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Abstract


We present a method to implement consumable creden-
tials in a logic-based distributed authorization system. Such
credentials convey use-limited authority (e.g., to open a
door once) or authority to utilize resources that are them-
selves limited (e.g., concert tickets). We design and imple-
ment mechanisms to enforce the consumption of credentials
in a distributed system, and to protect credentials from non-
productive consumption as might result from misbehavior
or failure. We explain how these mechanisms can be used to
support a distributed authorization system that uses a linear
access-control logic. Finally, we give several usage exam-
ples in the framework, and evaluate the performance of our
implementation for use in a ubiquitous computing deploy-
ment at our institution.


1. Introduction


The use of formal logics to model (e.g., [18, 38]) or
implement (e.g., [10]) distributed access-control decision
procedures provides assurance that access control is imple-
mented correctly [2]. Such assurance is beneficial in light of
the complex interactions that such systems are designed to
accommodate, which may involve policies constructed in
a decentralized way and that utilize delegations, roles and
groups. Logic-based access-control systems typically ex-
press these policy elements in digitally signed credentials,
and use the credentials as premises in a formal proof that a
reference monitor’s policy is satisfied by the credentials.


Despite significant attention to these systems in the last
decade [41, 39, 4, 5], a natural form of access-control policy
remains largely unexplored by this line of research: policies
that useconsumableauthority that can be exercised only
a limited number of times. Numerous types of authority
are consumable, typically because the real-world resource
affected by exercising the authority is itself consumable:
e.g., the authority to spend money, or to sell theater tickets,
would fall into this category. As a tangible example, a job


hosting service might require a proof not only that a client’s
submitted job is safe to execute [43], but in addition that the
client committed the required fee to the service to execute
the job. Existing decentralized access-control frameworks,
which express authority by way of digitally signed creden-
tials that are easily copied, would permit a client to utilize
the same credential (and hence the same funds) for execut-
ing multiple jobs.


In looking to extend prior work on access-control logics
to support consumption of authority, one is quickly led to
linear logic, a type of logic in which an inference expends
the premises that enabled it [32]. For example, a proof con-
structed in linear logic that a client’s job is safe to execute,
which is dependent on the client submitting payment, would
consume the payment credentials. Once the credential is
used in a proof, it is consumed, thus making it unavailable
for use in future proofs. This accurately describes the corre-
sponding real-world scenario: money, once withdrawn from
an account and applied to a purchase, is spent and cannot be
used again.


Using linear logic to model access-control systems is an
interesting but relatively straightforward exercise. Recent
work has conclusively argued, however, thatimplement-
ing distributed access-control systems using logical frame-
works provides a significantly greater level of assurance of
the systems’ correctness than merelymodelingthese sys-
tems using logic [6, 10]. This greater assurance is a product
of bridging the gap between a system’s specification (which
can be easily modeled) and its implementation (which de-
parts from the specification and therefore the model). To
benefit from this greater assurance of correctness for an im-
plemented access-control system, we need to tightly inte-
grate linear logic with the basis of this distributed system.


This task is more complicated than building distributed
systems around classical or intuitionistic logic, as has been
done heretofore. In these previous systems, as long as the
appropriate credentials can be located, proofs can be created
and verified on different nodes and at different times. In
linear logic, however, a credential is transient, in that its use
on one node must cause it to become unavailable throughout







the entire system. Hence, the task of implementing such a
linear-logic based distributed system is more difficult.


In this paper we develop the mechanisms that permit a
decentralized logic-based authorization system to enforce
the consumption of credentials, and show how these mech-
anisms can be used to effectively enforce the abstractions of
linear logic in a distributed setting. Our system is very flex-
ible in that it permits the enforcement and straightforward
specification of arbitrary, even dynamically determined lim-
its on the use of credentials. For example, in a Chinese
wall policy [17], a client that accesses one resource is then
precluded from accessing another for which the client, by
virtue of accessing the first resource, now has a conflict
of interest. This policy can be specified in linear logic
and enforced by our mechanism, which would consume the
client’s credential for the second resource upon the client’s
use of the first one.


The high-level strategy for enforcing credential con-
sumption in our framework is to issue each consumable cre-
dential in such a manner that the credential’s use requires
the consent of another entity, itsratifier. The credential’s
ratifier, which is named in the credential itself, tracks theuse
of the credential and limits that use accordingly. Though
this high-level approach is unsurprising, its conceptual sim-
plicity is somewhat deceptive, due to several challenges that
it raises.


1. In a setting where the steps of constructing a proof of
authority and checking that proof are distinct [4], it is
unclear what constitutes a credentialuseand thus the
moment at which a credential should be consumed.
One possibility is consuming the credential upon the
assembly of a proof in which it is a premise. Another
possibility is consuming it when a reference monitor
checks the proof. As we will see in Section 3, neither
of these alternatives is satisfactory, and we propose a
third alternative that, we argue, is more compelling.


2. For many types of consumable credentials, not only
must the credential’s consumption be enforced, but
its availability must be protected against wasted “con-
sumption”. That is, a credential’s consumption should
not occur until the authorized party commits to us-
ing it. (A failure to ensure such availability would
be particularly of concern for, e.g., authority to spend
money.) In particular, if a credential is “used” dur-
ing the construction of a proof, but the proof cannot
be completed due to the lack of another permission,
then the credential should not be consumed (since no
authority was, in fact, exercised). Our approach to
dealing with availability draws on techniques from fair
contract signing [12].


To summarize the contributions of this paper: We discuss
our approach to addressing the above issues, and detail the


design and implementation of a mechanism that allows a
decentralized logic-based authorization system to support
the consumption of credentials. For illustration, we present
a linear access-control logic that uses this mechanism and
show how it can encode several scenarios that make use of
consumable credentials. We also empirically evaluate the
key facets of our implementation that affect its performance.


2. Related Work


The study of logics for access-control gained promi-
nence with the work on the Taos operating system [3]. Since
then, significant effort has been put into formulating formal
languages and logics (e.g., [3, 5, 15, 41]) that can be used
to describe a wide range of practical scenarios. Initially,
the focus was on formulating logics that would be able to
describe common abstractions such as roles, groups, and
delegation without admitting any counter-intuitive behav-
ior [2, 36, 37, 38]. In many cases, these logics were de-
signed to model an implemented access-control system or
policy-specification language [1, 3, 33, 34, 40]; the logics
often included modality (to express the viewpoints of dif-
ferent actors), the law of the excluded middle, and some
high-order features (typically, limited quantification over
formulas). The usefulness of mechanically generated proofs
(e.g., that access to a resource should be granted) led to
various efforts to balance the decidability and expressive-
ness of access-control logics. These efforts resulted in var-
ious first-order classical logics, each of which would de-
scribe a comprehensive but not exhaustive set of useful
access-control scenarios [5, 35, 39, 41], and more powerful
higher-order logics that served as a tool for defining sim-
pler, application-specific ones [4]. More recently, intuition-
istic logics have been investigated as providing a closer tie
between the policy (via formulas) and its enforcement (via
proofs) [19, 31]. An increasing amount of attention is spent
on formally proving that particular access-control logicsare
sound, not only with respect to some abstract model, but
also with respect to the reality the logics are intended to
model [6, 30, 31].


In this body of work on access-control logics, a cre-
dential is typically created by digitally signing a formula
(e.g., Alice digitally signs that she is delegating her au-
thority to Bob). Upon verification of the signature, the
credential is represented as a predicate in the logic (e.g.,
Alice signed (. . .)), after which its use is unencumbered
(i.e., the predicate can be used as a premise in arbitrarily
many proofs and can no longer be made unavailable). This
leads to some difficulty in modeling standard revocation
and expiration. To overcome this deficiency, the logic is
typically extended with mechanisms that allow for enforce-
ment to occur outside the logic. Our ratification framework
shares elements of this approach, though extends this idea to







tighter integration with logic-based authorization, enforce-
ment of arbitrary consumption of credentials, and does so
while preventing the capricious consumption of credentials.


Though not previously researched in the context of logic-
based access control, consumability has been extensively
studied in applications such as electronic cash [22, 23, 24,
45, 47]. Preventing double-spending is an instance of our
problem in which the rules regarding consumption are sim-
ple: money can be spent only once. As such, it is not sur-
prising that our solution has certain elements in common
with these proposals, notably the use of an online server
(the ratifier) to enforce the consumption of a credential.1


While the technique we developed can be used to imple-
ment an electronic payment system, that is by no means the
only application of consumable credentials, nor is such an
application meant to compete with work already done in
electronic payment systems. The novelty of our approach
is the development of this technique within a logic-based
access-control system, and in implementing a general prim-
itive for enforcing a range of consumption policies for arbi-
trary consumable resources. An earlier version of this work
can be found in [7].


3. Preliminaries and Goals


In this section we describe the goals of our consumable
credential system. To be able to discuss the enforcement
mechanism in concrete terms, we first present an illustra-
tive access-control logic, discuss extending it with consum-
able credentials, and then describe what it means to have a
system that implements it.


3.1. Logic-Based Access Control


We introduce an illustrative logic which extends linear
logic [32] with constructs for access control. It is based
on [30]. The syntax of the logic contains terms and formu-
las. Terms are strings or principals (denoted byA), which
are the base types in the logic. Generally, we refer to prin-
cipals by name such asAlice or Bob. Principals may in
turn want to refer to other principals or to create local name
spaces which gives rise to compound principals. We will
write Alice.secretary to denote the principal whom Alice
calls “secretary.”


To talk about a resource that a client wants to access,
we introduce theaction() predicate that takes three pa-
rameters as arguments. The first parameter to this pred-
icate is a string that describes the desired action (e.g.,
“open”). The second parameter is a list of qualifica-
tions of the desired action (e.g., what should be opened).


1Merely detecting double-spenders does not require an online
server [21, 25, 44, 49]. However, detecting the misuse of authority is not
sufficient for access control more generally.


To allow for unique resource requests, the last param-
eter of theaction() constructor is a nonce. The for-
mula action(action , parameters ,nonce) denotes that it
is OK to performaction during the session identified by
nonce. We will usually omit the nonce in informal dis-
cussion and simply sayaction(action , parameters) or
action(action) if the qualifications are irrelevant. For sim-
plicity, we assume that these are the only atomic formulas
in the logic, but this is not a necessary restriction.


Our logic extends linear logic, which is a logic of re-
sources. The primary judgment in linear logic isF true


which means that there is exactly one copy of resourceF .
In order to model resources that may be used more than
once, we use the judgmentF valid, which means thatF
may be used any number of times, including never. Logical
reasoning is done usinghypothetical judgmentsof the form
Γ; ∆ ` F true, whereΓ and∆ are multisets of assump-
tions of the formF valid andF true, respectively. The
intuitive meaning of this judgment is that “by using each
formula in∆ exactly onceand using the formulas inΓ any
number of times, one can obtain one copy ofF ”.


This intuitive meaning is captured by the following rules
of linear logic. The rulehyp says that we can proveF if ∆
containsF and nothing else. Read bottom up, the rulecopy
says that we can copy resources fromΓ into ∆ as many
times as required.


Γ; F true ` F true
(hyp)


Γ, F valid; ∆, F true ` G true


Γ, F valid; ∆ ` G true
(copy)


In order to reason about access-control policies we need
to be able to express the intent of a principal. This is rep-
resented using the judgmentA affirms F , which reads
“principal A affirms the truth of formulaF ”. Affirmation is
different from truth because principals are not restrictedin
what they affirm. They may even affirm contradictory state-
ments, without making the logic inconsistent. We assume
that principals are rational in that they will not refuse to af-
firm a formula that is true. This gives us the following rule
for affirmations.


Γ; ∆ ` F true


Γ; ∆ ` A affirms F
(aff)


To be able to write affirmations inside formulas, we in-
ternalizeA affirms F as a connectiveA says F . This
connective is defined by the following rules.


Γ; ∆, F true ` A affirms G


Γ; ∆, (A says F ) true ` A affirms G
(saysL)


Γ; ∆ ` A affirms F


Γ; ∆ ` (A says F ) true
(saysR)







The saysRrule states thatA says F is true whenever
A affirms F . ThesaysL rule states that if we have an as-
sumption(A says F ) true, then we are justified in assum-
ing A true while we are trying to prove some affirmation
made byA. It turns out that we never need assumptions of
the formA affirms F in Γ or ∆ because these can imme-
diately be replaced by assumptions(A says F ) true.


While it is useful to reason about whatAlice says, there
are times when we would like to enforce that a statement
actually came directly fromAlice rather than as the conclu-
sion of some other statements. This direct affirmation is
written asAlice signed F . This can also be thought of
as the sequence of bits resulting fromAlice signing the for-
mulaF with her private key, using a standard cryptographic
signature.


SinceA signed F stands for direct evidence ofA af-
firming F , it cannot be established by means of a proof.
Hence it never occurs to the right of`. There are two rules
governing this judgment.


Γ; ∆, F true ` A affirms G


Γ; ∆, A signed F ` A affirms G
(signed)


Γ, A signed F ; ∆, A signed F ` G true


Γ, A signed F ; ∆ ` G true
(copy′)


The rulesigned is best thought of as saying that ifA


digitally signs the statementF , then we can assume thatF


is true while we are reasoning about an affirmation made by
A. The second rule is similar to the rulecopy and permits
an indefinite number of copies ofA signed F to be made
if A signed F occurs inΓ.


Delegation is discussed in terms of thespeaksfor and
delegate predicates.Alice speaksfor Bob indicates that
Bob has delegated to Alice his authority to make access-
control decisions about any resource or action.delegate


(Bob, Alice, action) transfers to Alice only the authority to
perform the particular action calledaction . delegate and
speaksfor can be defined in terms of other connectives as
follows.


delegate (A, B, U) ≡ ∀P .∀N.(B says action(U, P, N)


−→ A says action(U, P, N))


A speaksfor B ≡ ∀U.∀P.∀N.(B says action(U, P, N)


−→ A says action(U, P, N))


With these definitions we can derive the following rules
which govern their use.


Γ; ∆1 ` B says (action(U, P, N)) true


Γ; ∆2, A says (action(U, P, N)) true ` F


Γ; ∆1, ∆2,delegate (A, B, U) true ` F
(delegate)


Γ; ∆1 ` B says (action(U, P, N)) true


Γ; ∆2, A says (action(U, P, N)) true ` G


Γ; ∆1, ∆2, (B speaksfor A) true ` G
(speaksfor)


Thespeaksfor rule states that if we can conclude that
B says F , and assumingA says F we can concludeG,
then assumingA says (B speaksfor A), we can also
concludeG. Thedelegate rule is very similar, except the
U variable must match in all three expressions.


3.2. Consuming Credentials


We would now like to consider how to utilize this lin-
ear access-control logic in a distributed system implemen-
tation. In the access-control context, the hypotheses of a
proof are credentials, and the proof shows that a policy (the
proved formula) is satisfied by the credentials. The primary
challenge introduced when this proof involves consumable
hypotheses isenforcingtheir consumption. Within the con-
text of a single proof this is straightforward, as the reference
monitor that is checking the proof can employ a linear proof
checker which understands the distinction between environ-
ments and treats them appropriately.


In the scenarios that motivate our study, however, con-
sumption of resources should not be limited to one proof,
but rather should be global. In particular, these scenarios
are populated by principals who issue credentials, generate
proofs, and verify proofs that they have communicated to
each other. A proof generated by one principal is typically
sent to a second principal as part of a request to access a
resource controlled by that principal. In these scenarios,
we must prevent not only the profligate use of a particular
consumable credential within a single proof, but also such
a credential’s use in arbitrarily many different proofs that
may be created or verified by different principals.


This cannot be enforced through locally checking a proof
alone; some distributed coordination must take place. More
fundamentally, the moment of “use” at which the creden-
tial should be “consumed” is a subtle design decision with
significant ramifications. One possibility is to consume a
credential when a proof containing it is verified by a ref-
erence monitor. However, this makes it impossible to de-
termine whether a proof is valid or invalid by simple ex-
amination; rather, validity becomes a temporal notion. An-
other alternative would be to consume the credential during
proof construction when the linear inference rule (hyp) is
used. However, proof construction is a distributed search
process that explores numerous potential paths for proving
a result,2 terminating when one of these paths succeeds [9].
Since most of the explored paths do not lead to success-
ful proofs, consuming credentials upon each application of


2The proof search process is a necessary ingredient for such asystem,
though since tractable, application-specific solutions tothe search problem
in such systems exists (e.g., [26]), we do not discuss it further here.







linear inference rules in this search process would quickly
consume most credentials without any benefit being real-
ized from them.


For these reasons, we reject both of these design options,
and explore a third option in this paper. In this design, hy-
pothesis consumption occurs as a step after the main search
process for constructing a proof is completed, but before the
proof is checked. Intuitively, the proving process prior to
this step proceeded under the implicit assumption that the
consumable credentials∆ used in the proof are true. The
last stage of the proving process is then to explicitly verify
that the consumable credentials are in fact available and to
mark their uses, and, if appropriate, render the credentials
unavailable for future proofs. We call this stepratification.


4. Ratification


Ratification is an extra-logical step which we use to en-
force the linearity of our consumable credentials. Insteadof
the standard certificates, consumable credentials are created
with respect to a ratifier that monitors their use and enforces
their consumption. While the cryptographic signature does
not differ between regular credentials and consumable cre-
dentials, we denote consumable credentials in the logic as
A signedA′ F . The ratifier (A′) who is named in the log-
ical representation, will later need to be contacted in order
to ratify the consumable credential. Naturally there is also
a new inference rule for dealing with such credentials.


Γ; ∆, F true ` A affirms G


Γ; ∆, A signedA′ F ` A affirms G
(signedL)


This rule can be used along the following lines of reason-
ing: if A signedA′ F is available as a certificate, we can
assume thatF is true as long as we are reasoning about
affirmations byA. Whether the resulting proof can actually
be used in contingent upon the later ratification byA′.


4.1. Ratification Properties


There are two properties which must be enforced by our
ratification mechanism. Suppose that each consumable cre-
dential δ is created with an allowed number of uses#δ.
Then the following safety condition must hold.


Bounded UseLet formulasF1, F2, . . . be those formulas
proved in the system, and let∆1, ∆2, . . . be the linear
environments used in those proofs. Then, the multiset⋃


i ∆i contains at most#δ instances ofδ.


Informally, the system must enforce that the global num-
ber of uses of a consumable credential does not exceed the
allowable uses as specified by the ratifier. How this is ac-
complished in a distributed setting will be discussed in more
detail later.


While Bounded Use deals with bounding from above the
number of uses of a consumable credential, we must also
worry about ensuring the availability of valid consumable
credentials. By this we mean to say that the system can-
not waste consumable resources in a non-productive man-
ner. This becomes immediately obvious in a system where
consumable credentials are used to implement a form of
currency. If money just disappeared out of your bank ac-
count because the system was able to waste resources, you
would very quickly find a new system.


In a distributed proving environment, the risk of resource
waste occurs after a proof has been completed, but before
it has been ratified or checked. Suppose you construct a
proof to purchase a ticket to the movies. The movie theater
promised you a seat and you promised the money to pay
for that seat. However, during ratification, your money is
consumed, but there are no longer any seats available in the
theater. Clearly, ratification must also enforce some sort of
atomicity to ensure the previous scenario does not occur.
This is captured in our second condition.


Atomicity The ratification protocol is atomic, in that ei-
ther the ratifier for each consumable credentialδ ∈ ∆
records each of the uses ofδ in the proof ofF—and
in this case the verification ofF succeeds—or none of
the ratifiers records any such uses.


Again, informally, the process of ratification must either
occur for all credentials, or none of them. Either is an ac-
ceptable output from the system designer perspective, but
there is no middle ground on which to stand.


4.2. Implementation


Bounded Use While ratification is an extra-logical mech-
anism, it is intrinsically tied to the logic. After the proof
has been completed using consumable credentials, it must
be sent to the applicable ratifiers who will certify that the
consumable credentials are still valid. This is done by is-
suing ratification credentials which the ratifiers sign. These
credentials are then appended to the reusable and consum-
able credentials gathered during proof search and sent to the
reference monitor with the proof for verification.


Once the reference monitor receives the proof and cor-
responding digitally signed certificates, it first checks the
cryptographic signatures on each credential. If the signa-
tures are correct, it then populates both the reusable and
linear environments, ensuring that∆ is only populated with
consumable credentials if the corresponding ratification cre-
dentials are available.


Because of the Bounded Use requirement above, ratifi-
cation credentials cannot be made with respect to only the
credential they are ratifying. If that were the case, once a
credential was ratified, the consumable credential and the







ratification credential could be copied and used in the con-
struction of a later proof without contacting the ratifier to
register another use. This is clearly unacceptable as the
number of uses could not be controlled.


To overcome this, the ratification credential is not only
created with respect to the consumable credential it is ratify-
ing, but also with respect to the proof in which it is included.
To this end, the proof generator, after completing the proof,
sends the entire proof term,M , the proved formulaF , and
the credentials in bothΓ and∆ to the ratifiers.


Since each ratification credential is issued with respect
to the current proof and proof goal, each ratifier can inspect
the proof before consenting to the use of a consumable cre-
dential within that proof. The ratifier can also count and
record the number of uses of a consumable credential in the
proof, and give or withhold its consent accordingly. If the
ratifier is willing to sign off on the uses of the consumable
credential for which it is responsible it will issue a ratifica-
tion credential with respect to bothM andF .


The ratification credential then has the form
〈C, F, M〉A′ , denoting the signature byA′ on the consum-
able credentialC, the proof statementF , and the proof term
M . Because the proof formulaF contains a nonce, the
returned ratification credential uniquely identifies a proof
instance and cannot be reused, either in the same proof at a
later time, or as a piece of a different proof.


Atomicity To deal with the issue of Atomicity, we borrow
from work in contract signing. Recall that each ratifier pro-
duces a digitally signed ratification credential to ratify each
use of the consumable credential for which it is responsible.
Implementing the contribution of these digital signatures
atomically for the goalF can be achieved by running a mul-
tiparty contract-signingprotocol (e.g., [12, 29]) among the
ratifiers for the consumable credentials used in the proof of
F . Informally, a contract-signing protocol is one in which
either all honest signing parties obtain a contract bearingall
parties’ signatures, or no one does. In our context, each rati-
fier participates in a contract-signing protocol with the other
ratifiers to contribute its ratification credential. Each ratifier
engages in the protocol only if the consumable credential
for which it is responsible is not yet consumed, and regis-
ters a use of the credential if and only if the contract-signing
protocol succeeds.


There are many contract-signing protocols that can
achieve our requirements. That said, the particular protocol
in use may require that the verifier know something about
the protocol. In particular, deterministic contract signing
protocols typically employ a trusted third party to settle
disputes among the signers.3 The trusted party generally


3There are probabilistic protocols for performing contractsigning that
do not employ a trusted third party, but they have an error bound at least
linear in the number of rounds [14].


has the power to either “force” a signature from a partici-
pant who has promised in previous rounds to sign the con-
tract, or terminate the protocol and ensure no one receives
a signed contract. So-called “optimistic” protocols seek to
avoid contacting the third party except in exceptional cases.


Such contract-signing protocols can be distinguished by
whether or not the contract output by the protocol enables
a verifier to determine if a party’s signature was forced by
the third party. If so, then the third party isvisible in the
protocol (e.g., [11]); if not, it isinvisible(e.g., [29]4). If the
protocol ensures an invisible third party, then the verifier
need not separately accommodate runs in which the third
party is consulted and runs in which it is not. However, if
the third party is visible, then the verifier must be willing to
accept one of two possible signatures, one for the case when
the third party is not consulted and one for the case in which
it is. This latter disjunct is protocol-dependent and so we do
not detail the alternatives here, but formulating this disjunct
is straightforward for the third-party-visible contract sign-
ing protocols of which we are aware.


An issue in the use of a contract-signing protocol that
employs a third party is the question of what third party to
use. While this choice is orthogonal to our techniques, we
caution the reader against using the prover in this role, i.e.,
the component requesting access in the context of assem-
bling a proof. In most applications, this component would
gain greater authority (e.g., unlimited use of a consumable
credential) by misbehaving in the role of the third party in
the contract signing protocol. For this reason, better choices
include utilizing the reference monitor that will check the
proof, or alternatively implementing the third party usinga
multiparty implementation among the ratifiers themselves.
This latter alternative requires an assumption that a majority
of the ratifiers behave honestly, but in this case the contract-
signing protocol can be particularly efficient [11].


Summary To summarize, a proof of access is con-
structed as follows. First, a client Alice requests from
Bob that he grant her access to a resource. Bob re-
sponds with the statement of the theorem Alice must
prove; typically, the statement is of the formBob says


action(action). Alice proceeds to construct a proof of
Bob says action(action) using consumable credentials
Charlie signed


RC
F1 and Danielle signed


RD
F2. Once


Alice has completed this proof, she contacts the ratifiers of
Charlie’s and Danielle’s credentials, sending them the proof
of Bob says action(action) and requesting that each rat-
ify the credential for which it is responsible. Upon verify-


4This example invisible protocol has been shown to not be abuse
free [20]: someone involved in the protocol can prove to an outsider that
he has the power to force the the protocol to complete or abort. While
undesirable in the case of general contract signing, abuse freedom is not
necessary in the current application; we simply require atomicity here.







ing that the credential submitted for ratification has not been
consumed, each ratifier records the use of the consumable
credential and produces the appropriate ratification creden-
tial, which they send to Alice. Alice then sends the proof to
Bob, along with all the relevant consumable credentials and
their ratification credentials, which she just received. Bob
then checks all of the cryptographic signatures and popu-
lates his reusable environment with the reusable credentials.
For every consumable credential, Bob checks that a match-
ing ratification credential is supplied and that the ratification
credentials correspond to the current proof before adding
the credential to his linear environment. Bob then verifies
the proof and if successful, grants Alice access to the de-
sired resource.


5. Discussion


Unsatisfied Requests The Atomicity property prevents
capricious consumption of credentials during the proof pro-
cess. However, once completed, even a valid and com-
plete proof may not be accepted, in which case extra-logical
means can be used to restore any consumed credentials. (As
in the case where a ticket holder is refused entry to a base-
ball game due to a rainout, she should expect reimburse-
ment.) To minimize the frequency of such occurrences and
to aid their resolution when they do occur, the policy proved
by a party requesting access could include a statement is-
sued by the resource monitor indicating both the availability
of the resource and that a valid proof will be rewarded with
access. If this statement (itself a credential) is consumable
when the resource is, proof construction would fail during
ratification step if the resource monitor isn’t able to promise
delivery of the resource. Moreover, a ratified proof is evi-
dence that can be presented to an arbiter in the event of a
dispute.


Alternatives to Linear Logic Ratification is an extra-
logical mechanism that we use to enforce the consumption
of credentials, over and above the linear logic in which those
credentials are expressed and used. This begs the question
as to whether ratification or a similar mechanism should
be modeled directly in the security logic, perhaps entirely
avoiding the need to specify policies in linear logic, and in-
stead permitting the use of a more standard or simpler logic.


We believe not, for two reasons. First, linear logic gives
us a clean and intuitive abstraction for reasoning about con-
sumable credentials. The specific details of how consump-
tion is enforced are separate from the idea that a particular
credential will be consumed after a fixed number of uses;
hence, it is most straightforward for security policies to talk
about the idea while remaining unencumbered by the details
of the enforcement mechanism. This approach also makes it


possible to have multiple enforcement mechanisms that all
implement the same abstraction of consumable credentials.


Second, any enforcement mechanism that we pick must
be able to enforce consumption not only in the distributed
sense, but also within individual proofs (e.g., to prevent a
consumable credential representing $10 from being used
twice within the same proof). Although linear logic is not
the only formalism that permits this sort of reasoning, any
enforcement mechanism that we use will require similar
logical machinery. Since linear logic has been widely stud-
ied and is well understood, there seems to be little benefit in
using a different formalism. A similarly established type of
logic that could instead be used to enforce credential con-
sumption isaffinelogic. Both affine and linear logic expend
hypotheses in∆ as they are used, but linear logic also re-
quires that all the restricted hypotheses be used, whereas
affine logic allows unused hypotheses in∆ to be discarded.
Either type of logic would prevent over-consumption, but
we chose linear logic to prevent the silent disappearance of
consumable certificates in logical reasoning.


Alternatives to Consumable Credentials Our imple-
mentation of consumable credentials uses on-line servers
(the ratifiers) to validate credentials, which raises the ques-
tion of whether the consumable credentials themselves
could simply be issued immediately prior to the time they
are needed. Such an approach, however, would pro-
hibitively curtail the ability to reason a priori about consum-
able credentials during the construction of proofs. Our tech-
niques are also related to countersigning; the advantage of
our approach lies in that we carefully address what it means
to consume multiple different credentials in the course of
creating a single proof. This is done in such a way to prevent
both the reuse of these credentials in other proofs and their
needless consumption in the course of constructing proofs
that will ultimately fail.


Ratifier Costs To help it determine whether or not to rat-
ify a particular credential, a ratifier will typically keep state
on a per-credential basis (e.g., the use count). Though this
is an additional burden on the ratifier, it is no more than
the burden that is typically placed on normal credential is-
suers. Additionally, in many cases the per-credential state
will have to be kept only as long as the credential remains
unconsumed and has not yet expired. Because of this, in
the scenarios we envision, we expect the burden of keeping
state to be light.


6. Example


Using the concepts described in this paper it is easy to
implement a number of applications that use consumable re-
sources. Money is one of the easiest consumable resources







to think about, and indeed these techniques can be used
to develop a payment system within a logic-based access-
control framework. While we are not proposing this sys-
tem as an alternative to iKP [13], SET [46], NetBill [48]
and other electronic commerce protocols, it does serve to
illustrate the expression and manipulation of consumable
resources in a logic-based access-control framework.


As an example, imagine Alice walks into a store, fills her
shopping cart with items and proceeds to check out. Instead
of giving the clerk cash or a credit card, she instead presents
him with a proof that the store will be given its money.


In this scenario, Bob, the store owner, is the reference
monitor. He controls the items in his store, and will only re-
lease them once he has been given a proof of payment. Just
as with credit card payments, Bob doesn’t need the money
immediately, but he needs to be convinced that when he
later submits the proof Alice gave him to his bank, he will
be paid.


When Alice approaches the counter and begins to check
out, Bob issues her a challenge describing the proof of pay-
ment that she must produce.


G = ACH says action(pay , 〈Bob, $100〉, nonce) true


The challenge contains a nonce that is used to ensure fresh-
ness, enforce that the consumable credentials were ratified
with respect to this proof, and also to serve as a transac-
tion identifier. Since Bob cares chiefly that he is paid and
not who will pay him, the challenge requires the payment
to be authorized by the Automated Clearing House (ACH),
a trusted authority that facilitates transfers between banks.
Alice’s task is now to construct a proof of payment. She
starts the proving process by stating her willingness to pay
Bob.


C0 = Alice signed action(pay, 〈Bob, $100〉, nonce)


Alice must now demonstrate that there exists a chain of
delegate and speaksfor relations from herself to the
ACH. She has reason to believe such a chain exists because
she has an account in good standing with a bank that has
been certified by the ACH.


During proof generation Alice obtains the following four
credentials.


C1 = BankA signed (Alice speaksfor BankA.Alice)


C2 = ACH.BC signed (BankA speaksfor ACH.BC.BankA)


C3 = ACH signed (delegate (ACH, ACH.BC, pay))


C4 = ACH.BC signed (delegate (ACH.BC, ACH.BC.BankA, pay))


The first two credentials describe thespeaksfor relation-
ships between Alice and her bank and between her bank and
the Bank Certifier (BC) of the ACH. CredentialsC3 andC4


form a delegation chain from the ACH to its Bank Certi-
fier, and from there to Alice’s bank (BankA). Using these


delegations, anypay statement made by BankA has the au-
thority of being made by the ACH, i.e., BankA is accredited
by the ACH.


Alice must now find a delegation statement allowing her
to spend money from her account.


C5 = BankA signedRBankA (delegate (BankA, BankA.Alice, pay))


This credential differs from the others in that it is
consumable—Alice is allowed to withdraw money only
while her account has a positive balance. With this creden-
tial, Alice can construct a proof of


M : ACH says action(pay , 〈Bob, $100〉, nonce) true


All that remains is to ratify credentialC5. To obtain the
ratification credential forC5, Alice submits the proof to
BankA’s ratifier, RBankA, which is named in that creden-
tial. The ratifier deducts $100 from Alice’s account and
transfers that money to the ACH. He also creates the fol-
lowing ratification credential.


C6 = RBankA signed 〈delegate (BankA, BankA.Alice, pay),M,


ACH says action(pay, 〈Bob, $100〉, nonce)〉


With this credential in hand, Alice now has a ratified proof
which she submits to Bob for verification. Bob, convinced
he will be paid for the items in Alice’s cart, releases them to
Alice. Bob will later show the proof to his bank, which in
turn will hand it over to the ACH, which will actually trans-
fer the funds to Bob’s account. The Bank records the nonce
in the statement of Bob’s proof to prevent Bob from cashing
the proof again. The full proof can be seen in Appendix B.2.


7. Implementation


At the time of this writing, we are in the process
of deploying a distributed authorization framework called
Grey [8] to control access to offices and other physical space
on two floors (more than 30,000 square feet) of a new build-
ing at our institution. To support this, during building con-
struction each door was equipped with an electric strike
controlled by an embedded computer. A user exercises her
authority to open a door via her smartphone, which connects
to the embedded computer using Bluetooth, and receives a
goal to prove (including a nonce). The smartphone utilizes
a distributed proving system (similar to the one described
in [9]) to generate the proof, possibly with help from other
smartphones that hold necessary credentials, and ships this
proof to the embedded computer in order to open the door.
Our plans include deploying Grey-capable smartphones to
roughly 100 building residents.


We have developed the enforcement mechanism for lin-
ear logic presented here as a means to implement access-
control policies that the current system presently cannot.
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Figure 2. Breakdown of costs involved in the
ratification protocol for each of the five rati-
fiers involved in a five-ratifier contract signing
protocol.


This includes, for example, the ability to delegate author-
ity to open an office once (see Appendix B.1). As we ex-
pand this testbed to include vending machines, the need for
a distributed authorization system supporting consumable
credentials (e.g., denoting money) will only grow.


We have completed a prototype implementation of a
contract-signing protocol via which consumable credentials
are ratified (see Section 4). In our prototype implementa-
tion, proofs of access are represented in the LolliMon lan-
guage [42], which supports the linear connectives crucial
for defining our consumable credentials. To verify the va-
lidity of proofs—including that each consumable credential
in the environment∆ is used exactly once—ratifiers and
reference monitors use a LolliMon interpreter as a logical
proof checker. For the scenarios that we consider, proofs
that depend on consumable credentials can be generated by
a syntax-driven backward-chaining algorithm (e.g., [9]).


As discussed in Section 4, a ratifier is invoked with a
proof term and a formulaM andF . If the proof is valid,
the ratifier then engages in the contract-signing protocol to
ratify the credentials for which it is responsible (assuming
it consents to their use). As such, the contract-signing pro-
tocol and the verifying of proofs by the ratifiers account for
the primary additional costs incurred during proof gener-
ation in a distributed proving system such as the one we
use [9]. The LolliMon interpreter that we use for proof ver-
ification is sufficiently fast for the proofs we consider thatit
is not a bottleneck, and we do not discuss it further here.


The contract-signing protocol that we have imple-
mented [29] offers strong properties that make it ideally


suited for our system: it guarantees atomicity regardless
of the number of ratifiers that fail or misbehave (provided
that the trusted third party does not), and it implements an
invisible third partyT .5 To achieve these properties, how-
ever, the protocol utilizes significant machinery: the proto-
col running amongn ratifiers involvesO(n3) messages in
O(n2) rounds. Each message is accompanied by an effi-
cient non-interactive zero-knowledge proof [16] regarding
its contents, the details of which we omit. The cost of each
zero-knowledge proof in the protocol is dominated by 9
modular exponentiations by the prover, and 12 by the veri-
fier. The form of the final contract signature by a ratifierA′,
whereF is the content of the credential being ratified and
M is a proof term describing the derivation of the proof goal
G of the proof of access, is a zero-knowledge proof that an
ElGamal ciphertext [27], if decrypted usingT ’s private key,
would yield a particular target plaintext. This proof can be
constructed either by the ratifierA′ who created the cipher-
text or by the trusted third partyT ; see Garay et al. [28] for
details.


The common-case latency (i.e., when the third party is
not invoked) of our current prototype as a function of the
number of participating ratifiers is shown in Figure 1. In
these tests, each ratifier executed on a separate 2.8 GHz
Pentium 4 computer. The latency of the ratification protocol
includes the cost of verifying the correctness of the submit-
ted proof (including the digital signatures on the credentials
contained therein) as well as the creation, verification and


5The protocol does not provide abuse freedom, but as noted earlier, this
is not necessary in our use of the protocol.







communication among all ratifiers of the non-interactive
zero-knowledge proofs used in the contract signing proto-
col. A typical access-control proof involving consumable
resources would likely depend on at most two consumable
credentials (and a greater number of reusable credentials),
so the ratification cost for such a proof would be compar-
atively low; e.g., the sample proofs in Appendix B.1 and
Appendix B.2 each make use of only a single consumable
credential.


A breakdown of the component costs of ratification as
measured on each of five ratifiers engaging in a contract-
signing protocol is shown in Figure 2. The ratification pro-
tocol we implemented is asymmetric in that certain rati-
fiers create and verify more zero-knowledge proofs than
other ratifiers; as a consequence, some ratifiers spend a
majority of their time waiting to receive messages (Net-
work/Waiting). Other major costs in the ratification pro-
tocol are generating the zero-knowledge proofs (ZKP Cre-
ation) communicated between the ratifiers, as well as ver-
ifying them (ZKP Verification). Note that the cost of
the contract-signing protocol dominates the proof-checking
time of the subgoalF : a proof ofF containing 5 reusable
and 5 linear credentials is verified by each ratifier in approx-
imately 50 ms, with an additional 45 ms required to verify
the validity of the digital certificates.


The costs shown in Figure 1 are somewhat pronounced
because we implemented the prototype of our contract sign-
ing primarily in Java, with only modular exponentiations
optimized by a native implementation. Transition of the re-
maining cryptographic computations to native implementa-
tions should speed up the implementation even further.
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Principals A


Propositions F, G ::= action(U, P, N) | A says F | . . .


Categorical Judgments J ::= F true | F valid | A affirms F | A signed F


| A signedA′ F


Unrestricted context Γ ::= · | Γ, F valid | Γ, A signed F


Linear context ∆ ::= · | ∆, F true | ∆, A signedA′ F | ∆, A signed F


Conclusions γ ::= F true | A affirms F


Hypothetical judgment Γ; ∆ ` γ


Γ; F true ` F true
(hyp)


Γ, F valid; ∆, F true ` G true


Γ, F valid; ∆ ` G true
(copy)


Γ, A signed F ; ∆, A signed F ` G true


Γ, A signed F ; ∆ ` G true
(copy′)


Γ; ∆ ` F true


Γ; ∆ ` A affirms F
(aff )


Γ; ∆ ` A affirms F


Γ; ∆ ` (A says F ) true
(saysR)


Γ; ∆, F true ` A affirms G


Γ; ∆, (A says F ) true ` A affirms G
(saysL)


Γ; ∆, F true ` A affirms G


Γ; ∆, A signed F ` A affirms G
(signed)


Γ; ∆, F true ` A affirms G


Γ; ∆, A signedA′ F ` A affirms G
(signedL)


Figure 3. Summary of the logic


A. Summary of the Logic


This section summarizes our logic and a cut-elimination
theorem for it. See [30] for details of a closely related logic.
The standard connectives have been omitted to save space.


Theorem 1 (Admissibility of cut). The following hold in
the logic described above.


1. If Γ; ∆1 ` A true and Γ; ∆2, F true ` γ, then
Γ; ∆1∆2 ` γ.


2. If Γ; · ` F true andΓ, F valid; ∆ ` γ, thenΓ; ∆ `
γ.


3. If Γ; ∆1 ` A affirms F and Γ; ∆2, F true `
A affirms G, thenΓ; ∆1∆2 ` A affirms G.


Proof. By nested induction, first on the size of the cut for-
mula and then on the size of the two given derivations.


B. Sample Proofs


B.1. One-Time Delegation


This example extends the current framework already in
place at our institution (see Section 7). The two parties


involved, Bob and Alice, both carry smartphones capable
of generating proofs of access and communicating with the
embedded doorend computers. Bob is a graduate student
working for Alice. Alice is out of town, but Bob needs to
get into her office to borrow a book. Alice would like to del-
egate to Bob the authority to open her door once, but only
once. After Bob has used the delegation to open the door, he
cannot use it again. In the current system, such a delegation
is impossible.


In order to let Bob get into her office, (CIC-2525), Alice
creates a consumable credential.


C0 = Alice signedRAlicedelegate (Alice, Bob, CIC 2525 )


Bob now walks up to Alice’s door and asks it to open. The
door responds with a challenge.


G = Alice says (action(CIC 2525 , 〈open〉,nonce)) true


The challenge includes a nonce, generated by the doorend
computer, that will be used to ensure freshness of the re-
sponse. Bob then generates the following credential.


C1 = Bob signed action(CIC 2525 , 〈open〉, nonce)


FromC0 andC1, Bob can construct a proof of


M : Alice says (action(CIC 2525 , 〈open〉,nonce)) true







hyp
C1; action(. . .) true ` action(. . .) true


aff
C1; action(. . .) true ` Bob affirms action(. . .)


signed
C1; C1 ` Bob affirms action(. . .)


copy′
C1; · ` Bob affirms action(. . .)


saysR
C1; · ` Bob says action(. . .) true


hyp
C1; action(. . .) true ` action(. . .) true


aff
C1; action(. . .) true ` Alice affirms action(. . .)


saysL
C1; Alice says action(. . .) true ` Alice affirms action(. . .)


delegate
C1; delegate (Alice, Bob, CIC 2525) true ` Alice affirms action(. . .)


signedL
C1; C0 ` Alice affirms action(CIC 2525 , 〈open〉, nonce)


saysR
C1; C0 ` Alice says action(CIC 2525 , 〈open〉, nonce) true


Figure 4. Proof of Alice says action(...) true


which he submits for ratification. If this is the first time Bob
has tried to use the delegation, his request will be ratified,
and he will receive a ratification credential.


C2 = RAlice signed(delegate (Alice, Bob, CIC 2525 ),M,


Alice says action(CIC 2525 , 〈open〉, nonce))


Bob can then append this credential to the others he col-
lected during proof construction and submit them, along
with the proof, to the doorend computer. The computer, af-
ter checking the signatures and populating its environments
will check that the proof goal is in fact satisfied by the cre-
dentials submitted, and if so will open the door for Bob.


C0 = Alice signedRAlicedelegate (Alice, Bob, CIC 2525 )


C1 = Bob signed action(CIC 2525 , 〈open〉,nonce)


C2 = RAlice signed 〈delegate (Alice, Bob, CIC 2525),M,


Alice says action(CIC 2525 , 〈open〉, nonce)〉


A simplified version of the proof derivation is presented in
Figure 4. It is easiest read from bottom up.


B.2. Commerce


The following is an example proof of Alice paying Bob
$100. In order for the payment to be accepted, Alice must
generate a proof that the Automated Clearing House (ACH)
says action(pay, 〈Bob, $100〉, nonce).


In order to initiate a purchase, the buyer (Alice) requests
from the seller (Bob), the items in her shopping cart. Bob
responds with a challenge to prove the goal


G = ACH says action(pay , 〈Bob, $100〉, nonce) true


Bob generates the nonce to ensure freshness, ensure that the
ratification credentials are issued with respect to this proof,
and also to act as a transaction identifier. First, Alice gen-
erates credentialC0. During proof generation, Alice obtains
credentialsC1–C5. Using these she will generate a proof,
which she will submit to BankA’s ratifier for him to generate
the final necessary credential (C6). Once Alice has all of the
credentials, she submits the proof and credentials to Bob.
Bob will verify that the credentials are valid, and check that


all consumable credentials have ratification credentials and,
after populating his environments, that the proof is correct.
If the verification succeeds, Bob will release the articles in
Alice’s shopping cart.


C0 = Alice signed (action(pay, 〈Bob, $100〉, nonce))


C1 = BankA signed (Alice speaksfor BankA.Alice)


C2 = ACH.BC signed (BankA speaksfor ACH.BC.BankA)


C3 = ACH signed (delegate (ACH, ACH.BC, pay))


C4 = ACH.BC signed (delegate (ACH.BC, ACH.BC.BankA, pay))


C5 = BankA signedRBankA (delegate (BankA, BankA.Alice, pay))


C6 = RBankA signed 〈delegate (BankA, BankA.Alice, pay),M,


KACH says action(pay, 〈Bob, $100〉, nonce)〉


CredentialC0, signifies Alice’s willingness to pay Bob.
CredentialsC1, andC2 createspeaksfor relationships be-
tween Alice and her bank, and between the bank and the
Bank Certifier (BC) of the ACH. CredentialC3 andC4 es-
tablish the delegation chain from the ACH through its Bank
Certifier to Alice’s bank (BankA), the authority to makepay


statements.
CredentialC5 is a consumable delegation from the bank


to Alice. This credential requires ratification with respect to
the proof of


M : ACH says action(pay , 〈Bob, $100〉, nonce) true


after which Alice will get ratification credentialC6, which
she submits along with the proof to Bob for verification.


Again, the proof in Figure 5 is easiest to read from the
bottom up, starting with the unlabeled proof tree.


B.3. Registration


Here we present an example utilizing consumable cre-
dentials in the framework of class registration. Consumable
credentials are used both to limit the number of students
signing up for a class, and to ensure that any class a student
is trying to register for does not conflict with other classes
he is already taking. This is done by modeling both the seats
in a class and the timeslots in a weekly schedule as con-
sumable resources. Additionally, students are allowed to







D4 :


hyp
C0−4; action(. . .) true ` action(. . .) true


aff
C0−4; action(. . .) true ` Alice affirms action(. . .)


signed
C0−4; C0 ` Alice affirms action(. . .)


saysR
C0−4; C0 ` Alice says action(. . .) true


copy′
C0−4; · ` Alice says action(. . .) true


hyp
C0−4; action(. . .) true ` action(. . .) true


aff
C0−4; action(. . .) true ` BankA.Alice affirms action(. . .)


saysL
C0−4; BankA.Alice says action(. . .) true ` BankA.Alice affirms action(. . .)


speaksfor
C0−4;A1 ` BankA.Alice affirms action(. . .)


D3 :


D4


C0−4;A1 ` BankA.Alice affirms action(. . .)
saysR


C0−4;A1 ` BankA.Alice says action(. . .) true


hyp
C0−4; action(. . .) true ` action(. . .) true


aff
C0−4; action(. . .) true ` BankA affirms action(. . .)


saysL
C0−4; BankA says action(. . .) true ` BankA affirms action(. . .)


delegate
C0−4;A1, delegate (BankA, BankA.Alice, pay) true ` BankA affirms action(. . .)


signedL
C0−4; C5,A1 ≡ (Alice speaksfor BankA.Alice true) ` BankA affirms action(. . .)


signed
C0−4; C5, C1 ` BankA affirms action(. . .)


D2 :


D3


C0−4; C5, C1 ` BankA affirms action(. . .)
saysR


C0−4; C5, C1 ` BankA says action(. . .) true
copy′


C0−4; C5 ` BankA says action(. . .) true


hyp
C0−4; action(. . .) true ` action(. . .) true


aff
C0−4; action(. . .) true ` ACH.BC.BankA affirms action(. . .)


saysL
C0−4; ACH.BC.BankA says action(. . .) true ` ACH.BC.BankA affirms action(. . .)


speaksfor
C0−4; C5,A2 ` ACH.BC.BankA affirms action(. . .)


D1 :


D2


C0−4; C5,A2 ` ACH.BC.BankA affirms action(. . .)
saysR


C0−4; C5,A2 ` ACH.BC.BankA says action(. . .) true


hyp
C0−4; action(. . .) true ` action(. . .) true


aff
C0−4; action(. . .) true ` ACH.BC affirms action(. . .)


saysL
C0−4; ACH.BC says action(. . .) true ` ACH.BC affirms action(. . .)


delegate
C0−4; C5,A2, delegate (ACH.BC, ACH.BC.BankA, pay) true ` ACH.BC affirms action(. . .)


signed
C0−4; C5, C4,A2 ≡ (BankA speaksfor ACH.BC.BankA true) ` ACH.BC affirms action(. . .)


signed
C0−4; C5, C4, C2 ` ACH.BC affirms action(. . .)


D1


C0−4; C5, C4, C2 ` ACH.BC affirms action(. . .)
saysR


C0−4; C5, C4, C2 ` ACH.BC says action(. . .) true
copy′


C0−4; C5, C4 ` ACH.BC says action(. . .) true
copy′


C0−4; C5 ` ACH.BC says action(. . .) true


hyp
C0−4; action(. . .) true ` action(. . .) true


aff
C0−4; action(. . .) true ` ACH affirms action(. . .)


saysL
C0−4; ACH says action(. . .) true ` ACH affirms action(. . .)


delegate
C0−4; C5, delegate (ACH, ACH.BC, pay) true ` ACH affirms action(. . .)


signed
C0−4; C5, C3 ` ACH affirms action(pay, 〈Bob, $100〉, nonce)


saysR
C0−4; C5, C3 ` ACH says action(pay, 〈Bob, $100〉, nonce) true


copy′
C0−4; C5 ` ACH says action(pay, 〈Bob, $100〉, nonce) true


Figure 5. Proof of ACH says action(...) true







C0 = Calendar signedRCal action(timeslot , 〈Alice,F
′


05 , Monday , 0800–0900 〉)


C1 = Calendar signedRCal action(timeslot , 〈Alice,F
′


05 , Wednesday , 0800–0900 〉)


C2 = Calendar signedRCal action(timeslot , 〈Alice,F
′


05 , Friday , 0800–0900 〉)


C3 = Registrar signedRSeat action(seat , 〈F ′


05 , CS101 〉, nonce)


C4 = Registrar signedRCreditdelegate (Registrar, Alice, credit hours)


C5 = Alice signed action(credit hours , 〈Alice,F
′


05 , 4 credits〉, nonce)


C6 = Registrar signed (∀A.(Calendar says action(timeslot , 〈A,F
′


05 ,Monday , 0800–0900 〉)


∧ Calendar says action(timeslot , 〈A,F
′


05 , Wednesday , 0800–0900 〉)


∧ Calendar says action(timeslot , 〈A,F
′


05 , Friday , 0800–0900 〉)


∧ Registrar says action(seat , 〈F ′


05 , CS101 〉,nonce)


∧ Registrar says action(credit hours , 〈A,F
′


05 , 4 credits〉,nonce))


→ action(register , 〈A,CS101 , F
′


05 , 4 credits〉,nonce))


C7 = RCal signed 〈action(timeslot , 〈Alice, F
′


05 ,Monday , 0800–0900 〉),M,


Registrar says action(register , 〈Alice, CS101 ,F
′


05 , 4 credits〉,nonce)〉


C8 = RCal signed 〈action(timeslot , 〈Alice, F
′


05 ,Wednesday , 0800–0900 〉),M,


Registrar says action(register , 〈Alice, CS101 ,F
′


05 , 4 credits〉,nonce)〉


C9 = RCal signed 〈action(timeslot , 〈Alice, F
′


05 ,Friday , 0800–0900 〉),M,


Registrar says action(register , 〈Alice, CS101 ,F
′


05 , 4 credits〉,nonce)〉


C10 = RSeat signed 〈action(seat , 〈F ′


05 , CS101 〉,nonce),M,


Registrar says action(register , 〈Alice, CS101 ,F
′


05 , 4 credits〉,nonce)〉


C11 = RCredit signed 〈delegate (Registrar, Alice, credit hours),M,


Registrar says action(register , 〈Alice, CS101 ,F
′


05 , 4 credits〉,nonce)〉


Figure 6. Credentials that allow Alice to register for a class


take only a limited number of credit hours in each semester.
Each student must, therefore, also prove that by adding this
class to their schedule, they will not surpass that limit. As-
suming all these things are true, the student should be able
to generate the necessary proof to register for a class.


Alice wants to register for CS101, which meets on Mon-
day, Wednesday, and Friday from 8:00 to 9:00 AM. To do
so, she contacts the registrar, requesting that she be placed
in the class. The registrar responds with a challenge to
prove:


G = Registrar says action


(register , 〈Alice,CS101 , F
′


05 , 4 credits〉,nonce) true


When Alice’s registration period began, she was given
credentialsC0–C2, (see Figure 6) along with similar ones
for all weekly timeslots. The registrar, being in charge of
seat assignments, also gave Alice credentialC3. She ob-
tained credentialC4 during proof generation, and generated
credentialC5 herself. The registrar also gave her creden-
tial C6, specifying a subgoal that Alice must prove before
registration.


This last credential can be thought of as requiring the
student to be free on Monday, Wednesday, and Friday from
8:00 to 9:00 AM, a free seat to be available in the class,
and the student to have 4 available credit hours for which
they may sign up. Note that we omit nonces fromaction()
statements where they are unnecessary (e.g.,C0–C2).


Alice now has enough credentials to prove


M : Registrar says action


(register , 〈Alice,CS101 , F
′


05 , 4 credits〉,nonce) true


She then submits this proof for ratification of the consum-
able credentials it contains. Assuming all of the ratifiers
consent to the use of their credentials, Alice will receive
credentialsC7–C11, allowing her to complete the proof.


The full proof is similar to those done in Appendices B.1
and B.2, though much larger. We do not show the full proof
here. Upon checking the proof, the registrar would then
register Alice for CS101, as desired.






