
Decision Support System for Sales Territory Planning Using the Genetic Algorithm Example.pdf

Technische Universität München

Department of Civil, Geo and Environmental Engineering

Chair of Cartography

Prof. Dr.-Ing. Liqiu Meng

A Decision Support System for Sales Territory

Planning using the Genetic Algorithm

Shahin Sharifi Noorian

Master's Thesis

Submission Date: 16.07.2015

Study Course: Cartography M.Sc.

Supervisor: Dr.-Ing. Christian Murphy

Cooperation: WIGeoGIS GmbH

2015

Acknowledgments

After six months of work at WIGeoGIS, I have finally finished my master’s thesis. I
would not have finished this project successfully without the help of a number of people.
First of all, I would like to thank Dr. Christian Murphy for the unceasing encouragement,
support and attention. I am also grateful to Dipl.Geog Michael Steigemann for all his help
and support, he was always present to help out whenever I needed it. I want to thank
the board of WIGeoGIS for giving me this opportunity to write my thesis in my field of
interest. I would like to apologize for not having enough time to spend with my family and
my wife Sepideh during this six months and thank them for their understanding. Finally,
I would like to thank Prof. Dr.-Ing. Liqiu Meng for accepting to be the examiner of my
thesis.

iii

Abstract

Territory Planning is the problem of merging small geographical areas (e.g. municipality,
zip code or county) into larger geographical areas (Territories) according to some prede-
fined criteria. Sales territory planning has become one of the most important issues in
many selling organizations. The target of sales territory planning is the optimal division
of the market among sales team in order to better exploit the potentials of the market and
thereby to maximize the total profit. With the aid of territory planning, realistic and fair
sales areas can be specified based on the distribution of market potentials. The recent ad-
vancement in computer performance provides an opportunity for the high-performance
analysis of spatial data. As a step towards creating a new decision support system for
the sales territory planning, we propose an efficient and generic method to find the best
solution for the three most common scenarios in sales territory planning 3.1.2. In this mas-
ter thesis, we developed a multi-objective heuristic search method for solving a large-scale
sales territory planning problem. The presented method is established upon the genetic al-
gorithm, where a number of candidate solutions compete and cooperate with each other to
find the best solution for our problem. In addition, our method is completely independent
from the objective function and can be easily configured for a wide variety of multi-criteria
problems. The results demonstrate the effectiveness of our proposed technique to find an
optimal structure of sales territories in a reasonable time.

v

vi

Contents

Acknowledgements iii

Abstract v

1 Introduction 1
1.1 Research motivations . 1
1.2 Objectives . 1
1.3 Outline of this thesis . 2

2 Theoretical Background 3
2.1 What is Geo-marketing? . 3

2.1.1 Geo-marketing Target Groups . 3
2.1.2 Geo-marketing Applications . 4

2.2 Genetic Algorithm . 6
2.2.1 Search Space . 6
2.2.2 the Essence of the Genetic Algorithm 7
2.2.3 the Simple Genetic Algorithm . 8
2.2.4 Advantages and Disadvantages of Genetic Algorithm [27] 16
2.2.5 Applications of Genetic Algorithm [24, 13, 27] 19

3 Methodology 21
3.1 Sales Territory Planning Problem Definition 21

3.1.1 Basic model of sales territory design: 21
3.1.2 Different Scenarios in Sales Territory Planning: 24

3.2 Algorithm Design . 25
3.2.1 A Simple Approach for Location-Allocation 25
3.2.2 Sales Territory Initialization . 25
3.2.3 The Genetic Algorithm for Sales Territory Planning 26

4 Implementation 41
4.1 System Architecture and Workflow: . 41
4.2 Database Design . 42
4.3 The Territory Planning Engine . 44
4.4 Graphical User Interface . 45

vii

Contents

5 Results and Analysis of Experiment 47
5.1 Experiment . 47

5.1.1 The dataset . 47
5.1.2 Genetic Algorithm Parameters Setup 47
5.1.3 Evaluating the Location-Allocation and Initializing the Territories . . 50
5.1.4 Evaluating the Balance of Potential among Salesmen 50
5.1.5 Evaluating the Travel Time Improvement 57
5.1.6 Evaluating the Contiguity and Compactness 59

5.2 Analysis of Results . 62
5.2.1 Location-Allocation and Initializing the Territories 62
5.2.2 Balance of Potential among Salesmen 62
5.2.3 Random Results of Genetic Algorithm 64

6 Conclusion and Future work 67
6.1 Conclusion . 67
6.2 Future Work . 67

Bibliography 69

viii

1 Introduction

In recent years along with innovations in the information technology, the decision process
and the assessment methodology have evolved rapidly. In the other words, the planning
for specific problems is no longer a traditional case based only on the advice of experts or
planners, but it has become automated and improved to meet the needs of decision mak-
ers. The decision-making process can be complicated because of the multiplicity of data,
actors and interests to be considered at each stage of development. One of the most pop-
ular and important decision-making processes is Territory Planning. Territory Planning is
the problem of merging small Geographical areas (e.g. municipality, zip code or county)
into larger Geographical areas (are called Territories) according to some predefined cri-
teria. Territory planning problems are motivated by a wide variety of applications such
as political district planning, territory design for schools or social facilities or emergency
services, sales territory planning and etc.

1.1 Research motivations

Nowadays there is substantial attention to explore the potential applicability of machine
learning and artificial intelligence for spatial data analysis. In this work, we are interested
in a proposal of a sales force deployment decision model and more specifically on sales
territory alignment, integrating an optimization tool in GIS: the Genetic Algorithm.

There is a tool which is called SalesNet as shown in Fig. 1.1. This tool has been devel-
oped by WIGeoGIS GmbH. “SalesNet allows the re-planning of sales areas in record time.
By means of area simulations and collaboration options, this tool allows fast decisions to
be made in respect of restructuring” [15].

But, there is not any recommender system to simulate and suggest an optimal solution
to planners in sales territory alignment. Currently, the planning is done manually by ex-
perts based on their expertise and previous experiences. Because the current procedure for
planning is somehow trial and error, the result is not totally reliable. On the other hand,
there is no evaluation method for those planning results.

1.2 Objectives

For sales territories, well-planned decisions enable an efficient market penetration and
lead to decreased costs and improved customer service. In addition, balanced territory de-
sign ensures optimal market saturation to improve the success of sales representatives. As

1

1 Introduction

Figure 1.1: SalesNet from WIGeoGIS GmbH

we mentioned in the motivation section, proposing a decision-making model and devel-
oping a customized genetic algorithm for sales territory planning is the basis of this thesis.
In simple words, we aim to eliminate the difficulties of creating the territories manually by
decision-makers. The following list describes the objective of this thesis:

• Identifying and reallocating overlapping sale territories.

• Balancing the potential and workload between territories.

• Reducing travel time.

• Improving the performance.

1.3 Outline of this thesis

This thesis is structured as follows. Theoretical Background is provided in Chapter 2, be-
ginning with Geo-marketing and territory planning definitions and proceeding to explain
the Genetic Algorithm later in the chapter. In Chapter 3, the territory planning problem
is formulated and then several algorithms are explained in the form of a pseudo code, re-
spectively. In Chapter 4, we explained how our decision-making model is implemented
and works. Our methodology is evaluated and proved in Chapter 5. Finally we concluded
with the summary of results.

2

2 Theoretical Background

In this chapter we will have a look at some theoretical definitions and different methods
of Geo-marketing. To be more focused on the thesis topic, we narrow down the Sales
Territory Planning as a method of Geo-marketing. Further we will go through the Genetic
Algorithm in details.

2.1 What is Geo-marketing?

The traditional ways of interpreting consumers’ behaviors no longer meet the challenge
of understanding purchase behaviors. Lifestyles, mobility and Geographical distribution
have become dimensions of marketing that cannot be neglected in marketing strategies.
If the information about the customers is essential to make decision for marketing ap-
proach, Geo-marketing is additional knowledge about where customers are located Ge-
ographically [20]. Geo-marketing is a tool marketers use to specify strategies and make
decisions. In the other words, Geo-marketing is not a marketing strategy of Geo-data; it is
the use of Geo-data to create powerful and actionable insights into the regional market [6].
Geo-marketing is also a key tool for optimizing regional and global markets to obtain the
maximum possible turn over [5]. Geo-marketing makes it possible to efficiently increase
market penetration, pay more attention to local market characteristics and make smarter
decisions. In addition, there is the possibility of integrating information from disparate
sources, including internal databases (customers data, sales representative locations, sell-
ing agency, locations of competitors) and external databases (market data, residential data,
micro-Geographic data).

2.1.1 Geo-marketing Target Groups

Here, we introduce some target groups of Geo-marketing [6]:

• Local customers: Geo-marketing can be used as a recommender by those businesses
which are looking to open up a new branch in a new area. Geo-marketing can rec-
ommend them what areas show the most demand for their products or services and
where the competitors are located. It can be also used in Media planning to find out
the best location for billboard advertisements by taking different parameters into ac-
count such as the residences and traffic patterns of their customer base.

• Internet customers: Companies are able to show their online contextual ads to users
who are Geographically related to the advertisements.

3

2 Theoretical Background

• Mobile device users: User can get some special offers such as discounts, e-coupons,
and so on when users mobile device is brought within a certain area in which a shop
is sending offers. For example: AT&T shop alert

• Social media users: Social media users: Nowadays, users are able to check in to
various locations, such as local restaurants or coffee shops and receive some special
offers from those businesses.

2.1.2 Geo-marketing Applications

Geo-marketing is an appropriate tool for the clarification of various questions in many
fields. Some application fields for Geo-marketing are as follows [4, 9]:

• Target Audience Analysis: it is a method of recognizing and exposing regional and
local potential customers for a product or service. By means of this analysis, compa-
nies can easily identify areas with target groups which are interested in their product
or service.

• Penetration analysis: this analysis provides essential information to identify the po-
sition of company in the market and measures the strengths and weaknesses of com-
pany in particular Geographical area.

• Competitive Analysis: It is a statement of marketing strategy which determines the
strengths and weaknesses of the competitors within the market and helps to obtain
the information about potential customers in competitive areas.

• Site Planning: One of the crucial problems in the establishment of a business in an
area is about its optimum location[25]. Site planning (is also called location analysis)
considers existing and potential locations by their realistic parameters and deter-
mines how suitable a location is or can be in the future.

• Marketing strategy: It is the result of market analysis which empowers the company
to establish pricing, distribution, promotional strategies and so on.

• Media Planning: This approach finds the most appropriate media outlets to reach
the target market during advertising campaigns and makes the media investment
more efficient.

• Sales Territory Planning: The goal of the sales territory planning is the optimal cov-
erage of the market with sales services and existing resources, in order to better ex-
ploit the available potentials and thereby to increase the turnover.

Sales Territory Planning

Sales Territory Planning is considered as the problem of grouping of so-called sales cover-
age units (SCUs) into larger Geographic clusters called territories in such a way that those
clusters are eligible according to the planning criteria and satisfy the conditions[18]. Each

4

2.1 What is Geo-marketing?

territory must have a responsible sales representative. To be responsible means that the
sales representative has to provide service for all (potential) accounts located in the corre-
sponding sales territory. For example, a sales representative who is working for a company
that provides materials concerning dental surgery will be responsible for all dentists prac-
ticing in her sales territory. She is only allowed to sell products in SCUs that belong to
her sales territory [22]. Territory Planning mainly evaluates the sales territory efficiency
and the fair distribution of workload and potential among the responsible sales repre-
sentatives. There are several reasons for aligning existing or designing new territories.
Firstly, any changes in the number of sales representatives obviously require modifications
in the structure of existing territories. Other reasons are better coverage of market with the
existing representatives or equal balancing of workload among the sales representatives.
Moreover, customer shifts or the introduction of new products make it necessary to align
territories.

There are several commonly used criteria for sales territory design as listed in the fol-
lowing [21]:

Organizational criteria

• Number of territories:
The number of territories to be designed is usually based on the number of sales
representatives designated by the company or planner.

• Basic areas:
Sales territories are in most cases not designed based on a single customer. Indeed,
customers are usually first aggregated into small areas (SCUs). Then, SCUs will be
used as input in the territory planning process. Typical examples for basic areas are
zip codes, municipalities or company trading areas.

• Exclusive assignment of basic areas:
In most cases, basic areas must be exclusively assigned to one territory. In other
words, only one sales representative should be responsible for one basic area.

• Locations of sales representatives:
The location of sales persons (office or residence) is an important factor to be taken
into account in the territory design process. Since they should frequently visit their
customers, so the total travel distance for each salesman should be minimized as
much as possible.

Geographical criteria

• Accessibility:
Often a good accessibility of territories (e.g. to highways) or within territories (e.g.
by means of public transportation) extremely decreases the cost of each sales person.

• Contiguity:
Territories should be Geographically connected.

5

2 Theoretical Background

• Compactness:
It expresses that territories with minimal total travel times are desired.

Activity-related criteria

• Balance:
It expresses the desire of an equal treatment of all sales representatives.

• Maximizing profit:
Profit is the most important aspect in the planning process. Territories should be de-
signed in such a way that the total profit contribution will be maximized and costs
should be as low as possible with respect to the limited resource of call time or effort.

2.2 Genetic Algorithm

In 1859, Charles Darwin proposed the theory of natural selection states that the plants and
animals that exist today are the result of millions of years of adaptation to the demands
of the environment. The organisms that are most capable of acquiring resources and suc-
cessfully breeding are the ones whose generations will tend to be dominant in the future.
Organisms that are less capable will tend to be totally eliminated or have few generations
in the future. In nature, an individual in population competes with each other for acquir-
ing resources such as food, shelter, and so on. Weak individuals have less chance to survive
and tend to be eliminated in the future. On the other hand, the most adapted or fittest in-
dividuals reproduce a relatively large number offspring. Natural selection operates over
chromosomes rather than over organisms. It relates chromosomes with the efficiency of
the entity they represent. Thus allows that efficient organism which is well-adapted to the
environment to reproduce more often than those which are not. The evolutionary pro-
cess happens within the reproduction phase. There exists a large number of reproductive
mechanisms in nature. The most common ones are mutation (which influences the chro-
mosomes of offspring to be different from the parents’ chromosomes) and recombination
(that combines the chromosomes of the parents to produce the offspring) [27].

In 1975, John Holland developed an idea in his book "Adaptation in natural and artificial
systems". He described the first Genetic Algorithm which was inspired from the principal
of natural evolution to solve optimization problems. The Genetic Algorithm is a subclass
of Evolutionary Algorithms which attempts to mimic some of the processes that occur in
natural selection based on "Survival of the fittest" [27, 28].

2.2.1 Search Space

The Genetic Algorithm (GA) always looks for the best solution among a set of possible
solutions. The space of all feasible solutions is called Search Space which also contains the

6

2.2 Genetic Algorithm

Figure 2.1: Search space: (A)global optimum (B,C)local optimum (http://pubs.rsc.org/)

global optimum solution. The GA considers each point of the search space as a candidate
solution and evaluates its fitness. As the figure 2.1 illustrates, each position in the search
space is a solution and has a fitness value (vertical axes). One of the most common issues
of the GA is the local optimum. The local optimum is a candidate solution in the search
space which has better fitness in comparison to the surrounding solutions, but it is not our
desired solution (B and C in figure 2.1). The algorithm can be trapped in the local optima
and does not continue to find the global optimum solution (A in figure 2.1). There are sev-
eral techniques proposed to solve this issue which will be discussed in the methodology
chapter in detail [30].

2.2.2 the Essence of the Genetic Algorithm

The GA is a stochastic algorithm. It means that some main operations of the GA such as
selection and reproduction are based on random procedures. In addition, GA operates on
a population (a set of individuals) in which each individual represents a potential solution
to the problem. This feature of the GA makes it possible to execute the calculation concur-
rently which can significantly improve the efficiency. Genetic Algorithm is an independent
optimizer which performs consistently well on a broad range of problem types. In other
words, there are no prerequisites on the problem before using the GA. These individuals
are randomly generated to make a population (a set of individuals). Every individual is

7

http://pubs.rsc.org/

2 Theoretical Background

assigned a degree of its excellence by means of a fitness function according to the problem
definition. Fitness function, or objective function, is an evaluator that not only shows how
good the solution is, but also measures how close our potential solution is to the target.

One of the most important operators of the GA is Recombination. Cross-over is a typical
recombination operator in which two parent solutions are cut at a certain point and the
halves are connected to each other to make a new child (new candidate solution) which
contains the characteristics of the parents. Recombination has a big impact on approaching
the algorithm to the target. If parents have some good features, we can expect that all the
good features are inherited by the generated child.

Besides the recombination in GAs, Mutation is another way of generating new child
which can be a little bit different from its parents. Actually, mutation does not happen fre-
quently in nature, but it is a very important operation in the Artificial Genetic Algorithm.
The algorithm can explore the search space rapidly by means of few random changes (mu-
tation) in the structure of the generated child after the recombination. The genetic algo-
rithm will perform as a simple random search if the recombination operators produce just
a new random solution as a child which does not inherit good characteristics of its parents
(last generation). This random search algorithm is inefficient and does not guarantee to
find promising solutions in a certain amount of time.

2.2.3 the Simple Genetic Algorithm

The Genetic Algorithm is a heuristic search technique which finds approximate solutions
to optimization problems. The GA has two distinguished elements which are individuals
and populations. Individual is a single candidate solution to the optimization problem
while the population is a set of individuals involved in the optimization process. Observ-
able properties of the individual (Phenotype) should be encoded to the raw genetic infor-
mation (Genotype). Genotype is also called chromosome in the GA. The mapping between
genotype and phenotype is necessary, because the solution set should be converted from
the model into the form that the GA can work with, and the new generated chromosome in
the GA should be converted into the form that model can evaluate. A chromosome is sub-
divided to some small parts which are called G̈enes.̈ The genes are the basic component
for building a Genetic Algorithm. It is the representation of a single factor for a solution.
2.2 shows the mapping between phenotype and genotypes.

The first step in the GA before running is coding all the possible solutions into chromo-
somes, which is an abstract representation. This step can also be the most difficult part of a
Genetic Algorithm. Secondly, a set of operators should be implemented for a reproduction
that performs recombination (cross-over) and mutation over chromosomes. Functionality
of GA extremely depends on these two steps. Because, the representation should be based
on the structure of the search space and reproduction operators must be relevant accord-
ing to the properties of the problem. All the possible solutions of the problem have to be
mapped to at least one chromosome, to make sure that the algorithm explores the whole
search space.

8

2.2 Genetic Algorithm

Factor 1 Factor 2 Factor 3 . . .Factor 4 Factor N

Gene 1 Gene 2 Gene 3 . . .Gene 4 Gene N

Solution (Phenotype)

Chromosome (Genotype)

Figure 2.2: Mapping between phenotype and genotype

Genetic Algorithm is an iterative method, which loops over the population. Each iteration
consists of the following steps:

Selection:

The first step after mapping and determining reproduction operators, consists in select-
ing individuals for reproduction. Selection is a method that randomly chooses individuals
with a probability based on the relative fitness of the individuals in order to select best
individuals than poor ones. Selection pressure is a degree to which the better individu-
als are desired. The higher the selection pressured, the more the better individuals are
desired. This selection pressure ensures the improvement of the population fitness after
several generations. Convergence rate of GA extremely depends on the selection pressure.
If the convergence rate is slow, the GA will take unnecessarily longer time to find the opti-
mal solution. On the other hand, high selection pressure results fast convergence rate that
causes premature convergence to an incorrect solution (local optimal). This means that rel-
ative best solutions will take over the population and reduce diversity which needed for
change and progress. Thus, the algorithm cannot explore whole search space for finding
global optimum and will be stopped in the first local optimum it finds.The various selec-
tion methods are as follows:

• Roulette Wheel Selection:
The roulette selection is a linear search through a roulette wheel with several slots
in the wheel. Each slot is weighted in proportion to the individual’s fitness values.
This is a very common selection method, in which fit individuals are not guaranteed
to be selected, but have more chance than poor ones. But, this method will have

9

2 Theoretical Background

a problem when the fitness values of the best individuals differ very much. For
instance, If the best individual fitness is 95%, its slot occupies 95% of roulette wheel.
Thus, other chromosomes have too few chances to be selected and it results very
quick convergence.

Figure 2.3: Roulette Wheel Selection (http://alexanderdbrown.com/)

• Random Selection:
This is a stochastic method which randomly selects a parent from the population.
The random selection does not take the fitness into account.

• Tournament Selection:
It is the most common and ideal selection strategy which is able to adjust its selective
pressure and preserves the population diversity by holding a competition among
N individuals of the population. The winner of tournament competition is the best
individual with the highest fitness. The winner is selected as a parent for generating
new offspring via reproduction process for the next generation.

• Rank selection:
Unlike roulette wheel selection, this method ranks the individuals based on their
fitness values. So, each individual receives a rank from 1 to N (size of the popula-
tion) and the worst individual gets 1 and best gets N. Then, potential parents will be
selected via Tournament selection based on theirs ranks.

• Stochastic Universal Sampling:
Stochastic universal sampling provides zero bias and minimum spread. The indi-
viduals are mapped to contiguous segments of a line, such that each individual’s
segment is equal in size to its fitness exactly as in roulette-wheel selection. Here
equally spaced pointers are placed over the line, as many as there are individuals to
be selected. Consider NPointer the number of individuals to be selected, then the
distance between the pointers are 1/NPointer and the position of the first pointer is
given by a randomly generate number in the range [0, 1/NPointer]. For 6 individu-
als to be selected, the distance between the pointers is 1/6=0.167. Fig. 2.4 shows the
selection for the above example. Sample of 1 random number in the range [0, 0.167]
=> 0.1. After selection the mating population consists of the individuals: [1, 2, 3, 5, 6,
9]

10

http://alexanderdbrown.com/

2.2 Genetic Algorithm

Individual 1 2 3 4 5 6 7 8 9 10

0.0 0.18 0.34 0.49 0.62 0.73 0.82 0.87 0.93 0.95 1.0

Pointer1 Pointer2 Pointer3 Pointer4 Pointer5 Pointer6

Figure 2.4: Stochastic Universal Selection [16]

Crossover (Recombination):

Crossover is the process which takes two parents from the mating pool, which has been
created after the selection process, in order to create a better offspring. Crossover consists
of three steps which are as follows:

1. Two individuals are randomly selected as the parents from mating pool.

2. A cross-point is randomly selected across each individual at the same position.

3. Finally, values are swapped between the two individuals following the cross-point.

Several crossover techniques are available and some of them are discussed as follows:

• Single Point Crossover:
This method is one of the most common operators is used in traditional genetic al-
gorithm. It uses one random cross-point in which two parents are cut. Then, the
genomes next to the crosspoint are exchanged to produce a new child.

Parent A

Parent B

Offspring

Random
Cross-point

Figure 2.5: Single-point Crossover

11

2 Theoretical Background

• Two Point Crossover:
This method uses two random cross-points along the length of each parent. Then,
the genomes between two points are exchanged.

Parent A

Parent B

Offspring A

Random
Cross-point 1

Random
Cross-point 2

Offspring B

Figure 2.6: Two-point Crossover

• Uniform Crossover:
Unlike previous operators that worked by dividing the parents into a number of sec-
tions and reassembling them to produce offspring, the uniform crossover considers
each gene independently. This makes a random choice as to which parent each gene
should be inherited from. Firstly, a string of N (size of the parents) random variables
is generated from a uniform distribution between 0 and 1. In each position, if the
random value is below a defined parameter (usually 0.5), the gene is inherited from
parent A; Otherwise from parent B.

• Ordered Crossover:
Ordered crossover is used when we have an order based permutation problem. In
these kinds of problems, the generated offspring should not have duplicate genes
after recombination. In addition, the intention is to transmit the relative order of
genes from the second parent. For example, in Traveling Salesman Problem, each
city cannot be visited more than once except the origin. Moreover, the order of genes
in TSP chromosome shows the time that is taken for a complete tour. The Ordered
Crossover acts as follows:

1. Two random cross-points are generated along first parent.

2. The segment between two cross-points are copied from the first parent (PI) into
the first offspring at the same position.

12

2.2 Genetic Algorithm

Parent A

Parent B

Offspring

Random
 Mask [0,1]

0.4 0.55 0.6 0.12 0.93 0.59 0.7 0.89 0.61 0.49 0.35 0.78

Figure 2.7: Uniform Crossover

3. Remaining unused genes from left and right segments of the first parent are
copied into the first child based on the order that they appear in parent 2.

4. Create the second offspring in the same way, with the parent roles reversed.

124629 3115183710

4725 12910111368

6425 12911183710

Parent A

Parent B

Offspring

Random
Cross-point 1

Random
Cross-point 2

Figure 2.8: Ordered Crossover

• Crossover probability:
Crossover probability is a parameter which determines the chance of performing
crossover operation on the chosen parents (PC). This parameter is usually deter-
mined in the range [0.5,1.0]. After selecting the parents, a random number is gen-
erated between 0 and 1. If the number is lower than PC, the crossover operation are
not performed and two parents will be copied to the next generation; otherwise, two
new offspring are created by means of crossover operator.

13

2 Theoretical Background

Mutation:

Mutation is viewed as a simple search operator which preserves the genetic diversity in
the population. This operator uses only one chromosome as the parent and creates the
child by making some few random changes in the structure of parent chromosome. As we
discussed in the last section, the crossover operator is used for exploiting the current gen-
eration of solutions to extract better ones. But, the mutation operator is used to explore the
whole search space in order to make the algorithm converge toward the global optimum.

Mutation also holds up the algorithm to be trapped in a local optimum. In short, some
of the different forms of mutation are listed as follows:

• Flip Mutation:
This form of mutation is commonly used for binary representation of the solutions
in which, each gene in considered separately and can be flipped (0↔1) with a small
probability.

Parent

Offspring

0 Random
 Mask

1 0 0 0 0 1 0 0 0 0 0

Figure 2.9: Flip Mutation

• Swap Mutation: In this form, two genes among the chromosome are selected ran-
domly and interchange their values.

• Inversion Mutation: This operator works by selecting a subset of the chromosome
randomly and reversing the order of genomes in which they appear in the chromo-
some.

• Uniform Mutation: This scheme was designed to consider all the genomes of the
parent chromosome independently. It is an iterative method which starts from the

14

2.2 Genetic Algorithm

Parent

Offspring

0 Random
 Mask

1 0 0 0 0 1 0 0 0 0 0

Interchanging

Figure 2.10: Swap Mutation

124629 3115183710 Parent A

Offspring

Random
point 2

124629 3115110738

Random
point 1

Figure 2.11: Inverse Mutation

lkjihgfe g hfedcba

dcxa mlrjiugf

Parent

Offspring

0
Random

 Mask
1 0 0 0 0 01 0 01

a , b , c , d , e , f , g , h , I , j , k , l , m , n , o , p , q

, r , s , t , u , v , w , x

Feasible area of
the search space

0100100 0

Figure 2.12: Uniform Mutation

15

2 Theoretical Background

first genome and traverse the whole length of the chromosome. For each gene, a
random number is generated between 0 and 1. If the generated number is lower than
the probability of mutation (PM), a new random value can be chosen for the genome
from the feasible area of the search space; otherwise, the operator doesnât change
the value of the genome. This operator can also be extended to a kind of hillclimbing
mutation operators which mutates the genome only if the mutation improves the
fitness of chromosome (solution).

Termination Condition:

There are various conditions that can stop the algorithm. The following are the few tech-
niques of termination:

• Elapsed time: The evolutionary process will end after a predetermined period of
time has elapsed.

• Generation count: Terminates evolution after a certain number of generations have
passed.

• Stagnation: This condition halts the process if no improvement in populationâs best
fitness is observed within a predetermined number of generations or during an in-
terval of time.

• Target fitness: The algorithm is terminated once at least one candidate in the popu-
lation has reached to the specified fitness score.

• User Abort: This condition is implemented to allow users to terminate the genetic
algorithm whenever they want.

Fitness Function:

The fitness function (is also called objective function in optimization problems) is the most
important component of genetic algorithm. It measures the goodness of candidate solu-
tions and makes a basis for selection, and thereby it simplifies improvements. In the other
words, the fitness function defines what improvement means for a specific problem. For
instance, if the algorithm is supposed to maximize the number of 1 in a binary array, the
fitness function will be as follows:

As it is shown in the figure above, the solution B is the best candidate for reproduction.

The general flowchart of a simple Genetic Algorithm is the following:

2.2.4 Advantages and Disadvantages of Genetic Algorithm [27]

Here, we mention some of the advantages of genetic algorithm briefly:

16

2.2 Genetic Algorithm

0
Solution A

Fitness(A): 5
1 0 1 0 0 1 0 0 1 1 0

1
Solution B

Fitness(B): 10
1 1 0 1 1 1 0 1 1 1 1

0
Solution C

Fitness(C): 3
1 0 0 0 0 1 0 0 1 0 0

Fitness Function : count (1)

Figure 2.13: Fitness function

– It is possible to run the algorithm in parallel

– The algorithm is able to escape from local optimum

– It is able to discover global solution

– It can solve multi-objective problems

– It is totally independent from the problem domain

– The fitness function can be anything which can be evaluated by computers

– It can be easily customized for different problems

– Its concepts are easy to understand

– It always returns an answer for the problem and the answer gets better with time

– It can be very fast for some special problems (e.g. TSP)

, and some limitations of genetic algorithm are:

– Identifying the fitness function can be difficult

– Definition of representation (mapping from Phenotype to Genotype) for the problem
is not straightforward

– Premature convergence happens

– It is always difficult to find the best value for various parameters such as: selection
pressure, crossover and mutation probabilities, population size and so on

– GA cannot always find the exact solution, but finds the best solution

– It does not assure constant optimization response time

17

2 Theoretical Background

Randomly generate a population
of candidate solutions

Evaluate the fitness of each solution

Is
termination

condition
satisfied?

YES

NO

Select best solutions and copy into
the mating pool

Choose two parents from mating
pool and perform crossover

operation to make an offspring

Perform mutation operator on the
offspring which is generated in

crossover

Reproduction
operators

Copy the offspring into the new
generation

size(new generation) <
size (population)

YES

NO

START

STOP

Figure 2.14: Flowchart of Genetic Algorithm

18

2.2 Genetic Algorithm

2.2.5 Applications of Genetic Algorithm [24, 13, 27]

The Genetic Algorithm is applicable in many fields. Here, we list some real-world uses of
Genetic Algorithm.

Automotive Design

Using GA in designing composite materials and aerodynamic shapes for cars results com-
binations of best materials and best engineering to provide faster, lighter, more fuel effi-
cient and safer vehicles.

Engineering Design

Getting the most out of a range of materials to optimize the structural and operational
design of buildings, factories, machines, etc. is a rapidly expanding application of GA.
These are being created for such uses as optimizing the design of heat exchangers, robot
gripping arms, satellite booms, building trusses, flywheels, turbines and etc.

Robotics

GA can be used to find the optimal designs and components for particular usages, or to
return results for entirely new types of robots that can perform multiple tasks and have
more general application.

Optimized Telecommunications Routing

Finding dynamic and anticipatory routing of circuits for the optimized telecommunica-
tions networks is one of the main applications of GA in recent years.

Trip, Traffic and Shipment Routing

The "Traveling Salesman Problem" or TSP as a well-known application of GA can be used
to plan the most efficient routes and scheduling for travel planners, traffic routers and even
shipping companies.

Computer Gaming

GA has been programmed to incorporate the most successful strategies from previous
games - the programs ’learn’ - and usually incorporate data derived from game theory in
their design. Game theory is useful in most all GA applications for seeking solutions to
whatever problems they are applied to, even if the application really is a game.

19

2 Theoretical Background

Marketing

The world changes all the time, so does the market. Thus dynamically changing the trad-
ing systems or strategies is needed to keep their profitability during the time. Genetic
Algorithm is used to change the values of the strategyâs parameters or using completely
different rules to generate the trading signal.

20

3 Methodology

In this chapter, we will explain our methodology in more detail. In section 3.1 we will for-
mulate the mathematical model of sales territory planning problem. Then we will depict
our algorithm in section 3.2.

3.1 Sales Territory Planning Problem Definition

As we discussed in previous chapters, Sales territory planning can be formulated using an
optimization problem in which each basic area (SCU) is assigned to the best candidate sales
representative according to certain criteria and constraints. Note, sales force deployment
is an aggregate planning problem. The usual planning horizon is one year. So, decisions
as how often (e.g., every week, once a month), which days and at what time a customer is
to be visited (and the sequence of customers) are the subject of subsequent planning stages
[26].

3.1.1 Basic model of sales territory design:

Several researches have been done on territory design problems so far and most of them
have the same basic criteria, including the desire for compact, contiguous, and balanced
territories. Such a basic model allows a wide applicability of the algorithm and can be
considered as a starting point for more complex models which take more constraints and
criteria into account [21].

Firstly, we define ’Building Blocks’ for territory design problems. Then, we present the
mathematical model of territory design problem:

Basic Area:

The basic area (also called Sales Coverage Unit) is considered as a relatively small Geo-
graphical area which depend on the specific problem to be solved. Zip code, municipality
and trading areas are the most common examples of basic areas [32].

C: a set of basic areas
j ∈ |C| : index of basic area which is often represented by its central point

(3.1)

21

3 Methodology

Location of sales representatives:

The location of salespersons is considered as the centroid of the basic area where the sales-
person lives, because our distance matrix consists of travel time and distance between the
centroid of all municipalities in Germany.

V : a set of basic areas for locating salespersons (V ⊆ C)

i ∈ |V | : index of sales representative
(3.2)

Number of territories:

The number of sales territories is often defined by decision makers before planning. Thus,
we assume that the number of territories is N .

Non-overlapping:

Each basic area must be assigned only to one salesperson.

Xij ∈ {0, 1} : a binary variable equal to 1 if salesperson located in SCU i

is assigned to SCU j ; Otherwise equal to 0

(3.3)

Complete assignment of basic areas:

Every basic area must be assigned to exactly one salesperson (a territory).

Ti ⊂ C: i-th territory

N∑
i=1

Ti = C , Ti ∩ Tk = ∅ , ∀ i 6= k , 1 ≤ i, k ≤ N
(3.4)

Contiguity:

Territories should be created in such a way that all basic areas are connected. In order to
obtain contiguity, neighborhood information for each basic area is required [18].

22

3.1 Sales Territory Planning Problem Definition

Ji ⊆ C: a set of SCUs which are assignable to salesperson in SCU i

Ai ⊆ C: a set of SCUs are adjacent to SCU j

qivj : quantity of flow from v to j with origin in location i

Xij +
∑

v∈Ai∩Ji
(qijv − qivj)−

∑
v∈Ji|i=j

Xiv = 0 i ∈ I, j ∈ Ji

|Ji| .Xij −
∑

v∈Ai∩Ji
qijv > 0

(3.5)

Compactness:

A territory is compact if it is relatively round-shaped and undistorted. In our approach
we consider the total travel time from the centroid of territory Tj (usually the basic area
where the salesperson lives) to each basic area assigned to territory Tj . Then, the following
problem should be solved in order to obtain the compactness:

minimize f(x) =
N∑
i=1

Ki (i = 1, ..., N)

subject to

Ki =
∑
j∈Ti

Dij (i = 1, ..., N)

where :

Dij = travel time or travel distance from the salesman basic area

of territoryi to SCUj

Ti = a set of basic areas belong to territory i

(3.6)

Objective:

There are several criteria that can be considered to group basic areas into the sales terri-
tories. Some of them search to balance income or potential turnover [23]. Some criteria
attempt to balance workload between salesmen [19]. Another objective is to maximize the
total profit contribution [31]. In our model, we formulate an objective to balance the poten-
tial customers and workload among sales representatives. In order to obtain this objective,
we should minimize the total standard deviation of potential in each territory from the
mean potential value (target value).

23

3 Methodology

minimize f(x) =
N∑
i=1

|Ri − r̄|

subject to

r̄ =
1

N

n∑
j=1

rj

Ri =
∑
j∈Ti

rj (i = 1, ..., N)

|Ri − r̄| 6 δr̄ (i = 1, ..., N)

where :

n : number of basic areas

N : number of territories

Ti : i-th Territory

rj : the amount potential contained in SCU j

Ri : the total potential in territory i

δ : is the maximum allowable percentage (0 ≤ δ ≤ 1)

(3.7)

3.1.2 Different Scenarios in Sales Territory Planning:

Nowadays, marketers and decision makers face three different scenarios in sales territory
planning. These scenarios are the following:

1. We have neither the location of sales representatives nor the existing sales territory
structure. In this case, the number of needed territories should be determined by
decision makers. Then the algorithm consists of two parts, respectively:

• Finding the best location for each sales representative. The number of sales
representatives are equal to the number of territories.

• Performing a heuristic search algorithm for finding an acceptable sales territory
structure.

This scenario is usually called Green Field Planning in Geo-marketing.

2. We have a number of sales representatives with fixed locations, but we do not have
any existing territory structure.

3. We have either fixed sales representatives or existing sales territory structure. But,
the territories should be optimized due to the new strategy of the sales organization.

24

3.2 Algorithm Design

For each scenario, a respective strategy is chosen. But, we are going to design a generic
approach for all scenarios. So we should have a workflow which supports all scenarios.
Fig. 3.1 presents how our model handles all scenarios:

Sales Territory
Initializer

Genetic Algorithm
Location-Allocation

Algorithm

Scenario 1

Scenario 2

Scenario 3

Figure 3.1: Generic Workflow

3.2 Algorithm Design

In this section, we firstly introduce a novel approach to handle the location-allocation prob-
lem. Secondly, we define an algorithm for initializing a raw structure for sales territories
based on the travel time. Ultimately, we design a customized genetic algorithm for solv-
ing our multi-objective sales territory design problem. As we discussed before, one of the
main advantages of the genetic algorithm is that the genetic algorithm does not depend on
the problem type. So, we only have to design a respective fitness function for each scenario
and we do not need to change the main body of the algorithm which will be defined later.

3.2.1 A Simple Approach for Location-Allocation

For the first scenario, it is very important to find a set of basic areas which are the starting
points for the sales territory planning. These basic areas are also considered as the living
points of sales representatives. Finding the best basic area as an input for the genetic al-
gorithm has a dramatic impact on the performance of the GA. In our approach, we use
the distribution of potential among basic areas to avoid locating several sales represen-
tatives in empty areas. The algorithm 1 classifies the basic areas into several classes and
determines how many basic areas must be selected for each class.

3.2.2 Sales Territory Initialization

When the starting points are ready, we can start the GA to find the structure of sales terri-
tory. Since the search space can be so large due to the number of basic areas, we have to
minimize the search space before running the genetic algorithm. So, we attempt to cluster

25

3 Methodology

the basic areas based on the nearest sales man to make a raw structure for sales territories.
The algorithm 2 shows the clustering process of basic areas.

Algorithm 1 Location Allocation Algorithm

1: Inputs:
Candidates = [c1, c2, . . . , cN] # list of capital municipalities as candidate location
Sizes ← size of sales team

2: Outputs:
Locations← empty array list # empty array to store the locations of sales team

3: Classes← NaturalBreaks(Candidates) # classifying the candidates by using NaturalBreaks
4: Sizec ← size of Classes # number of classes
5: for i = 1 to Sizec do
6: weight← i # the weight of class
7: identifier ← (Sizec ∗ (2 + (Sizec − 1)))/2
8: capacity ← Round(weight ∗ (Sizes/identifier))) # the number of persons can be located in class[i]
9: for j = 1 to capacity do

10: tmp← getRandomCandidate(Classes [i]) # get a candidate municipality from class[i] randomly
11: addItemToList(Locations , tmp) # adding a municipality to Locations array
12: end for
13: end for
14: return Locations

3.2.3 The Genetic Algorithm for Sales Territory Planning

The sales territory planning is the problem of grouping basic Geographic areas (SCU) such
as counties, zip codes, municipalities into larger clusters called sales territories. The goal
of sales territory planning is almost the maximizing of total profit of sales organization. As
the sales territory planning is classified as NP-hard problem, using a meta-heuristic search
algorithm is beneficial. Moreover, the sale territory planning is a multi-objective problem
and is non-continuous and thus cannot be solved via linear programming [8]. The genetic
algorithm is a search heuristic which has proven efficient and effective for solving spatial
problems [29]. So we have chosen the genetic algorithm for our solution approach. Firstly,
The abstract scheme of the genetic algorithm is defined in a pseudo-code fashion. Then,
we describe in detail each part of the algorithm that have been designed particularly for
the sales territory problem.

Mapping between Phenotype and Genotype

One of the main and also difficult parts of designing a Genetic Algorithm is the mapping
between phenotype and genotype. In this step, we are supposed to encode all decision
variables of our problem in such a way that can be applied to the genetic algorithm and
can be simply decoded in order to be shown inside the application. Since we are going
to design an abstract algorithm for any size of problem, the main issue in our approach

26

3.2 Algorithm Design

Algorithm 2 Clustering Algorithm

1: Inputs:
G = [g1, g2, . . . , gN] # set of basic areas
S = [s1, s2, . . . , sN] # set of salesmans basic areas
DM # distance matrix (SCUa to SCUb)

2: Initialize:
Size1 ← size of G
Size2 ← size of S
Chromosome← empty array list # array list to store territory genomes

3: for i = 1 to Size1 do
4: tmp← 0 # variable to store nearest salesman id
5: gid← G[i]
6: for j = 1 to Size2 do
7: t←Maximum value of travel time
8: sgid← S[j] # basic area of salesman
9: traveltime← DM(gid, gsid)

10: if t > traveltime then
11: t← traveltime
12: tmp← getSalesmanId(gsid)
13: end if
14: end for
15: Genome← createGenome(gid , tmp) # instantiating the territory genome object

16: addItemToList(Chromosome , Genome) # adding Genome to Chromosome
17: end for
18: return Chromosome

Algorithm 3 The Genetic Algorithm

1: initialize a population with random candidate solutions;
2: while (termination condition is satisfied) do
3: evaluate each candidate;
4: select fitter candidates and copy into the mating pool;
5: while (size of new generation = size of population) do
6: select pair of parents from mating pool;
7: recombine parents to make offspring;
8: mutate the generated offspring;
9: copy the offspring into the next generation;

10: end while
11: end while
12: decoding the best found solution

27

3 Methodology

is that the proposed genotype data structure should be as efficient as possible. Moreover,
the structure of genotype should be flexible enough to be easily manipulated via the op-
erations of the algorithm. According to the empirical result, our algorithm is capable to
handle large scale problems (e.g sales territory in the level of municipalities around more
than 10, 000 basic areas) in a promising calculation time and computation effort. Thus, we
have chosen a Generic Array List data structure to store an arbitrary size of genotype in
a array form and manipulate it easily. Generic array list data structure is a collection of
items which supports all optional operations such as add, delete, update, etc. The main
advantage of a generic array list is that it is capable to store different data types such as
Integer, String, Object, Arrays, etc. The figure 3.3 shows a schema of generic array list.

Object #1 Object #2 Object #3 Object #4 Object #5

INDEX #1 INDEX #2 INDEX #3 INDEX #4 INDEX #5

Ref 1
Ref 2

Ref 3 Ref 4
Ref 5

Figure 3.2: Generic Array List

Since array list is index-based data structure, iterating through an array of N elements
is faster than other data structures with the same size. Moreover, the array list needs less
memory than other data structures such as linked list. As we mentioned before, we are
able to add and store any type of items into the generic array list. According to our defined
territory planning model 3.3, each SCU must be assigned to only one sales representative.
So, the pair of basic area (SCU) and sales representative should be unique. The figure 3.3
shows an object which is used as a genome in our genetic algorithm.

Initializing a Random Population

The Genetic Algorithm is a random population-based meta-heuristic algorithm. In the
GA, we maintain many individuals (candidate solutions) in a population. The size of
population is usually defined before running the algorithm. Each individual (also called
chromosome) is composed of genomes. As we discussed before, we are able to add an
arbitrary number of genomes into the generic array list. In our model, the size of array
list shows the number of basic areas. The algorithm 13 creates a population of random
candidate solutions by means of an iterative process. The process will be stopped when
the number of generated individuals are equal to the size of population which is given by
user.

28

3.2 Algorithm Design

TerritoryBasicGenome

+Salesman_ID
+BasicArea_ID

+getSalesman()

+getBasicArea()
+setBasicArea(Integer)

+setSalesman(Integer)

Genome #1 Genome #2 Genome #3 Genome #4 Genome #N

Candidate solution (Chromosome) with size N

...

Figure 3.3: Territory Genome Object

Algorithm 4 Making Random Population

1: Inputs:
Size ∈ N # size of the population
S = [s1, s2, . . . , sN] # S: set of salesmans
G = [g1, g2, . . . , gL] # G: set of basic areas

2: Initialize:
N ← size of S
L← size of G
Chromosome← empty array list
Population← empty array list

3: for i = 1 to Size do
4: for i = 1 to L do
5: gid← G[i]
6: rnd← getRandomNum(1 , N) # making random index between 1 and N

7: sid← S[rnd] # choose one sales man randomly
8: Genome← createGenome(gid , sid) # instantiating the territory genome object

9: addItemToList(Chromosome , Genome) # adding Genome to Chromosome
10: end for
11: addItemToList(Population , Chromosome) # adding Chromosome to Population
12: end for
13: return Population

The generated random population by the algorithm above will be used as an input for
the selection process that will be discussed in the next section.

29

3 Methodology

Selection Process

At this step, the Genetic Algorithm goes through the main loop. The selection process
is supposed to simulate the natural selection by giving fitter individuals a higher chance
to survive and make offspring into the next generations. The selected individual will be
added into the temporary storage (also called mating pool) to be used for breeding via
cross-over and mutation operations. So the selection process is considered as the main
component of the GA for converging towards a global optima. In addition, because fitter
individuals will be selected via selection process based on their fitness, we also need the
fitness function to evaluate how fit each individual is. We will explain our fitness functions
in the next section. In our model, we use the Tournament Selection as the selection method.
This method does not consider the global information of a population (e.g. relative fitness
or the ranking of individuals). It just takes the local information into account. It means
that best individual will be selected within a small group of individuals instead of the
whole population [30]. The Tournament Selection gets the tournament size k as the param-
eter, which controls the selection pressure that is introduced in section 2.2.3. Tournament
Selection is an iterative process which compares each individual k times with others and
chooses the fittest individual in each tournament. If the tournament size is 1, the selection
method will imitate the random selection. Because in this case, the selection pressure will
be 0. On the other hand, If the tournament size is equal to the size of population, the fittest
individual will occupy the whole population because of the high selection pressure. The
algorithm 5 shows the Tournament Selection Method.

Algorithm 5 Tournament Selection
1: Inputs:

Population = [ind1, ind2, . . . , indN] # the population of candidate solutions
K # tournament size

2: Initialize:
Size← size of P # size of population
Selection← empty array list # array list of selected individuals

3: for i = 1 to Size do
4: List← empty array list # temporary list for each tournament
5: addItemToList(List , Population[i])
6: for j = 1 to (K − 1) do
7: indv ← getRandomItem(Population) # random individual(indv /∈ List)

8: addItemToList(List , indv)
9: end for

10: fittest← getFittestIndividual(List) # fittest individual wins the tournament

11: addItemToList(Selection , fittest)
12: end for
13: return Selection

All selected individuals in the selection process will be copied into the mating pool to
be used in the next operations.

30

3.2 Algorithm Design

Elitism

The generated offspring in the GA are supposed to inherit good characteristics of its par-
ents, but sometimes offspring are weaker than their parents. So good candidate solutions
can be lost after cross-over and mutation operations.Although the GA is capable to re-
discover the lost candidate solutions again, it can increase the calculation time. For solving
this issue, we will use a technique which is called Elitism [27].

In this technique, we copy a proportion of the best candidate solution from the mating
pool into the next generation without any changes. Most of the time, Elitism extremely
improves the performance of the GA, because it does not waste the time to discover the lost
candidate solutions in the previous generations and helps to navigate the search direction
towards the global optimal solution. In addition, unchanged candidate solutions which
are copied by elitism are also remained in the mating pool for the reproduction process.

The Fitness Function

The fitness function can be viewed as the heart of the genetic algorithm. It means that the
goodness of the candidate solution will be evaluated by the fitness function. In the other
words, the fitness function determines how close the candidate solution is to the global
optimal solution based on the type of problem. Since the sales territory planning is a
multi-criteria problem intrinsically, we should formulate a multi-criteria decision making
model to simultaneously minimize the components of criterion vector F (x):

minimize F (x) = (f1(x), f2(x))

subject to

f1(x) = equations 3.6

f2(x) = equations 3.7

(3.8)

Moreover, each objective is measured on a different scale. In the following model, we
provide a mathematical formulation to normalize our objective components and simplify

31

3 Methodology

them into the single objective function:

fitness =

��
f1(x)− a
b− a

�
∗ w1

�
+

��
f2(x)− c
d− c

�
∗ w2

�

subject to

a ≤ f1(x) ≤ b

c ≤ f2(x) ≤ d

where :

f1(x) , f2(x) : control variables

w1 , w2 : weights of control variables

a , c : lower bounds of control variables

b , d : upper bounds of control variables

(3.9)

In this part, we only consider the first objective that we have defined in the objective
section 3.1.1. The algorithm 6 shows how to calculate the fitness of a candidate solution.

The Cross-Over Operation

The first operation of reproduction process is Cross-Over. This operation picks up two
parents from the mating pool and combines them in such a way that the generated off-
spring inherits the characteristics of its parents. This operation gets the probability value
0 ≤ P ≤ 1 as the first parameter and the number of cross-over points as the second param-
eter. In our model, we use a one point cross-over. The algorithm 7 depicts how the cross-over
operation makes two offspring from two parents:

32

3.2 Algorithm Design

Algorithm 6 Fitness Function
1: Inputs:

Chromosome = [genome1, . . . , genomeN] # candidate solutions
S = [s1, s2, . . . , sN] # S: set of salesmans
DM # distance matrix (SCUa to SCUb)
W1,W2 # criteria weights
a, c # lower bounds
b, d # upper bounds

2: Initialize:
Size1 ← size of S
Size2 ← size of Chromosome
potentials← empty array list # array list to store potential values

3: dist← 0 # total distance (second critera: f2(x))
4: fitness← 0
5: for i = 1 to Size1 do
6: potential← 0
7: sid← S[i]
8: for j = 1 to Size2 do
9: Genome← Chromosome[j]

10: gsid← salesman_id of Genome
11: if gsid = sid then
12: potential← potential+ getPotential(Genome)
13: SCU1← get SCU of S[i]
14: SCU2← get SCU of Genome
15: dist← dist+DM(SCU1, SCU2) # distance from SCU1 to SCU2

16: end if
17: end for
18: addItemToList(potentials , potential)
19: end for
20: sd← calculateDeviation(potentials) # standard deviation (first criteria: f1(x))

21: fitness← calculateFitness(sd, dist, w1, w2, a, b, c, d) # equation 3.2.3

22: return fitness

33

3 Methodology

Algorithm 7 Cross-Over Operation

1: Inputs:
Chromosome1 = [genome1, . . . , genomeN] # a candidate solutions as parent1
Chromosome2 = [genome1, . . . , genomeN] # a candidate solutions as parent2
P # cross-over probability: 0 ≤ P ≤ 1

2: Initialize:
Size1 ← size of Chromosome1
Size2 ← size of Chromosome2
Result← empty array list # an array list to store 2 offspring

3: rnd← getRandomNum(0 , 1) # random number between 0 and 1

4: if rnd ≥ P then
5: Max←Min(Size1 , Size2)
6: if Max > 1 then
7: index← getRandomNum(1 , Max) # random index between 1 and Max

8: for j = 1 to index do
9: Genome← Chromosome1[j]

10: Chromosome1[j]← Chromosome2[j]
11: Chromosome2[j]← Genome
12: end for
13: end if
14: end if
15: addItemToList(Result , Chromosome1) # adding first offspring

16: addItemToList(Result , Chromosome2) # adding second offspring

17: return Result

The Mutation Operation

After the cross-over operation, we should make very little changes in the generated off-
spring to attempt to explore the whole search space. In our model, this operation has a
very important role in converging the search direction to the global optimum. Since we
have already created a raw structure of sales territories, we just mutate the offspring on
the border of existing territories. It means that a basic area which is located on the border
can be randomly assigned to the neighbor territory based on a very small probability. In
this approach, we also maintain the compactness and contiguity of the raw structure, be-
cause we only reassign the basic areas on the border and those inside the territories will be
remained unchanged.

34

3.2 Algorithm Design

Algorithm 8 Mutation Operation

1: Inputs:
Chromosome = [genome1, . . . , genomeN] # offspring
P # mutation probability: 0 ≤ P ≤ 1

NM ← Neighborhood matrix # NM [i, j] = 1 if SCUi is neighbor of SCUj ; Otherwise 0

2: Initialize:
Size← size of Chromosome

3: for i = 1 to Size do
4: genome← Chromosome[i]
5: list← get the neighbors of genome # temporary salesman ID

6: rnd← getRandomNum(0 , 1) # random number between 0 and 1

7: if rnd ≥ P then
8: nbr ← getRandomGenome(list) # selecting random neighbor

9: nsid← getSalesmanID(nbr) # salesman Id of neighbor genome
10: sid← getSalesmanID(genome) # salesman Id of genome

11: gid← getScuID(genome) # SCU Id of genome
12: if nsid 6= sid then
13: genome← createGenome(gid , sid)
14: Chromosome[i]← genome
15: end if
16: end if
17: end for
18: return Chromosome

Minimizing the Search Space

An we explained in chapter 2, the Genetic Algorithm is a non-deterministic searching
method. It means that the whole search space should be explored by the algorithm to
find the best solution. Thus, exploring of a larger search space is likely to take longer time.
Although we have discussed about minimizing the search space before running the ge-
netic algorithm in the section 3.2.2, it is also possible to minimize the search space inside
the genetic algorithm by using evolutionary operators that avoid generating useless or in-
valid solutions. We can avoid useless solutions by defining some constraint in mutation
operation algorithm. A useless solution is a valid candidate solution which is generated
by the algorithm after several generations, but does not lead the search direction to the
global optimal solution. Since our goal is the balancing of the potential between territories
(sales persons), it will not be beneficial to mutate a candidate solution in mutation opera-
tion by taking a basic area from a territory with less potential and assigning it to a territory
with more potential, because the weak territory will get weaker. The figure 3.4 shows the
useless solution:

In addition, an invalid solution is a candidate solution which is generated by the algo-
rithm, but it is not in the feasible area of search space and violates the territory planning

35

3 Methodology

territory (A) with
less potential

territory (B) with
more potential

Figure 3.4: Useless Solution

territory (A)

territory (B)

Figure 3.5: Invalid Solution

36

3.2 Algorithm Design

contiguity constraint which is defined in section 3.5. The figure 3.5 shows an invalid solu-
tion in which a basic area is disconnected from its territory:

For the treatment of an invalid solution, we designed algorithm 9 to repair the invalid
solutions. This algorithm detects the invalid assignments of basic areas and assigns them
to the surrounding territory.

Algorithm 9 Treatment Operation

1: Inputs:
Chromosome = [genome1, . . . , genomeN] # offspring
NM ← Neighborhood matrix # NM [i, j] = 1 if SCUi is neighbor of SCUj ; Otherwise 0

2: Initialize:
Size1← size of Chromosome

3: for i = 1 to Size1 do
4: genome← Chromosome[i]
5: list← get the neighbors of genome # temporary salesman ID

6: Size2← size of list
7: for j = 1 to Size2 do
8: nsid← getSalesmanID(list[nbr]) # salesman Id of neighbor genome

9: sid← getSalesmanID(genome) # salesman Id of genome

10: flag ← 0
11: if (nsid = sid) then
12: flag ← 1 # basic area is not island
13: break; # stop the loop
14: end if
15: end for
16: if (flag = 0) then
17: gid← getScuID(genome) # SCU Id of genome
18: genome← createGenome(gid , sid)
19: Chromosome[i]← genome # marge the island into the surrounding territory
20: end if
21: end for
22: return Chromosome

Escaping from the Local Optima

As we discussed in chapter 2, the genetic algorithm can be easily trapped in local optima.
Thus, the GA should be capable to escape from the local optimum and converge to global
optimum. For solving this issue, the cross-over rate and specially mutation rate should be
adaptive. It means the mutation probability should be increased when the diversity of can-
didate solutions is decreasing and should be decreased when the diversity is increasing.
In our model, we increase the mutation rate dynamically when the decrement of standard

37

3 Methodology

deviation becomes too slow. On the other hand, we decrease the mutation rate when the
decrement of standard deviation is too fast.

Termination conditions

There are a some reasons which can stop the genetic algorithm. Since the genetic algorithm
is a non-deterministic, we are not able to specify the global optimal solution so precisely.
Figure 3.6 presents the progress of the genetic algorithm in minimizing the standard devi-
ation of potential among territories as much as possible, but the progressive decrement of
standard deviation is stopped after 500 generations. If a certain number of generations
pass without any improvement, the algorithm will be terminated. The algorithm 10 shows
the stagnation termination.

Figure 3.6: Stagnation Termination

38

3.2 Algorithm Design

Algorithm 10 Termination Algorithm

1: Inputs:
generationNumber # generation number
generationLimit # limit of generations without improvement

2: fitness← getFitness();
3: if (generationNumber = 0) || hasFitnessImproved(fitness) then
4: fittestGeneration← generationNumber
5: end if
6: if (generationNumber − fittestGeneration ≥ generationLimit) then
7: return true
8: else
9: return false

10: end if

Decoding and Visualizing

Ultimately, when the termination criteria is satisfied, the algorithm stops and returns the
best solution as an array list. Each item in the array list is a specific object that we have
already defined it as territory genomes in figure 3.3. The territory genome determines a
basic area which belongs to a certain sales representative. At this step, we have to decode
our result such that can be visualized in the user interface. The algorithm 11 describes how
the array list will be decoded:

Algorithm 11 Decoding Final Result

1: Inputs:
T = [genome1, . . . , genomeN] # T : candidate solution as an array list
S = [s1, s2, . . . , sN] # S: set of salesmans

2: Initialize:
T l← size of T # T l: length of solution array
Sl← size of S # Sl: number of salesmans

3: for i = 1 to Sl do
4: Poly ← empty array list # creating empty polygon list for salesman i
5: for j = 1 to T l do
6: Genome← T [j]
7: S_id← get S_id from Genome
8: G_id← get G_id from Genome
9: if S_id = S[i] then

10: Poly ← (Poly + get polygon from Genome) # adding SCU into territory i
11: end if
12: end for
13: Draw(Poly) # drawing the generated territory on the map
14: end for

39

3 Methodology

40

4 Implementation

In this chapter, we are going to illustrate how the system is implemented. In the first sec-
tion, we present an overview of the system structure and describe the system workflow.
Secondly, the database schema will be shown. Then the main core of our decision support
system is described. Ultimately, the graphical user interface will be presented.

4.1 System Architecture and Workflow:

Fig. 4.1 shows an overview of the system architecture:

Interface layer

Modern Mapping Application

Middleware

Territory Planning Engine

Server-side

Application

Data Layer

Figure 4.1: System Architecture

41

4 Implementation

As the figure 4.1 shows, our system architecture consists of three different layers. We
have designed a web application for running the territory planning engine and also for
visualizing the result. As the first layer, our web application consists of a client-side ap-
plication and a server-side application. The client-side application has been developed
based on AngularJS framework [1]. A map component is also embedded into the client-
side application by using the OpenLayers3 library [10] to visualize the result of the territory
planning process on the map. The users (decision makers or marketers) send a request to
the server via our client-side application to start the territory planning process. The second
layer contains a server-side application which has been written in the Java Programming
Language. We have chosen the java programming language because of its good perfor-
mance that is almost equal to native programming languages such as C and Fortran [7]. The
server application reads all needed data from the database (e.g. distance matrix, location
of sales people, basic areas and etc) and passes it to the territory planning engine which
is also included in the second layer. The territory planning engine has been developed
as an independent module which gets some inputs and returns a java object as the result.
After starting the engine by the server-side application, all data should be loaded on the
main memory (RAM). When the planning algorithm is terminated, the engine sends the
result back to the server-side application and the result will be inserted into the database
4.2 via SQL queries. In addition, we used the GeoServer for visualizing our geospatial data
such as basic areas, sales territory structures and etc. The embedded map component in
our user interface sends a WMS request to the geoserver. Then the geoserver reads the
data from the database and sends back the generated map to the client-side application as
a PNG file. Our dataset consists of some spatial data about municipalities, states, cities,
roads network, districts, etc. which are stored as geometry in our database. Moreover, we
have additional data related to our case study that we explain later in the next chapter.

4.2 Database Design

In this thesis, we used PostgreSQL as the database management system [12]. In addition,
we used PostGIS as a spatial extension for our database [11]. We store all needed data for
territory planning in the database. Our basic areas for our case study are all municipalities
of Germany. Since the calculation of travel time and distance in the scale of whole Ger-
many during the processing is not efficient and needs much resources, we have calculated
the travel time and distance in advance. The travel time is calculated from the center of
each municipality to the center of all others based on the roads network by mean of the Ar-
cGIS Network Analyst extension. This extension allows users to build a network dataset
and perform analyses on a network dataset [2]. The result of travel time calculation has
been inserted into the distance table in our database. This table contains approximately
120 million rows which have been indexed by BTREE [3] to be retrieved quickly. The fig-
ure 4.2 illustrates our database schema. The structure of territories is stored in the tables
territory_initialized (before optimization) and territory_optimized (after optimization). These
tables only consist of a pair of IDs. The first ID (municipaliy_id) identifies the municipality
and the second ID (salesman_id) shows the sales representative who is responsible for the
municipality. All municipalities that are assigned to a specific salesman ID make a territory

42

4.2 Database Design

of that salesman.

municipality_id

salesman_id

salesman_id

municipaliy_id

region_id

province_id

county_id

municipaliy_id

salesman_id

municipality_source

municipality_target

municipality_id

from_id

to_id

salesman_municipality

id
municipality_id
salesman_id
sname
geom

territory_initialized

id
municipaliy_id
salesman_id

county

id
region_id
province_id
name
name_ascii
shape_area
shape_leng
geom

province

id
name
name_ascii
shape_area
shape_leng
geom

region

id
province_id
name
name_ascii
shape_area
shape_leng
geom

municipality

id
county_id
region_id
province_id
name
name_ascii
shape_area
shape_leng
geom

salesman

id
nachname
ort
postleitza
straße
vorname
xcoor_r
ycoor_r
geom

territory_optimized

id
municipaliy_id
salesman_id

municipality_neighbor

id
municipality_source
municipality_target

municipality_data

id
municipality_id
county_id
region_id
province_id
farmers(num)
farms (num)
+100 hektar farms (num)
+20 hektar farms (num)
area_agriculture
area_total
name
percenteage_agriculture
sold_2010_2012
sold_2012

distance_matrix

id
origin_id
destination_id
total_kilometers
total_meters
total_minutes
total_minutes_slow

travel time and distance
is stored here

descriptive data of
municipalities

geometry of
municipalities

position and descriptive
data of sales persons

municipalities where sales
persons live

data of all neighbors surround
each municipality

structure of territories
after optimization

structure of territories
before optimization

Figure 4.2: Database Schema

43

4 Implementation

Since we need to consider the neighbors of each municipality in our algorithm 8, we
have calculated the neighbors of each municipality by using the st_intersects() function of
PostGIS and store the result in the table municipality_neighbor. In our database schema,
the tables which have the geom column such as municipality, county, region and province are
mostly used for visualization of the result. But we use the data of the municipality_data
table directly in our algorithm.

The table municipality_data is the most important data table which we used as the main
input for our algorithm. Although our algorithm is independent from the input and the
objective function, any descriptive data can be used for the optimization process, but we
have taken a simple agricultural data of municipalities into account for the optimization
of territories according to our case study which will be explained in the next chapter.

4.3 The Territory Planning Engine

As we discussed before, territory planning involves great computational complexity be-
cause of a large number of alternative solutions. This complexity can be expanded when
the objectives contain some specials constrains such as contiguity and compactness. Be-
cause the number of basic areas involved in the sales territory planning is high in our case
study, we need a heuristic approach like the genetic algorithm to find the optimal solution.
On the other hand, GA is a non-deterministic population-based search algorithm. Because
of exploring the whole search space, the calculation process often takes long time depends
on the size of search space. Thus, for finding the optimal solution in a reasonable time, the
territory planning engine has been developed based on the multi-core parallelism concept
by using the standard concurrent programming package included in the java platform. It
means that we split the population of candidate solutions into several groups. Then each
group will be assigned to the one core (CPU). Each CPU acts like a worker which performs
the genetic operations on a certain group of solutions. But the parallel processing is not
possible for all operations. In the other words, some operations cannot be executed con-
currently, because the whole population should be taken into account at the same time.
For instance, our selection operation cannot be performed concurrently. Because for the
selection process, each candidate solution should compete with all other candidates to be
selected for the next generation. The figure 4.3 presents our parallelism approach.

44

4.4 Graphical User Interface

CPU #1 CPU #2 CPU #3 CPU #4

Candidate #1 Candidate #2 Candidate #3 Candidate #4 Candidate #6Candidate #5 Candidate #7 Candidate #8

Cross-Over Cross-Over

Mutation Mutation

Fitness

Function

Fitness

Function

Selection Best

Candidate

Population

Cross-Over

Mutation

Fitness

Function

Cross-Over

Mutation

Fitness

Function

Figure 4.3: Parallelism Approach

4.4 Graphical User Interface

As it is shown in the figure 4.1, we have prepared a simple browser-based user interface
for interaction with territory planning engine and also for visualizing raw data and the
generated sales territories. We used AngularJS as a MVC framework to implement client-
side application. The core idea behind MVC is that you have clear separation in your
code between managing its data (model), the application logic (controller), and present-
ing the data to the user (view) [17]. The view gets data from the model to display to the
user. When a user interacts with the application by clicking or typing, the controller re-
sponds by changing data in the model. Finally, the model notifies the view that a change
has occurred so that it can update what it displays. We used this feature to update our
map component when the territory planning process is finished and the result should be
visualized. For instance the client-side application always checks for any updates in the

45

4 Implementation

database concerning the result of territory planning and visualizes the structure of gener-
ated territories as soon as it is found by the genetic algorithm. Fig. 4.4 below show our
simple interactive user interface (client-side application):

Figure 4.4: Client-side application

46

5 Results and Analysis of Experiment

To assess the correctness and effectiveness of our method, we performed some experiments
for both evaluating the balance of potential among sales representatives and evaluating the
travel time improvement. The benchmarks have been done on a system with Intel Core
i7-4770 3.40 GHz (Quad core CPU), 8 Gigabytes of Memory (RAM) and on Hard Disk with
7200 RPM.

Our step by step experiment starts by a brief explanation of the dataset we used. In
section 5.1.2 we setup the parameters of our genetic algorithm by testing all possibilities
and choosing the best parameters. In section 5.1.3 we explained our innovative method
to find the best position for locating sales representatives in the first scenario (Green Field
Planning). In section 5.1.4 and 5.1.5 we compared the results of our method before and
after optimization. Then we checked contiguity and compactness constraints in section
5.1.6. We finally discussed the obtained results in section 5.2.

5.1 Experiment

5.1.1 The dataset

As the case study, we considered a situation where an agricultural machinery manufac-
turer is selling a certain product (e.g. tractor) in Germany. The sales team consists of 27
representatives who must cover the whole Germany. Each sales representative is supposed
to be responsible for only one territory. Territory planning is carried out in the level of mu-
nicipalities which include 11,212 basic areas as SCUs. Although our method is completely
independent from inputs and objectives, we considered the number of farms as the avail-
able potential inside each municipality. The more the number of farms inside the SCU,
the higher is the chance of selling the agricultural machinery. However, the calculation of
the available potential can be more complicated by taking more inputs into account such
as percentage of agricultural land, number of farmers, purchasing power, number of sold
machines and etc.

5.1.2 Genetic Algorithm Parameters Setup

The Genetic Algorithm is very sensitive to parameters such as population, elitism per-
centage, mutation rate (probability) and cross-over rate (probability). After several exper-
iments, we investigated the best configuration for setting up the Genetic Algorithm. Since
the calculation time depends on the specifications of the computer on which the planning
is being done, we tested the parameters based on the number of generations. According to

47

5 Results and Analysis of Experiment

Figure 5.1: Comparing elitism rate

the case study, our goal is to decrease the difference of potential values among salesmen.
Thus, we considered the standard deviation of each solution as the fitness value which
should decrease after several generations. In this case, the less fitness value addresses bet-
ter solution.

For the first step, we evaluated four different elitism rates. The elitism rate identifies
the percentage of individuals that should be transferred to the next generation without
any changes. As depicted in figure 5.1, the fitness value has progressively decreased after
some generations. But the decrease of the fitness value is faster when the elitism rate is set
to 26%.

As the second parameter, we investigated the probability of the cross-over operation.
We compared three cross-over probabilities. The result is shown in figure 5.2. Although
the progress of all three cross-over probabilities is almost same, the cross-over rate of 0.9
(green line) has a better effect on the performance of the algorithm.

The Genetic Algorithm is very sensitive to the mutation rate. After several experiments
we realized that very high and very low mutation rates can lead the genetic algorithm to
the local optimum. As it is shown in the figure 5.3, the mutation rate of 0.5 (orange line)
extremely decreased the fitness value after 400 generations, while other mutation rates are
not as efficient as the mutation rate of 0.5.

48

5.1 Experiment

Figure 5.2: Comparing Cross-over rate

Figure 5.3: Comparing mutation rate

49

5 Results and Analysis of Experiment

5.1.3 Evaluating the Location-Allocation and Initializing the Territories

As we explained in section 3.1.2, we have three scenarios. Since the first scenario (Green
Field Planning) includes other scenarios, we evaluated our method only for the Green Field
Planning.
We defined three steps for solving the Green Field Planning problem. Firstly, we found
the best positions for locating salesmen. Then we created the first version of territories by
using the clustering algorithm 2 based on the travel time from the salesman’s living loca-
tion to the center of municipalities. According to clustering algorithm, we considered each
municipality and assigned it to the nearest salesman. The location of salesmen and gener-
ated territories in algorithm 2 are temporary and used as input for the next step (Genetic
Algorithm).

Since the living location of salesmen is an input for sales territory planning, finding the
best location for sales teams is crucial. As the location-allocation problem is not the main
focus of this thesis, we designed a relatively simple algorithm to find the proper locations
for the sales team. In this step, we selected the capital municipality of each district (land-
kreis), because these capital municipalities have enough requirements such as accessibility,
amenities and etc. for locating the sales team. Thus our candidates locations are limited
to 402 municipalities that are equal to the number of districts (German Landkreis). The
figure 5.4 illustrates all candidate municipalities and their accessibility.

After several experiments, we have realized that finding a proper location for our sales
representatives extremely improves the performance of the territory planning algorithm.
The reason is that the existing potential is not distributed homogeneously in the whole
Germany. As it is shown in figure 5.5, in our case study, the available potential value
(number of farms) of the municipalities are aggregated to district level and the districts
are classified into 5 classes from red (poor area) to green (rich area). The eastern part has
less potential than western or southern part of Germany. It means that eastern territories
should be much larger than southern territories to have almost equal potential. To solve
this problem, we first used the Natural Breaks algorithm which is a method of manual
data classification that seeks to partition data into classes based on natural groups in the
data distribution. In the second step, we assigned a weight in the range of 1 to 5 to each
class based on its value. Then we calculated the capacity of each district class (number
of salesman that can be located in the class) according to its weight. For instance, 140
districts belong to Class1 and only one sales representative can be located in this class. On
the other hand, 26 districts belong to Class5 and 10 sales representatives can be located in
these districts.

As it is shown in figure 5.6, eastern territories are much larger than southern territories.

5.1.4 Evaluating the Balance of Potential among Salesmen

Since balancing the potential or the workload among sales representatives (territories) is
one of the main objectives in the sales territory planning, we want to prove the efficiency of
our algorithm for this objective. After initializing the structure of territories, the potential
distribution is not balanced. Thus, the standard deviation of the potential is relatively

50

5.1 Experiment

Candidate Municipality
Road

Figure 5.4: Accessibility of candidate municipalities

51

5 Results and Analysis of Experiment

Potential Distribution

1 - 315
316 -730
731 - 1250
1251 - 1990
1991 - 3585

Figure 5.5: Distribution of potential (number of farms)

52

5.1 Experiment

Class Range of potential value Weight Candidate districts Capacity(number of salesmen)

Class 1 1 - 315 1 140 1
Class 2 316 - 730 2 96 3
Class 3 731 - 1250 3 75 5
Class 4 1251 - 1990 4 65 8
Class 5 1991 - 3585 5 26 10
Total 402 27

Table 5.1: Classification of districts based on potential value

Figure 5.6: Distribution of Potential

53

5 Results and Analysis of Experiment

Salesman Potential Value Deviation From Mean Mean

person #1 6202 -4875.62 11077.62
person #2 16646 5568.38 11077.62
person #3 8002 -3075.62 11077.62
person #4 12349 1271.38 11077.62
person #5 11666 588.38 11077.62
person #6 13153 2075.38 11077.62
person #7 9983 -1094.62 11077.62
person #8 14269 3191.38 11077.62
person #9 14776 3698.38 11077.62
person #10 11978 900.38 11077.62
person #11 22938 11860.38 11077.62
person #12 8744 -2333.62 11077.62
person #13 17345 6267.38 11077.62
person #14 14888 3810.38 11077.62
person #15 11449 371.38 11077.62
person #16 14291 3213.38 11077.62
person #17 8034 -3043.62 11077.62
person #18 9353 -1724.62 11077.62
person #19 5893 -5184.62 11077.62
person #20 3963 -7114.62 11077.62
person #21 9625 -1452.62 11077.62
person #22 11488 410.38 11077.62
person #23 6205 -4872.62 11077.62
person #24 10608 -469.62 11077.62
person #25 9299 -1778.62 11077.62
person #26 9555 -1522.62 11077.62
person #27 6394 -4683.62 11077.62

Total Potential 299096

Table 5.2: Potential Distribution Before Optimization

high. Table 5.2 represents the potential distribution among salesmen after initializing the
territories and before running the optimization process.

Figure 5.7 also represents the deviation of potential value from the mean in each terri-
tory. The numbers on the horizontal axis show the ID of salesmen in table 5.2.

After initializing the territories, we must balance the potential among the territories ac-
cording to the defined objective. It means that the rich territory (high potential territory)
should shrink and the poor territory should expand. We have run the optimization process
and it has finished after 369 seconds which is a promising computational time for the scale
of our problem. Figure 5.8 represents the progress of our algorithm in which the standard
deviation has progressively decreased during the time until improvement is not possible
any more.

Table 5.3 and Figure 5.9 show the result of our optimization algorithm.
As it is shown in figure 5.9, the generated territories are relatively balanced. After bal-

54

5.1 Experiment

-10000.00

-5000.00

0.00

5000.00

10000.00

15000.00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

D
ev
ia
tio
n
of
po
te
nt
ia
lf
ro
m
M
ea
n

Sales Representatives

Figure 5.7: Before Optimization

0

1000

2000

3000

4000

5000

6000

7000

Fi
tn
es
s
(S
ta
n
d
ar
d
D
ev
ia
ti
o
n
o
f
Po

te
n
ti
al
V
al
u
e)

Time (S)

Figure 5.8: The Progress of Genetic Algorithm

55

5 Results and Analysis of Experiment

Salesman Potential Value Deviation From Mean Mean

person #1 11102 24.38 11077.62
person #2 11050 -27.62 11077.62
person #3 11025 -52.62 11077.62
person #4 11080 2.38 11077.62
person #5 11004 -73.62 11077.62
person #6 11127 49.38 11077.62
person #7 11046 -31.62 11077.62
person #8 11080 2.38 11077.62
person #9 11097 19.38 11077.62
person #10 11106 28.38 11077.62
person #11 11094 16.38 11077.62
person #12 11124 46.38 11077.62
person #13 11086 8.38 11077.62
person #14 11074 -3.62 11077.62
person #15 11048 -29.62 11077.62
person #16 11121 43.38 11077.62
person #17 11102 24.38 11077.62
person #18 11183 105.38 11077.62
person #19 11072 -5.62 11077.62
person #20 11031 -46.62 11077.62
person #21 11067 -10.62 11077.62
person #22 11071 -6.62 11077.62
person #23 10945 -132.62 11077.62
person #24 11052 -25.62 11077.62
person #25 11145 67.38 11077.62
person #26 11020 -57.62 11077.62
person #27 11144 66.38 11077.62

Total Potential 299096

Table 5.3: Potential Distribution After Optimization

56

5.1 Experiment

-1000.00

-800.00

-600.00

-400.00

-200.00

0.00

200.00

400.00

600.00

800.00

1000.00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

D
ev
ia
tio
n
of
po
te
nt
ia
lf
ro
m
M
ea
n

Sales Representatives

Figure 5.9: After Optimization

ancing the potential between territories, the location of sales representatives should be
updated according to the new structure of territories, because the territories have been re-
sized or moved. Thus ,we use the algorithm 1 to find the best location for the sales persons
based on the current structure of territories. Figure 5.10 clearly illustrates the structure of
territories before and after the optimization.

It is also obvious that the number of territories in the eastern part of Germany is low, but
these territories are larger than others. On the other hand, the number of territories in the
southern part and the western part of Germany is high, but these territories are smaller
than in the eastern territories. The reason is that the distribution of potential is not equal
in the whole Germany. We will discuss this in section 5.2.

5.1.5 Evaluating the Travel Time Improvement

Since the sales territory planning is classified as a multi-objective problem, we developed
a method which is capable to fulfill more than one objective simultaneously. As the travel
cost is one of the important parameters that must be taken into account in sales territory
planning, we have defined the minimizing of travel time and distance as an objective in
our algorithm beside the balancing of potential. In our case study, minimizing the travel
cost is not the first priority in comparison to balancing the potential. So we defined a lower
weight for minimizing the travel cost than balancing the potential among salesmen.

The the calculation of travel cost depends on several parameters and can vary among dif-
ferent sales organization. For instance, a salesman visits the potential customers in several
neighbor municipalities in one journey and return to his living location (figure 5.11). But
another salesman only visits one municipality in each journey (figure 5.12).

In our algorithm, we assumed that the salesmen only visit the potential customers of one
municipality in each journey. In addition, we did not take the empty municipalities into

57

5 Results and Analysis of Experiment

Figure 5.10: Territories Before and After Optimization

A

D

B

CE

F

Figure 5.11: Visiting several municipalities in one journey

58

5.1 Experiment

A

D

B

CE

F

Figure 5.12: Visiting one municipality in one journey

account. In other words, the salesman only visits the municipalities where the potential
customers exist. So the total travel cost for each salesman is the sum of all travel costs from
the living location to the municipalities (not empty) belonging to the salesman. Table 5.4
shows, the total travel time before and after the optimization process, which has decreased
around 2539 hours. For example, if the company pays 10 e per hour as the travel cost, it
will save 25, 390 e after optimization.

In our case study, we only consider travel time as the cost of travel, but we also show
the improvement in travel distance in table 5.5.

5.1.6 Evaluating the Contiguity and Compactness

In addition to the balance potential and the minimum travel cost, we also have other ob-
jectives which are round-shape territories (compactness) and contiguity. This is why we
performed the second steps (clustering). Although we can also guarantee the contiguity
and compactness in the Genetic Algorithm by defining some constraints, it extremely af-
fects the performance of the algorithm. Because our search space is too big, the chance
of finding a solution which does not violate our constraints is very low. Thus, we firstly
create a temporary structure of territories which are compact and totally connected, then
we start balancing the potential among salesmen from the borders of territories. In other

59

5 Results and Analysis of Experiment

Salesman TravelTime Before Optimization(Hour) TravelTime After Optimization(Hour)

person #1 45.8 112.6
person #2 2177.9 2767.00
person #3 2423.4 1775.7
person #4 359.5 126.8
person #5 479.6 169.5
person #6 732.0 525.6
person #7 212.6 204.2
person #8 748.8 533.1
person #9 440.7 256.6
person #10 1093.2 1086.8
person #11 137.7 217.8
person #12 639.6 466.8
person #13 157.7 140.9
person #14 1402.2 590.7
person #15 738.2 631.6
person #16 124.7 398.6
person #17 1513.6 464.5
person #18 467.2 257.2
person #19 203.07 144.3
person #20 97.5 148.2
person #21 24.4 195.2
person #22 415.04 711.2
person #23 78.9 83.6
person #24 201.6 314.6
person #25 108.4 137.6
person #26 542.3 481.0
person #27 164.2 248.2

Total TravelTime 15730.975 13191.324

Table 5.4: TravelTime Optimization

60

5.1 Experiment

Salesman Distance Before Optimization(KM) Distance After Optimization(KM)

person #1 3614.013 8751.412
person #2 161389.439 200823.250
person #3 173538.811 122370.882
person #4 25927.688 8179.686
person #5 34006.933 11248.511
person #6 55277.859 39641.800
person #7 14218.206 13724.962
person #8 59266.471 41007.961
person #9 35299.776 19322.427

person #10 78467.847 77605.997
person #11 8610.650 13765.838
person #12 50804.065 37313.380
person #13 11100.342 9550.289
person #14 111448.792 43759.152
person #15 46821.120 38567.696
person #16 8163.978 25921.241
person #17 102443.046 30819.484
person #18 34742.107 16913.352
person #19 13975.581 10352.322
person #20 6142.961 8977.485
person #21 2015.275 14040.252
person #22 26066.628 45305.106
person #23 5100.494 5157.610
person #24 16161.968 21007.215
person #25 7611.667 9693.158
person #26 42971.005 35676.592
person #27 11828.277 17458.074

Total Travel Distance 1147015.013 926955.1481

Table 5.5: Travel Distance Optimization

61

5 Results and Analysis of Experiment

words, we randomly select some municipalities on the border of territories and assign
them to the neighbor territories. If this operation decreases the standard deviation value,
we will transfer the new structure of territories as a good solution to the next generation.
Moreover, we defined some operations to detect and reject the invalid solutions to keep
compactness and contiguity of the temporary structure of territories. We always guaran-
tee the compactness of territories by minimizing the travel time which is also one of our
main objectives.

5.2 Analysis of Results

In this chapter we will discuss the results of our evaluation in general.

5.2.1 Location-Allocation and Initializing the Territories

After several experiments, we have realized that finding a proper location for our sales
representatives extremely improves the performance of the territory planning algorithm.
The reason is that the existing potential is not distributed homogeneously in the whole
Germany. As it is shown in figure 5.5, in our case study, the southern part of Germany
has more potential than other parts. While the eastern part is relatively empty of potential
customers. It means that eastern territories should be much larger than than southern
territories to have almost equal potential among salesmen. For instance, if the number
of sales persons are more than the capacity in the eastern part, it will make much effort
for the optimization algorithm to expand, re-arrange and shift the generated territories
to find out the balance structure of territories. As it is shown in figure 5.6,the eastern
territories are much larger than the southern territories. In other words, the southern part
of Germany has been divided into several territories, because it has a high density of farms.
Furthermore, big territories do not mean much more travel cost than small territories,
because in big territories there are a lot of municipalities that are empty. In these territories,
salesmen do not travel to those municipalities for visiting potential customers.

5.2.2 Balance of Potential among Salesmen

Ranking of Territories

One of the main points we understood during our experiments was that mutating the ter-
ritories based on their ranking improves the performance of our Genetic Algorithm very
much. When the Genetic Algorithm starts to balance the potential value among 27 sales-
men, each territory (salesman) has a different number of potential customers depending
on the temporary structure of the generated territories in step 2. Since the optimization
algorithm is supposed to expand the poor territories (less potential) and shrink the rich
territories (high potential), assigning a municipality from a poor territory to the surround-
ing rich territories in the mutation operation only increases the calculation time of our
algorithm. From an algorithmic point of view, the search direction can be guided to the
global optimum by excluding useless explorations of search space.

62

5.2 Analysis of Results

Dynamic Mutation Rate

As the Genetic Algorithm is likely to be trapped in local optima, a dynamic mutation rate
helps it to jump from local optima. When the progress of optimization slows down after
several generations, high mutation rates can make a big change in the population, thus the
algorithm jumps from local optima. As soon as the progress is normal, the mutation rate
decreases.

Contiguity and Compactness Constraints

As we discussed in the previous section, we also have to care about the constraints such as
contiguity and compactness. The travel time optimization guarantees that each municipal-
ity is assigned to the nearest salesman if it fulfills our first objective (potential balancing).
This is why the balanced territories will be compact as much as possible. Moreover, our
graph tester guarantees contiguous territories after optimization, since the graph tester
component makes an undirected graph from all municipalities belonging to a territory and
checks the connectivity of this graph. As soon as the graph is disconnected, the algorithm
denies the individual solution and does not transfer it to the next generations. Therefore,
the mutation process never produces non-contiguous territories. Figure 5.13 shows how
the undirected graph inspects the contiguity constraints.

(b)(a)

Figure 5.13: (a) the contiguity constraint for the territory is violated; (b) the territory is totally connected

63

5 Results and Analysis of Experiment

Figure 5.14: (A) before optimization; (B) first optimization; (C) second optimization; (D) third optimization

5.2.3 Random Results of Genetic Algorithm

As we explained in chapter 2, Genetic Algorithm is a stochastic optimization method. The
Genetic Algorithm explores the whole search space to investigate the global optimum.
Since our search space is too big, there are so many possible solution for our problem.
If the algorithm discovers the best solution which fulfills our objectives, the optimization
process will be terminated. So we performed our optimizations algorithm three time and
the results are shown in figure 5.14 and 5.15. Various structures of the big territories in the
eastern part of Germany are easily recognizable. Moreover, the southern territories look
completely different in each optimization.

64

5.2 Analysis of Results

Figure 5.15: Results of all experiments

65

5 Results and Analysis of Experiment

66

6 Conclusion and Future work

6.1 Conclusion

Since the sales territory planning is one of the most important issues for a selling organiza-
tion, an intelligent decision support system for sales territory planning is highly needed.
One major benefit of a decision support system is the ability to plan the outcomes of vari-
ous scenarios before making a real investment.
In this thesis, we presented a decision support system based on the Genetic Algorithm as
an effective approach for optimizing sales territories in large scale. The Genetic Algorithm
(GA) is a stochastic search algorithm which mimics the process of natural selection. The
GA always looks for the best solution among a set of possible solutions. The use of a dy-
namic mutation rate makes the GA more robust to local optima. The performance issue
has been improved by means of the parallel processing architecture. In addition, the rank-
ing of territories based on their potential values has guided the search direction towards
the global optimum. Due to the independent nature of the GA, our method is easily con-
figured to any objective in territory planning and is scalable to large search spaces similar
to what we considered in this thesis. Although our method is focused on sales territory
alignment, we proposed a solution for the location-allocation problem as well. According
to our results, locating the sales team based on the distribution of potential, extremely im-
proves the total calculation time of Green Field Planning. Territory Planning is classified
as NP-Hard problem. To the best of our knowledge, this is the first thesis to apply the
GA in Sales Territory Planning and demonstrates higher flexibility for optimization over
existing alternative methods [22, 32].

In short, the contributions of this master thesis include:

1. A fast and simple computer-aided method for finding best locations for salesmen.

2. An independent optimization method based on the GA in order to balance the po-
tential among sales representatives and minimize the travel cost automatically.

3. Implementation of these methods by using java programming language.

4. Designing a web based user interface as the client.

6.2 Future Work

Future work can be done in a number of different directions. In a practical sense, the
efficiency of our territory planning engine can be improved and some bugs should be fixed.

67

6 Conclusion and Future work

Future research could include improvements to our GA to improve the computational cost.
Our future work will include the acceleration of the computation time, and investigating
a generic model for our optimization engine that can be applied to a large number of
optimization problems without loss in accuracy. Also, it might be useful to modify the
algorithm to be more flexible for adding user defined search criteria. This might allow
marketers and decision makers to give weights to the desired objectives or make trade-off
between different objectives. It is also possible to implement a web service [14] for our
territory planning engine to serve various mobile and desktop applications.

68

Bibliography

[1] Angularjs mvc framework. 2015. https://angularjs.org/.

[2] Arcgis network analyst. 2015. http://www.esri.com/software/arcgis/
extensions/networkanalyst.

[3] B-tree indexing in postgresql. 2015. http://www.postgresql.org/docs/9.2/
static/indexes-types.html/.

[4] Geomarketing gis - the applications are numerous. 2015. https://www.
wigeogis.com/en/solutions.

[5] Geomarketing: Know "where". 2015. http://www.gfk.com/solutions/
geo-marketing/Pages/default.aspx.

[6] Geomarketing marketing, explore the strategy of geomarketing marketing.
2015. http://www.marketing-schools.org/types-of-marketing/
geomarketing.html.

[7] Java and native programming languages. 2015. https://blogs.oracle.com/
swdeveloper/entry/java_and_native_programming_languages/.

[8] Linear programming. 2015. http://en.wikipedia.org/wiki/Linear_
programming/.

[9] Marketing strategies. 2015. http://www.entrepreneur.com/topic/
marketing-strategies.

[10] Openlayers 3. 2015. http://openlayers.org/.

[11] Postgis: Spatial and geographic objects for postgresql. 2015. http://www.
postgis.net/.

[12] Postgresql. 2015. http://www.postgresql.org/.

[13] Real-world uses of genetic algorithms. 2015. http://brainz.org/
15-real-world-applications-genetic-algorithms/.

[14] Restful web service. 2015. http://www.ibm.com/developerworks/library/
ws-restful/.

[15] Sales territory planning. 2015. http://www.wigeogis.com/en/sales_
territory_planning.

69

https://angularjs.org/

http://www.esri.com/software/arcgis/extensions/networkanalyst

http://www.esri.com/software/arcgis/extensions/networkanalyst

http://www.postgresql.org/docs/9.2/static/indexes-types.html/

http://www.postgresql.org/docs/9.2/static/indexes-types.html/

https://www.wigeogis.com/en/solutions

https://www.wigeogis.com/en/solutions

http://www.gfk.com/solutions/geo-marketing/Pages/default.aspx

http://www.gfk.com/solutions/geo-marketing/Pages/default.aspx

http://www.marketing-schools.org/types-of-marketing/geomarketing.html

http://www.marketing-schools.org/types-of-marketing/geomarketing.html

https://blogs.oracle.com/swdeveloper/entry/java_and_native_programming_languages/

https://blogs.oracle.com/swdeveloper/entry/java_and_native_programming_languages/

http://en.wikipedia.org/wiki/Linear_programming/

http://en.wikipedia.org/wiki/Linear_programming/

http://www.entrepreneur.com/topic/marketing-strategies

http://www.entrepreneur.com/topic/marketing-strategies

http://openlayers.org/

http://www.postgis.net/

http://www.postgis.net/

http://www.postgresql.org/

http://brainz.org/15-real-world-applications-genetic-algorithms/

http://brainz.org/15-real-world-applications-genetic-algorithms/

http://www.ibm.com/developerworks/library/ws-restful/

http://www.ibm.com/developerworks/library/ws-restful/

http://www.wigeogis.com/en/sales_territory_planning

http://www.wigeogis.com/en/sales_territory_planning

Bibliography

[16] Stochastic universal sampling. 2015. http://www.pg.gda.pl/~mkwies/dyd/
geadocu/algselct.html.

[17] Shyam Seshadri Brad Green. AngularJS. O’Reilly, 2013.

[18] Andreas Drexl and Knut Haase. Fast approximation methods for sales force deploy-
ment, 1999.

[19] C. Easingwood. Heuristic approach to selecting sales regions and territories. Oper.
Res. Quart., 24(4):527–534, 1973.

[20] Cliquet G. Geomarketing - Methods and Strategies in Spatial Marketing. Iste, 2002.

[21] Jörg Kalcsics, Stefan Nickel, and Michael Schröder. Towards a unified territorial de-
sign approachâapplications, algorithms and gis integration. Top, 13(1):1–56, 2005.

[22] Sven Mueller Knut Haase. Upper and lower bounds for the sales force deployment
problem with explicit contiguity constraints. European Journal of Operational Research,
237(2):677–689, 2014.

[23] L.M. Lodish. Vaguely right approach to sales force allocations. Harvard Business Rev.,
pages 119–124, 1974.

[24] Kwong Man, Tang. Genetic algorithms: concepts and applications. Industrial Elec-
tronics, IEEE Transactions on, 43(19):519 – 534, 1996.

[25] F MEHDIPOUR, MS MESGARI, B GOLCHIN, and MR AKBARI. Facility sitting using
gis and genetic algorithms.

[26] Mark H. Karwan Mohsen Golalikhani. A hierarchical procedure for multi-skilled
sales force spatial planning. Computers Operations Research, 40(5):1467–1480, 2013.

[27] Deepa Sivanandam. Introduction to Genetic Algorithms. Springer, 2008.

[28] Eiben Smith. Introduction to Evolutionary Computing. Springer, 2003.

[29] Ningchuan Xiao. Geographic optimization using evolutionary algorithms. In 8th
International Conference on GeoComputation. Citeseer, 2005.

[30] Mitsuo Gen Xinjie Yu. Introduction to Evolutionary Algorithms. Springer, 2010.

[31] A. Zoltners. A unified approach to sales territory alignment. Sales Management, pages
360–376, 1979.

[32] Andris A Zoltners and Prabhakant Sinha. Sales territory alignment: A review and
model. Management Science, 29(11):1237–1256, 1983.

70

http://www.pg.gda.pl/~mkwies/dyd/geadocu/algselct.html

http://www.pg.gda.pl/~mkwies/dyd/geadocu/algselct.html

		Acknowledgements

		Abstract

		Introduction

		Research motivations

		Objectives

		Outline of this thesis

		Theoretical Background

		What is Geo-marketing?

		Geo-marketing Target Groups

		Geo-marketing Applications

		Genetic Algorithm

		Search Space

		the Essence of the Genetic Algorithm

		the Simple Genetic Algorithm

		Advantages and Disadvantages of Genetic Algorithm intro2008geneticalgorithm

		Applications of Genetic Algorithm koster2012snakemake,usesofgeneticalgorithms,intro2008geneticalgorithm

		Methodology

		Sales Territory Planning Problem Definition

		Basic model of sales territory design:

		Different Scenarios in Sales Territory Planning:

		Algorithm Design

		A Simple Approach for Location-Allocation

		Sales Territory Initialization

		The Genetic Algorithm for Sales Territory Planning

		Implementation

		System Architecture and Workflow:

		Database Design

		The Territory Planning Engine

		Graphical User Interface

		Results and Analysis of Experiment

		Experiment

		The dataset

		Genetic Algorithm Parameters Setup

		Evaluating the Location-Allocation and Initializing the Territories

		Evaluating the Balance of Potential among Salesmen

		Evaluating the Travel Time Improvement

		Evaluating the Contiguity and Compactness

		Analysis of Results

		Location-Allocation and Initializing the Territories

		Balance of Potential among Salesmen

		Random Results of Genetic Algorithm

		Conclusion and Future work

		Conclusion

		Future Work

		Bibliography

