MIXED 3.1872(0.0018) 3.1759(0.0034) 3.1825(0.0030) 3.2015(0.0032)

Stratification SURVEYMEANS 3.1872(0.0018) 3.1759(0.0034) 3.1825(0.0030) 3.2015(0.0032)

Clustering SURVEYMEANS 3.1872(0.0020) 3.1759(0.0036) 3.1825(0.0033) 3.2015(0.0034)

Clustering MIXED 3.1880(0.0020) 3.1761(0.0036) 3.1840(0.0033) 3.2022(0.0034)

Weighting SURVEYMEANS 3.1853(0.0027) 3.1712(0.0046) 3.1809(0.0039) 3.1981(0.0042)

Weighting MIXED 3.1854(0.0018) 3.1712(0.0034) 3.1809(0.0030) 3.1981(0.0032)

All combined SURVEYMEANS 3.1853(0.0040) 3.1712(0.0048) 3.1809(0.0043) 3.1981(0.0044)

Clust+Wgt MIXED 3.1865(0.0023) 3.1706(0.0039) 3.1817(0.0036) 3.1994(0.0038)
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20.3 Logistic Regression-Based Estimation for SGP

• We will estimate the mean (probability) for SGP:

. For Belgium and the regions

. Correcting for weighting

. Using:

∗ PROC SURVEYLOGISTIC for survey-design-based regression.

∗ PROC GENMOD for GEE.

∗ PROC GLIMMIX for GLMM.

∗ PROC NLMIXED for GLMM.
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• With straightforward syntax, a PROC SURVEYLOGISTIC program for the
weighted mean in Belgium is:

proc surveylogistic data=m.bmi_voeg;

title ’17. Mean. Surveylogistic, weighted, for Belgium’;

weight wfin;

model sgp = ;

run;

• The relevant portion of the output for Belgium:

Standard Wald

Parameter DF Estimate Error Chi-Square Pr > ChiSq

Intercept 1 -2.6290 0.0557 2225.8554 <.0001

• This too, coincides with the SURVEYMEANS result.
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• Switching to GEE with PROC GENMOD, for the weighted means in Belgium:

proc genmod data=m.bmi_voeg;

title ’27. Mean. GEE logistic regression, for Belgium’;

title2 ’weighted’;

class hh;

weight wfin;

model sgp = / dist=b;

repeated subject = hh / type=ind corrw modelse;

run;

• The use of the REPEATED statement is surprising at first sight, since no
clustering is taken into account.
Let us study the output to see the reason for this.

Analysis Of Initial Parameter Estimates

Standard Wald 95% Confidence Chi-

Parameter DF Estimate Error Limits Square Pr > ChiSq

Intercept 1 -2.6290 0.0015 -2.6319 -2.6260 3008181 <.0001

Scale 0 1.0000 0.0000 1.0000 1.0000
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Analysis Of GEE Parameter Estimates

Empirical Standard Error Estimates

Standard 95% Confidence

Parameter Estimate Error Limits Z Pr > |Z|

Intercept -2.6290 0.0642 -2.7548 -2.5031 -40.95 <.0001

Analysis Of GEE Parameter Estimates

Model-Based Standard Error Estimates

Standard 95% Confidence

Parameter Estimate Error Limits Z Pr > |Z|

Intercept -2.6290 0.0015 -2.6319 -2.6260 -1734.4 <.0001

. The initial parameter, empirically corrected, and model-based estimates are
identical.

. This is not surprising, since the working correlation structure is independence:
we are assuming no clustering at all.

. Nevertheless, there is a huge impact on the standard error.

. The initial and model-based standard errors assume the weights are
replications!
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. The empirically corrected standard errors adjusts the weights (standardizes
them) so that they correspond to the proper amount of information available.

. In the latter case, we arrive close to the SURVEYLOGISTIC result.

• A similar intervention is needed in the PROC GLIMMIX code:

proc glimmix data=m.bmi_voeg empirical;

title ’39a. GLMM, for Belgium’;

title2 ’with proc glimmix’;

title3 ’weighted - empirical’;

nloptions maxiter=50;

weight wfin;

model sgp = / solution dist=b;

run;

. The ‘empirical’ option ensures the empirically corrected standard errors are
produced.
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. Output without the ‘empirical’ option:

Standard

Effect Estimate Error DF t Value Pr > |t|

Intercept 2.6290 0.001516 8531 1734.41 <.0001

. Output with the ‘empirical’ option:

Standard

Effect Estimate Error DF t Value Pr > |t|

Intercept 2.6290 0.05572 8531 47.18 <.0001

. Also here, we see the dramatic impact of neglecting standardization of the
weights.

. The procedure NLMIXED cannot easily take weights into account.

. We can further expand the summary table for SGP with our new analyses:
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Stable General Practitioner (0/1) — Marginal and Random-effects Models

Analysis Procedure Par. Belgium Brussels Flanders Wallonia

SRS SURVEYMEANS π 0.9035(0.0032) 0.8056(0.0078) 0.9523(0.0039) 0.9386(0.0044)

SRS SURVEYLOGISTIC −β 2.2372(0.0367) 1.4219(0.0050) 2.9936(0.0860) 2.7278(0.0761)

SRS SURVEYLOGISTIC π 0.9035(0.0032) 0.8056(0.0078) 0.9523(0.0039) 0.9386(0.0044)

SRS GENMOD −β 2.2372(0.0367) 1.4219(0.0050) 2.9936(0.0860) 2.7278(0.0761)

SRS GENMOD π 0.9035(0.0032) 0.8056(0.0078) 0.9523(0.0039) 0.9386(0.0044)

SRS GLIMMIX β 2.2372(0.0367) 1.4219(0.0050) 2.9936(0.0860) 2.7278(0.0761)

SRS GLIMMIX π 0.9035(0.0032) 0.8056(0.0078) 0.9523(0.0039) 0.9386(0.0044)

SRS NLMIXED β 2.2372(0.0367) 1.4219(0.0050) 2.9936(0.0860) 2.7278(0.0761)

SRS NLMIXED π 0.9035(0.0032) 0.8056(0.0078) 0.9523(0.0039) 0.9386(0.0044)

Strat. SURVEYMEANS π 0.9035(0.0031) 0.8056(0.0078) 0.9522(0.0039) 0.9386(0.0044)

Strat. SURVEYLOGISTIC −β 2.3272(0.0358) 1.4219(0.0050) 2.9936(0.0859) 2.7278(0.0758)

Strat. SURVEYLOGISTIC π 0.9035(0.0031) 0.8056(0.0078) 0.9522(0.0039) 0.9386(0.0044)

Clust. SURVEYMEANS π 0.9035(0.0040) 0.8056(0.0098) 0.9523(0.0047) 0.9386(0.0053)

Clust. SURVEYLOGISTIC −β 2.2372(0.0455) 1.4219(0.0624) 2.9936(0.1037) 2.7278(0.0918)

Clust. SURVEYLOGISTIC π 0.9035(0.0040) 0.8056(0.0098) 0.9523(0.0047) 0.9386(0.0053)

Clust. GENMOD −β 2.1504(0.0435) 1.3784(0.0591) 2.9188(0.1019) 2.6470(0.0890)

Clust. GENMOD π 0.8957(0.0040) 0.7987(0.0095) 0.9488(0.0050) 0.9338(0.0055)

Clust. GLIMMIX β 2.3723(0.0441) 1.5213(0.0628) 3.1433(0.0988) —

Clust. GLIMMIX π 0.9147(0.0034) 0.8207(0.0092) 0.9586(0.0039) —

Clust. NLMIXED β 4.3770(0.1647) 3.4880(0.3134) 8.4384(1.5434) 6.9047(0.8097)

Clust. NLMIXED π 0.9876(0.0020) 0.9703(0.0090) 0.9998(0.0003) 0.9990(0.0008)
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Stable General Practitioner (0/1) — Marginal and Random-effects Models

Analysis Procedure Par. Belgium Brussels Flanders Wallonia

Wgt. SURVEYMEANS π 0.9327(0.0035) 0.7824(0.0116) 0.9548(0.0047) 0.9432(0.0054)

Wgt. SURVEYLOGISTIC −β 2.6290(0.0557) 1.2800(0.0679) 3.0494(0.1093) 2.8096(0.1011)

Wgt. SURVEYLOGISTIC π 0.9327(0.0035) 0.7824(0.0116) 0.9548(0.0047) 0.9432(0.0054)

Wgt. GENMOD −β 2.6290(0.0642) 1.2800(0.0813) 3.0494(0.1245) 2.8096(0.1150)

Wgt. GENMOD π 0.9327(0.0040) 0.7824(0.0138) 0.9548(0.0054) 0.9432(0.0062)

Wgt. GLIMMIX β 2.6290(0.0557) 1.2800(0.0679) 3.0494(0.1093) 2.8096(0.1011)

Wgt. GLIMMIX π 0.9327(0.0035) 0.7824(0.0116) 0.9548(0.0047) 0.9432(0.0054)

All SURVEYMEANS π 0.9327(0.0040) 0.7824(0.0138) 0.9548(0.0054) 0.9432(0.0062)

All SURVEYLOGISTIC −β 2.6290(0.0636) 1.2800(0.0813) 3.0494(0.1245) 2.8096(0.1150)

All SURVEYLOGISTIC π 0.9327(0.0040) 0.7824(0.0138) 0.9548(0.0054) 0.9432(0.0062)

Cl.+Wgt. GENMOD −β 2.5233(0.0659) 1.2014(0.0839) 2.9693(0.1284) 2.7251(0.1186)

Cl.+Wgt. GENMOD π 0.9258(0.0045) 0.7688(0.0149) 0.9512(0.0060) 0.9385(0.0068)

Cl.+Wgt. GLIMMIX β 7.8531(0.1105) 5.1737(0.1906) 9.8501(0.1962) 8.7535(0.1850)

Cl.+Wgt. GLIMMIX π 0.9996(0.0000) 0.9944(0.0011) 0.9999(0.0000) 0.9998(0.0000)
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• All weighted analyses, properly conducted, produce very similar results.

• The issue of the difference between marginal and random-effects modeling,
prominently present in the clustering case, is totally absent here.

• The reason is that now no random effects are included, so all analyses are
marginal.
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Part IX

Integrated Analysis of Belgian Health Interview Survey
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Chapter 21

Key Perspective Elements

. Analysis of continuous data

. Analysis of binary data

. Taxonomy
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21.1 General Considerations

• Recall that software can be divided into tools for

. Design (SAS PROC SURVEYSELECT)

. Analysis (various procedures)

∗ Simple estimators versus models

∗ Cross-sectional data versus complex data

∗ Accounting for survey nature versus not accounting for survey nature
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21.2 Analysis With SAS for a Continuous Outcome

Data Survey

Model structure design Method SAS procedure

no simple no mean MEANS

yes simple no linear regression REG

ANOVA ANOVA

GLM

no simple yes mean SURVEYMEANS

yes simple yes linear regression SURVEYREG

ANOVA

yes complex no multivariate regression GLM

MANOVA

yes complex somehow linear mixed model ≡ MIXED

multi-level model

Survey Methods & Sampling Techniques 613



21.3 Analysis With SAS for a Binary Outcome

Data Survey

Model structure design Method SAS procedure

no simple no proportion FREQ

frequency

yes simple no logistic regression LOGISTIC

probit regression GENMOD

no simple yes proportion SURVEYFREQ

frequency

yes simple yes logistic regression SURVEYLOGISTIC

probit regression

yes complex no generalized estimating GENMOD

equations

yes complex somehow gen. lin. mixed model GLIMMIX

non-linear mixed model NLMIXED
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• Several of these analysis will be conducted now:

. Mean estimation

. Frequency tables

. Linear regression

. Logistic regression
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Chapter 22

Means, Proportions, and Frequencies

. Means using all design aspects

. Design effects

. Frequency tables
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22.1 Means

22.1.1 Procedures for Means

• The means were calculated for

. LNBMI

. LNVOEG

. GHQ12

. SGP

assuming

. SRS: in Part III

. Stratified sampling: in Part VI

. Multi-stage sampling (two-stage sampling; clustering): in Part VII
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. Unequal weights: in Part VIII

• In Parts VII and VIII also modeling procedures were used, each time focusing on
one design aspect.

• It is perfectly possible to combine all of these design aspects.

• Using the SURVEYMEANS procedure, the following code can be used:

proc surveymeans data=m.bmi_voeg mean stderr;

title ’weighted/stratified/clustered means’;

title2 ’infinite population for Belgium and regions’;

where (regionch^=’’);

domain regionch;

weight wfin;

strata province;

cluster hh;

var lnbmi lnvoeg ghq12 sgp;

run;
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• The program merely combines the three design statements: WEIGHT, STRATA,
and CLUSTER.

• While it would be possible to include a finite sample correction, as we have seen,
the impact is so negligible that it has been omitted.

• The output takes the usual form, with now all design aspects listed in the book
keeping part:

The SURVEYMEANS Procedure

Data Summary

Number of Strata 12

Number of Clusters 4663

Number of Observations 8560

Sum of Weights 6954962.18
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• The means for Belgium and the regions are:

Statistics

Std Error

Variable Mean of Mean

-------------------------------------------

LNBMI 3.185356 0.002867

LNVOEG 1.634690 0.014855

GHQ12 1.626781 0.048875

SGP 0.932702 0.003994

-------------------------------------------

Domain Analysis: REGIONCH

Std Error

REGIONCH Variable Mean of Mean

--------------------------------------------------------

Brussels LNBMI 3.171174 0.004844

LNVOEG 1.802773 0.023135

GHQ12 1.928896 0.080508

SGP 0.782448 0.013836

Flanders LNBMI 3.180865 0.004250

LNVOEG 1.511927 0.021409

GHQ12 1.446286 0.068931

SGP 0.954757 0.005379

Walloonia LNBMI 3.198131 0.004403

LNVOEG 1.803178 0.023214

GHQ12 1.858503 0.084047

SGP 0.943191 0.006159

--------------------------------------------------------

Survey Methods & Sampling Techniques 620



• A summary of all analyses is as follows:

Logarithm of Body Mass Index

Analysis Belgium Brussels Flanders Wallonia

SRS 3.187218(0.001845) 3.175877(0.003372) 3.182477(0.002993) 3.201530(0.003216)

Stratification 3.187218(0.001840) 3.175877(0.003373) 3.182477(0.002989) 3.201530(0.003217)

Clustering 3.187218(0.001999) 3.175877(0.003630) 3.182477(0.003309) 3.201530(0.003429)

Weighting 3.185356(0.002651) 3.171174(0.004578) 3.180865(0.003870) 3.198131(0.004238)

All combined 3.185356(0.003994) 3.171174(0.004844) 3.180865(0.004250) 3.198131(0.004403)

Logarithm of VOEG Score

Analysis Belgium Brussels Flanders Wallonia

SRS 1.702951(0.008954) 1.809748(0.016203) 1.516352(0.015201) 1.801107(0.014550)

Stratification 1.702951(0.008801) 1.809748(0.016206) 1.516352(0.015207) 1.801107(0.014427)

Clustering 1.702951(0.010355) 1.809748(0.018073) 1.516352(0.017246) 1.801107(0.016963)

Weighting 1.634690(0.013233) 1.802773(0.021831) 1.511927(0.019155) 1.803178(0.020426)

All combined 1.634690(0.014855) 1.802773(0.023135) 1.511927(0.021409) 1.803178(0.023214)
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General Health Questionnaire – 12

Analysis Belgium Brussels Flanders Wallonia

SRS 1.661349(0.029584) 1.862745(0.056894) 1.385381(0.046246) 1.772148(0.051023)

Stratification 1.661956(0.029452) 1.864301(0.056939) 1.385857(0.046211) 1.772148(0.050823)

Clustering 1.661349(0.032824) 1.862745(0.062739) 1.385381(0.052202) 1.772148(0.055780)

Weighting 1.626201(0.044556) 1.924647(0.076313) 1.445957(0.061910) 1.858503(0.078566)

All combined 1.626781(0.048875) 1.924647(0.080508) 1.446286(0.068931) 1.858503(0.084047)

Stable General Practitioner (0/1)

Analysis Belgium Brussels Flanders Wallonia

SRS 0.903540(0.003196) 0.805632(0.007826) 0.952285(0.003908) 0.938646(0.004382)

Stratification 0.903540(0.003116) 0.805632(0.007827) 0.952285(0.003902) 0.938646(0.004366)

Clustering 0.903540(0.003963) 0.805632(0.009766) 0.952285(0.004709) 0.938646(0.005284)

Weighting 0.932702(0.003498) 0.782448(0.011563) 0.954757(0.004722) 0.943191(0.005417)

All combined 0.932702(0.003994) 0.782448(0.013836) 0.954757(0.005379) 0.943191(0.006159)

• Weighting and clustering each increase the standard error, the combined analysis
does more so.

• The point estimate is identical to the weighted one.
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22.1.2 Linear Regression Procedures

• Like in Part VII, we can employ the SURVEYREG procedure:

proc surveyreg data=m.bmi_voeg;

title ’21. Mean. Surveyreg, all combined, for Belgium’;

strata province;

cluster hh;

weight wfin;

model lnbmi = ;

run;

• A maximal number of design aspects is now taken into account.
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• Likewise, it is possible to correct for weighting and clustering simultaneously using
the MIXED procedure:

proc mixed data=m.bmi_voeg method=reml;

title ’30. Survey mean with PROC MIXED, for Belgium’;

title2 ’Weighted + Two-stage (clustered)’;

where (regionch^=’’);

weight wfin;

model lnbmi = / solution;

random intercept / subject=hh;

run;

• Here and in subsequent procedures, when the regions are of interest, include the
statement:

by regionch;
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• A summary of the various methods for mean estimation on LNBMI then becomes:

Logarithm of Body Mass Index

Analysis Procedure Belgium Brussels Flanders Wallonia

SRS SURVEYMEANS 3.1872(0.0018) 3.1759(0.0034) 3.1825(0.0030) 3.2015(0.0032)

SRS MIXED 3.1872(0.0018) 3.1759(0.0034) 3.1825(0.0030) 3.2015(0.0032)

Stratification SURVEYMEANS 3.1872(0.0018) 3.1759(0.0034) 3.1825(0.0030) 3.2015(0.0032)

Clustering SURVEYMEANS 3.1872(0.0020) 3.1759(0.0036) 3.1825(0.0033) 3.2015(0.0034)

Clustering MIXED 3.1880(0.0020) 3.1761(0.0036) 3.1840(0.0033) 3.2022(0.0034)

Weighting SURVEYMEANS 3.1853(0.0027) 3.1712(0.0046) 3.1809(0.0039) 3.1981(0.0042)

Weighting MIXED 3.1854(0.0018) 3.1712(0.0034) 3.1809(0.0030) 3.1981(0.0032)

All combined SURVEYMEANS 3.1853(0.0040) 3.1712(0.0048) 3.1809(0.0043) 3.1981(0.0044)

Clust+Wgt MIXED 3.1865(0.0023) 3.1706(0.0039) 3.1817(0.0036) 3.1994(0.0038)

• Recall that here the results for SURVEYMEANS and SURVEYREG are the same.
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22.1.3 Logistic Regression Procedures

• For the binary outcome SGP, we have considered several logistic regression-based
procedures.

• A SURVEYLOGISTIC call, combining all design aspects:

proc surveylogistic data=m.bmi_voeg;

title ’23. Mean. Surveylogistic, weighted,’;

title2 ’stratified, two-stage (clustered), for Belgium’;

weight wfin;

strata province;

cluster hh;

model sgp = ;

run;
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• By means of GEE, within the GENMOD procedure, weighting and clustering can
be taken into account:

proc genmod data=m.bmi_voeg;

title ’31. Mean. GEE logistic regression, for Belgium’;

title2 ’weighted + clustered’;

weight wfin;

class hh;

model sgp = / dist=b;

repeated subject = hh / type=cs corrw modelse;

run;

Survey Methods & Sampling Techniques 627



• The first of two GLMM procedures, the GLIMMIX procedure, allows for the
inclusion of weighting and clustering:

proc glimmix data=m.bmi_voeg empirical;

title ’43a. Mean. GLMM, for Belgium’;

title2 ’with proc glimmix maxiter=50’;

title3 ’weighted + two-stage (cluster) - empirical’;

nloptions maxiter=50;

weight wfin;

model sgp = / solution dist=b;

random intercept / subject = hh type=un;

run;

• It is important, here and in general, that empirically corrected standard errors be
used, whenever weights are included, to compensate for not properly calibrated
weights in procedures that are not explicitly designed to handle surveys.
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• The second procedure, NLMIXED, only allows for clustering to be taken into
account:

proc nlmixed data=m.bmi_voeg;

title ’35. Mean. GLMM, for Belgium’;

title2 ’Two-stage (clustered)’;

theta = beta0 + b;

exptheta = exp(theta);

p = exptheta/(1+exptheta);

model sgp ~ binary(p);

random b ~ normal(0,tau2) subject=hh;

estimate ’mean’ exp(beta0)/(1+exp(beta0));

run;

• Recall that the GLMM based procedures produce a fixed-effects intercept that is
not the population average, but rather the probability corresponding to someone
with random intercept value equal to zero.
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Stable General Practitioner (0/1) — Marginal and Random-effects Models

Analysis Procedure Par. Belgium Brussels Flanders Wallonia

SRS SURVEYMEANS π 0.9035(0.0032) 0.8056(0.0078) 0.9523(0.0039) 0.9386(0.0044)

SRS SURVEYLOGISTIC −β 2.2372(0.0367) 1.4219(0.0050) 2.9936(0.0860) 2.7278(0.0761)

SRS SURVEYLOGISTIC π 0.9035(0.0032) 0.8056(0.0078) 0.9523(0.0039) 0.9386(0.0044)

SRS GENMOD −β 2.2372(0.0367) 1.4219(0.0050) 2.9936(0.0860) 2.7278(0.0761)

SRS GENMOD π 0.9035(0.0032) 0.8056(0.0078) 0.9523(0.0039) 0.9386(0.0044)

SRS GLIMMIX β 2.2372(0.0367) 1.4219(0.0050) 2.9936(0.0860) 2.7278(0.0761)

SRS GLIMMIX π 0.9035(0.0032) 0.8056(0.0078) 0.9523(0.0039) 0.9386(0.0044)

SRS NLMIXED β 2.2372(0.0367) 1.4219(0.0050) 2.9936(0.0860) 2.7278(0.0761)

SRS NLMIXED π 0.9035(0.0032) 0.8056(0.0078) 0.9523(0.0039) 0.9386(0.0044)

Strat. SURVEYMEANS π 0.9035(0.0031) 0.8056(0.0078) 0.9522(0.0039) 0.9386(0.0044)

Strat. SURVEYLOGISTIC −β 2.3272(0.0358) 1.4219(0.0050) 2.9936(0.0859) 2.7278(0.0758)

Strat. SURVEYLOGISTIC π 0.9035(0.0031) 0.8056(0.0078) 0.9522(0.0039) 0.9386(0.0044)

Clust. SURVEYMEANS π 0.9035(0.0040) 0.8056(0.0098) 0.9523(0.0047) 0.9386(0.0053)

Clust. SURVEYLOGISTIC −β 2.2372(0.0455) 1.4219(0.0624) 2.9936(0.1037) 2.7278(0.0918)

Clust. SURVEYLOGISTIC π 0.9035(0.0040) 0.8056(0.0098) 0.9523(0.0047) 0.9386(0.0053)

Clust. GENMOD −β 2.1504(0.0435) 1.3784(0.0591) 2.9188(0.1019) 2.6470(0.0890)

Clust. GENMOD π 0.8957(0.0040) 0.7987(0.0095) 0.9488(0.0050) 0.9338(0.0055)

Clust. GLIMMIX β 2.3723(0.0441) 1.5213(0.0628) 3.1433(0.0988) —

Clust. GLIMMIX π 0.9147(0.0034) 0.8207(0.0092) 0.9586(0.0039) —

Clust. NLMIXED β 4.3770(0.1647) 3.4880(0.3134) 8.4384(1.5434) 6.9047(0.8097)

Clust. NLMIXED π 0.9876(0.0020) 0.9703(0.0090) 0.9998(0.0003) 0.9990(0.0008)
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Stable General Practitioner (0/1) — Marginal and Random-effects Models

Analysis Procedure Par. Belgium Brussels Flanders Wallonia

Wgt. SURVEYMEANS π 0.9327(0.0035) 0.7824(0.0116) 0.9548(0.0047) 0.9432(0.0054)

Wgt. SURVEYLOGISTIC −β 2.6290(0.0557) 1.2800(0.0679) 3.0494(0.1093) 2.8096(0.1011)

Wgt. SURVEYLOGISTIC π 0.9327(0.0035) 0.7824(0.0116) 0.9548(0.0047) 0.9432(0.0054)

Wgt. GENMOD −β 2.6290(0.0642) 1.2800(0.0813) 3.0494(0.1245) 2.8096(0.1150)

Wgt. GENMOD π 0.9327(0.0040) 0.7824(0.0138) 0.9548(0.0054) 0.9432(0.0062)

Wgt. GLIMMIX β 2.6290(0.0557) 1.2800(0.0679) 3.0494(0.1093) 2.8096(0.1011)

Wgt. GLIMMIX π 0.9327(0.0035) 0.7824(0.0116) 0.9548(0.0047) 0.9432(0.0054)

All SURVEYMEANS π 0.9327(0.0040) 0.7824(0.0138) 0.9548(0.0054) 0.9432(0.0062)

All SURVEYLOGISTIC −β 2.6290(0.0636) 1.2800(0.0813) 3.0494(0.1245) 2.8096(0.1150)

All SURVEYLOGISTIC π 0.9327(0.0040) 0.7824(0.0138) 0.9548(0.0054) 0.9432(0.0062)

Cl.+Wgt. GENMOD −β 2.5233(0.0659) 1.2014(0.0839) 2.9693(0.1284) 2.7251(0.1186)

Cl.+Wgt. GENMOD π 0.9258(0.0045) 0.7688(0.0149) 0.9512(0.0060) 0.9385(0.0068)

Cl.+Wgt. GLIMMIX β 7.8531(0.1105) 5.1737(0.1906) 9.8501(0.1962) 8.7535(0.1850)

Cl.+Wgt. GLIMMIX π 0.9996(0.0000) 0.9944(0.0011) 0.9999(0.0000) 0.9998(0.0000)
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22.2 Design Effects

• Most authors define the design effect as the ratio of two variances:

. the variance of an estimator taking design aspects into account

. the variance of the SRS estimator

• Historically, it was used for correction:

. compute the SRS estimator and its precision

. modify the standard error using the design effect
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• This is not a good approach:

. As we have seen, we have proper design-based and complex model-based
estimation methods.

. The design effect is not an invariant for a method.

• Consider the design effect for clustering.

. For example, for LNBMI and Belgium, we find:

Deff =
0.001999

0.001845
= 1.2
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• An overview table for clustering and weighting:

Outcome Belgium Brussels Flanders Wallonia

Design Effects for Clustering

LNBMI 1.2 1.2 2.1 1.1

LNVOEG 1.3 1.2 1.3 1.4

GHQ–12 2.3 1.8 1.8 2.4

SGP 1.5 1.6 1.5 1.5

Design Effects for Weighting

LNBMI 2.1 1.8 2.8 1.7

LNVOEG 2.2 1.8 1.6 2.0

GHQ–12 2.3 1.8 1.8 2.4

SGP 1.2 2.2 1.5 1.5
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• For clustering, the design effects varies between 1.1 and 2.4.

• For weighting, the design effect varies between 1.2 and 2.8.

• Even within a region and/or within an outocme, there is a lot of variability.

• The differences are a function, not only of the variances, but also the changing
point estimates, for example in going from an unweighted to a weighted analysis.

• In conclusion, the design effect gives a numerical summary of the impact of one or
several design elements in a particular situation, but should not itself be used as a
basis for precision estimation.
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22.3 Frequency Tables

• We have calculated means, for all four variables, including SGP, even though it is
a binary variable.

• The mean for a binary variable is sensible: it is the proportion to observe a
“success”.

• The situation is different for categorical variables with more than 2 categories, in
which case frequencies are more advisable.

• In any categorical situation is it sensible to:

. calculate frequences for a single variable

. construct contingency tables for 2 variables or more −→ 2-way, 3-way, or
higher-way contingency tables
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• The typical SAS tool is PROC FREQ:

proc freq data=m.bmi_voeg compress;

where (regionch^=’’);

title ’1. proc freq - srs proportions, Belgium’;

table sgp;

run;

proc freq data=m.bmi_voeg compress;

where (regionch^=’’);

title ’2. proc freq - srs proportions, regions’;

table regionch*sgp;

run;

. The first program is for the frequencies of having versus not having a stable GP.

. The second program constructs a 2-way table for region with SGP.

. The TABLE statement is the crucial one, specifying the variable or variables of
interest.
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. PROC FREQ produces a large amount of output by default; the ‘compress’
option reduces this.

• The following output is obtained for the first program:

1. proc freq - srs proportions, Belgium

The FREQ Procedure

Cumulative Cumulative

SGP Frequency Percent Frequency Percent

--------------------------------------------------------

0 823 9.65 823 9.65

1 7709 90.35 8532 100.00

Frequency Missing = 32

• For the second program, we obtain:
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2. proc freq - srs proportions, regions

The FREQ Procedure

Table of REGIONCH by SGP

REGIONCH SGP

Frequency |

Percent |

Row Pct |

Col Pct | 0| 1| Total

----------|--------|--------|

Brussels | 497 | 2060 | 2557

| 5.83 | 24.14 | 29.97

| 19.44 | 80.56 |

| 60.39 | 26.72 |

----------|--------|--------|

Flanders | 142 | 2834 | 2976

| 1.66 | 33.22 | 34.88

| 4.77 | 95.23 |

| 17.25 | 36.76 |

----------|--------|--------|

Walloonia | 184 | 2815 | 2999

| 2.16 | 32.99 | 35.15

| 6.14 | 93.86 |

| 22.36 | 36.52 |

----------|--------|--------|

Total 823 7709 8532

9.65 90.35 100.00

Frequency Missing = 32
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• Of course, these tables start from the assumption that the sample be
representative, as it is, for the population.

In particular, it appears the regional percentages are, roughly 30%, 35%, and 35%.

• We need to take the design into account to rectify this.

• The above programs can be adapted to incorporate weighting, by including:

weight wfin;

• The output changes to:

3. proc freq - weighted proportions, Belgium

The FREQ Procedure

Cumulative Cumulative

SGP Frequency Percent Frequency Percent

--------------------------------------------------------

0 466652.6 6.73 466652.6 6.73

1 6467487 93.27 6934140 100.00

Frequency Missing = 23457.39966
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4. proc freq - weighted proportions, regions

The FREQ Procedure

Table of REGIONCH by SGP

REGIONCH SGP

Frequency |

Percent |

Row Pct |

Col Pct | 0| 1| Total

----------|--------|--------|

Brussels | 160892 | 578665 | 739558

| 2.32 | 8.35 | 10.67

| 21.76 | 78.24 |

| 34.48 | 8.95 |

----------|--------|--------|

Flanders | 180516 |3809385 |3989901

| 2.60 | 54.94 | 57.54

| 4.52 | 95.48 |

| 38.68 | 58.90 |

----------|--------|--------|

Walloonia | 125245 |2079437 |2204682

| 1.81 | 29.99 | 31.79

| 5.68 | 94.32 |

| 26.84 | 32.15 |

----------|--------|--------|

Total 466653 6467487 6934140

6.73 93.27 100.00

Frequency Missing = 23457.39966
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• Note that the region-specific proportions are more in line with reality.

• The frequencies reflect the sum of the weights: PROC FREQ treats them merely
as repeat counts, and not the inverse of selection probabilities.

• The procedure PROC SURVEYFREQ can be used to properly take the survey
design into account:

proc surveyfreq data=m.bmi_voeg;

title ’5. proc surveyfreq - srs, infinite proportions, Belgium’;

table sgp;

run;

proc surveyfreq data=m.bmi_voeg;

title ’6. proc surveyfreq - srs, infinite proportions, regions’;

table regionch*sgp;

run;
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• The procedure is syntactically entirely similar to PROC FREQ, especially when
applied to SRS for an infinite population.

• The output is similar to what was obtained for SRS with PROC FREQ:

5. proc surveyfreq - srs, infinite proportions, Belgium

The SURVEYFREQ Procedure

Data Summary

Number of Observations 8564

Table of SGP

Std Err of

SGP Frequency Percent Percent

--------------------------------------------

0 823 9.6460 0.3196

1 7709 90.3540 0.3196

Total 8532 100.000

--------------------------------------------

Frequency Missing = 32

and
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proc surveyfreq - srs, infinite proportions, regions

The SURVEYFREQ Procedure

Data Summary

Number of Observations 8564

Table of REGIONCH by SGP

Std Err of

REGIONCH SGP Frequency Percent Percent

---------------------------------------------------------

Brussels 0 497 5.8251 0.2536

1 2060 24.1444 0.4633

Total 2557 29.9695 0.4960

---------------------------------------------------------

Flanders 0 142 1.6643 0.1385

1 2834 33.2161 0.5099

Total 2976 34.8805 0.5160

---------------------------------------------------------

Walloonia 0 184 2.1566 0.1573

1 2815 32.9934 0.5091

Total 2999 35.1500 0.5169

---------------------------------------------------------

Total 0 823 9.6460 0.3196

1 7709 90.3540 0.3196

Total 8532 100.000

---------------------------------------------------------

Frequency Missing = 32
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. While displayed a little differently, the numbers coincide with what we obtained
from PROC FREQ.

. Note that one obtains precision estimates, making the procedure useful even in
a non-survey context.

. The output for the SGP frequencies is exactly a sub-part of the output for the
cross-tabulation of region by SGP

=⇒ in what follows it will be dropped.

• We can now also correct for finite sampling, changing the PROC SURVEYFREQ
statement to:

proc surveyfreq data=m.bmi_voeg total=10000000;

• The output changes only slightly:
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8. proc surveyfreq - srs, finite proportions, regions

The SURVEYFREQ Procedure

Number of Observations 8564

Table of REGIONCH by SGP

Std Err of

REGIONCH SGP Frequency Percent Percent

---------------------------------------------------------

Brussels 0 497 5.8251 0.2535

1 2060 24.1444 0.4631

Total 2557 29.9695 0.4958

---------------------------------------------------------

Flanders 0 142 1.6643 0.1384

1 2834 33.2161 0.5097

Total 2976 34.8805 0.5158

---------------------------------------------------------

Walloonia 0 184 2.1566 0.1572

1 2815 32.9934 0.5088

Total 2999 35.1500 0.5167

---------------------------------------------------------

Total 0 823 9.6460 0.3195

1 7709 90.3540 0.3195

Total 8532 100.000

---------------------------------------------------------

Frequency Missing = 32
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• We observe no impact on frequencies and percentages, and a small impact on the
standard errors.

• This is in line with observations in the case of mean estimation.

• Setting the TOTAL N = 8564, the predictable effect is:
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10. proc surveyfreq - srs, census-finite proportions, regions

The SURVEYFREQ Procedure

Number of Observations 8564

Table of REGIONCH by SGP

Std Err of

REGIONCH SGP Frequency Percent Percent

---------------------------------------------------------

Brussels 0 497 5.8251 0.0000

1 2060 24.1444 0.0000

Total 2557 29.9695 0.0000

---------------------------------------------------------

Flanders 0 142 1.6643 0.0000

1 2834 33.2161 0.0000

Total 2976 34.8805 0.0000

---------------------------------------------------------

Walloonia 0 184 2.1566 0.0000

1 2815 32.9934 0.0000

Total 2999 35.1500 0.0000

---------------------------------------------------------

Total 0 823 9.6460 0.0000

1 7709 90.3540 0.0000

Total 8532 100.000

---------------------------------------------------------

Frequency Missing = 32
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• Three further design aspects can be included:

. Stratification by the statement:

strata province;

. Weighting by the statement:

weight wfin;

. Clustering by the statement:

cluster hh;

• The output in the stratified case:
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12. proc surveyfreq - stratified proportions, regions

The SURVEYFREQ Procedure

Number of Strata 12

Number of Observations 8560

Table of REGIONCH by SGP

Std Err of

REGIONCH SGP Frequency Percent Percent

---------------------------------------------------------

Brussels 0 497 5.8251 0.2346

1 2060 24.1444 0.2346

Total 2557 29.9695 0.0000

---------------------------------------------------------

Flanders 0 142 1.6643 0.1361

1 2834 33.2161 0.1361

Total 2976 34.8805 0.0000

---------------------------------------------------------

Walloonia 0 184 2.1566 0.1535

1 2815 32.9934 0.1535

Total 2999 35.1500 0.0000

---------------------------------------------------------

Total 0 823 9.6460 0.3116

1 7709 90.3540 0.3116

Total 8532 100.000

---------------------------------------------------------

Frequency Missing = 28
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• The proportion has not changed, but there is a small impact on the standard error.

• The data summary also included the number of strata.

• The number of available observations has slightly decreased, due to a small
number of individuals for which the province has not been recorded in the
database.

• The output for weighting:
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14. proc surveyfreq - weighted proportions, regions

Data Summary

Number of Observations 8564

Sum of Weights 6957597.07

Table of REGIONCH by SGP

Weighted Std Dev of Std Err of

REGIONCH SGP Frequency Frequency Wgt Freq Percent Percent

-------------------------------------------------------------------------------------

Brussels 0 497 160892 9665 2.3203 0.1430

1 2060 578665 16075 8.3452 0.2624

Total 2557 739558 18166 10.6655 0.3044

-------------------------------------------------------------------------------------

Flanders 0 142 180516 19170 2.6033 0.2736

1 2834 3809385 79623 54.9367 0.7635

Total 2976 3989901 80908 57.5400 0.7462

-------------------------------------------------------------------------------------

Walloonia 0 184 125245 12156 1.8062 0.1755

1 2815 2079437 49543 29.9884 0.6851

Total 2999 2204682 50410 31.7946 0.6972

-------------------------------------------------------------------------------------

Total 0 823 466653 24327 6.7298 0.3498

1 7709 6467487 79980 93.2702 0.3498

Total 8532 6934140 79253 100.000

-------------------------------------------------------------------------------------

Frequency Missing = 32
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. The information provided is more extensive, since both frequencies as well as
weighted frequencies are given.

. The overall percentage of not having a stable GP is smaller, in line with:

∗ the proper up-weighting of Flanders, where virtually everyone has a stable
GP

∗ the proper down-weighting of Brussels, where a large fraction does not have
a stable GP

. The analysis agrees closely with the weighted analysis within PROC FREQ, but
is more informative.

• The output for the clustered analysis:
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16. proc surveyfreq - two-stage (clustered) proportions, regions

Number of Clusters 4663

Number of Observations 8564

Table of REGIONCH by SGP

Std Err of

REGIONCH SGP Frequency Percent Percent

---------------------------------------------------------

Brussels 0 497 5.8251 0.3214

1 2060 24.1444 0.6543

Total 2557 29.9695 0.7180

---------------------------------------------------------

Flanders 0 142 1.6643 0.1673

1 2834 33.2161 0.7619

Total 2976 34.8805 0.7760

---------------------------------------------------------

Walloonia 0 184 2.1566 0.1902

1 2815 32.9934 0.7500

Total 2999 35.1500 0.7680

---------------------------------------------------------

Total 0 823 9.6460 0.3963

1 7709 90.3540 0.3963

Total 8532 100.000

---------------------------------------------------------

Frequency Missing = 32
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. The number of clusters is displayed.

. There is impact on the standard error.

• A program for all design aspects combined:

proc surveyfreq data=m.bmi_voeg;

title ’17. proc surveyfreq - all aspects, proportions, Belgium’;

strata province;

weight wfin;

cluster hh;

table regionch*sgp;

run;
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• The output:

18. proc surveyfreq - all aspects, proportions, regions

The SURVEYFREQ Procedure

Data Summary

Number of Strata 12

Number of Clusters 4663

Number of Observations 8560

Sum of Weights 6954962.18

and
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Table of REGIONCH by SGP

Weighted Std Dev of Std Err of

REGIONCH SGP Frequency Frequency Wgt Freq Percent Percent

-------------------------------------------------------------------------------------

Brussels 0 497 160892 10724 2.3203 0.1568

1 2060 578665 19832 8.3452 0.2952

Total 2557 739558 20399 10.6655 0.3106

-------------------------------------------------------------------------------------

Flanders 0 142 180516 21464 2.6033 0.3090

1 2834 3809385 91357 54.9367 0.8024

Total 2976 3989901 90895 57.5400 0.7529

-------------------------------------------------------------------------------------

Walloonia 0 184 125245 13587 1.8062 0.1962

1 2815 2079437 57538 29.9884 0.7148

Total 2999 2204682 57600 31.7946 0.7095

-------------------------------------------------------------------------------------

Total 0 823 466653 27574 6.7298 0.3994

1 7709 6467487 109773 93.2702 0.3994

Total 8532 6934140 109525 100.000

-------------------------------------------------------------------------------------

Frequency Missing = 28
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• Note that the estimated percentages, obtained for Belgium, coincide with the
estimated means on pages 630 and 631.

• For the regions, PROC SURVEYFREQ does not provide the marginal percentages,
but rather the percentage to belong to a given cell.

• In case the marginal probabilities are required, it is better to change the code to:

proc surveyfreq data=m.bmi_voeg;

title ’19. proc surveyfreq - all aspects, proportions, BY regions’;

by regionch;

strata province;

weight wfin;

cluster hh;

table sgp;

run;
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• This produces the following output:

19. proc surveyfreq - all aspects, proportions, BY region

The SURVEYFREQ Procedure

REGIONCH=Brussels

Data Summary

Number of Strata 1

Number of Clusters 1544

Number of Observations 2568

Sum of Weights 742678.193

Table of SGP

Weighted Std Dev of Std Err of

SGP Frequency Frequency Wgt Freq Percent Percent

------------------------------------------------------------------------

0 497 160892 10724 21.7552 1.3836

1 2060 578665 19832 78.2448 1.3836

Total 2557 739558 20399 100.000

------------------------------------------------------------------------

Frequency Missing = 11

and
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REGIONCH=Flanders

Data Summary

Number of Strata 5

Number of Clusters 1508

Number of Observations 2986

Sum of Weights 4001968.5

Table of SGP

Weighted Std Dev of Std Err of

SGP Frequency Frequency Wgt Freq Percent Percent

------------------------------------------------------------------------

0 142 180516 21464 4.5243 0.5379

1 2834 3809385 91357 95.4757 0.5379

Total 2976 3989901 90895 100.000

------------------------------------------------------------------------

Frequency Missing = 10

and
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REGIONCH=Walloonia

Data Summary

Number of Strata 6

Number of Clusters 1611

Number of Observations 3006

Sum of Weights 2210315.49

Table of SGP

Weighted Std Dev of Std Err of

SGP Frequency Frequency Wgt Freq Percent Percent

------------------------------------------------------------------------

0 184 125245 13587 5.6809 0.6159

1 2815 2079437 57538 94.3191 0.6159

Total 2999 2204682 57600 100.000

------------------------------------------------------------------------

Frequency Missing = 7
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Chapter 23

Linear Regression

. Ordinary linear regression

. Linear regression for survey data

. Linear mixed model
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23.1 Concept

• In our mean estimation endeavors, we employed procedures for linear regression.

• This implies we can conduct genuine linear regression, using:

. PROC REG, PROC GLM: Conventional linear regression procedures

. PROC SURVEYREG: Design-based regression procedure

. PROC MIXED: Regression procedure for hierarchical data, based on the LMM

• Note that a variety of tools, designed for generalized linear models work for:

. linear regression

. logistic regession

. probit regression
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. Poisson regresion

. . . .

Such procedures can hence be used for linear regression as well.

• Example include PROC GENMOD, PROC GLIMMIX, PROC NLMIXED.

• However, the dedicated linear regression procedures, mentioned earlier, often have
more features than the more general purpose tools.
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23.2 Model

• Assume we are interested in the ef-
fect of sex and age on BMI.

• Sex is a binary variable, necessitat-
ing a single parameter.

• Define age as a 7-point ordinal vari-
able age7.

• Construct dummy variables:

A` = agegr` =





1 ⇐⇒ age7 = `

0 ⇐⇒ age7 6= `

age7 =





1 ⇐⇒ 15 ≤ age ≤ 24

2 ⇐⇒ 25 ≤ age ≤ 34

3 ⇐⇒ 35 ≤ age ≤ 44

4 ⇐⇒ 45 ≤ age ≤ 54

5 ⇐⇒ 55 ≤ age ≤ 64

6 ⇐⇒ 65 ≤ age ≤ 75

7 ⇐⇒ 75 ≤ age
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• We now consider the following basic regression model:

Yi = β0 + β1Si + β21A1i + β22A2i + β23A3i + β24A4i + β25A5i + β26A6i + εi

where

. Yi is LNBMI for respondent i

. Si is sex of respondent i (0 for males; 1 for females)

. A`i is the value age-dummy ` takes for respondent i

. εi is the error term

• In conventional linear regression, we assume εi ∼ N (0, σ2).

• In design-based regression, the variability will be calculated by properly taking the
design-related formulas into account.
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• In a hierarchical model, e.g., the LMM, our model will change to the two-stage
setting:

Yij = β0+bi+β1Sij +β21A1ij +β22A2ij +β23A3ij +β24A4ij +β25A5ij +β26A6ij +εij

where now

. Yij is LNBMI for individual j in household i

. Sij is sex of individual j in household i

. A`ij is the value age-dummy ` takes for individual j in household i

. bi is a household-level effect on LNBMI: bi ∼ N (0, τ 2)

. εi is the deviation for individual j in household i: εij ∼ N (0, σ2)
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23.3 Programs

23.3.1 Programs for Ordinary Linear Regression

• Ordinary linear regression can be coded using the dedicated SAS procedures
PROC REG and PROC GLM:

proc reg data=m.bmi_voeg;

title ’1. Ordinary linear regression, for Belgium’;

title2 ’with PROC REG’;

model lnbmi = sex agegr1 agegr2 agegr3 agegr4 agegr5 agegr6;

run;

proc glm data=m.bmi_voeg;

title ’2. Ordinary linear regression, for Belgium’;

title2 ’with PROC GLM’;

class age7;

model lnbmi = sex age7 / solution;

run;
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. PROC REG is more basic and does not allow for dummy variables ⇒ the user
has to create them.

. PROC GLM allows for univariate and multivariate regression and contains the
CLASS statement to automatically create dummies.

. When there are 7 dummies, PROC GLM removes the last one to ensure
estimability, exactly like we have done ourselves with PROC REG.

. PROC GLM is an “ANOVA-based” procedure: there is more emphasis on
ANOVA tables than on parameter estimates; this is why we include the
‘solution’ option into the MODEL statement.

Note that we have seen the ‘solution’ option repeatedly in earlier chapters.
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• We can also use the LMM procedure PROC MIXED, without the hierarchical
features, to fit an ordinary linear regression:

proc mixed data=m.bmi_voeg method=reml;

title ’3. Ordinary linear regression, for Belgium’;

title2 ’with PROC MIXED - REML estimation’;

class age7;

model lnbmi = sex age7 / solution;

run;

proc mixed data=m.bmi_voeg method=ml;

title ’4. Ordinary linear regression, for Belgium’;

title2 ’with PROC MIXED - ML estimation’;

class age7;

model lnbmi = sex age7 / solution;

run;

. We can opt for both REML and ML, i.e., restricted maximum likelihood and
maximum likelihood.

Recall that the former is a small-sample correction towards ML: since our
sample is very large, there will be little or no difference.
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. The syntax of the procedure, used in this way, is very similar to the PROC
GLM syntax.

• Finally, we can employ the design-based regression procedure PROC
SURVEYREG, but confine it to SRS:

proc surveyreg data=m.bmi_voeg;

title ’5. Surveyreg, SRS, infinite population’;

class age7;

model lnbmi = sex age7 / solution;

run;

. Used in this fashion, the procedure is syntactically similar to PROC GLM and
PROC MIXED.
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23.3.2 Programs for Design-Based Linear Regression

• Starting from the PROC SURVEYREG program on page 671:

proc surveyreg data=m.bmi_voeg;

title ’5. Surveyreg, SRS, infinite population’;

class age7;

model lnbmi = sex age7 / solution;

run;

a number of design features can be built in:

. Finite population: the PROC SURVEYREG statement changes to:

proc surveyreg data=m.bmi_voeg total=10000000;

. Census-finite population: the PROC SURVEYREG statement changes to:

proc surveyreg data=m.bmi_voeg total=8384;
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. Stratification: the following statement is added:

strata province;

. Two-stage sampling (clustering): the following statement is added:

cluster hh;

. Weighting: the following statement is added:

weight wfin;

. Maximal accommodation for design: the program becomes:

proc surveyreg data=m.bmi_voeg total=10000000;

title ’11. Surveyreg, weighted, stratified,’;

title2 ’two-stage (clustered), finite population’;

class age7;

weight wfin;

strata province;

cluster hh;

model lnbmi = sex age7 / solution;

run;
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23.3.3 Programs for the Linear Mixed Model

• The design features that can be accommodated in PROC MIXED are weighting
and clustering:

proc mixed data=m.bmi_voeg method=reml;

title ’12. Approximate survey regression, for Belgium’;

title2 ’with PROC MIXED (weighted + clustered)’;

weight wfin;

class age7;

model lnbmi = sex age7 / solution;

random intercept / subject=hh;

run;

• When there are three or more levels, in a 3-stage or multi-stage design, PROC
MIXED can accommodate this through multiple RANDOM statements.

• Example:

random intercept / subject=town;

random intercept / subject=hh;
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23.4 Parameter Estimates

23.4.1 Selected Output

• PROC REG for ordinary linear regression:

Parameter Standard

Variable DF Estimate Error t Value Pr > |t|

Intercept 1 3.25992 0.00822 396.64 <.0001

SEX 1 -0.04508 0.00342 -13.17 <.0001

AGEGR1 1 -0.12354 0.00772 -15.99 <.0001

AGEGR2 1 -0.04495 0.00729 -6.17 <.0001

AGEGR3 1 -0.00303 0.00731 -0.41 0.6784

AGEGR4 1 0.03796 0.00757 5.02 <.0001

AGEGR5 1 0.06126 0.00779 7.86 <.0001

AGEGR6 1 0.06156 0.00783 7.86 <.0001
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• PROC GLM for ordinary linear regression:

Standard

Parameter Estimate Error t Value Pr > |t|

Intercept 3.259921896 B 0.00821889 396.64 <.0001

SEX -0.045076290 0.00342154 -13.17 <.0001

AGE7 1 -0.123542829 B 0.00772450 -15.99 <.0001

AGE7 2 -0.044953329 B 0.00728596 -6.17 <.0001

AGE7 3 -0.003032890 B 0.00731326 -0.41 0.6784

AGE7 4 0.037962219 B 0.00756814 5.02 <.0001

AGE7 5 0.061264578 B 0.00778986 7.86 <.0001

AGE7 6 0.061560303 B 0.00782798 7.86 <.0001

AGE7 7 0.000000000 B . . .

NOTE: The X’X matrix has been found to be singular, and a generalized inverse was used to

solve the normal equations. Terms whose estimates are followed by the letter ’B’

are not uniquely estimable.

• Note that there is a warning about non-uniqueness.

This is not an issue, and merely indicates one dummy has to be removed, as
stated earlier.

A different choice will lead to differently coded but equivalent parameterizations.
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• PROC MIXED with REML and ML for ordinary linear regression:

Standard

Effect AGE7 Estimate Error DF t Value Pr > |t|

Intercept 3.2599 0.008219 8376 396.64 <.0001

SEX -0.04508 0.003422 8376 -13.17 <.0001

AGE7 1 -0.1235 0.007725 8376 -15.99 <.0001

AGE7 2 -0.04495 0.007286 8376 -6.17 <.0001

AGE7 3 -0.00303 0.007313 8376 -0.41 0.6784

AGE7 4 0.03796 0.007568 8376 5.02 <.0001

AGE7 5 0.06126 0.007790 8376 7.86 <.0001

AGE7 6 0.06156 0.007828 8376 7.86 <.0001

AGE7 7 0 . . . .

Standard

Effect AGE7 Estimate Error DF t Value Pr > |t|

Intercept 3.2599 0.008215 8376 396.83 <.0001

SEX -0.04508 0.003420 8376 -13.18 <.0001

AGE7 1 -0.1235 0.007721 8376 -16.00 <.0001

AGE7 2 -0.04495 0.007282 8376 -6.17 <.0001

AGE7 3 -0.00303 0.007310 8376 -0.41 0.6782

AGE7 4 0.03796 0.007565 8376 5.02 <.0001

AGE7 5 0.06126 0.007786 8376 7.87 <.0001

AGE7 6 0.06156 0.007824 8376 7.87 <.0001

AGE7 7 0 . . . .
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• Note that the impact of the ML versus REML choice is not noticeable up to the
4th decimal place of the standard errors.

• PROC SURVEYREG for ordinary linear regression:

Standard

Parameter Estimate Error t Value Pr > |t|

Intercept 3.2599219 0.00819723 397.69 <.0001

SEX -0.0450763 0.00340116 -13.25 <.0001

AGE7 1 -0.1235428 0.00774817 -15.94 <.0001

AGE7 2 -0.0449533 0.00760124 -5.91 <.0001

AGE7 3 -0.0030329 0.00769816 -0.39 0.6936

AGE7 4 0.0379622 0.00789804 4.81 <.0001

AGE7 5 0.0612646 0.00810799 7.56 <.0001

AGE7 6 0.0615603 0.00831177 7.41 <.0001

AGE7 7 0.0000000 0.00000000 . .
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• PROC SURVEYREG for a finite and a census-finite population:

Standard

Parameter Estimate Error t Value Pr > |t|

Intercept 3.2599219 0.00819380 397.85 <.0001

SEX -0.0450763 0.00339973 -13.26 <.0001

AGE7 1 -0.1235428 0.00774492 -15.95 <.0001

AGE7 2 -0.0449533 0.00759806 -5.92 <.0001

AGE7 3 -0.0030329 0.00769493 -0.39 0.6935

AGE7 4 0.0379622 0.00789472 4.81 <.0001

AGE7 5 0.0612646 0.00810459 7.56 <.0001

AGE7 6 0.0615603 0.00830828 7.41 <.0001

AGE7 7 0.0000000 0.00000000 . .

Standard

Parameter Estimate Error t Value Pr > |t|

Intercept 3.2599219 0 Infty <.0001

SEX -0.0450763 0 -Infty <.0001

AGE7 1 -0.1235428 0 -Infty <.0001

AGE7 2 -0.0449533 0 -Infty <.0001

AGE7 3 -0.0030329 0 -Infty <.0001

AGE7 4 0.0379622 0 Infty <.0001

AGE7 5 0.0612646 0 Infty <.0001

AGE7 6 0.0615603 0 Infty <.0001

AGE7 7 0.0000000 0 . .
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• PROC SURVEYREG for all design aspects combined:

Standard

Parameter Estimate Error t Value Pr > |t|

Intercept 3.2843384 0.01248738 263.01 <.0001

SEX -0.0497695 0.00452629 -11.00 <.0001

AGE7 1 -0.1364198 0.01194590 -11.42 <.0001

AGE7 2 -0.0613612 0.01162671 -5.28 <.0001

AGE7 3 -0.0160375 0.01189654 -1.35 0.1777

AGE7 4 0.0231462 0.01215398 1.90 0.0569

AGE7 5 0.0570522 0.01362803 4.19 <.0001

AGE7 6 0.0355099 0.01514205 2.35 0.0191

AGE7 7 0.0000000 0.00000000 . .
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• PROC MIXED for weighting and clustering:

Covariance Parameter Estimates

Cov Parm Subject Estimate

Intercept HH 0.007719

Residual 12.3942

. We can now also calculate the intra-class correlation.

. Recall the computations from page 474:

̂
σ2 = 0.0243
̂
τ 2 = 0.0043

ρ̂LNBMI =
τ 2

σ2 + τ 2
=

0.0043

0.0243 + 0.0043
= 0.15
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. This now changes to:

̂
σ2 = 12.3992
̂
τ 2 = 0.007719

ρ̂LNBMI|sex,age =
τ 2

σ2 + τ 2
=

0.007719

12.3992 + 0.007719
= 0.00062

. The total variability is much larger: impact of the weights, which sums to,
roughly, the population total.

. This does not change the relative magnitudes of σ2 and τ 2.

. The resulting intra-cluster correlation, after correcting for sex and age, is much
smaller.

Sex and age have the power to explain a large amount of within-household
correlation.
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• The fixed effects:

Standard

Effect AGE7 Estimate Error DF t Value Pr > |t|

Intercept 3.2863 0.009221 4594 356.40 <.0001

SEX -0.04882 0.002908 3782 -16.79 <.0001

AGE7 1 -0.1467 0.008992 3782 -16.32 <.0001

AGE7 2 -0.06982 0.008837 3782 -7.90 <.0001

AGE7 3 -0.01486 0.008841 3782 -1.68 0.0928

AGE7 4 0.01884 0.008915 3782 2.11 0.0346

AGE7 5 0.05052 0.009453 3782 5.34 <.0001

AGE7 6 0.02971 0.009462 3782 3.14 0.0017

AGE7 7 0 . . . .
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23.4.2 Overview Table

Logarithm of Body Mass Index (Belgium)

Parameter estimates (s.e.) ×104

Analysis Procedure β̂0 β̂1 β̂21 β̂22 β̂23 β̂24 β̂25 β̂26

Ordinary linear regression

1.–5. SRS several∗ 32,599(82) -451(34) -1235(77) -450(73) -30(83) 380(76) 613(78) 616(78)

Design-based linear regression

5. SRS, ∞ SURVEYREG 32,599( 82) -451(34) -1235( 77) -450( 73) -30( 73) 380( 76) 613( 78) 616( 78)

6. SRS, 107 SURVEYREG 32,599( 82) -451(34) -1235( 77) -450( 73) -30( 73) 380( 76) 613( 78) 616( 78)

7. SRS, 8384 SURVEYREG 32,599( 0) -451( 0) -1235( 0) -450( 0) -30( 0) 380( 0) 613( 0) 616( 0)

8. weighted SURVEYREG 32,843(127) -498(49) -1364(118) -614(115) -160(120) 231(119) 571(134) 355(143)

9. stratified SURVEYREG 32,600( 82) -451(34) -1235( 77) -450( 76) -30( 77) 380( 79) 613( 81) 616( 83)

10. clustered SURVEYREG 32,600( 80) -451(32) -1235( 79) -450( 77) -30( 78) 380( 80) 613( 82) 616( 83)

11. all SURVEYREG 32,843(125) -498(45) -1364(119) -614(116) -160(119) 231(122) 571(136) 355(151)

Hierarchical linear regression

12. wt, clust MIXED 32,863( 92) -488(29) -1467( 90) -698( 88) -149( 88) 188( 89) 505( 94) 297( 95)

∗: REG, GLM, MIXED (REML), MIXED (ML), SURVEYREG (SRS)
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• As stated earlier, all ordinary linear regression implementations produce exactly
the same results, as it should.

• Some analyses (SRS with finite-population correction and stratified analyses) are
only slightly different.

• In this case, there is little clustering left (we derived a small intera-cluster
correlation), hence the clustered analysis is similar, too.

• Not surprisingly, the largest impact is seen on the weighted analysis, with the
direction in which the coefficients move hard to predict.

• Due to the different nature of the correction, the linear mixed model analysis is
different, though not spectacular.
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23.4.3 Hypothesis Testing

• Especially in a regression context, we might be interested in testing hypotheses,
such as:

H0,1 : Sex has no effect on LNBMI.

H0,2 : Age has no effect on LNBMI.

• In formulas:

H0,1 : β1 = 0

H0,2 : β21 = β22 = β23 = β24 = β25 = β26 = 0
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• H0,1 involves 1 parameter: d1 = 1 (numerator) degrees of freedom (ndf).

• H0,2 involves 6 parameters: d2 = 6 (numerator) degrees of freedom.

• One typically, but not exclusively, uses the Fd1,d2 test, where d2 represents the
denominator degrees of freedom (ddf).

• ddf refers to the amount of information available for the test.

• ddf is directly related to the sample size, but in complex designs and/or
hierarchical models, calculation is more subtle.

• For the LMM, there are various methods, but the most recommended ones are
Satterthwaite and Kenward-Roger.
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• Using a high-quality ddf method is essential when the dataset is small (small
number of first-level units).

• Since we have a large number of HH, there is little problem here, but when we
would start from the town level, differences might become noticeable.
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23.4.4 Selected Output

• The output takes various forms.

• PROC REG does not foresee such tests by default, even though they can be
obtained.

• PROC GLM produces:

Source DF Type I SS Mean Square F Value Pr > F

SEX 1 4.24172530 4.24172530 173.55 <.0001

AGE7 6 30.21321192 5.03553532 206.03 <.0001

Source DF Type III SS Mean Square F Value Pr > F

SEX 1 4.24198562 4.24198562 173.56 <.0001

AGE7 6 30.21321192 5.03553532 206.03 <.0001
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. Type I tests focus on an effect, marginal over the others.

. Type III tests focus on an effect, given the others.

. Both are similar here: sex and age seem to have relatively independent effects.

• PROC SURVEYREG produces:

Tests of Model Effects

Effect Num DF F Value Pr > F

Model 7 229.17 <.0001

Intercept 1 393731 <.0001

SEX 1 175.65 <.0001

AGE7 6 231.17 <.0001

. Apart from the sex and age effects, the overall model effect, referring to all
covariates (sex and age here) simultaneouly.

. The intercept effect refers to the null hypothesis that the intercept be zero;
usually a less relevant hypothesis.
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• PROC MIXED produces:

Type 3 Tests of Fixed Effects

Num Den

Effect DF DF F Value Pr > F

SEX 1 8376 173.56 <.0001

AGE7 6 8376 206.03 <.0001

. Type III tests are produced.

. In simple settings, the same results as with PROC GLM are obtained, but not
always, since different estimation algorithms and approximations are used.
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23.4.5 Overview Table

Logarithm of Body Mass Index (Belgium)

sex age

Analysis Procedure F p-value F p-value

Ordinary linear regression

2. SRS GLM 173.56 <0.0001 206.03 <0.0001

3. SRS MIXED (REML) 173.56 <0.0001 206.03 <0.0001

4. SRS MIXED (ML) 173.73 <0.0001 206.23 <0.0001

5. SRS,∞ SURVEYREG 175.65 <0.0001 231.17 <0.0001

Design-based linear regression

5. SRS,∞ SURVEYREG 175.65 <0.0001 231.17 <0.0001

6. SRS, 107 SURVEYREG 175.80 <0.0001 231.36 <0.0001

7. SRS, 8384 SURVEYREG 0 1.0000 0 1.0000

8. weighted SURVEYREG 104.58 <0.0001 115.56 <0.0001

9. stratified SURVEYREG 175.54 <0.0001 231.20 <0.0001

10. clustered SURVEYREG 195.36 <0.0001 231.94 <0.0001

11. all SURVEYREG 120.90 <0.0001 113.56 <0.0001

Hierarchical linear regression

12. wt, clust MIXED (REML, default) 281.94 <0.0001 262.74 <0.0001

12. wt, clust MIXED (ML, Kenward-Roger) 281.89 <0.0001 262.66 <0.0001
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• We can see the impact of design choices on the tests:

. Stratification has little impact.

. Weighting reduces efficiency.

. Clustering properly partitions the variability and increases efficiency.

. All: the net result is a smaller test statistic.

Hence, failing to accommodate the survey design might declare effects
significant that, in fact, are not.

• The difference between Kenward-Roger and the default in the MIXED procedure is
small since there is a large number of households.
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Chapter 24

Logistic Regression

. Ordinary logistic regression

. Logistic regression for survey data

. Generalized estimating equations

. Generalized linear mixed model

. Mean estimation with GEE and GLMM
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24.1 Concept

• In our mean estimation endeavors, we employed procedures for logistic regression.

• This implies we can conduct genuine logistic regression, using:

. PROC LOGISTIC, PROC GENMOD: Conventional logistic regression
procedures

. PROC SURVEYLOGISTIC: Design-based logistic regression procedure

. PROC GENMOD with REPEATED statement: Marginal logistic regression
tool for hierarchical data: GEE

. PROC GLIMMIX, PROC NLMIXED: Mixed-model based logistic regression
procedure for hierarchical data, based on the GLMM

• Several procedures will work for non-binary data, such as ordinal, nominal, and
count data, as well.
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24.2 Model

• Assume we are interested in the effect of sex and age on SGP.

• Sex is a binary variable, necessitating a single parameter.

• As before, define age as a 7-point ordinal variable age7, together with its dummies
A` = agegr`.
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• We now consider the following basic logistic regression model:

θi = γ0 + γ1Si + γ21A1i + γ22A2i + γ23A3i + γ24A4i + γ25A5i + γ26A6i

P [Zi = 1|Si, A1i, . . . , A6i] =
eθi

1 + eθi

where

. Zi is SGP for respondent i

. Si still is sex of respondent i (0 for males; 1 for females)

. A`i still is the value age-dummy ` takes for respondent i
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• With GEE, the above model changes to

θij = γ0 + γ1Sij + γ21A1ij + γ22A2ij + γ23A3ij + γ24A4ij + γ25A5ij + γ26A6ij

P [Zij = 1|Sij, A1ij, . . . , A6ij] =
eθij

1 + eθij

Corr(Zij, Zik) = α

where now

. Zij is SGP for individual j in household i

. Sij is sex of individual j in household i

. A`ij is the value age-dummy ` takes for individual j in household i
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• With GLMM, the model becomes

θij = γ0 + gi + γ1Sij

+ γ21A1ij + γ22A2ij + γ23A3ij + γ24A4ij + γ25A5ij + γ26A6ij

P [Zij = 1|Sij, A1ij, . . . , A6ij] =
eθij

1 + eθij

where now, in addition,

. gi is a household-level effect on LNBMI: gi ∼ N (0, τ 2)
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24.3 Programs

24.3.1 Programs for Ordinary Linear Regression

• Ordinary logistic regression can be coded using the dedicated SAS procedures
PROC LOGISTIC and PROC GENMOD.

• Let us first consider PROC LOGISTIC:

proc logistic data=m.bmi_voeg;

title ’1. Ordinary logistic regression, for Belgium’;

title2 ’with PROC LOGISTIC’;

class age7 / param=ref;

model sgp = sex age7;

contrast ’sex’ sex 1;

contrast ’age7’ age7 1 0 0 0 0 0 -1,

age7 0 1 0 0 0 0 -1,

age7 0 0 1 0 0 0 -1,

age7 0 0 0 1 0 0 -1,

age7 0 0 0 0 1 0 -1,

age7 0 0 0 0 0 1 -1;

run;
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proc logistic data=m.bmi_voeg;

title ’1a. Ordinary logistic regression, for Belgium’;

title2 ’with PROC LOGISTIC - with effect coding’;

class age7;

model sgp = sex age7;

run;

. We have used PROC GENMOD before.

. PROC LOGISTIC was historically the first procedure to fit logistic (and probit)
regression.

. Hence, there is no need to specifiy the distribution and the default link
function is the logit link.

. The default coding for dummy variables is so-called effect coding: every dummy
parameter is a comparison between a particular category and the last category.

To change this to the reference coding, where simply the last (seventh in our
case) parameter is set equal to zero, the ‘param=ref’ option is included in the
CLASS statement.
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. We will illustrate the difference by comparing both versions.

. The CONTRAST statement is included since the LOGISTIC procedure does
not automatically provide tests for the null hypothesis of no effect in case two
or more dummy variables are used.

. Thus, here, the two instances of the CONTRAST statement refer to,
respectively:

H0,1 : Sex has no effect on SGP.

H0,2 : Age has no effect on SGP.

. Equivalently:

H0,1 : γ1 = 0

H0,2 : γ21 = γ22 = γ23 = γ24 = γ25 = γ26 = 0
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. Indeed, more than one CONTRAST statement is allowed.

• The equivalent PROC GENMOD code is:

proc genmod data=m.bmi_voeg;

title ’2. Ordinary logistic regression, for Belgium’;

title2 ’with PROC GENMOD’;

class age7;

model sgp = sex age7 / dist=b;

contrast ’sex’ sex 1;

contrast ’age7’ age7 1 0 0 0 0 0 -1,

age7 0 1 0 0 0 0 -1,

age7 0 0 1 0 0 0 -1,

age7 0 0 0 1 0 0 -1,

age7 0 0 0 0 1 0 -1,

age7 0 0 0 0 0 1 -1;

run;

. We have used PROC GENMOD before.

. Also here, CONTRAST statements are used.
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• We can also use the GLM procedures PROC GLIMMIX and PROC NLMIXED,
without the hierarchical features, to fit an ordinary logistic regression model:

proc glimmix data=m.bmi_voeg;

title ’3. Ordinary logistic regression, for Belgium’;

title2 ’with proc glimmix’;

nloptions maxiter=50;

class age7;

model sgp = sex age7 / solution dist=b;

run;

proc nlmixed data=m.bmi_voeg;

title ’4. Ordinary logistic regression, for Belgium’;

title2 ’with PROC NLMIXED - ML estimation’;

theta = beta0 + beta1*sex + beta21*agegr1 + beta22*agegr2

+ beta23*agegr3 + beta24*agegr4 + beta25*agegr5

+ beta26*agegr6;

exptheta = exp(theta);

p = exptheta/(1+exptheta);

model sgp ~ binary(p);

run;
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proc nlmixed data=m.bmi_voeg;

title ’4a. Ordinary logistic regression, for Belgium’;

title2 ’with PROC NLMIXED - ML estimation’;

title3 ’for lik ratio test’;

theta = beta0 + beta1*sex;

exptheta = exp(theta);

p = exptheta/(1+exptheta);

model sgp ~ binary(p);

run;

. The syntax of both procedures, used here, is a straightforward extension of the
versions used for mean estimation.

. Note, in particular, the linear predictor θi has to be spelled out in every exact
detail in the NLMIXED procedure.

. Since NLMIXED is essentially a non-linear procedure, there is no CONTRAST
statement, which is confined to linear combinations of parameters.
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. An easy solution is by using the likelihood ratio test, through fitting a model
with and without the age parameters.

The difference between both likelihoods at maximum follows, asymptotically, a
χ2

6 distribution.

. A similar undertaking for the sex effect is not necessary, since it is a
1-parameter effect, and a test follows from the parameter estimates table.

• Finally, we can employ the design-based regression procedure PROC
SURVEYLOGISTIC, but confine it to SRS:

proc surveylogistic data=m.bmi_voeg;

title ’5a. Surveylogistic, SRS, infinite population’;

class age7 / param=ref;

model sgp = sex age7;

run;

. Used in this fashion, the procedure is syntactically similar to PROC LOGISTIC,
PROC GENMOD, and PROC GLIMMIX.
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. Note, also here, the need to change the default effect coding to reference
coding, in line with the LOGISTIC procedure.

. The same was not true for the linear regression procedures, where the reference
coding is the default.
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24.3.2 Programs for Design-Based Linear Regression

• Starting from the PROC SURVEYLOGISTIC program on page 706:

proc surveylogistic data=m.bmi_voeg;

title ’5a. Surveylogistic, SRS, infinite population’;

class age7 / param=ref;

model sgp = sex age7;

run;

a number of design features can be built in:

. Finite population: the PROC SURVEYLOGISTIC statement changes to:

proc surveylogistic data=m.bmi_voeg total=10000000;

. Census-finite population: the PROC SURVEYLOGISTIC statement
changes to:

proc surveylogistic data=m.bmi_voeg total=8532;
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. Stratification: the following statement is added:

strata province;

. Two-stage sampling (clustering): the following statement is added:

cluster hh;

. Weighting: the following statement is added:

weight wfin;

. Maximal accommodation for design: the program becomes:

proc surveylogistic data=m.bmi_voeg total=10000000;

title ’11. Surveylogistic, weighted, stratified, two-stage (clustered),’;

title2 ’finite population’;

class age7 / param=ref;

weight wfin;

strata province;

cluster hh;

model sgp = sex age7;

run;
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24.3.3 Programs for Generalized Estimating Equations

• The design features that can be accommodated in PROC MIXED are weighting
and clustering:

proc genmod data=m.bmi_voeg;

title ’12. GEE logistic regression, for Belgium’;

title2 ’weighted + clustered’;

weight wfin;

class age7 hh;

model sgp = sex age7 / dist=b;

repeated subject = hh / type=cs corrw modelse;

contrast ’sex’ sex 1;

contrast ’age7’ age7 1 0 0 0 0 0 -1,

age7 0 1 0 0 0 0 -1,

age7 0 0 1 0 0 0 -1,

age7 0 0 0 1 0 0 -1,

age7 0 0 0 0 1 0 -1,

age7 0 0 0 0 0 1 -1;

run;

• Also here, CONTRAST statements are needed for the test statistics.
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24.3.4 Programs for the Generalized Linear Mixed Model

• The design features that can be accommodated in PROC GLIMMIX are weighting
and clustering:

proc glimmix data=m.bmi_voeg empirical;

title ’13. GLMM, for Belgium’;

title2 ’with proc glimmix’;

title3 ’weighted + two-stage (cluster)’;

nloptions maxiter=50;

weight wfin;

class age7;

model sgp = sex age7 / solution dist=b;

random intercept / subject = hh type=un;

run;
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• The NLMIXED procedure only accommodates the clustering feature:

proc nlmixed data=m.bmi_voeg;

title ’14. GLMM, for Belgium’;

title2 ’with PROC NLMIXED’;

title3 ’two-stage (cluster)’;

theta = beta0 + b + beta1*sex + beta21*agegr1 + beta22*agegr2

+ beta23*agegr3 + beta24*agegr4 + beta25*agegr5

+ beta26*agegr6;

exptheta = exp(theta);

p = exptheta/(1+exptheta);

model sgp ~ binary(p);

random b ~ normal(0,tau2) subject=hh;

run;

• Like the MIXED procedure, GLIMMIX allows for multiple RANDOM statement,
while NLMIXED allows for only one.

• As before, a second copy of the NLMIXED program is needed to conduct a
likelihood ratio test.

In the second program the age dummies are omitted.
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24.4 Parameter Estimates

24.4.1 Selected Output

• Consider PROC LOGISTIC for ordinary logistic regression.

. The progam version with the ‘param=ref’ option produces the following class
level information:

Class Level Information

Class Value Design Variables

AGE7 1 1 0 0 0 0 0

2 0 1 0 0 0 0

3 0 0 1 0 0 0

4 0 0 0 1 0 0

5 0 0 0 0 1 0

6 0 0 0 0 0 1

7 0 0 0 0 0 0
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whereas the default is:

Class Level Information

Class Value Design Variables

AGE7 1 1 0 0 0 0 0

2 0 1 0 0 0 0

3 0 0 1 0 0 0

4 0 0 0 1 0 0

5 0 0 0 0 1 0

6 0 0 0 0 0 1

7 -1 -1 -1 -1 -1 -1

. In the first case, the intercept corresponds to the seventh and last dummy
category, whereas in the second case the intercept has the meaning of an
average over all categories.

. Parameter estimates for the first and second versions, respectively:
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Standard Wald

Parameter DF Estimate Error Chi-Square Pr > ChiSq

Intercept 1 -2.4678 0.2236 121.7901 <.0001

SEX 1 -0.4398 0.0749 34.4897 <.0001

AGE7 1 1 1.0383 0.2150 23.3229 <.0001

AGE7 2 1 1.2748 0.2062 38.2370 <.0001

AGE7 3 1 1.0939 0.2082 27.6049 <.0001

AGE7 4 1 0.7088 0.2180 10.5766 0.0011

AGE7 5 1 0.6776 0.2230 9.2319 0.0024

AGE7 6 1 0.2433 0.2364 1.0593 0.3034

Standard Wald

Parameter DF Estimate Error Chi-Square Pr > ChiSq

Intercept 1 -1.7482 0.1164 225.6591 <.0001

SEX 1 -0.4398 0.0749 34.4897 <.0001

AGE7 1 1 0.3188 0.0915 12.1433 0.0005

AGE7 2 1 0.5553 0.0756 54.0044 <.0001

AGE7 3 1 0.3743 0.0794 22.2475 <.0001

AGE7 4 1 -0.0107 0.0962 0.0124 0.9114

AGE7 5 1 -0.0419 0.1043 0.1616 0.6877

AGE7 6 1 -0.4762 0.1236 14.8484 0.0001
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. While the estimates are different (except for the sex effect), one set transforms
linearly into the other set.

• PROC GENMOD for ordinary logistic regression:

Standard Wald 95% Confidence Chi-

Parameter DF Estimate Error Limits Square Pr > ChiSq

Intercept 1 -2.4684 0.2237 -2.9067 -2.0300 121.80 <.0001

SEX 1 -0.4398 0.0749 -0.5865 -0.2930 34.49 <.0001

AGE7 1 1 1.0389 0.2150 0.6174 1.4604 23.34 <.0001

AGE7 2 1 1.2754 0.2062 0.8713 1.6796 38.25 <.0001

AGE7 3 1 1.0945 0.2082 0.6863 1.5026 27.62 <.0001

AGE7 4 1 0.7094 0.2180 0.2822 1.1367 10.59 0.0011

AGE7 5 1 0.6782 0.2231 0.2410 1.1154 9.24 0.0024

AGE7 6 1 0.2438 0.2364 -0.2195 0.7072 1.06 0.3024

AGE7 7 0 0.0000 0.0000 0.0000 0.0000 . .

Scale 0 1.0000 0.0000 1.0000 1.0000

• The estimates are the same,
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• as is the case for the PROC GLIMMIX version:

Standard

Effect AGE7 Estimate Error DF t Value Pr > |t|

Intercept 2.4684 0.2237 8524 11.04 <.0001

SEX 0.4398 0.07488 8524 5.87 <.0001

AGE7 1 -1.0389 0.2150 8524 -4.83 <.0001

AGE7 2 -1.2754 0.2062 8524 -6.19 <.0001

AGE7 3 -1.0945 0.2082 8524 -5.26 <.0001

AGE7 4 -0.7094 0.2180 8524 -3.25 0.0011

AGE7 5 -0.6782 0.2231 8524 -3.04 0.0024

AGE7 6 -0.2438 0.2364 8524 -1.03 0.3024

AGE7 7 0 . . . .

the PROC NLMIXED version:

Standard

Parameter Estimate Error DF t Value Pr > |t| Alpha Lower Upper

beta0 2.4683 0.2237 8532 11.04 <.0001 0.05 2.0298 2.9067

beta1 0.4398 0.07488 8532 5.87 <.0001 0.05 0.2930 0.5866

beta21 -1.0388 0.2150 8532 -4.83 <.0001 0.05 -1.4604 -0.6173

beta22 -1.2754 0.2062 8532 -6.18 <.0001 0.05 -1.6796 -0.8712

beta23 -1.0944 0.2082 8532 -5.26 <.0001 0.05 -1.5026 -0.6862

beta24 -0.7094 0.2180 8532 -3.25 0.0011 0.05 -1.1367 -0.2821

beta25 -0.6782 0.2231 8532 -3.04 0.0024 0.05 -1.1154 -0.2409

beta26 -0.2437 0.2364 8532 -1.03 0.3026 0.05 -0.7072 0.2197
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and the PROC SURVEYLOGISTIC version:

Standard Wald

Parameter DF Estimate Error Chi-Square Pr > ChiSq

Intercept 1 -2.4678 0.2261 119.1579 <.0001

SEX 1 -0.4398 0.0750 34.4267 <.0001

AGE7 1 1 1.0383 0.2152 23.2771 <.0001

AGE7 2 1 1.2748 0.2060 38.3096 <.0001

AGE7 3 1 1.0939 0.2081 27.6175 <.0001

AGE7 4 1 0.7088 0.2177 10.5967 0.0011

AGE7 5 1 0.6776 0.2235 9.1894 0.0024

AGE7 6 1 0.2433 0.2362 1.0605 0.3031
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• PROC SURVEYLOGISTIC for a finite and a census-finite population:

Standard Wald

Parameter DF Estimate Error Chi-Square Pr > ChiSq

Intercept 1 -2.4678 0.2260 119.2596 <.0001

SEX 1 -0.4398 0.0749 34.4561 <.0001

AGE7 1 1 1.0383 0.2151 23.2969 <.0001

AGE7 2 1 1.2748 0.2059 38.3423 <.0001

AGE7 3 1 1.0939 0.2081 27.6411 <.0001

AGE7 4 1 0.7088 0.2177 10.6058 0.0011

AGE7 5 1 0.6776 0.2234 9.1973 0.0024

AGE7 6 1 0.2433 0.2361 1.0615 0.3029

Standard Wald

Parameter DF Estimate Error Chi-Square Pr > ChiSq

Intercept 1 -2.4678 0 . .

SEX 1 -0.4398 0 . .

AGE7 1 1 1.0383 0 . .

AGE7 2 1 1.2748 0 . .

AGE7 3 1 1.0939 0 . .

AGE7 4 1 0.7088 0 . .

AGE7 5 1 0.6776 0 . .

AGE7 6 1 0.2433 0 . .
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• PROC SURVEYLOGISTIC for all design aspects combined:

Standard Wald

Parameter DF Estimate Error Chi-Square Pr > ChiSq

Intercept 1 -2.9833 0.4645 41.2560 <.0001

SEX 1 -0.3217 0.1026 9.8407 0.0017

AGE7 1 1 1.0020 0.4582 4.7827 0.0287

AGE7 2 1 1.1202 0.4504 6.1852 0.0129

AGE7 3 1 1.0737 0.4600 5.4485 0.0196

AGE7 4 1 0.5692 0.4614 1.5215 0.2174

AGE7 5 1 0.2009 0.4683 0.1841 0.6679

AGE7 6 1 0.3574 0.5028 0.5054 0.4771

Survey Methods & Sampling Techniques 720



• PROC GENMOD with REPEATED for GEE, accommodating weighting and
clustering.

. The working correlation is considerable, underscoring the strong correlation in
SGP within a household:

Exchangeable Working

Correlation

Correlation 0.3943526021

. Recall that the working correlation structure does not need to be correctly
specified and hence should not be overinterpreted.

Nevertheless, we obtain a good indication about the average correlation
between HH members in terms of SGP.
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. The parameter estimates:
Analysis Of GEE Parameter Estimates

Empirical Standard Error Estimates

Standard 95% Confidence

Parameter Estimate Error Limits Z Pr > |Z|

Intercept -2.9657 0.3765 -3.7037 -2.2277 -7.88 <.0001

SEX -0.2620 0.0823 -0.4233 -0.1008 -3.19 0.0014

AGE7 1 1.0632 0.3766 0.3252 1.8013 2.82 0.0047

AGE7 2 1.0754 0.3719 0.3464 1.8043 2.89 0.0038

AGE7 3 1.0436 0.3814 0.2962 1.7911 2.74 0.0062

AGE7 4 0.6295 0.3735 -0.1026 1.3616 1.69 0.0919

AGE7 5 0.2568 0.3820 -0.4919 1.0054 0.67 0.5015

AGE7 6 0.3822 0.4020 -0.4057 1.1701 0.95 0.3417

AGE7 7 0.0000 0.0000 0.0000 0.0000 . .
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. Recall that it is imperative to use the empirically corrected standard errors,
since the purely model based ones do not properly deal with the weights:

Analysis Of GEE Parameter Estimates

Model-Based Standard Error Estimates

Standard 95% Confidence

Parameter Estimate Error Limits Z Pr > |Z|

Intercept -2.9657 0.0105 -2.9862 -2.9451 -282.95 <.0001

SEX -0.2620 0.0024 -0.2668 -0.2573 -108.11 <.0001

AGE7 1 1.0632 0.0102 1.0432 1.0833 104.07 <.0001

AGE7 2 1.0754 0.0102 1.0554 1.0953 105.88 <.0001

AGE7 3 1.0436 0.0102 1.0237 1.0635 102.77 <.0001

AGE7 4 0.6295 0.0103 0.6092 0.6498 60.89 <.0001

AGE7 5 0.2568 0.0111 0.2350 0.2785 23.16 <.0001

AGE7 6 0.3822 0.0110 0.3606 0.4038 34.69 <.0001

AGE7 7 0.0000 0.0000 0.0000 0.0000 . .

Scale 1.0000 . . . . .
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• The GLIMMIX procedure for the GLMM:

Covariance Parameter Estimates

Cov Standard

Parm Subject Estimate Error

UN(1,1) HH 40.1435 0.9785

Standard

Effect AGE7 Estimate Error DF t Value Pr > |t|

Intercept 7.8965 1.1015 4661 7.17 <.0001

SEX 0.7908 0.3995 3863 1.98 0.0478

AGE7 1 -1.8937 1.3218 3863 -1.43 0.1520

AGE7 2 -1.6106 1.4072 3863 -1.14 0.2525

AGE7 3 -1.3059 1.2926 3863 -1.01 0.3124

AGE7 4 -0.7893 1.4074 3863 -0.56 0.5750

AGE7 5 -0.1224 1.4225 3863 -0.09 0.9315

AGE7 6 -1.5910 1.2234 3863 -1.30 0.1935

AGE7 7 0 . . . .
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• The NLMIXED procedure for the GLMM:

Standard

Parameter Estimate Error DF t Value Pr > |t| Alpha Lower Upper

beta0 4.7993 0.3553 4661 13.51 <.0001 0.05 4.1027 5.4958

beta1 0.6810 0.1112 4661 6.12 <.0001 0.05 0.4629 0.8991

beta21 -1.8426 0.3295 4661 -5.59 <.0001 0.05 -2.4886 -1.1967

beta22 -2.0590 0.3169 4661 -6.50 <.0001 0.05 -2.6803 -1.4377

beta23 -1.7769 0.3177 4661 -5.59 <.0001 0.05 -2.3996 -1.1541

beta24 -1.2543 0.3282 4661 -3.82 0.0001 0.05 -1.8978 -0.6108

beta25 -0.9829 0.3364 4661 -2.92 0.0035 0.05 -1.6424 -0.3233

beta26 -0.4115 0.3400 4661 -1.21 0.2262 0.05 -1.0780 0.2550

tau2 8.1683 0.6827 4661 11.97 <.0001 0.05 6.8300 9.5067

. Note that, as before, the GLMM parameters are much larger in absolute values
than their marginal counterparts, for reasons studied before.

. Usually, the GLIMMIX estimates are biased downwards relative to the
gold-standard NLMIXED ones.

. However, here, a direct comparison is difficult since the GLIMMIX parameters
come from a model correcting for weighting and clustering, whereas in the
NLMIXED syntax only clustering is taken into account.
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24.4.2 Overview Table

Stable General Practitioner (Belgium)

Parameter estimates (s.e.) ×102

Analysis Procedure γ̂0 γ̂1 γ̂21 γ̂22 γ̂23 γ̂24 γ̂25 γ̂26

Ordinary logistic regression

1.–5. SRS several∗ -247(22) -44( 7) 104(22) 127(21) 109(21) 71(22) 68(22) 24(24)

Design-based logistic regression

5. SRS, ∞ SURVEYLOGISTIC -247(22) -44( 7) 104(22) 127(21) 109(21) 71(22) 68(22) 24(24)

6. SRS, 107 SURVEYLOGISTIC -247(23) -44( 7) 104(22) 127(21) 109(21) 71(22) 68(22) 24(24)

7. SRS, 8384 SURVEYLOGISTIC -247( 0) -44( 0) 104( 0) 127( 0) 109( 0) 71( 0) 68( 0) 24( 0)

8. weighted SURVEYLOGISTIC -298(38) -32(11) 100(37) 112(36) 107(37) 57(37) 20(37) 36(42)

9. stratified SURVEYLOGISTIC -247(23) -44( 8) 104(22) 127(21) 109(21) 71(22) 68(22) 24(24)

10. clustered SURVEYLOGISTIC -247(23) -44( 6) 104(23) 127(22) 109(22) 71(23) 68(24) 24(25)

11. all SURVEYLOGISTIC -298(46) -32(10) 100(46) 112(45) 107(46) 57(46) 20(47) 36(50)

Hierarchical logistic regression

12. wt, clust GEMNOD -297(38) -26( 8) 106(38) 108(37) 104(38) 63(37) 25(38) 38(40)

13. wt, clust GLIMMIX -790(110) -79(40) 189(132) 161(141) 131(129) 79(141) 12(142) 159(122)

14. clust NLMIXED -480(36) -68(11) 184(33) 206(32) 177(32) 125(33) 98(34) 41(34)

∗: LOGISTIC, GENMOD, GLIMMIX, NLMIXED, SURVEYLOGISTIC (SRS)
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• As for LNBMI, the largest impact is seen for the weighted analyses.

• Recall the relationship between the marginal (GEE) and random-effects
parameters (GLMM):

̂
β

RE

̂
β

M
=
√

c2τ 2 + 1 > 1, τ 2 = variance random intercepts

c = 16
√

3/(15π)

In our case, this becomes:

√
c2τ 2 + 1 =

√
0.58812 × 8.17 + 1 = 1.96
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It is hard to verify the relationship pragmatically:

. NLMIXED (GLMM) does not correct for weighting, while GENMOD (GEE)
does.

. The GLIMMIX parameter estimates are hard to trust, given the severe bias
inherent to this approximate method.

• Recall, once more, that the GLMM parameters have a different, HH-specific
interpretation, and hence cannot be compared directly to the other analyses.
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24.4.3 Hypothesis Testing

• As stated before, we are interested in:

H0,1 : Sex has no effect on SGP.

H0,2 : Age has no effect on SGP.

• Mathematically translated:

H0,1 : γ1 = 0

H0,2 : γ21 = γ22 = γ23 = γ24 = γ25 = γ26 = 0
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• In the linear context, F tests are rather prominent.

• The situation is less unambiguous with non-Gaussian, e.g., binary, data.

• Some procedures, like GLIMMIX, implement approximate F tests.

• Note that this corresponds to a squared t test for a single parameter:

F1,d2 ≡ t2d1

• The asympotic versions for d2→∞ is a Wald test, with then

td2
→ Z ∼ N (0, 1)

Fd1,d2 → X2
d2
∼ χ2

d2
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• A Wald test essentially compares the difference between a parameter (set of
parameters) and its null values on the one hand with its variance
(variance-covariance matrix) on the other hand.

• Alternatively, a likelihood ratio test can be constructed by fitting a model with
and without a set of d1 parameters, then calculating the double difference between
the log-likelihoods at maximum, and referring it to a χ2

d1
:

2( ̂`1 − ̂`0) ∼ χ2
d1

with `1 (`0) the log-likelihood under the alternative (null) hypothesis.

• Finally, a score test can be considered, which compares the score function (first
derivative of the log-likelihood) of the alternative model, evaluated in the null
model parameter estimate, to its precision.
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• The score test statistics asymptotically follows a χ2
d1

.

• Asymptotically under the null, likelihood ratio (LR), Wald (W), and score (S)
tests are equivalent.
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24.4.4 Selected Output

• The output takes various forms.

• PROC LOGISTIC produces, by default and as a result of the CONTRAST
statement:

Type 3 Analysis of Effects

Wald

Effect DF Chi-Square Pr > ChiSq

SEX 1 34.4897 <.0001

AGE7 6 87.2642 <.0001

Contrast Test Results

Wald

Contrast DF Chi-Square Pr > ChiSq

sex 1 34.4897 <.0001

age7 6 87.2642 <.0001
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• PROC GENMOD consider the LR test rather than the W test:

Contrast Results

Chi-

Contrast DF Square Pr > ChiSq Type

sex 1 35.01 <.0001 LR

age7 6 97.69 <.0001 LR

• PROC GLIMMIX produces

Type III Tests of Fixed Effects

Num Den

Effect DF DF F Value Pr > F

SEX 1 8524 34.49 <.0001

AGE7 6 8524 14.55 <.0001

While the result for sex is similar, it is not at all for age, due to the relatively poor
approximations used.
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• PROC NLMIXED:

. For sex, being a single parameter, we can use the appropriate line in the
parameter estimates panel:

Standard

Parameter Estimate Error DF t Value Pr > |t| Alpha

beta1 0.4398 0.07488 8532 5.87 <.0001 0.05

. Here, the p-value follows directly from the t test.

. In case one is interested in the F statistic:

F = t2 = 5.872 = 34.46

. For the age effect, compare minus twice the log-likelihood from the model with
and without the age effects:

-2 Log Likelihood 5276.0

-2 Log Likelihood 5373.7

producing X2 = 97.70.
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• PROC SURVEYLOGISTIC produces

Type 3 Analysis of Effects

Wald

Effect DF Chi-Square Pr > ChiSq

SEX 1 34.4267 <.0001

AGE7 6 87.3918 <.0001
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24.4.5 Overview Table
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Stable General Practitioner (Belgium)

sex age

Analysis Procedure Test F p-value F p-value

Ordinary logistic regression

1. SRS LOGISTIC Wald 34.49 <0.0001 87.26 <0.0001

2. SRS GENMOD χ2 35.01 <0.0001 97.69 <0.0001

3. SRS GLIMMIX F 34.49 <0.0001 14.55 <0.0001

4. SRS NLMIXED t 5.87 <0.0001

4. SRS NLMIXED F 34.46 <0.0001

4. SRS NLMIXED LR 97.70 <0.0001

5. SRS, ∞ SURVEYLOGISTIC Wald 34.43 <0.0001 87.39 <0.0001

Design-based logistic regression

5. SRS, ∞ SURVEYLOGISTIC Wald 34.43 <0.0001 87.39 <0.0001

6. SRS, 107 SURVEYLOGISTIC Wald 34.46 <0.0001 87.47 <0.0001

7. SRS, 8384 SURVEYLOGISTIC Wald 0.00 1.0000 0.00 1.0000

8. weighted SURVEYLOGISTIC Wald 8.13 0.0044 45.63 <0.0001

9. stratified SURVEYLOGISTIC Wald 34.41 <0.0001 87.44 <0.0001

10. clustered SURVEYLOGISTIC Wald 48.26 <0.0001 72.31 <0.0001

11. all SURVEYLOGISTIC Wald 9.84 0.0017 37.19 <0.0001

Hierarchical logistic regression

12. wt, clust GEMNOD score 8.82 0.0030 41.00 <0.0001

13. wt, clust GLIMMIX F 3.92 0.0478 1.08 0.3706

14. clust NLMIXED t 6.12 <0.0001

14. clust NLMIXED F 37.45 <0.0001

14. clust NLMIXED LR 86.80 <0.0001
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• We can see the impact of design choices on the tests:

. Stratification has little impact.

. Weighting reduces efficiency.

. Clustering properly partitions the variability and increases efficiency.

. All: the net result is a smaller test statistic.

Again, failing to accommodate the survey design might declare effects
significant that, in fact, are not.

• The GLIMMIX results are, due to the poverty of the approximation, not
trustworthy and have been italicized for this reason.

• The F tests in the NLMIXED procedures are simply the squares of the t tests.

• Recall that the 6-df test for age in these cases are conducted differently than the
1-df tests for sex.
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Chapter 25

Selecting a Sample Using SURVEYSELECT

. General concept

. Example code for Surveytown

. Output for Surveytown
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25.1 General Concept

• Assume the sample frame is given as a dataset.

• It is then possible to select a sample from it, using PROC SURVEYSELECT.

• The sampling methods allowed for are:

. SRS: simple random sampling

. URS: sampling with replacement (unrestricted random sampling)

. SYS: systematic sampling

. SEQ: sequential sampling: (a way of looping through a stratum, similar in
spirit but different from systematic sampling)

. PPS: sampling with probability proportional to size
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• All of these methods can be combined with STRATIFICATION.

• The PPS method features several versions, essentially allowing for combination
with the other methods (SRS, URS, SYS, and SEQ).

• A versatile collection of sampling methods results.
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25.2 Example: Surveytown

• Let us assume Surveytwon consists of the following information:

Surveytown sample frame

Obs block stratum y inhabitants

1 1 1 1 10

2 2 1 2 20

3 3 1 3 30

4 4 1 4 40

5 5 2 5 50

6 6 2 6 60

7 7 2 7 70

8 8 2 8 80

. The variables block, stratum, and Y (the number of inhabited lots) are in line
with their earlier uses.

. The number of inhabitants is introduced as an example of a size variable for a
block, to be used in what follows.
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• Program for SRS:

title ’1. surveyselect - Surveytown - SRS’;

proc surveyselect data=m.surveytown03 out=m.surveytown_srs

method=srs n=4 rep=5 seed=498388;

id block stratum y;

run;

. The SURVEYSELECT procedure contains all of the essential information:

∗ The input and output datasets.

∗ The output dataset contains the sample(s) taken.

∗ ‘method=srs’ option specifies the choice for SRS; which here means SRS
without replacement!

∗ The ‘n=4’ option specifies the size of a sample taken.

∗ The ‘rep=5’ option requests 5 executions of the sampling.

This is useful to study (asymptotic) properties, or just to study how a
method behaves.
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∗ The ‘seed=’ option initiates the random number generator. This is useful
when we want to redo the same analysis.

. The ID statement specifies which variables are to be included in the output
dataset.

• The output is as follows:

1. surveyselect - Surveytown - SRS

The SURVEYSELECT Procedure

Selection Method Simple Random Sampling

Input Data Set SURVEYTOWN03

Random Number Seed 498388

Sample Size 4

Selection Probability 0.5

Sampling Weight 2

Number of Replicates 5

Total Sample Size 20

Output Data Set SURVEYTOWN_SRS
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• This is essentially book keeping information about the sampling method and its
application to the set of data at hand.

• A print of the resulting output dataset displays the 5 samples taken, where

. The REPLICATE variable is automatically added, to indicate the rank number
of the particular sample taken.
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1. surveyselect - Surveytown - SRS

Obs Replicate block stratum y

1 1 1 1 1

2 1 2 1 2

3 1 4 1 4

4 1 5 2 5

5 2 2 1 2

6 2 3 1 3

7 2 4 1 4

8 2 7 2 7

9 3 4 1 4

10 3 6 2 6

11 3 7 2 7

12 3 8 2 8

13 4 2 1 2

14 4 3 1 3

15 4 6 2 6

16 4 8 2 8

17 5 3 1 3

18 5 4 1 4

19 5 6 2 6

20 5 7 2 7
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• Switching to SYS, we merely have to change one option:

method=sys

• This produces exactly the same book keeping information.

• The output dataset is:
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2. surveyselect - Surveytown - SYS

Obs Replicate block stratum y

1 1 1 1 1

2 1 3 1 3

3 1 5 2 5

4 1 7 2 7

5 2 2 1 2

6 2 4 1 4

7 2 6 2 6

8 2 8 2 8

9 3 2 1 2

10 3 4 1 4

11 3 6 2 6

12 3 8 2 8

13 4 1 1 1

14 4 3 1 3

15 4 5 2 5

16 4 7 2 7

17 5 2 1 2

18 5 4 1 4

19 5 6 2 6

20 5 8 2 8
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. We clearly see the impact of the method: only two possible samples arise:

∗ {1, 3, 5, 7}
∗ {2, 4, 6, 8}

• For SRS with replacement (URS), the option changes to:

method=urs

• This produces a slightly updated book keeping panel:

3. surveyselect - Surveytown - SRS & replacement

The SURVEYSELECT Procedure

Selection Method Unrestricted Random Sampling

Input Data Set SURVEYTOWN03

Random Number Seed 498388

Sample Size 4

Expected Number of Hits 0.5

Sampling Weight 2

Number of Replicates 5

Total Sample Size 20

Output Data Set SURVEYTOWN_SYS
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. The expected number of hits is the probability that an unit will be selected, it
is not different from the SRS and SYS selection probability, as we have seen
before.

• The output dataset:

3. surveyselect - Surveytown - SRS & replacement

Number

Obs Replicate block stratum y Hits

1 1 2 1 2 2

2 1 5 2 5 1

3 1 6 2 6 1

4 2 2 1 2 1

5 2 3 1 3 1

6 2 6 2 6 1

7 2 7 2 7 1

8 3 5 2 5 1

9 3 6 2 6 1

10 3 7 2 7 1

11 3 8 2 8 1
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12 4 2 1 2 1

13 4 4 1 4 1

14 4 8 2 8 2

15 5 4 1 4 1

16 5 6 2 6 2

17 5 8 2 8 1

. We clearly see that some units are selected more than once.

. This is indicated by the variable ‘Number Hits’.

. For example, the first sample consists of blocks 2, 2, 5, and 6.

• Switching to stratification, this is coded by combining ‘method=srs’ with the
STRATA statement:

title ’4. surveyselect - Surveytown - stratified’;

proc surveyselect data=m.surveytown03 out=m.surveytown_strat

method=srs n=(2 2) rep=5 seed=498388;

strata stratum;

id block stratum y;

run;
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. Note that we use the ‘n=(2 2)’ to indicate that our sample should consist of 2
units from the first and two from te second stratum.

• Before printing the output dataset, it is useful to order it by replicate, rather than
the default, which is by stratum:

proc sort data=m.surveytown_strat;

by replicate;

run;
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• The book keeping information now is:

The SURVEYSELECT Procedure

Selection Method Simple Random Sampling

Strata Variable stratum

Input Data Set SURVEYTOWN03

Random Number Seed 498388

Number of Strata 2

Number of Replicates 5

Total Sample Size 20

Output Data Set SURVEYTOWN_STRAT

• The 5 samples look like:

Survey Methods & Sampling Techniques 754



4. surveyselect - Surveytown - stratified

Selection Sampling

Obs stratum Replicate block y Prob Weight

1 1 1 1 1 0.5 2

2 1 1 3 3 0.5 2

3 2 1 6 6 0.5 2

4 2 1 8 8 0.5 2

5 1 2 1 1 0.5 2

6 1 2 2 2 0.5 2

7 2 2 6 6 0.5 2

8 2 2 8 8 0.5 2

9 1 3 1 1 0.5 2

10 1 3 2 2 0.5 2

11 2 3 5 5 0.5 2

12 2 3 8 8 0.5 2

13 1 4 1 1 0.5 2

14 1 4 4 4 0.5 2

15 2 4 6 6 0.5 2

16 2 4 7 7 0.5 2

17 1 5 3 3 0.5 2

18 1 5 4 4 0.5 2

19 2 5 7 7 0.5 2

20 2 5 8 8 0.5 2
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. Every sample nicely has 2 units from each stratum, as requested.

. The selection probabilities are all equal, and hence the sampling weight.

• This last observation is not always true: assume we change the subsample sizes by
changing to ‘n=(1,3)’.

• We then obtain:

5. surveyselect - Surveytown - stratified/unequal prob

Selection Sampling

Obs stratum Replicate block y Prob Weight

1 1 1 1 1 0.25 4.00000

2 2 1 6 6 0.75 1.33333

3 2 1 7 7 0.75 1.33333

4 2 1 8 8 0.75 1.33333
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5 1 2 3 3 0.25 4.00000

6 2 2 5 5 0.75 1.33333

7 2 2 7 7 0.75 1.33333

8 2 2 8 8 0.75 1.33333

9 1 3 3 3 0.25 4.00000

10 2 3 5 5 0.75 1.33333

11 2 3 6 6 0.75 1.33333

12 2 3 7 7 0.75 1.33333

13 1 4 1 1 0.25 4.00000

14 2 4 5 5 0.75 1.33333

15 2 4 6 6 0.75 1.33333

16 2 4 8 8 0.75 1.33333

17 1 5 3 3 0.25 4.00000

18 2 5 5 5 0.75 1.33333

19 2 5 6 6 0.75 1.33333

20 2 5 7 7 0.75 1.33333

. Now, there is always only 1 unit from the first stratum, while there are 3 from
the second.
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. To compensate for this, the sampling weights are inversely proportional to the
selection probability, so that proper weighted estimators can be used.

• Assume we want to sample proportional to size, and assume the size is given by
the number of inhabitants.

• The following program can be used:

title ’6. surveyselect - Surveytown - prop. to size’;

proc surveyselect data=m.surveytown03

out=m.surveytown_pps

method=pps

n=4

rep=5

seed=498388;

size inhabitants;

run;

. The SIZE statement is needed to specify which variable will be used as a
measure for a block’s size.
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• The book keeping output is as follows:

6. surveyselect - Surveytown - prop. to size

The SURVEYSELECT Procedure

Selection Method PPS, Without Replacement

Size Measure inhabitants

Input Data Set SURVEYTOWN03

Random Number Seed 498388

Sample Size 4

Number of Replicates 5

Total Sample Size 20

Output Data Set SURVEYTOWN_PPS

• The samples taken:
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6. surveyselect - Surveytown - prop. to size

Selection Sampling

Obs Replicate block stratum y inhabitants Prob Weight

1 1 4 1 4 40 0.44444 2.25000

2 1 6 2 6 60 0.66667 1.50000

3 1 7 2 7 70 0.77778 1.28571

4 1 8 2 8 80 0.88889 1.12500

5 2 2 1 2 20 0.22222 4.50000

6 2 5 2 5 50 0.55556 1.80000

7 2 6 2 6 60 0.66667 1.50000

8 2 8 2 8 80 0.88889 1.12500

9 3 4 1 4 40 0.44444 2.25000

10 3 6 2 6 60 0.66667 1.50000

11 3 7 2 7 70 0.77778 1.28571

12 3 8 2 8 80 0.88889 1.12500

13 4 3 1 3 30 0.33333 3.00000

14 4 5 2 5 50 0.55556 1.80000

15 4 6 2 6 60 0.66667 1.50000

16 4 8 2 8 80 0.88889 1.12500

17 5 5 2 5 50 0.55556 1.80000

18 5 6 2 6 60 0.66667 1.50000

19 5 7 2 7 70 0.77778 1.28571

20 5 8 2 8 80 0.88889 1.12500
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. Note that the seletion probability proportionally increases with the number of
inhabitants.

. As a result, the sampling weight inversely decreaess with it.
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Chapter 26

Some Selected Examples From STATA

. Selected programs

. Selected output
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26.1 Programs

use "bmi_voeg.dta", clear

log using bmi_voeg.log, replace

label list

svymean bmi voeg lnbmi lnvoeg

[pw=wfin], by(region) strata(province) psu(hh) obs ci

svyset,clear

svyprop sgp

[pw=wfin],by(region) strata(province) psu(hh)

svyset,clear

svyreg lnbmi wal fla sex agegr2 agegr3 agegr4 agegr5 agegr6 agegr7

eduprim edusec inclow incmed ta2

[pw=wfin], strata(province) psu(hh)

svyset,clear

svylogit sgp wal fla sex agegr2 agegr3 agegr4 agegr5 agegr6 agegr7

eduprim edusec inclow incmed ta2

[pw=wfin],or strata(province) psu(hh)

svyset,clear

log close

clear
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26.2 Selected Output

• Survey means for BMI (LNBMI), VOEG (LNVOEG)

• Survey proportions for SGP

• Survey regression for LNBMI

• Survey regression for SGP
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. svymean bmi voeg lnbmi lnvoeg [pw=wfin],by(region) strata(province) psu(hh) o

> bs ci

Survey mean estimation

pweight: wfin Number of obs(*) = 8560

Strata: province Number of strata = 12

PSU: hh Number of PSUs = 4663

Population size = 6954962.2

------------------------------------------------------------------------------

Mean Subpop. | Estimate Std. Err. [95% Conf. Interval] Obs

---------------+--------------------------------------------------------------

bmi Flanders | 24.40122 .1087409 24.18804 24.61441 2933

Brussels | 24.18994 .1252331 23.94443 24.43546 2499

Wallonia | 24.86484 .113913 24.64152 25.08817 2952

---------------+--------------------------------------------------------------

voeg Flanders | 5.060524 .1112748 4.842372 5.278676 2917

Brussels | 6.892918 .1519949 6.594935 7.190901 2412

Wallonia | 6.807946 .1387637 6.535902 7.07999 2921

---------------+--------------------------------------------------------------

lnbmi Flanders | 3.180865 .0042499 3.172533 3.189197 2933

Brussels | 3.171174 .004844 3.161677 3.18067 2499

Wallonia | 3.198131 .0044034 3.189499 3.206764 2952

---------------+--------------------------------------------------------------

lnvoeg Flanders | 1.511927 .0214095 1.469954 1.5539 2917

Brussels | 1.802773 .0231351 1.757417 1.848129 2412

Wallonia | 1.803178 .0232138 1.757668 1.848689 2921

------------------------------------------------------------------------------

(*) Some variables contain missing values.

. svyset,clear
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. svyprop sgp [pw=wfin],by(region) strata(province) psu(hh)

------------------------------------------------------------------------------

pweight: wfin Number of obs = 8532

Strata: province Number of strata = 12

PSU: hh Number of PSUs = 4662

Population size = 6934139.7

------------------------------------------------------------------------------

Survey proportions estimation

-> region=Flanders

sgp _Obs _EstProp _StdErr

no 142 0.045243 0.005379

yes 2834 0.954757 0.005379

-> region=Brussels

sgp _Obs _EstProp _StdErr

no 497 0.217552 0.013836

yes 2060 0.782448 0.013836

-> region=Wallonia

sgp _Obs _EstProp _StdErr

no 184 0.056809 0.006159

yes 2815 0.943191 0.006159

. svyset,clear
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. svyreg lnbmi wal fla sex agegr2 agegr3 agegr4 agegr5 agegr6 agegr7 eduprim

> edusec inclow incmed ta2 [pw=wfin], strata(province) psu(hh)

Survey linear regression

pweight: wfin Number of obs = 7272

Strata: province Number of strata = 12

PSU: hh Number of PSUs = 4135

Population size = 6005749.7

F( 14, 4110) = 62.76

Prob > F = 0.0000

R-squared = 0.1812

------------------------------------------------------------------------------

lnbmi | Coef. Std. Err. t P>|t| [95% Conf. Interval]

---------+--------------------------------------------------------------------

wal | .0200879 .0066976 2.999 0.003 .0069571 .0332188

fla | .0018571 .0064851 0.286 0.775 -.0108572 .0145714

sex | -.0472085 .0048974 -9.639 0.000 -.0568101 -.0376069

agegr2 | .0849605 .0077336 10.986 0.000 .0697984 .1001226

agegr3 | .1310856 .0078827 16.630 0.000 .1156312 .1465399

agegr4 | .1621346 .0084205 19.255 0.000 .1456259 .1786433

agegr5 | .1936704 .0111365 17.391 0.000 .1718369 .2155039

agegr6 | .1717149 .0134455 12.771 0.000 .1453544 .1980754

agegr7 | .1244203 .0125904 9.882 0.000 .0997362 .1491043

eduprim | .0547676 .0081827 6.693 0.000 .0387252 .0708101

edusec | .0389084 .0069964 5.561 0.000 .0251916 .0526251

inclow | .0054668 .0094271 0.580 0.562 -.0130154 .0239489

incmed | .009757 .0086923 1.122 0.262 -.0072845 .0267986

ta2 | -.0069546 .0051119 -1.360 0.174 -.0169768 .0030676

_cons | 3.108181 .0157486 197.362 0.000 3.077305 3.139057

------------------------------------------------------------------------------
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. svylogit sgp wal fla sex agegr2 agegr3 agegr4 agegr5 agegr6 agegr7 eduprim

> edusec inclow incmed ta2 [pw=wfin],or strata(province) psu(hh)

Survey logistic regression

pweight: wfin Number of obs = 7371

Strata: province Number of strata = 12

PSU: hh Number of PSUs = 4185

Population size = 6068632.8

F( 14, 4160) = 20.34

Prob > F = 0.0000

------------------------------------------------------------------------------

sgp | Odds Ratio Std. Err. t P>|t| [95% Conf. Interval]

---------+--------------------------------------------------------------------

wal | 4.416586 .6604814 9.933 0.000 3.294248 5.921301

fla | 5.669468 .8964809 10.973 0.000 4.158221 7.729956

sex | 1.335315 .1508814 2.559 0.011 1.069981 1.666447

agegr2 | .8740069 .1736995 -0.678 0.498 .5919685 1.29042

agegr3 | 1.012399 .2161323 0.058 0.954 .6661619 1.538591

agegr4 | 1.547812 .3401891 1.988 0.047 1.005961 2.381528

agegr5 | 2.273991 .5529406 3.379 0.001 1.41173 3.662906

agegr6 | 2.062806 .6736768 2.217 0.027 1.087402 3.913152

agegr7 | 4.203339 2.084346 2.896 0.004 1.589935 11.11244

eduprim | 1.502789 .286093 2.140 0.032 1.034675 2.182691

edusec | 2.173208 .4043337 4.172 0.000 1.508989 3.1298

inclow | .9598621 .2149789 -0.183 0.855 .6187443 1.48904

incmed | 1.343702 .3012734 1.318 0.188 .8657622 2.085487

ta2 | .7752901 .1021982 -1.931 0.054 .5987243 1.003926

------------------------------------------------------------------------------

. svyset,clear
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Part X

Incompleteness
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Chapter 27

General Concepts

. Notation

. Taxonomies

. Example
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27.1 Notation

• Subject i provides j = 1, . . . , p measurements

•Measurement Yij

•Missingness indicator Rij =





1 if Yij is observed,

0 otherwise.

• Group Yij into a vector Y i = (Yi1, . . . , Yip)
′ = (Y o

i ,Y
m
i )





Y o
i contains Yij for which Rij = 1,

Y m
i contains Yij for which Rij = 0.

• Group Rij into a vector Ri = (Ri1, . . . , Rip)
′
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27.2 Framework

f (Y i,Ri|θ,ψ)

Selection Models: f (Y i|θ) f (Ri|Y o
i ,Y

m
i ,ψ)

MCAR −→ MAR −→ MNAR

f (Ri|ψ) f (Ri|Y o
i ,ψ) f (Ri|Y o

i ,Y
m
i ,ψ)

Pattern-Mixture Models: f (Y i|Ri,θ)f (Ri|ψ)

Shared-Parameter Models: f (Y i|bi, θ)f (Ri|bi,ψ)
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f (Y i,Ri|θ,ψ)

Selection Models: f (Y i|θ) f (Ri|Y o
i ,Y

m
i ,ψ)

MCAR −→ MAR −→ MNAR

CC? direct likelihood! joint model!?

AC? expectation-maximization (EM). sensitivity analysis?!

imputation? multiple imputation (MI).
... (weighted) GEE!
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27.3 Ignorability

• Let us decide to use likelihood based estimation.

• The full data likelihood contribution for subject i:

L∗(θ,ψ|Y i,Ri) ∝ f (Y i,Ri|θ,ψ).

• Base inference on the observed data:

L(θ,ψ|Y i,Ri) ∝ f (Y o
i ,Ri|θ,ψ)

with

f (Y o
i ,Ri|θ,ψ) =

∫
f (Y i,Ri|θ,ψ)dY m

i

=
∫
f (Y o

i ,Y
m
i |θ)f (Ri|Y o

i ,Y
m
i ,ψ)dY m

i .
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• Under a MAR process:

f (Y o
i ,Ri|θ,ψ) =

∫
f (Y o

i ,Y
m
i |θ)f (Ri|Y o

i ,ψ)dY m
i

= f (Y o
i |θ)f (Ri|Y o

i ,ψ),

• The likelihood factorizes into two components.
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27.3.1 Ignorability: Summary

Likelihood/Bayesian + MAR

&

Frequentist + MCAR
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27.4 Example: Surveytown

• Consider all three variables for Surveytown:

. XI : number of building lots in block I

. ZI : number of newspapers delivered in block I

. YI : number of dwellings (buildings) in block I

• Assume blocks 7 and 8 miss their values on Y .
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• Listing of Surveytown:

I XI ZI YI

1 1 8 1

2 3 1 2

3 4 6 3

4 6 10 4

5 7 4 5

6 8 3 6

7 10 7 7∗

8 11 11 8∗
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Chapter 28

Simplistic Methods

. Complete case analysis

. Available case analysis

. Simple imputation

. Example
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28.1 CC, AC, and Simple Imputation

MCAR

Complete case analysis:

⇒ delete incomplete subjects

• Standard statistical software

• Loss of information

• Impact on precision and

power

• Missingness 6= MCAR⇒ bias

• (Case-wise deletion)

Available case analysis:

⇒ delete incomplete subjects per

variable(s) studied

• ± Standard statistical soft-
ware

• Loss of information

• Impact on precision and
power

• Missingness 6= MCAR⇒ bias

• (List-wise deletion)

Simple imputation:

⇒ impute missing values

• Standard statistical software

• Increase of information

• Often unrealistic assump-

tions

• Usually bias
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28.2 Example: Surveytown

• Consider four analyses:

. Analysis of the original, complete data

. Complete case analysis: only the 6 blocks with all three variables observed

. Available case analysis: all 8 blocks for X and Z and the 6 remaining blocks
for Y

. Simple mean imputation: replace the missing values in Y with the average of
the remaining ones: 3.5

• The datasets for these analyses are:
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Original data Complete case analysis

Obs block x z y

1 1 1 8 1

2 2 3 1 2

3 3 4 6 3

4 4 6 10 4

5 5 7 4 5

6 6 8 3 6

7 7 10 7 7

8 8 11 11 8

Obs block x z y

1 1 1 8 1

2 2 3 1 2

3 3 4 6 3

4 4 6 10 4

5 5 7 4 5

6 6 8 3 6

Available case analysis Mean imputation

Obs block x z y

1 1 1 8 1

2 2 3 1 2

3 3 4 6 3

4 4 6 10 4

5 5 7 4 5

6 6 8 3 6

7 7 10 7 .

8 8 11 11 .

Obs block x z y

1 1 1 8 1.0

2 2 3 1 2.0

3 3 4 6 3.0

4 4 6 10 4.0

5 5 7 4 5.0

6 6 8 3 6.0

7 7 10 7 3.5

8 8 11 11 3.5
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• In each of the four cases, the means of the three variables can simply be
calculated with a program like:

proc means data=m.surveytown06a n mean stderr;

title ’means for surveytown - original data’;

var x z y;

run;

• Means and standard errors, assuming this is a simple random sample from an
infinite population, for illustration’s sake:

Method x z y

Original data 6.25(1.22) 6.25(1.22) 4.50(0.87)

Complete cases 4.83(1.08) 5.33(1.36) 3.50(0.76)

Available cases 6.25(1.22) 6.25(1.22) 3.50(0.76)

Mean imputation 6.25(1.22) 6.25(1.22) 3.50(0.56)
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• All simple incomplete data methods produce a downward bias in the point
estimate, in this case.

• Mean imputation further artificially (hence incorrectly) reduces the standard error.

• CC further distorts the point estimates for variables, like X and Z, that are
actually incomplete.

• We can do better!
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Chapter 29

Direct Likelihood Maximization

. Concept

. Implications for software use

. Example
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29.1 Concept

MAR : f (Y o
i |θ) f (Ri|Y o

i ,ψ)

Mechanism is MAR

θ and ψ distinct

Interest in θ

Use observed information matrix





=⇒ Likelihood inference is valid

Outcome type Modeling strategy Software

Gaussian Linear mixed model MIXED

Non-Gaussian Generalized linear mixed model GLIMMIX, NLMIXED
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29.2 Example: Surveytown

• The key concept of direct likelihood is an analysis based on all variables, also
auxiliary ones.

• Therefore, consider Model 1:




xi

zi

yi




∼ N







µx

µz

µy




,




σxx σxz σxy

σzx σzz σzy

σyx σyz σyy







• Several variations to this model can be considered.
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. Considering a simplified covariance structure, a diagonal one being the most
extreme choice: Model 2:




xi

zi

yi




∼ N







µx

µz

µy




,




σxx 0 0

0 σzz 0

0 σyy







. Using X only as auxiliary variable: Model 3:




xi

yi


 ∼ N







µx

µy


 ,




σxx σxy

σyx σyy







. Using Z only as auxiliary variable: Model 4:




zi

yi


 ∼ N







µz

µy


 ,




σzz σzy

σyz σyy







• To fit the model in SAS, first the dataset needs to be transformed.
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data m.surveytown06e;

set m.surveytown06b;

array w (3) x z y;

do j=1 to 3;

response=w(j);

outcome=j;

output;

end;

run;

Obs block x z y j response outcome

1 1 1 8 1 1 1 1

2 1 1 8 1 2 8 2

3 1 1 8 1 3 1 3

4 2 3 1 2 1 3 1

5 2 3 1 2 2 1 2

6 2 3 1 2 3 2 3

7 3 4 6 3 1 4 1

8 3 4 6 3 2 6 2

9 3 4 6 3 3 3 3

10 4 6 10 4 1 6 1

11 4 6 10 4 2 10 2

12 4 6 10 4 3 4 3

13 5 7 4 5 1 7 1

14 5 7 4 5 2 4 2

15 5 7 4 5 3 5 3

16 6 8 3 6 1 8 1

17 6 8 3 6 2 3 2

18 6 8 3 6 3 6 3

19 7 10 7 . 1 10 1

20 7 10 7 . 2 7 2

21 7 10 7 . 3 . 3

22 8 11 11 . 1 11 1

23 8 11 11 . 2 11 2

24 8 11 11 . 3 . 3
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• A program for fitting Model 1 is:

proc mixed data=m.surveytown06e method=reml;

title ’mixed model - x and z as auxiliary - type=un’;

class outcome;

model response = outcome / noint solution;

repeated outcome / subject=block type=un rcorr;

run;

. The three variables are stacked onto each other, with three lines per subject.

. The ‘noint’ option ensures that the three mean parameters follow directly.

. The unstructured ‘type=un’ covariance structure ensure maximal freedom on
the covariance model.

This is essential for the model to allow X and Z to predict Y when the latter
is unobserved.
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. The estimated correlation matrix is

Estimated R Correlation

Matrix for Subject 1

Row Col1 Col2 Col3

1 1.0000 0.3054 0.9954

2 0.3054 1.0000 0.2893

3 0.9954 0.2893 1.0000

establishing a high correlation between X and Y , but a weak one between Z
and Y , as we known very well by now.
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. The estimates and standard errors for the mean:

Solution for Fixed Effects

Standard

Effect outcome Estimate Error DF t Value Pr > |t|

outcome 1 6.2500 1.2211 8 5.12 0.0009

outcome 2 6.2500 1.2211 8 5.12 0.0009

outcome 3 4.4825 0.8568 8 5.23 0.0008

. Thus, the correct means follow for X and Z, which is not surprising since they
are completely observed.

. The mean for Y is corrected a long way towards the true mean, thanks to the
correlation with X .

• The table can be updated:
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Method x z y

Original data 6.25(1.22) 6.25(1.22) 4.50(0.87)

Complete cases 4.83(1.08) 5.33(1.36) 3.50(0.76)

Available cases 6.25(1.22) 6.25(1.22) 3.50(0.76)

Mean imputation 6.25(1.22) 6.25(1.22) 3.50(0.56)

Model 1 (X , Z, unstr.) 6.25(1.22) 6.25(1.22) 4.48(0.86)

Model 2 (X , Z, indep.) 6.25(1.10) 6.25(1.10) 3.50(1.27)

Model 3 (X, unstr.) 6.25(1.22) — 4.4964(0.86)

Model 4 (Z, unstr.) — 6.25(1.22) 3.40(0.76)

• Using the highly predictive X only has the best predictive power.

• This behavior is reminiscent of benchmark estimation.

Survey Methods & Sampling Techniques 793



29.2.1 Why Does It Work?

• R completers ↔ N −R “incompleters”



Yi1

Yi2


 ∼ N







µ1

µ2


 ,




σ11 σ12

σ22







• Conditional density
Yi2|yi1 ∼ N (β0 + β1yi1, σ22.1)

µ1 freq. & lik. µ̂1 =
1

N

N∑

i=1
yi1

µ2 frequentist µ̃2 =
1

R

R∑

i=1
yi2

µ2 likelihood µ̂2 =
1

N





R∑

i=1
yi2 +

N∑

i=R+1

[
y2 + ̂β1(yi1 − y1)

]



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Chapter 30

Multiple Imputation

. General idea

. Estimation

. Hypothesis testing

. Use of MI in practice

. Example
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30.1 General Principles

• Valid under MAR

• Useful next to direct likelihood

• Three steps:

1. The missing values are filled in M times =⇒ M complete data sets

2. The M complete data sets are analyzed by using standard procedures

3. The results from the M analyses are combined into a single inference

• Rubin (1987), Rubin and Schenker (1986), Little and Rubin (1987)
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30.1.1 The Algorithm

1. Draw θ∗ from its posterior distribution

2. Draw Y m∗
i from f (ym

i |yo
i ,θ
∗).

3. To estimate β, then calculate the estimate of the parameter of interest, and its
estimated variance, using the completed data, (Y o,Y m∗):

β̂ = β̂(Y ) = β̂(Y o,Y m∗)

The within imputation variance is

U = ̂Var(β̂)

4. Repeat steps 1, 2 and 3 a number of M times

⇒ β̂
m

& Um (m = 1, . . . , M )
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30.1.2 Pooling Information

• With M imputations, the estimate of β is

β̂
∗

=
∑M

m=1 β̂
m

M

• Further, one can make normally based inferences for β with

(β − β̂∗) ∼ N (0, V )

where

total: V = W +


M + 1

M


B

within: W =
∑M

m=1U
m

M

between: B =
∑M

m=1(β̂
m − β̂∗)(β̂m − β̂∗)′

M − 1
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30.1.3 Hypothesis Testing

• Two “sample sizes”:

. N : The sample size of the data set

. M : The number of imputations

• Both play a role in the asymptotic distribution (Li, Raghunathan, and Rubin 1991)

H0 : θ = θ0

↓

p = P (Fk,w > F )
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where

k : length of the parameter vector θ

Fk,w ∼ F

F =
(θ∗ − θ0)

′W−1(θ∗ − θ0)

k(1 + r)

w = 4 + (τ − 4)


1 +

(1− 2τ−1)

r




2

r =
1

k


1 +

1

M


 tr(BW−1)

τ = k(M − 1)

• Limiting behavior:
F M→∞−→ Fk,∞ = χ2/k
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30.2 Use of MI in Practice

• Many analyses of the same incomplete set of data

• A combination of missing outcomes and missing covariates

• MI can be combined with classical GEE

• MI in SAS:
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Imputation Task: PROC MI

↓

Analysis Task: PROC “MYFAVORITE”

↓

Inference Task: PROC MIANALYZE
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30.3 Example: Surveytown

• Consider multiple imputation for the incomplete version of the Surveytown data.

• The variables X and Z will be taken along as auxiliary information.

• An advantage of multiple imputation is that, once conducted, several modes of
analysis can be considered.

• We will consider:

. SURVEYMEANS: ordinary mean estimation, but taking the finite population of
N = 8 into account.

. MIXED: trivariate normal Model 1, as considered in the direct likelihood
setting.
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30.3.1 The Imputation Task

• The following simple code can be used, to produce multiple imputations:

proc mi data=m.surveytown06b seed=486378 simple out=m.surveytown07a

nimpute=10 round=0.01;

title ’Multiple imputation in Surveytown’;

var x z y;

run;

. The ‘seed’ option ensures that, every time we run this program, we get exactly
the same imputations (for diagnostic purposes).

. The number of imputations is ‘nimpute=10’.

. The imputations are generated to two decimal places, due to ‘round=0.1’.
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• A portion of the multiply imputated datasets, all organized into one large set of
data:

Multiply imputed Surveytown data

Obs _Imputation_ block x z y

1 1 1 1 8 1.00

2 1 2 3 1 2.00

3 1 3 4 6 3.00

4 1 4 6 10 4.00

5 1 5 7 4 5.00

6 1 6 8 3 6.00

7 1 7 10 7 6.95

8 1 8 11 11 8.20

...

9 2 1 1 8 1.00

10 2 2 3 1 2.00

11 2 3 4 6 3.00

12 2 4 6 10 4.00

13 2 5 7 4 5.00

14 2 6 8 3 6.00

15 2 7 10 7 7.46

16 2 8 11 11 7.72

...

Multiply imputed Surveytown data

Obs _Imputation_ block x z y

...

23 3 7 10 7 7.09

24 3 8 11 11 8.10

...

31 4 7 10 7 6.93

32 4 8 11 11 8.11

...

73 10 1 1 8 1.00

74 10 2 3 1 2.00

75 10 3 4 6 3.00

76 10 4 6 10 4.00

77 10 5 7 4 5.00

78 10 6 8 3 6.00

79 10 7 10 7 7.34

80 10 8 11 11 7.95
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• Due to the ‘simple’ option, a simple analysis, based on a multivariate model, is
already produced at this stage.

• Let us present key parts of the output.

. Some book keeping information:

Multiple imputation in Surveytown

The MI Procedure

Model Information

Data Set M.SURVEYTOWN06B

Method MCMC

Multiple Imputation Chain Single Chain

Initial Estimates for MCMC EM Posterior Mode

Start Starting Value

Prior Jeffreys

Number of Imputations 10

Number of Burn-in Iterations 200

Number of Iterations 100

Seed for random number generator 486378
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. A relevant overview of the missing data patterns and corresponding statistics:

Missing Data Patterns

-----------------Group Means----------------

Group x z y Freq Percent x z y

1 X X X 6 75.00 4.833333 5.333333 3.500000

2 X X . 2 25.00 10.500000 9.000000 .

Univariate Statistics

--Missing Values--

Variable N Mean Std Dev Minimum Maximum Count Percent

x 8 6.25000 3.45378 1.00000 11.00000 0 0.00

z 8 6.25000 3.45378 1.00000 11.00000 0 0.00

y 6 3.50000 1.87083 1.00000 6.00000 2 25.00

. The correlations between the variables reveals, again, the tight relationship
between Y and X on the one hand, and the loose and negative relationship
between Y and Z on the other hand:

Pairwise Correlations

x z y

x 1.000000000 0.305389222 0.992314968

z 0.305389222 1.000000000 -0.192814109

y 0.992314968 -0.192814109 1.000000000
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. Note that the correlations are different from what was obtained with Model 1
in the direct likelihood method, since here the correlations are based on the
completers only.

. Parameter estimates and the covariance matrix of the outcomes, now properly
accounting for missingness, are also obtained:

EM (Posterior Mode) Estimates

_TYPE_ _NAME_ x z y

MEAN 6.250000 6.250000 4.482408

COV x 6.958333 2.125000 4.852466

COV z 2.125000 6.958333 1.410318

COV y 4.852466 1.410318 3.410916
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. Between and within variability information is displayed:

Multiple Imputation Variance Information

-----------------Variance-----------------

Variable Between Within Total DF

y 0.004691 0.751038 0.756198 5.5616

Multiple Imputation Variance Information

Relative Fraction

Increase Missing Relative

Variable in Variance Information Efficiency

y 0.006871 0.006834 0.999317

. It is clear that the between-variance is small relative to the within-variance.
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. Parameter estimates and standard errors for variables with incomplete
information is given:

Multiple Imputation Parameter Estimates

95% Confidence

Variable Mean Std Error Limits DF Minimum

y 4.500875 0.869597 2.331725 6.670025 5.5616 4.366250

t for H0:

Variable Maximum Mu0 Mean=Mu0 Pr > |t|

y 4.606250 0 5.18 0.0026

. Note also here the closeness of the mean estimator for Y to the true value, in
spite of missingness.
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30.3.2 The Model Task With PROC SURVEYMEANS

• To estimate the means for each of the 10 imputations, use the following program:

proc surveymeans data=m.surveytown07a total=8.00000001;

title ’SURVEYMEANS analysis after multiple imputation’;

title2 ’with finite population correction’;

by _imputation_;

var x z y;

ods output Statistics = m.surveytown07b;

run;

The syntax is virtually the same than our earlier uses of the SURVEYMEANS
procedure, except:

. The ‘BY’ statement with the variable _imputation_, created by PROC MI, is
mandatory to ensure separate analyses are done for each of the (10)
imputations.
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. The ‘ODS’ (output delivery system) statement is necessary to store the 10
parameter estimates and 10 standard errors, so that they can be passed on to
PROC MIANALYZE.

. ‘Statistics’ is a reserved word for a specific table: the main table outputted by
the procedure.

. The small increment in the ‘total=’ option avoids boundary problems in
MIANALYZE.

This only applies when N = n, i.e., with a census.

• PROC SURVEYMEANS produces the following output:

The SURVEYMEANS Procedure

SURVEYMEANS analysis after multiple imputation

with finite population correction
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Imputation Number=1

Statistics

Std Error

Variable N Mean of Mean 95% CL for Mean

---------------------------------------------------------------------------------

x 8 6.250000 0.000043172 6.24989791 6.25010209

z 8 6.250000 0.000043172 6.24989791 6.25010209

y 8 4.518750 0.000031049 4.51867658 4.51882342

---------------------------------------------------------------------------------

Imputation Number=2

Statistics

Std Error

Variable N Mean of Mean 95% CL for Mean

---------------------------------------------------------------------------------

x 8 6.250000 0.000043172 6.24989791 6.25010209

z 8 6.250000 0.000043172 6.24989791 6.25010209

y 8 4.522500 0.000030846 4.52242706 4.52257294

---------------------------------------------------------------------------------

...

Imputation Number=10

Statistics

Std Error

Variable N Mean of Mean 95% CL for Mean

---------------------------------------------------------------------------------

x 8 6.250000 0.000043172 6.24989791 6.25010209

z 8 6.250000 0.000043172 6.24989791 6.25010209

y 8 4.536250 0.000031145 4.53617635 4.53632365

---------------------------------------------------------------------------------
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. The means for X and Z do not change, since there is no missingness in these
variables.

. The means for Y change, due to the two missing observations, which are 10
times randomly filled.

. The standard errors are all within-imputation standard errors, so each one of
them underestimates the true variability, until the analysis task (PROC
MIANALYZE) is performed.

. The standard errors would be exactly equal to zero if ‘total=8’ were used.

• The ODS statement, placing the results from the ‘Statistics’ tables above into a
dataset, produces:
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Estimates and standard errors from SURVEYMEANS

Var Lower Upper

Obs _Imputation_ Name N Mean StdErr CLMean CLMean

1 1 x 8 6.250000 0.000043172 6.24989791 6.25010209

2 1 z 8 6.250000 0.000043172 6.24989791 6.25010209

3 1 y 8 4.518750 0.000031049 4.51867658 4.51882342

4 2 x 8 6.250000 0.000043172 6.24989791 6.25010209

5 2 z 8 6.250000 0.000043172 6.24989791 6.25010209

6 2 y 8 4.522500 0.000030846 4.52242706 4.52257294

7 3 x 8 6.250000 0.000043172 6.24989791 6.25010209

8 3 z 8 6.250000 0.000043172 6.24989791 6.25010209

9 3 y 8 4.523750 0.000031040 4.52367660 4.52382340

...

19 7 x 8 6.250000 0.000043172 6.24989791 6.25010209

20 7 z 8 6.250000 0.000043172 6.24989791 6.25010209

21 7 y 8 4.547500 0.000031608 4.54742526 4.54757474

22 8 x 8 6.250000 0.000043172 6.24989791 6.25010209

23 8 z 8 6.250000 0.000043172 6.24989791 6.25010209

24 8 y 8 4.366250 0.000028303 4.36618307 4.36631693

25 9 x 8 6.250000 0.000043172 6.24989791 6.25010209

26 9 z 8 6.250000 0.000043172 6.24989791 6.25010209

27 9 y 8 4.465000 0.000029976 4.46492912 4.46507088

28 10 x 8 6.250000 0.000043172 6.24989791 6.25010209

29 10 z 8 6.250000 0.000043172 6.24989791 6.25010209

30 10 y 8 4.536250 0.000031145 4.53617635 4.53632365
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• PROC MIANALYZE can work with a variety of input forms, but the above dataset
is not suitable without re-organization, even though it contains all information.

• One way to organize the the required input for PROC MIANALYZE is:

. One column per point estimate (there are three in our case).

. One column per standard error (there are three in our case).
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• Code for this reorganization:

data m.helpx;

set m.surveytown07b;

meanx=mean;

stdex=stderr;

if varname=’x’ then output;

run;

data m.helpz;

set m.surveytown07b;

meanz=mean;

stdez=stderr;

if varname=’z’ then output;

run;

data m.helpy;

set m.surveytown07b;

meany=mean;

stdey=stderr;

if varname=’y’ then output;

run;

data m.surveytown07c;

merge m.helpx m.helpz m.helpy;

by _imputation_;

drop varname stderr mean

lowerclmean upperclmean;

run;
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• The re-organized information looks as follows:

Reorganized estimates and standard errors from SURVEYMEANS

Obs _Imputation_ N meanx stdex meanz stdez meany stdey

1 1 8 6.25 .000043172 6.25 .000043172 4.51875 .000031049

2 2 8 6.25 .000043172 6.25 .000043172 4.52250 .000030846

3 3 8 6.25 .000043172 6.25 .000043172 4.52375 .000031040

4 4 8 6.25 .000043172 6.25 .000043172 4.50500 .000030777

5 5 8 6.25 .000043172 6.25 .000043172 4.41750 .000029094

6 6 8 6.25 .000043172 6.25 .000043172 4.60625 .000032350

7 7 8 6.25 .000043172 6.25 .000043172 4.54750 .000031608

8 8 8 6.25 .000043172 6.25 .000043172 4.36625 .000028303

9 9 8 6.25 .000043172 6.25 .000043172 4.46500 .000029976

10 10 8 6.25 .000043172 6.25 .000043172 4.53625 .000031145

• We are now in a position to start the analysis task.
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30.3.3 The Analysis Task After PROC SURVEYMEANS

• A program for the analysis task takes the following form:

proc mianalyze data=m.surveytown07c;

title ’MIANALYZE of SURVEYMEANS results’;

modeleffects meanx meanz meany;

stderr stdex stdez stdey;

run;

• Key statements and options are:

. ‘data=’ specifies the input dataset.

. In our case, it contains parameter estimates and standard errors for all three
means of X , Z, and Y .

. The dataset is not of any special form, as such recognized by the procedure.

. This implies we must specify:

∗ The estimates through the MODELEFFECTS statement.

∗ The standard errors through the STDERR statement.
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• The output takes the following form:

MIANALYZE of SURVEYMEANS results

The MIANALYZE Procedure

Multiple Imputation Variance Information

-----------------Variance-----------------

Parameter Between Within Total DF

meanx 0 1.8638394E-9 1.8638394E-9 .

meanz 0 1.8638394E-9 1.8638394E-9 .

meany 0.004691 9.387976E-10 0.005160 9

Multiple Imputation Variance Information

Relative Fraction

Increase Missing Relative

Parameter in Variance Information Efficiency

meanx 0 . .

meanz 0 . .

meany 5496487 1.000000 0.909091
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Multiple Imputation Parameter Estimates

Parameter Estimate Std Error 95% Confidence Limits DF

meanx 6.250000 1.8638394E-9 . . .

meanz 6.250000 1.8638394E-9 . . .

meany 4.500875 0.071834 4.338376 4.663374 9

Multiple Imputation Parameter Estimates

t for H0:

Parameter Minimum Maximum Theta0 Parameter=Theta0 Pr > |t|

meanx 6.250000 6.250000 0 . .

meanz 6.250000 6.250000 0 . .

meany 4.366250 4.606250 0 62.66 <.0001

• The output is rather straightforward.

• The increase in variance is extreme in this case:

. If there would have been no missingness, there would have been zero variance
since N = n = 8.
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. Due to missingness, there is some variability (uncertainty) introduced.

. This produces an infinite variance increase here.

. However, since we set ‘total=8.00000001’, the excess is still finite.

. Not all information is provided for X and Z since here the reverse happens:
there is no missingness so the variance increase is zero.

• Note, once again, the correcting power of primarily X on the mean estimation for
Y : even though the raw mean in the available data is 3.5, multiple imputation,
like direct likelihood, corrects strongly towards the true mean of 4.5.
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30.3.4 The Model Task With PROC MIXED

• One of the appealing features of multiple imputation is that several analyses can
be done, based on a single multiple-imputation exercise.

• For example, we can complement the above SURVEYMEANS analysis with
MIXED Model 1.

• Exactly like in the direct-likelihood case, the data need to be organized differently
to enable use of PROC MIXED:

data m.surveytown07e;

set m.surveytown07a;

array w (3) x z y;

do j=1 to 3;

response=w(j);

outcome=j;

output;

end;

run;
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• The re-organized data look like:

Multiply imputed data reorganized to allow for MIXED analysis

Obs _Imputation_ block x z y j response outcome

1 1 1 1 8 1.00 1 1.00 1

2 1 1 1 8 1.00 2 8.00 2

3 1 1 1 8 1.00 3 1.00 3

4 1 2 3 1 2.00 1 3.00 1

5 1 2 3 1 2.00 2 1.00 2

6 1 2 3 1 2.00 3 2.00 3

...

22 1 8 11 11 8.20 1 11.00 1

23 1 8 11 11 8.20 2 11.00 2

24 1 8 11 11 8.20 3 8.20 3

...

217 10 1 1 8 1.00 1 1.00 1

218 10 1 1 8 1.00 2 8.00 2

219 10 1 1 8 1.00 3 1.00 3

220 10 2 3 1 2.00 1 3.00 1

221 10 2 3 1 2.00 2 1.00 2

222 10 2 3 1 2.00 3 2.00 3

223 10 3 4 6 3.00 1 4.00 1

...

238 10 8 11 11 7.95 1 11.00 1

239 10 8 11 11 7.95 2 11.00 2

240 10 8 11 11 7.95 3 7.95 3
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• We are now in a position to apply PROC MIXED:

proc mixed data=m.surveytown07e method=reml;

title ’MIXED analysis after multiple imputation’;

title2 ’x and z as auxiliary - type=un’;

by _imputation_;

class outcome;

model response = outcome / noint solution covb;

repeated outcome / subject=block type=un rcorr;

ods output solutionF = m.surveytown07f covb = m.surveytown07g;

run;

• The program is the same as before, with a few additions:

. The ‘BY’ statement with the variable _imputation_, created by PROC MI, is
mandatory to ensure separate analyses are done for each of the (10)
imputations.

Survey Methods & Sampling Techniques 825



. The ‘ODS’ (output delivery system) statement is necessary to store
information that needs to be passed to PROC MIANALYZE:

∗ ‘solutionF’: the 10 sets of parameter estimates

∗ ‘covb’: the 10 variance-covariance matrices of the parameter estimates

. For these to take effect, two options in the MODEL statement are necessary:

∗ For ‘solutionF’: the ‘solution’ option

∗ For ‘covb’: the ‘covb’ option

• Exactly like in the SURVEYMEANS case, there are 10 distinct analyses, each with
their output.

• Since we have seen such output before, we present a small fraction:
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Standard

Effect outcome Estimate Error DF t Value Pr > |t|

Imputation Number=1

outcome 1 6.2500 1.2211 8 5.12 0.0009

outcome 2 6.2500 1.2211 8 5.12 0.0009

outcome 3 4.5187 0.8782 8 5.15 0.0009

Imputation Number=2

outcome 1 6.2500 1.2211 8 5.12 0.0009

outcome 2 6.2500 1.2211 8 5.12 0.0009

outcome 3 4.5225 0.8725 8 5.18 0.0008

...

Imputation Number=10

outcome 1 6.2500 1.2211 8 5.12 0.0009

outcome 2 6.2500 1.2211 8 5.12 0.0009

outcome 3 4.5362 0.8809 8 5.15 0.0009
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• The dataset with the parameter estimates:

Parameter estimates from the MIXED model

Obs _Imputation_ Effect outcome Estimate StdErr DF tValue Probt

1 1 outcome 1 6.2500 1.2211 8 5.12 0.0009

2 1 outcome 2 6.2500 1.2211 8 5.12 0.0009

3 1 outcome 3 4.5187 0.8782 8 5.15 0.0009

4 2 outcome 1 6.2500 1.2211 8 5.12 0.0009

5 2 outcome 2 6.2500 1.2211 8 5.12 0.0009

6 2 outcome 3 4.5225 0.8725 8 5.18 0.0008

...

28 10 outcome 1 6.2500 1.2211 8 5.12 0.0009

29 10 outcome 2 6.2500 1.2211 8 5.12 0.0009

30 10 outcome 3 4.5362 0.8809 8 5.15 0.0009
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• The dataset with the variance-covariance parameters:

Covariance matrices of estimates from the MIXED model

Obs _Imputation_ Row Effect outcome Col1 Col2 Col3

1 1 1 outcome 1 1.4911 0.4554 1.0672

2 1 2 outcome 2 0.4554 1.4911 0.3377

3 1 3 outcome 3 1.0672 0.3377 0.7712

4 2 1 outcome 1 1.4911 0.4554 1.0606

5 2 2 outcome 2 0.4554 1.4911 0.3038

6 2 3 outcome 3 1.0606 0.3038 0.7612

...

28 10 1 outcome 1 1.4911 0.4554 1.0721

29 10 2 outcome 2 0.4554 1.4911 0.3217

30 10 3 outcome 3 1.0721 0.3217 0.7760

• We are now in a position to complete the analysis task.
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30.3.5 The Analysis Task After PROC MIXED

• PROC MIANALYZE can be invoked to process the PROC MIXED output:

proc mianalyze parms=m.surveytown07f covb=m.surveytown07g;

title ’MIANALYZE of MIXED results’;

class outcome;

modeleffects outcome;

run;

• Note that the information is now passed on using two options:

. ‘parms’: the parameter estimates

. ‘covb’: the variance-covariance matrix of the parameter estimates

• Since the information is passed on in a structured way, only the MODELEFFECTS
is needed.
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• Specifying ‘outcome’ as the MODELEFFECTS variable, implies the column labeled
‘outcome’ is defining; not the column labeled ‘Effect’ which is not used at all.

• Defining ‘outcome’ as a CLASS variable states that every one of the three levels
corresponds to a different parameter (X , Z, and Y , respectively).

• The results take a form, equal in layout as the previous use:

MIANALYZE of MIXED results

Multiple Imputation Variance Information

-----------------Variance-----------------

Parameter outcome Between Within Total DF

outcome 1.000000 0 1.491071 1.491071 .

outcome 2.000000 0 1.491071 1.491071 .

outcome 3.000000 0.004691 0.751038 0.756198 193286
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Multiple Imputation Variance Information

Relative Fraction

Increase Missing Relative

Parameter outcome in Variance Information Efficiency

outcome 1.000000 0 . .

outcome 2.000000 0 . .

outcome 3.000000 0.006871 0.006834 0.999317

Multiple Imputation Parameter Estimates

Parameter outcome Estimate Std Error 95% Confidence Limits DF

outcome 1.000000 6.250000 1.491071 . . .

outcome 2.000000 6.250000 1.491071 . . .

outcome 3.000000 4.500875 0.869597 2.796486 6.205264 193286

• Now, since we are in a ‘large population’ context, there is both within- and
between-imputation variability.
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• The fraction of missing information is so small, since the X values compensate for
the missing information on Y .

• If Z only, or no auxiliary variables at all would be used, the fraction would go up,
and bias would appear:

. Given X , missingness in Y is MAR or even MCAR.

. Without X , the mechanism is MNAR.
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30.3.6 Summary of the Results

Method x z y

Original data 6.25(1.22) 6.25(1.22) 4.50(0.87)

Simplistic Methods

Complete cases 4.83(1.08) 5.33(1.36) 3.50(0.76)

Available cases 6.25(1.22) 6.25(1.22) 3.50(0.76)

Mean imputation 6.25(1.22) 6.25(1.22) 3.50(0.56)

Direct Likelihood

Model 1 (X , Z, unstr.) 6.25(1.22) 6.25(1.22) 4.48(0.86)

Model 2 (X , Z, indep.) 6.25(1.10) 6.25(1.10) 3.50(1.27)

Model 3 (X , unstr.) 6.25(1.22) — 4.4964(0.86)

Model 4 (Z, unstr.) — 6.25(1.22) 3.40(0.76)

Multiple Imputation

MI (posterior mode) 6.25(—) 6.25(—) 4.482408(— )

MI (model based) — — 4.500875(0.87 )

SURVEYMEANS 6.25(0.00) 6.25(0.00) 4.500875(0.071834)

Model 1 (X , Z, unstr.) 6.25(1.49) 6.25(1.49) 4.500875(0.87 )
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• All direct likelihood and MI methods provide acceptable results.

• It is important to use X as an auxiliary variable.

• The posterior mode analysis is a byproduct of generating the imputations by
means of Monte-Carlo Markov Chain (MCMC) estimation.

• The model based analysis in MI considers an unstructured mean vector and an
unstructured covariance matrix.

These are also the ingredients of Model 1, hence the similarity.

• The MI standard errors are a bit larger, owing to the uncertainty stemming from
drawing random imputations.

It typically diminishes when the number of imputations increases.
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Chapter 31

Non-Gaussian Data

. Non-Gaussian data

. Likelihood-based methods

. Weighted generalized estimating equations

. Multiple imputation combined with generalized estimating equations
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31.1 Non-Gaussian Data

• We have considered two main families of methods:

. Likelihood-based methods: generalized linear mixed models

. Non-likelihood methods: GEE

• They differ in nature:

. GLMM: random-effects (hierarchical, multi-level)

. GEE: marginal

• This implies that one may have to choose a family based on scientific reasons.

• Thus, it is necessary what to do when data are incomplete.
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31.2 Likelihood-Based Methods

• The GLMM is typically fitted using maximum likelihood or approximations thereof.

• Thus: the GLMM produces ignorability under MAR.

• In other words: the GLMM is valid under MAR.

• Practically:

. PROC NLMIXED: a bit involved, but accurate.

. PROC GLIMMIX: the approximation is poor, and even worse with incomplete
data.

• Our analyses, conducted with the GLMM, are widely valid.
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31.3 Generalized Estimating Equations

• When a marginal model is needed, GEE is a recommendable method.

• But: it is not likelihood based.

• GEE is valid only:

. When the mechanism is MCAR.

. When the mechanism is MAR and the working correlation matrix is correctly
specified.

. When the mechanism is MAR and weighted GEE (W-GEE) are used.

. When the mechanism is MAR and multiple imputation is used in conjunction
with GEE.
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31.3.1 Weighted Generalized Estimating Equations

• The principle is: to weigh a unit (respondent) by the inverse of its probability to
drop out.

• It is very natural to use with longitudinal data (panel studies).

• Less easy to use with multivariate (survey) data, full of intermittent missingness.

• Very related to inverse probability weighting such as in the Horvitz-Thompson
estimator.

• But: a model needs to be specified for the weights, unlike purely design-based
uses of the weighting method.

• Example code: www.uhasselt.be/censtat
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31.3.2 Multiple Imputation Combined with Generalized Estimating
Equations

• The concept of GEE can be combined with multiple imputation.

• In the imputation task, a full model needs to be specified.

• This can be done very flexibly:

. A general loglinear model.

. A general transition model.

. . . .

• The method is then valid under MAR, and proceeds exactly like in the examples
given in the continuous case.
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Chapter 32

Incompleteness in the Belgian Health Interview Survey

. Taxonomy

. Household-level non-response

. Individual-level non-response

. Item-level missingness
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32.1 Incomplete Data

• Household level

. Households with which no interview was realized

. Households which explicitly refused

. Households which could not be contacted

• Individual level

. Individual refuses to participate, in spite of HH agreement

• Item level

. A participating respondent leaves some questions unanswered
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32.2 Design Measures Towards Missing Data

• Increased number of sampled households (HHs)

• Replacement scheme for drop-outs

. HHs sampled in clusters of 4

. Oversampling of clusters

• Proxy interviews

• Invitation letter

• Multiple attempts to contact a HH

• Coding of the reasons for drop-outs
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32.3 Missing Data: HH-Level

• 35,023 HHs sampled

• 11,568 HHs attempted to contact

• Different reasons for a HH non-interview:

Type Description # %

NP: Non-Participation no interview regardless reason 6904 59.7%

NA: Non-Availability no interview due to difficulty in
contacting

3546 30.7%

NR: Non-Response no interview due to explicit HH
refusal

3358 29.0
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32.4 Individual-Level Missingness

• 10,339 HH members selected for interview.

• Similar reasons for missingness at this level:

Type Description # % Proxy

NP: Non-Participation no personal interview 785 7.6% 671

NA: Non-Availability difficulty in contacting 408 3.9% 408

NR: Non-Response explicit refusal 210 2.0% 96
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32.5 Item-Level Missingness

• Only non-response

• More than 1000 variables obtained for the interviewed individuals.

• Frequency of NR depending on the item (question):

. BMI: 2.1%

. VOEG: 3.7%

. Maximum observed: 11%

• May be substantial when several variables are considered jointly.
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32.5.1 Factors Influencing Item-Level Missingness

• Different across regions.

• Missingness increases with HH size.

• Effect of the age of the reference person.

• Effect of nationality of reference person.

• Effect of gender of reference person.
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32.5.2 Multiple Imputation for LNBMI

Effect Level AC (7272 obs.) MI (8564 obs.)

Region Brussels — —

Flanders 0.007 (0.006) 0.009 (0.006)

Wallonia 0.023 (0.007) 0.027 (0.006)

Gender Male — —

Female -0.050 (0.004) -0.054 (0.003)

Education Primary — —

Secondary -0.011 (0.005) -0.013 (0.004)

Higher -0.046 (0.005) -0.045 (0.005)

Income level < 40, 000 — —

40,000–60,000 0.008 (0.004) 0.006 (0.004)

> 60, 000 0.003 (0.006) -0.001 (0.006)

Smoking Non-smoker — —

Smoker 0.003 (0.004) 0.004 (0.004)

Age Age-group 0.030 (0.001) 0.001 (0.001)
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32.5.3 Multiple Imputation for LNVOEG

Effect Level AC (7389 obs.) MI (8564 obs.)

Region Brussels — —

Flanders -0.264 (0.032) -0.268 (0.031)

Wallonia 0.015 (0.033) 0.002 (0.033)

Gender Male — —

Female 0.296 (0.019) 0.284 (0.018)

Education Primary — —

Secondary -0.072 (0.023) -0.069 (0.023)

Higher -0.099 (0.025) -0.088 (0.025)

Income level < 40, 000 — —

40,000–60,000 -0.049 (0.021) -0.039 (0.021)

> 60, 000 -0.107 (0.030) -0.094 (0.034)

Smoking Non-smoker — —

Smoker 0.238 (0.019) 0.220 (0.019)

Age Age-group 0.051 (0.006) 0.050 (0.005)
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• While the AC analyses are based on a different number of cases for different
variable, multiple imputation allows for a common base of inference.

• Differences are not extremely large, but they are noticeable.
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Chapter 33

Sensitivity Analysis: A Case Study

. The Slovenian Public Opinion Survey

. MAR and MNAR analyses

. Informal sensitivity analysis

. Interval of ignorance & interval of uncertainty
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33.1 The Slovenian Plebiscite

• Rubin, Stern, and Vehovar (1995)

• Slovenian Public Opinion (SPO) Survey

• Four weeks prior to decisive plebiscite

• Three questions:

1. Are you in favor of Slovenian independence ?

2. Are you in favor of Slovenia’s secession from Yugoslavia ?

3. Will you attend the plebiscite ?

• Political decision: ABSENCE≡NO

• Primary Estimand: θ: Proportion in favor of independence
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• Slovenian Public Opinion Survey Data:

Independence

Secession Attendance Yes No ∗
Yes Yes 1191 8 21

No 8 0 4

∗ 107 3 9

No Yes 158 68 29

No 7 14 3

∗ 18 43 31

∗ Yes 90 2 109

No 1 2 25

∗ 19 8 96
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33.2 Slovenian Public Opinion: 1st Analysis

• Pessimistic: All who can say NO will say NO

̂θ =
1439

2074
= 0.694

• Optimistic: All who can say YES will say YES

̂θ =
1439 + 159 + 144 + 136

2074
=

1878

2076
= 0.904

• Resulting Interval:

θ ∈ [0.694; 0.904]
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• Resulting Interval:

θ ∈ [0.694; 0.904]

• Complete cases: All who answered on 3 questions

̂θ =
1191 + 158

1454
= 0.928 ?

• Available cases: All who answered on both questions

̂θ =
1191 + 158 + 90

1549
= 0.929 ?
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33.3 Slovenian Public Opinion: 2nd Analysis

•Missing at Random:

Non-response is allowed to depend on observed, but not on unobserved outcomes:

. Based on two questions:
̂θ = 0.892

. Based on three questions:
̂θ = 0.883

•Missing Not at Random (NI):

Non-response is allowed to depend on unobserved measurements:

̂θ = 0.782
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33.4 Slovenian Public Opinion Survey

Estimator ̂θ

Pessimistic bound 0.694

Optimistic bound 0.904

Complete cases 0.928 ?

Available cases 0.929 ?

MAR (2 questions) 0.892

MAR (3 questions) 0.883

MNAR 0.782
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33.5 Slovenian Plebiscite: The Truth ?

θ =0.885

Estimator ̂θ

Pessimistic bound 0.694

Optimistic bound 0.904

Complete cases 0.928 ?

Available cases 0.929 ?

MAR (2 questions) 0.892

MAR (3 questions) 0.883

MNAR 0.782
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33.6 Did “the” MNAR model behave badly ?

Consider a family of MNAR models

• Baker, Rosenberger, and DerSimonian (1992)

• Counts Yr1r2jk

• j, k = 1, 2 indicates YES/NO

• r1, r2 = 0, 1 indicates MISSING/OBSERVED
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33.6.1 Model Formulation

E(Y11jk) = mjk,

E(Y10jk) = mjkβjk,

E(Y01jk) = mjkαjk,

E(Y00jk) = mjkαjkβjkγjk,

Interpretation:

• αjk: models non-response on independence question

• βjk: models non-response on attendance question

• γjk: interaction between both non-response indicators (cannot depend on j or k)
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33.6.2 Identifiable Models

Model Structure d.f. loglik θ C.I.

BRD1 (α, β) 6 -2495.29 0.892 [0.878;0.906]

BRD2 (α, βj) 7 -2467.43 0.884 [0.869;0.900]

BRD3 (αk, β) 7 -2463.10 0.881 [0.866;0.897]

BRD4 (α, βk) 7 -2467.43 0.765 [0.674;0.856]

BRD5 (αj, β) 7 -2463.10 0.844 [0.806;0.882]

BRD6 (αj, βj) 8 -2431.06 0.819 [0.788;0.849]

BRD7 (αk, βk) 8 -2431.06 0.764 [0.697;0.832]

BRD8 (αj, βk) 8 -2431.06 0.741 [0.657;0.826]

BRD9 (αk, βj) 8 -2431.06 0.867 [0.851;0.884]
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33.6.3 An “Interval” of MNAR Estimates

θ =0.885

Estimator ̂θ

[Pessimistic; optimistic] [0.694;0.904]

Complete cases 0.928

Available cases 0.929

MAR (2 questions) 0.892

MAR (3 questions) 0.883

MNAR 0.782

MNAR “interval” [0.741;0.892]
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33.7 A More Formal Look

Statistical Imprecision Statistical Ignorance

Statistical Uncertainty
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Statistical Imprecision: Due to finite sampling

• Fundamental concept of mathematical statistics

• Consistency, efficiency, precision, testing,. . .

• Disappears as sample size increases

Statistical Ignorance: Due to incomplete observations

• Received less attention

• Can invalidate conclusions

• Does not disappear with increasing sample size

Kenward, Goetghebeur, and Molenberghs (StatMod 2001)
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33.7.1 Monotone Patterns

R = 1

Y1,11 Y1,12

Y1,21 Y1,22

R = 0

Y0,1

Y0,2

↑ ↑

R = 1

Y1,11 Y1,12

Y1,21 Y1,22

R = 0

Y0,11 Y0,12

Y0,21 Y0,22
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33.7.2 Models for Monotone Patterns

R = 1

Y1,11 Y1,12

Y1,21 Y1,22

R = 0

Y0,1

Y0,2

↑ ↑
R = 1

Y1,11 Y1,12

Y1,21 Y1,22

R = 0

Y0,11 Y0,12

Y0,21 Y0,22

µr,ij = pijqr|ij, (i,j=1,2;r=0,1)
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Model qr|ij # Par. Observed d.f. Complete d.f.

1. MCAR qr 4 Non-saturated Non-saturated

2. MAR qr|i 5 Saturated Non-saturated

3. MNAR(0) qr|j 5 Saturated Non-saturated

4. MNAR(1) logit(qr|ij) = α + βi + γj 6 Overspecified Non-saturated

5. MNAR(2) qr|ij 7 Overspecified Saturated
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33.7.3 Sensitivity Parameter Method

Sensitivity Parameter: A minimal set η

Estimable Parameter: µ, estimable, given η

Procedure:

. Given η, calculate parameter and C.I. for µ

. Set of parameter estimates: region of ignorance

. Set of interval estimates: region of uncertainty

. Single parameter case: ‘region’ becomes ‘interval’
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33.8 Slovenian Public Opinion: 3rd Analysis
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Model Structure d.f. loglik θ C.I.

BRD1 (α, β) 6 -2495.29 0.892 [0.878;0.906]

BRD2 (α, βj) 7 -2467.43 0.884 [0.869;0.900]

BRD3 (αk, β) 7 -2463.10 0.881 [0.866;0.897]

BRD4 (α, βk) 7 -2467.43 0.765 [0.674;0.856]

BRD5 (αj, β) 7 -2463.10 0.844 [0.806;0.882]

BRD6 (αj, βj) 8 -2431.06 0.819 [0.788;0.849]

BRD7 (αk, βk) 8 -2431.06 0.764 [0.697;0.832]

BRD8 (αj, βk) 8 -2431.06 0.741 [0.657;0.826]

BRD9 (αk, βj) 8 -2431.06 0.867 [0.851;0.884]

Model 10 (αk, βjk) 9 -2431.06 [0.762;0.893] [0.744;0.907]

Model 11 (αjk, βj) 9 -2431.06 [0.766;0.883] [0.715;0.920]

Model 12 (αjk, βjk) 10 -2431.06 [0.694;0.904]
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33.9 Every MNAR Model Has Got a MAR Bodyguard

• Fit an MNAR model to a set of incomplete data.

• Change the conditional distribution of the unobserved outcomes, given the
observed ones, to comply with MAR.

• The resulting new model will have exactly the same fit as the original MNAR
model.

• The missing data mechanism has changed.

• This implies that definitively testing for MAR versus MNAR is not possible.
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33.10 Slovenian Public Opinion: 4rd Analysis
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Model Structure d.f. loglik θ̂ C.I. θ̂MAR

BRD1 (α, β) 6 -2495.29 0.892 [0.878;0.906] 0.8920

BRD2 (α, βj) 7 -2467.43 0.884 [0.869;0.900] 0.8915

BRD3 (αk, β) 7 -2463.10 0.881 [0.866;0.897] 0.8915

BRD4 (α, βk) 7 -2467.43 0.765 [0.674;0.856] 0.8915

BRD5 (αj, β) 7 -2463.10 0.844 [0.806;0.882] 0.8915

BRD6 (αj, βj) 8 -2431.06 0.819 [0.788;0.849] 0.8919

BRD7 (αk, βk) 8 -2431.06 0.764 [0.697;0.832] 0.8919

BRD8 (αj, βk) 8 -2431.06 0.741 [0.657;0.826] 0.8919

BRD9 (αk, βj) 8 -2431.06 0.867 [0.851;0.884] 0.8919

Model 10 (αk, βjk) 9 -2431.06 [0.762;0.893] [0.744;0.907] 0.8919

Model 11 (αjk, βj) 9 -2431.06 [0.766;0.883] [0.715;0.920] 0.8919

Model 12 (αjk, βjk) 10 -2431.06 [0.694;0.904] 0.8919
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θ =0.885

Estimator θ̂

[Pessimistic; optimistic] [0.694;0.904]

MAR (3 questions) 0.883

MNAR 0.782

MNAR “interval” [0.753;0.891]

Model 10 [0.762;0.893]

Model 11 [0.766;0.883]

Model 12 [0.694;0.904]
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33.11 Concluding Remarks

MCAR/simple CC biased

LOCF inefficient

not simpler than MAR methods

MAR direct likelihood easy to conduct

weighted GEE Gaussian & non-Gaussian

MNAR variety of methods strong, untestable assumptions

most useful in sensitivity analysis
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