

Analysis, design and development
of a web-shop template using

SPHERE.IO e-commerce platform

Laura Luiz Escoriza

Facultat d’Informàtica de Barcelona (FIB)

Universitat Politècnica de Catalunya (UPC) - BarcelonaTech

Director:
Hajo Eichler

Company:
commercetools GmbH

Advisor:

Carles Farré Tost

Department:
Enginyeria de Serveis i Sistemes d’Informació (ESSI)

Master thesis

Degree in Informatics Engineering (2003)

January 2014

	 2	

 3	

	

	 4	

DADES DEL PROJECTE

Títol del projecte: Analysis, design and development of a web-shop template

using SPHERE.IO e-commerce platform.

Nom de l'estudiant: Laura Luiz Escoriza

Titulació: Enginyeria en Informàtica (2003)

Crèdits: 37,5

Director: Hajo Eichler

Empresa del director: commercetools GmbH

Ponent: Carles Farré Tost

Departament del ponent: ESSI

MEMBRES DEL TRIBUNAL (nom i signatura)

1. President: Antoni Urpí Tubella

2. Vocal: Klaus Gerhard Langohr

3. Secretari: Carles Farré Tost

QUALIFICACIÓ

Qualificació numèrica:

Qualificació descriptiva:

Data:

 5	

	 6	

ABSTRACT	
In the present thesis a possible next generation of e-commerce solutions with a

platform-as-a-service model is presented and analyzed. This generation tries

to fill the gap of missing developer-friendly alternatives to build systems with

e-commerce components. Current offered solutions are mostly aimed for the

comfortable use of designers and other non-technical roles, usually in the shape

of out-of-the-box products. These solutions are usually limiting the ability of

developers to integrate technologies or build innovative business models, thus

sometimes forcing companies to invest in projects that have to be built
practically from the start.

This document describes the development of the first web-shop built with one of

these solutions, SPHERE.IO, an e-commerce platform-as-a-service developed

in Berlin by commercetools GmbH. During this process, questions are being

answered about the suitability of e-commerce platforms to develop web-shops,

a product most developers have to face when providing e-commerce solutions

to companies. The web-shop has a dual purpose, as it will also serve as the first

open-source template provided by the platform to help other developers build
their own solutions.

 7	

ACKNOWLEDGMENTS	
I would especially like to thank Hajo for accepting being the director of my thesis and reading

all these endless pages despite of having so much to do (really, how can you find the time!).

Thanks for your support and always good advice to improve this project.

I would also like to thank all the rest of the SPHERE.IO team for creating and raising such a

great product, giving me the opportunity to work with them.

From the ones that were:

Aurélie, Jens, Roman, Ian, Lenni, Christian and Martin.

(I loved the time we spent together, guys)

To the ones that are:

Nicole, Peter, Gregor, Dirk, Oleg, Nicola, Martin, Michael and Sven.

I would like to thank my teacher Carles, who guided me through this project from the distance.

Thank you especially for DSBW, which documentation I check constantly, not only for this

project.

Thanks to my roommate Sebastian, the most experienced online shopper I have ever met,

whose advice was very convenient I must say. Thank you for helping me and have such loving

cats that kept me well entertained during the long days locked in my room.

Many thanks as well to those friends that helped me somehow to be where I am now.

Particularly Hèctor and Pau, who help me the most. Thank you.

And of course thousand thanks to the most important person in my life, my husband Héctor,

whose constant care, support and help was so necessary during all my career life.

I would not be here without you, you know that.

Finally, I thank my parents, from whom I inherited the love for arts and business.

Because they raised me to be a person capable of anything.

And I chose to be a computer engineer.

	 8	

INDEX	

	

Abstract	 ...	 6	

Acknowledgments	 ...	 7	

Index	 ...	 8	

Glossary	 ..	 11	

1	 Introduction	 ..	 14	

1.1	 Motivation	 ...	 14	

1.2	 Objectives	 ..	 15	

1.3	 Background	 ..	 16	

1.3.1	 What	 is	 e-‐commerce	 ..	 16	

1.3.2	 History	 of	 e-‐commerce	 ...	 18	

1.3.3	 Future	 of	 e-‐commerce	 ..	 21	

1.3.4	 Current	 alternatives	 ...	 23	

1.4	 Planning	 ...	 24	

1.4.1	 Methodology	 selection	 ...	 25	

1.4.2	 Description	 of	 the	 methodology	 ..	 26	

1.4.3	 Risk	 management	 ...	 27	

1.4.4	 Initial	 timeline	 ..	 27	

2	 Requirement	 analysis	 ..	 30	

2.1	 Stakeholders	 analysis	 ...	 30	

2.2	 Functional	 requirements	 ...	 31	

2.3	 Non-‐functional	 requirements	 ...	 32	

3	 Specification	 ..	 34	

 9	

3.1	 Use	 case	 model	 ...	 34	

3.2	 System	 behavior	 model	 ..	 39	

3.3	 Conceptual	 model	 ...	 42	

3.4	 State	 diagrams	 ..	 44	

4	 Design	 ...	 47	

4.1	 System	 physical	 architecture	 ..	 47	

4.2	 System	 logical	 architecture	 ...	 49	

4.2.1	 Description	 of	 used	 technologies	 ...	 53	

4.2.2	 External	 design	 ...	 61	

4.2.3	 Internal	 design	 ..	 75	

4.2.4	 Design	 of	 the	 Model	 component	 ..	 84	

4.2.5	 Design	 of	 the	 View	 component	 ..	 88	

4.2.6	 Design	 of	 the	 Controller	 component	 ..	 91	

5	 Implementation	 ...	 94	

5.1	 Development	 environment	 ...	 94	

5.2	 Examples	 of	 used	 technologies	 ...	 95	

5.2.1	 Forms	 ..	 96	

5.2.2	 List	 products	 ...	 107	

5.2.3	 Payment	 ...	 115	

6	 System	 tests	 ..	 119	

6.1	 Functional	 tests	 ..	 119	

6.1.1	 Unit	 tests	 ..	 121	

6.1.2	 Integration	 tests	 ...	 123	

6.1.3	 Acceptance	 tests	 ..	 124	

6.2	 Usability	 tests	 ...	 125	

	 10	

6.3	 Performance	 tests	 ..	 127	

7	 Actual	 planning	 and	 economical	 analysis	 ...	 132	

7.1	 Deviation	 from	 initial	 timeline	 ..	 132	

7.2	 Economic	 valuation	 ..	 134	

8	 Conclusion	 ...	 137	

8.1	 Future	 work	 ..	 139	

8.2	 Personal	 conclusions	 ..	 140	

Bibliography	 ..	 142	

Appendix	 A	 Developer	 manual	 ...	 145	

Appendix	 B	 Product	 Backlog	 ...	 148	

Appendix	 C	 Testing	 information	 ...	 152	

	

	 	

 11	

GLOSSARY	

AJAX Stands for Asynchronous JavaScript and XML, and is a technique used on the

client side of a system to perform asynchronous operations (although

synchronous are also allowed), such as communicating with a server, without

keeping the client idle. The use of XML is not required despite the name.

API Stands for Application Programming Interface, and in general means a

specification that defines how to interact with another software component.

CDN Stands for Content Management Network, and it is a large distributed system of

servers deployed in multiple data centers across the Internet, allowing to server

content with high availability and performance.

CSS Stands for Cascading Style Sheets, and is a style sheet language used for

describing the look and formatting of a document written in a markup language.

DOM Stands for Document Object Model, and is an object model and programming

interface for documents, such as HTML, in which case defines all elements as

objects with associated properties, methods and events.

HTML Stands for HyperText Markup Language, and is a markup language designed

for creating web pages.

HTTP Stands for Hypertext Transfer Protocol, and is an application protocol for

distributed, collaborative, hypermedia information systems.

HTTPS Stands for Hypertext Transfer Protocol Secure, and is the result of layering the

HTTP protocol on top of the SSL/TLS protocol, in order to add security

capabilities of SSL/TLS to standard HTTP communications.

IDE Stands for Integrated Development Environment, and is a software application

that provides support for software development; usually in the areas of source

code edition, build automation and debugging.

Internet Global system of interconnected computer networks that use the standard

TCP/IP to communicate.

	 12	

JSON Stands for JavaScript Object Notation, and is an open standard format that uses

human-readable text to transmit data objects consisting of attribute-value pairs.

JVM Stands for Java Virtual Machine, and it a virtual machine that can execute Java

bytecode.

OAuth A protocol for authentication and authorization.

PaaS Stands for Platform-as-a-Service, and is a category of cloud computing services

that provides a computing platform as a service, so that the consumer creates

software using tools and/or libraries from the provider.

PCI See PCI DSS.

PCI DSS Stands for Payment Card Industry Data Security Standard, and includes a set of

twelve specific requirements to cover six different goals, in order to create a

secure environment for payment data.

PHP Stands for PHP: Hypertext Preprocessor, and is a server-side scripting language

originally designed for web development.

REST Stands for Representational State Transfer, and is an architectural style for

designing networked systems, based on a set of principles, such as using

stateless requests or a uniform interface for resources.

RESTful A RESTful system follows REST architectural principles and uses HTTP as a

transmission protocol.

TCP/IP Stands for Transmission Control Protocol/Internet Protocol, and is considered

the Internet protocol suite, as it is the combined use of the TCP transport

protocol and the IP communication protocol.

SaaS Stands for Software-as-a-Service, and is a category of cloud computing services

that provides a complete software, along with its data, as a service.

Scala A object-functional programming language that runs on JVM and is compatible

with Java scripts.

SDK Stands for Software Developer Kit, and is a set of software development tools to

create applications for a certain software package.

 13	

SEO Stands for Search Engine Optimization, and means to improve the ranking

position of a website in Internet search engines.

SMTP Stands for Simple Mail Transfer Protocol, and is a standard for email

transmission through the Internet network.

SSL/TLS Stands for Transport Layer Security/Secure Sockets Layer, and are two related

cryptographic protocols designed to provide communication security over

Internet.

URL Stands for Uniform Resource Locator, and is a specific character string that

constitutes a reference to a resource, also known as web address when used

with HTTP.

WWW Stands for World Wide Web, also known as W3 or simply the Web, and is a

system of interlinked hypertext documents accessed via the Internet with a web

browser.

XML Stands for Extensible Markup Language, and is a markup language that defines

a set of rules for encoding documents in a format that is both human-readable

and machine-readable.

	 14	

1 INTRODUCTION	
Traditional companies and institutions are making use of e-commerce to overcome the

boundaries of space and time: it allows them to globalize their operations and offer a more

personalized service to the customer. Moreover, many entrepreneurs took advantage of the

benefits of e-commerce and created new business models1.

E-commerce has greatly evolved for forty years of existence and is still evolving continuously,

as well as the software offered to support it. When searching for e-commerce solutions, almost

all offered systems are focused on building web-shops, despite of the fact that electronic

commerce is not just about web shopping any longer.

1.1 MOTIVATION	

As it will be demonstrated in the section Current Alternatives 1.3.4, it is safe to say that

customizable software solutions are too rigid to give an efficient and profitable answer to a

future e-commerce context. So instead of offering a final product pre-built on top of an e-

commerce platform and customize it to fit the merchant’s needs, why not provide a robust and

flexible e-commerce platform to let merchants build what they need from the beginning?

It was that particular question that led the team of SPHERE.IO to design and develop this new

commerce platform-as-a-service. Their main goal was creating an e-commerce platform with a

set of tools to allow developers to easily access and process all commerce data from within any

kind of application.

The SPHERE.IO backend system, where all commerce data is stored, is directly accessible via

a RESTful web API, allowing any external system to use the data, regardless of the

programming language or chosen framework. In order to provide a more comfortable

development experience, they built the first of many open-source client libraries to come: a

Java client library. On top of it they created the SPHERE.IO Play SDK, a toolkit especially

aimed for building web applications with ease using the Play web framework (Figure 1.1).

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

1 Deal-of-the-day (short time limited offers) or Discovery Commerce (periodical delivery of selected
goods) are only some of the new business models that became popular thanks to e-commerce [Pie12].

 15	

Figure 1.1: Diagram of a typical Java web application using SPHERE.IO.

Since no system has ever been developed with this platform before, except for some small

testing sites, it is required to implement a realistic e-commerce application on top of it in order

to test its benefits and correct its flaws. It is also necessary to have a bootstrap project from

which other future internal or external projects may reuse its code.

1.2 OBJECTIVES	

The project has two main objectives that are strongly connected. One objective is to analyze,

design and develop the first web-shop using the SPHERE.IO platform. This implementation

will provide a first open source template, which then can be reused by developers to build their

own web-shops. Additionally the source code will serve as a live documentation about how to

use the platform.

	 16	

The second objective is to evaluate the capability of SPHERE.IO to compete with current e-

commerce solutions. Better alternatives will be proposed to the platform development team

when needed, aiming to improve its initial design. This evaluation can be achieved by the

development of the previously mentioned web-shop, which will assist as a practical example to

test the suitability of the platform to build these kind of popular applications.

1.3 BACKGROUND	

Before attempting to evaluate any e-commerce solution it is necessary to exactly define what is

understood as electronic commerce (section What is e-commerce 1.3.1). It is also important to

take a look at history in order to comprehend what elements made e-commerce become what

it is today (section History of e-commerce 1.3.2). With that knowledge in hand, we will get a

glimpse of the future and decide whether the current e-commerce solutions have a place in it

(section Future of e-commerce 1.3.3).

1.3.1 WHAT	 IS	 E-‐COMMERCE	

As a general definition, commerce is the branch of business that includes all activities, which

directly or indirectly are involved in exchanging goods or services. The trade can be held

between businesses or individuals, eventually achieving the goal of transferring goods from

producers to consumers. When information and communication technologies are applied to

support these activities, we are referring to electronic commerce, also commonly known as e-

commerce [Akr11].

Currently there are four major types of e-commerce, classified based on the roles involved in

the trade: business-to-business (B2B), business-to-consumer (B2C), consumer-to-business

(C2B) and consumer-to-consumer (C2C). Other lesser types may involve roles such as

government, employee or manager in order to define more specialized e-commerce business

models. Though any of those types can be considered to be subtypes of the four major models

[Nem11].

Business-to-business comprehends those commerce transactions held between businesses. In

e-commerce the volume of B2B sales is around twice the size of B2C [Hoa12], mainly because a

typical supply chain has multiple B2B transactions involving suppliers, manufacturers and

 17	

distributors; while there is only one B2C transaction with the end customer at the very end of

the chain. Communication and collaboration interactions between businesses and within

companies are also included as part of B2B, in the form of email or a more specialized system

to exchange business data, like Electronic Data Interchange (EDI).

Business-to-consumer describes all activities involving businesses providing products or

services to end consumers. B2C is the type of e-commerce with higher number of sales behind

B2B, but it is by far the most familiar amongst the population. Companies invest a lot of

resources in improving the customer experience when interacting with their e-commerce

interfaces. These can be in the form of electronic retailing or media to communicate with

customers such as email. Electronic retailing, also known as e-tailing, is the largest part of B2C

e-commerce, consisting of an online catalog of a retail store or shopping mall, usually called

web-shop when it is accessed from the web.

In consumer-to-business the B2C process is reversed, thus the end customer is the one that

offers goods or services to the company to complete a business process or gain competitive

advantage. It is common in specialized blogs and forums, where companies offer money to

their owners in exchange of advertisement or review of their products.

Consumer-to-consumer is a way of e-commerce where a third party facilitates transactions

between consumers electronically. The most popular example of C2C e-commerce is the online

auction, in which customers bid to purchase an item that another consumer has posted for sale,

while the third party charges a commission for the exchange.

Besides these four major forms of e-commerce, there are other interesting concepts that have

gained popularity these last years: social and mobile commerce. Social commerce is the

adoption of social networking features in the context of e-commerce. When it comes to offline

shopping, it is a natural practice to gather information from oneself’s personal social networks

before purchasing a product. People usually consult their family and friends for advice, and

they often speak to the shopkeeper about suitable products. Joining social networks with

online stores allows customers to have the same experience, with the advantage of reaching a

largest range of people in a shorter time [GWL11].

On the other hand m-commerce, an abbreviation for mobile commerce, is any kind of e-

commerce activity that relies on the usage of wireless devices, such as cell phones, personal

digital assistants (PDA) and smartphones. The range of devices enabled for m-commerce also

includes general purpose wireless computers, like tablet and laptop computers [TNW01], but

	 18	

are not usually part of research studies. The reason behind that is the existence of hybrid

devices between mobile phones and computers, such as smartphones, that are more

specifically designed for m-commerce.

1.3.2 HISTORY	 OF	 E-‐COMMERCE	

E-commerce has been gaining more and more relevance in the business context since the

moment it was introduced back in the mid-sixties, when the standard that became known as

EDI was developed and started replacing traditional mailing and faxing documents. Later in

1979 the British inventor Michael Aldrich invented what he called teleshopping, an early

version of online shopping [Ald10].

The system consisted of a domestic television connected via telephone line to a real-time

transaction processing system, with a shopping transaction program installed. It used a

slightly modified television with capabilities to communicate via domestic telephone line

thanks to a modem chip originally used in the Prestel system2. Aldrich’s system was not

properly using the Prestel system, but the Prestel data transmission protocol to communicate

with computers via telephone line, and therefore to convert televisions into real-time

terminals [Ald11].

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

2 System developed by the British public telephone system, whereby news and any text information were
received by a television through a telephone line.

 19	

Figure 1.2: 1979 pre-production online shopping system by Redifon.

Source: Michael Aldrich Archive

Redifon Computers3, the company for which Michael Aldrich was working at that time, started

selling this online shopping system (Figure 1.2) and installed the first operational application

for Thomson Travel Group4 in 1981. Aldrich initially designed his system for B2C online

shopping: it worked from an inexpensive domestic television, with simple human interface

and using domestic telephone line; despite of that, initial demand was B2B online shopping for

holiday travel, vehicle and spare parts, sales, loan finance and credit ratings.

It was in 1984 when Aldrich’s teleshopping system finally reached Jane Snowball’s home, a

seventy-two-year-old woman who became the first ever online home shopper when she

ordered some groceries from the supermarket chain Tesco (Figure 1.3). The system she used

was called GSS (Gateshead Shopping Service), and was part of a social service experiment

project in the English city of Gateshead, aimed at elderly people who were not able to go

shopping. Another larger project appeared two years later in another city of England, Bradford,

for disadvantaged citizens. In both projects it was necessary to develop an early version of

what we know today as a cart shopping system [Ald09].

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

3 Company belonging to Rediffusion Group of Companies.

4 Currently known as Thomson Holidays.

	 20	

Figure 1.3: Mrs. Snowball ordering groceries from her home in 1984.

Source: Michael Aldrich Archive

Elsewhere in Europe similar systems appeared which involved an interactive television using

telephone line. Especially important was Minitel system invented in 1982 by France Télécom,

that can be considered the most successful of all these early online services. But even in this

case teleshopping was only successful in some B2B activities. B2C was not commercially viable

due to the difficulty of common people to access the necessary technology. The only working

systems were social experiments run by local governments in partnership with supermarkets

to deliver groceries to senior and disabled citizens [BB05].

E-commerce needed a way to reach a wider variety of people to work, especially outside

business-to-business context. Tim Berners-Lee offered that possibility in 1990 when he joined

hypertext technology with the Internet creating the World Wide Web [Ber00]. Despite of

having the technology, commercial use of Internet was not allowed5 when the web appeared.

In 1991 this restriction was lifted, but only under the condition of paying a fee according to the

usage of the network, which was destined to fund the networking infrastructure. These

limitations were also resolved in 1995 when commercial use of the Internet became completely

free [Off93].

Before that, in 1994 Netscape launched the first commercial browser, with the cryptographic

protocol SSL along with it. With the web being accessed by an increasingly amount of people

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

5 In 1990 most of Internet backbone networks belonged to the National Science Foundation Network.
This network was destined to research and educational purposes and had an Acceptable Use Policy that
prohibited purely commercial traffic from using it.

 21	

and with a protocol to ensure secure online sales, companies finally had the chance to build a

profitable business for B2C in an expanding environment. The first web-shops started to

appear, as well as e-commerce solutions built to allow merchants sell online. Only one year

later Amazon.com and eBay were born, both considered to be amongst the largest online store

corporations nowadays.

Of course all these changes were accompanied by a revolution in payment systems. A series of

innovations have been introduced to our daily life during the last thirty years, being the most

significant to e-commerce: debit and prepaid cards, online banking and mobile payments via

cell phone. All of them contributed to increase the number of payment service providers

offered, thus facilitating online payments. Nowadays one of the most important e-commerce

payment systems is PayPal, in charge of processing payments between the merchant and the

acquirer bank, therefore allowing to send and receive payments securely over the Internet

[KRSS12].

1.3.3 FUTURE	 OF	 E-‐COMMERCE	

Despite of being only forty years old, e-commerce has become a very important area in the

business environment. Looking back we see the way every technology has changed the e-

commerce scenario and given more importance to it. From new protocols to innovative devices,

including payment systems and social trends; all has been quickly adopted by companies in

order to gain competitive advantage. The introduction rate of new elements in the e-commerce

context seems to have grown exponentially over the last few years, as well as the worldwide

population involved.

In North America the percentage of digital buyers is currently of 72% of each Internet user and

is expected to grow up to 77.7% by 2017. A similar growth is expected in Western Europe, with

a great difference between northern and southern countries: U.K. and Germany account 87%

and 80% of e-commerce customers in 2013, respectively, and is expected to grow around 3%.

On the other hand, in Spain the percentage is 54% and in Italy 44%, with a predicted growth of

10%. The highest penetration rate of Internet users in e-commerce will happen in China,

where the amount of digital buyers is going to increase 20% [eMa613].

	 22	

Figure 1.4: U.S. retail e-commerce sales from 2011 to 2017.

Source: eMarketer, April 2013

In number of sales, all major studies foresee a continuous growth in U.S. e-tailing income in

the next few years at a compound annual rate that goes from 10% to 14%, reaching between

$370 and $434.2 billion from e-tailing sales in 2017 (Figure 1.4) [eMa413]. When it comes to

Western Europe obtained results are similar with a growth rate of 11%, reaching even 18% in

southern European countries where the e-commerce market is not yet as mature as in North

America [OG13]. Same reason applies to Asia and Latin America with the highest growth rates

in the world, around 25% growth per year. Particularly high are the growthing rates in China

and Indonesia, where a 65% and 71% is expected in 2013, respectively [eMa613].

 23	

Figure 1.5: U.S. retail m-commerce sales from 2011 to 2016.

Source: eMarketer, January 2013

It is also a fact that mobile devices are being quickly adopted by both merchants and

customers, due to all possibilities that they offer in the expanding e-commerce scenario. Some

studies show how retail sales made on smartphones will grow from $8 billion in 2012 to $31

billion by 2017, becoming a 9% of e-commerce total sales [MERJ13]. When tablet computers

are also included in the research, m-commerce sales grow from $24.66 to $86.86 billions in

2016, having 24% of retail e-commerce (see Figure 1.5) [eMa113].

A look at the future of e-commerce reveals a continuous growth in sales and customers, as well

as the fast adoption of new technologies such as mobile devices. Therefore it can be expected

that new devices and different ways of commerce activities will appear in the near future. It

will be therefore necessary for merchants to integrate all their existing e-commerce

infrastructure in every context in order to gain advantage from the expected growth.

1.3.4 CURRENT	 ALTERNATIVES	

Are the current e-commerce solutions ready for bringing quick and affordable integration to

future scenarios? Almost all shopping cart solutions offered for online shopping are designer-

oriented built web-shops, with multiple plug-in components, customizable options and

	 24	

exchangeable templates. The merchant requires the e-commerce solution to offer a certain

feature set in order to use it, otherwise the cost of implementing it may not be worthwhile or

simply impossible.

With the raising of cloud computing, many licensed products have move to a more flexible

software-as-a-service (SaaS) model, allowing merchants to easily scale their web-shops as

their businesses grow. Despite of that, merchants are still very limited to what the software is

offering, and depend on the product to evolve in order to expand their e-commerce

infrastructure to different environments. Of course, they can also use an independent product

to support the missing scenario, but with the high cost of having to maintain two or more

different backend data, having to connect them all together.

A very interesting example of these models is Magento, a PHP open-source project that was

initially launched in 2008 and nowadays enjoys great popularity. The first version offers a

typical out-of-the-box web-shop, highly customizable and with a wide variety of plug-in and

templates. The experience of building a web-shop with it was very comfortable, since all the

changes were done directly with an administration interface, not requiring any technical

knowledge.

Everything was comfortable until the moment the template was not offering a functionality or

simply not the way it was needed (e.g. displaying the breadcrumb in a different way or place).

In that moment finding the files where the logic that needed to be changed was located became

a very hard task and changes were not easy to make either. This experience reflects exactly

how developer-unfriendly these kind of models usually are.

Magento also offers a SaaS version of this product, called Magento Go. The experience is even

worse, since any kind of customization is limited to what they offer in the administration page,

impossibiliting any modification on the code. In 2010 Magento announced the release of the

second version, Magento 2.0. This version promised to be more developer friendly, but so far

the product has not been released.

1.4 PLANNING	

The planning of the project includes the choice of the methodology used and a description of

the development process. According to the chosen methodology and the analysis of the major

risks of the project, an initial timeline is proposed. It is important to understand that the

 25	

current project is part of a bigger project that involves the development of a template that

integrates all the functionalities offered in the platform. That means that both projects are

connected, hence the teams have to work closely.

1.4.1 METHODOLOGY	 SELECTION	

Some considerations must taken into account to decide the methodology that is going to be

used in this project. Scope, timing, risks and objectives, as well as the methodology already

used by the SPHERE.IO team; turned out to be the most decisive criteria to determine what

methodology is more appropriate in this particular case. An explanation of each criterion is

presented below.

On the one hand, the scope of the project is just limited in the present thesis, but the scope of

the whole project is attached to the scope of the platform project, which is undefined due to

the nature of it. The few milestones defined by the company are meant to be more a guidance

and a time deviation is expected. The same applies to the deadline of this thesis, which is not

yet fixed and can be moved forward if necessary.

When it comes to objectives it is required to generate rapid and continuous value, because the

template is going to be used in company presentations and different events before the official

release. Besides any developer interested in the platform should be able to use it as an example

of the current capabilities of the system. Consequently regular small releases of the template

with new added functionalities are highly desirable.

According to these arguments, an agile method is preferred over a heavyweight methodology

in this situation, because of the undefined scope, the flexible deadlines, the major use of new

technologies and the need of rapid value [Kha04]. Given that the methodology used by the

SPHERE.IO team is based on Scrum, an iterative and incremental agile software development

framework, it is only natural to follow the same methodology as they do. Therefore the design

and implementation of the template is going to be integrated inside the SPHERE.IO

development process.

Although all the documentation necessary for the software development is considered part of

the development process and thus it is included in the SPHERE.IO workflow, it has been

decided to exclude the proper wording of the present documentation from this workflow. The

reason is that Scrum does not explicitly cover the drafting of such a large documentation with

	 26	

no direct influence on the software implementation. In this particular case a simple sequential

development process allows a better planning for this set of tasks.

1.4.2 DESCRIPTION	 OF	 THE	 METHODOLOGY	

Scrum follows the principles of the Agile Manifesto6, characteristic of all agile methodologies.

In order to adapt these principles, Scrum defines a number of flexible practices that can be

followed in software development projects to improve some processes [SS13]. Many tools can

be used to support these practices, in this particular case a simple project management

software called AgileZen is used to manage and assign tasks. Next it is described the

methodology as it is used in the current project.

In Scrum, the development process is divided into small cycles called sprints. Every two weeks

a “Sprint Review Meeting” and a “Sprint Retrospective” is held to conclude a sprint cycle. In

the Sprint Review Meeting each member of the team shows a short demonstration of all the

tasks he was able to complete during the sprint. On the other hand, in the Retrospective

Meeting all elements that went well and wrong in the past sprint are written down in order to

improve them during the following sprints.

The same day after an hour break, a “Sprint Planning Meeting” follows in order to prepare the

next sprint. In this meeting all the team decides the next sprint’s tasks, which are then

assigned to the corresponding members of the development team. In Scrum, the group of tasks

of a sprint is called the “Sprint Backlog” and is selected from the project’s requirement list,

also known as “Product Backlog”. Both lists are managed collaboratively with AgileZen, the

project management tool referred above.

Every day of the sprint starts with the so-called “Daily Stand Up Meeting” at 10:15, when each

member briefly explains the tasks he did the day before and the ones he plans for today, as

well as mentioning any blocking issue found. This is done via updating the task board, a

physical whiteboard where each task is represented with a sticky note. Those notes are being

moved through all the different status (i.e. “to do”, “in progress”, “done”) until completion.

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

6 See more information: http://agilemanifesto.org

 27	

1.4.3 RISK	 MANAGEMENT	

All projects have risks threatening their smooth development. Agile methodologies are already

reducing negative effects of unexpected outcome thanks to the fast delivery of working

software, that allows to quickly detect and fix any problem without major issues. Despite of

that, risk management is advisable in order monitorize and evaluate all major risks every start

of the sprint. For that reason risks should be identified along with a strategy to manage each

risk beforehand.

The current project is particularly risky due to the extensive use of a technology under

development. The SPHERE.IO platform may not yet allow all functionalities planned for the

template or it may be delayed some weeks or even months. That would directly affect the

current project’s timeline. This is a very likely risk to happen and with a high impact on the

project, but the project itself would be meaningless without the use of this particular platform.

Therefore the only way to deal with this risk is tolerate a large deviation in the project for high

priority functionalities and dismiss those functionalities with lower priority when a long delay

takes place.

Some other technologies in development or with no previous experience working with them

will be used in this project. In each case, some research should be done before in order to

guarantee that it fits the project. In spite of this, if the technology appears to be unsuitable for

the project during the implementation process, it should be replaced with an alternative

technology or the functionality it provides should be discarded.

Many other risks are related to the fact of developing the project in a business company,

especially in a startup. These kind of companies are particularly prone to change, whether be it

a change in the development team, in the company’s activities or simply the company ceases to

exist. In any case, these risks cannot be avoided. If the project is on a very early stage the best

decision would probably be to start a new project, otherwise the topic can always be adapted to

the new situation.

1.4.4 INITIAL	 TIMELINE	

As described before, in Scrum a new planning is elaborated from scratch every start of the

sprint. Additionally, requirements are likely to change over time. These characteristics make

an initial timeline not entirely befitting for a project following an agile methodology. Despite of

	 28	

that it has been considered appropriate to prepare an initial planning of the whole project (see

Figure 1.6) in order to make a rough estimation of the total amount of work. This initial

planning will be updated every end of the sprint.

The project officially starts February 1st 2013, when the task of developing the first public

template of the platform was assigned as the main topic of this project. Before that, a testing

period of SPHERE.IO Play SDK took place with the implementation of a basic sample web-

shop. This period had the objective of adapting the SDK to Java developers, at the same time

that the toolkit was being built. Although the tasks during that stage were no planned parts of

this project, it is fair to include it as a training period due to the level of importance of that

timeframe in order to become familiar with the platform.

On April 2nd 2013 the SPHERE.IO platform was going to be publicly announced as a beta

release, along with the first template providing some basic functionalities (i.e. browsing and

purchasing products). The implementation of the template was expected to finish on April

10th 2013, before the platform’s final release on July 1st 2013.

After the development cycles are finalized all remaining time is being used on writing the

documentation. Some usability and performance tests will be run after the platform is released

and stable, planned on July 16th 2013. When the documentation stage finishes on August 18th

2013, and after a week of revision of the whole project, the presentation is being prepared over

five days. Therefore on August 26th 2013 the project was expected to finish. Given that the

deadline of the project’s presentation is on January 24th 2014, it allowed a time deviation of

up to five months.

In order to count the total amount of hours of the timeline, it must be taken into account that

every stage might have a different dedication time. It is considered in this planning that the

training period takes 1 hour per day, because as explained before the tasks in that time were

not focused in this current project. The documentation stage takes around 4 hours per day in

order to combine it with other projects’ tasks, while the remaining stages have 6 hours per day

on average. With that, this planning results in a total of 725 hours of work, divided in 73 hours

for training, 60 hours for specification and design, 240 hours of implementation and 352

hours in documenting the project.

 29	

Figure 1.6: Gantt diagram of the initial timeline of the project.

	 30	

2 REQUIREMENT	 ANALYSIS	
In order to start gathering requirements, first it is necessary to identify each group affected by

this project and understand everyone’s needs (section Stakeholders Analysis 2.1). With that

information in hand, an initial list of the desired functional and non-functional requirements

(see sections Functional Requirements 2.2 and Non-Functional Requirements 2.3) can be put

into the Product Backlog in the form of user stories. Every sprint these requirements may

change, reason why in this section are described only the final requirements that are part of

the current Product Backlog of the project (see Appendix B Product Backlog).

2.1 STAKEHOLDERS	 ANALYSIS	

Potential clients of the project, simplified as “clients” from now on, are companies in need of

an e-commerce solution, especially those looking for an interface from where to sell goods or

services to individuals or other companies. They need a system that satisfies their current

requirements and allows them to easily implement future required functionalities. They hire

developers, usually working in agencies, to build these tailored applications.

Potential users of the template are precisely developers, who need to implement a web-shop or

a similar application. They might have to decide whether to develop a web-shop based on

SPHERE.IO Play SDK. They may want to use the template as a live documentation of how to

use the system or directly use it as a bootstrap project on which to build their own web-shop.

They need to easily understand the sample code and quickly identify those lines of code with

shop logic coming from SPHERE.IO. Code quality and correct use of technologies may be

important for them.

End users or customers7, equally mentioned as “users” and “customers” in this document, are

those actors of the system who would buy in the web-shop in case it went live. Even being an

hypothetical situation, this template will be used as a bootstrap project so eventually it will

become a real web-shop with end users. With no other specific information about these users,

it can only be assumed that they need an intuitive layout that allows them to shop with ease in

a few clicks.

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

7 For more information about the differences between the term “customer” and “client”, see
http://www.dailywritingtips.com/customer-vs-client/

 31	

Inside the company there are two major stakeholders: the SPHERE.IO product owners and the

developer team. The product owners need a final product where all the platform features are

implemented in order to measure the actual progress of the project. This product also allows

them to have a sample web-shop to show to potential clients in meetings and conferences even

before the platform is released.

On the other hand, the development team is in charge of designing and implementing the

platform that the template is using. Their primary need towards the template is to verify that

their implementation is adjusting to both developers and clients needs. They might create

temporal limitations on the template design, but at the same time any suggestion may be

quickly adopted with no need to change the web-shop requirements.

2.2 FUNCTIONAL	 REQUIREMENTS	

In order to prove the value of the platform and identify any possible lack of functionality, the

application should have all the common features of a regular web-shop. Accordingly, it has

been considered that the initial appropriate set of functionalities for this project include those

related to browsing and purchasing products, as well as management of a customer account.

The detailed behavior expected for the web-shop is described below.

In the home page all products are displayed sorted by popularity. From here the user can

select a category; then all products belonging to that category or any descendent will be

displayed. Whenever a set of products is listed, those products on sale will be highlighted and

the user will be given the option to sort and filter amongst all products. The sorting can be

performed by name or price, and the filtering by price and color. Each product thumbnail

consists of a picture of the product, its name and price, as well as a list of all color variants

available.

Clicking on a product thumbnail redirects the user to the product detail page, where besides

name and price also a description is shown. Here the user is able to select any color and size to

visualize the corresponding picture. In any moment the user can add the selected product to

the shopping cart, afterwards the updated cart contents and total price will be displayed.

Accessing the cart details also grants the user the possibility to change the number of units of

an item or remove any particular item from the shopping cart.

	 32	

From here the user can choose to start the checkout process, where he is asked to fill a form

with shipping information (i.e. shipping address and method) and billing information (i.e.

billing address and payment data). During the checkout process the order summary (i.e. the

list of purchased items and pricing details) is displayed all along and kept up to date. Right

before finishing the checkout process, the user is informed of all introduced shipping and

billing information as well as the order summary. Once the checkout process is finished,

another summary is shown along with a successful purchase message.

The user can decide to sign up in our systems, in which case he must provide his full name,

email address and a password. After signing up he is redirected to his user profile, where he

can update his personal data, change his password, manage his address book or review his

previous orders in detail. The address book allows the user to store a set of postal addresses

that can later be selected as shipping or billing address in the checkout process. The user is

allowed to add new addresses to the address book, as well as update or remove any stored

address.

While logged in, the user can choose to log out in order to become an anonymous customer. In

any moment, he can log in again providing his email address and password. In case the user

forgot his password, he can request to recover it by entering his email address, in which case

an email is then sent to the address provided containing a web link can then be accessed

within the next hour, where the user can provide a new password.

2.3 NON-‐FUNCTIONAL	 REQUIREMENTS	

In its first stage, the web-shop template is required mainly to analyze the platform capabilities,

show code examples to developers and attract potential customers. For this reason all non-

functional requirements are highly focused on those areas. Other areas of great importance as

well, such as compatibility and performance, are left aside from the current project because of

the excessive workload that it means.

From a developer point of view the quality of the code takes a very important role, so it should

be well organized, easy to understand and reusable. Therefore it would be considered a good

practice to use variables and functions with self-explanatory names and keep a well

commented code. To the extent possible, the generic shop logic should be separated from the

most specific code in order to facilitate the use of it as a live documentation of the platform.

 33	

The platform should allow to test any web application built on top of it. In order to prove it is

allowed, the template should be completed with automated functional tests, being careful of

keeping these tests independent from the backend data in use. That way a change in the data,

very likely to happen in a template web-shop, will not affect the results. The same principle

should be applied to the code in general, to keep the template from being non-functional when

the data used is different.

Although major part of the required security is located on the e-commerce and payment

platforms, there are some risks server side that must be top priority when it comes to online

shopping. For example some data needs a careful treatment, like user related data such as

addresses, passwords and payment information. Particular attention must be paid with the

checkout process in order to avoid fraud.

When online payment is involved in an application, payment data needs to be processed and

stored somewhere. The system to process and store this data needs to be PCI DSS8 compliant.

Being a sample web-shop it is most appropriate in this case to leave this role to the payment

platform, thus sending any payment data to the template’s web server must be strictly avoided.

The template should be intuitive and use latest design tendencies, especially those allowing a

faster navigation experience. The user should be able to use all functionalities of the web-shop

in a smooth way, trying to minimize the number of times the page is fully reloaded. This will

also speed up the communication with the web server, thereby favoring a more efficient

interaction with the web-shop.

The colour scheme should be neutral but pleasant in order to match any web-shop topic, with

a winter sports related theme. The URL structure of each page needs to be user-friendly,

meaning it has to be easily identifiable with the product or category linked when reading it. At

the same time it has to follow some basic SEO rules in order to promote any website based on

this template.

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

8 PCI DSS stands for Payment Card Industry Data Security Standard and includes a set of twelve specific
requirements to cover six different goals, in order to create a secure environment for payment data.

	 34	

3 SPECIFICATION	
Agile methodologies suggest to elaborate documentation only as needed, without having any

required artifacts for each stage as traditional methodologies usually do. The reason why heavy

documentation is not recommended is because requirements are expected to change

constantly during the development process, forcing to update every diagram and text each

time a change is applied, with the consequent loss of time that could have been otherwise used

to develop the product.

For this reason, only some simplified diagrams were drawn during the specification and design

stages, the necessary to understand the system and share ideas with the SPHERE.IO team.

Therefore most of the artifacts presented in both this section and section Design 4, were made

after the product was already built, intended to assist the reader in understanding better the

system.

The specification section here presented describes the necessary system to fulfill the functional

requirements previously gathered. Here are first described the set of use cases that are initially

planned for the project, which corresponds to the final Product Backlog (see list in Appendix B

Product Backlog). The conceptual model of this system is then presented and, for each use

case, is explained the expected behavior of the system with the user.

3.1 USE	 CASE	 MODEL	

There are three actors that interact with the system: the customer, the payment platform and

the SPHERE.IO e-commerce platform (Figure 3.1). The customer can either be an anonymous

customer or an identified customer previously existing in the SPHERE.IO platform. Since the

required functionalities of the present project were mainly designed to test the SPHERE.IO

platform, it is no surprise that the platform is present in every single use case of the system

whatsoever, so for the sake of readability it will be omitted from the use case diagrams

henceforth.

 35	

Figure 3.1: Diagram of the actors involved in the system.

As mentioned earlier, the system has three functionalities where all use cases fall into: display

products, purchase products and manage customer account (Figure 3.2). The customer is

present in all use cases of the system, while the payment platform is only involved in the

functionality for purchasing products.

Figure 3.2: Diagram of the use case packages of the system.

	 36	

The use cases for displaying products are shown below in Figure 3.3. The customer can either

list a set of products or display a particular product. Further additional functionalities can be

applied to the product listing, individually or combined together, in order to alter the list itself

(i.e. filtering) or the way the products are listed (i.e. sorting and pagination).

Figure 3.3: Diagram showing the use cases of the display products package.

Figure 3.4 shows the use cases related to purchasing products. They can be clearly divided into

two different topics: on the one hand all those use cases for managing the shopping cart (i.e.

adding, updating and removing items), on the other hand those related to placing and listing

orders. When placing an order the customer may be requested to pay online, in which case the

payment platform will provide the necessary means. Anonymous as much as registered

customers can place orders, but only customers that have been identified are able to list their

own orders, otherwise they are requested to identify themselves.

 37	

Figure 3.4: Use case diagram showing the use cases of the purchase products package.

Finally, for the use cases related to account management (Figure 3.5), a registered customer

can manage his address book (i.e. add, update or remove postal addresses) or update his

account (i.e. change his personal data or password). He can as well decide to log out from the

system and become an anonymous customer. As an anonymous customer, he can sign up a

new account or log in with an existing one. In case he cannot remember his credentials, he will

be given the option to recover his password.

	 38	

Figure 3.5: Use case diagram showing the use cases of the manage account package.

The previously explained use cases are mostly useful to define the scope of the project and

understand its functionalities. For example, these use cases can be helpful to estimate tasks

and elaborate the development plan, as well as a guide to determine the necessary functional

tests for the system. But these use cases are too granular for other purposes, such as defining

acceptance tests or describing the sequence of user interactions with the system. These tasks

require a more abstract level of use cases, focused on user goals instead of functionalities,

sometimes called top-level use cases.

A top-level use case describes a single elementary business process that allows a particular

user to fulfill a goal. In this system there are mainly three goals that a customer may want to

achieve when he uses the web-shop, as shown in Figure 3.6. The first one consist of browsing

the catalog and selecting those products of interest. At some moment, the user can decide to

review the selected items and eventually buy them, which is the second goal. Finally, the third

goal involves checking the payment or shipping status of the order, or any additional related

information.

 39	

Figure 3.6: Diagram showing the main top-level use cases of the system.

All low-level use cases defined earlier are actually providing the functionalities to fulfill these

three goals. Both low-level and top-level use cases are being used indistinctly throughout this

document to elaborate other diagrams and descriptions, its use responding mostly to the level

of abstraction that fits best the explanation. In any case, the term “top-level” is expressly used

when referring to this type of use case.

3.2 SYSTEM	 BEHAVIOR	 MODEL	

Almost all the low-level use cases of this project consist of only one interaction between the

user and the system. This may be useful for projects that require very detailed information

about the system to be developed, possibly because its behavior is very specific and unique.

But this is not the case of this project whatsoever, the use cases defined here are precisely very

common amongst web-shops, so any operation offered by this system is considered to be self-

explanatory.

As mentioned before, the top-level use cases are here more appropriate to describe the user

communication with the system. This is because they provide information not only about the

system behavior, but also about the sequence of interactions that the customer usually

performs in order to achieve a goal.

Figure 3.7 displays the sequence diagram for the browse catalog top-level use case, one of the

many possible success scenarios. In this case the user will usually go to the home page, select a

	 40	

category and then filter or sort the products until he eventually finds one of interest. Then he

will probably ask for the details of the product and next he will add it to the shopping cart.

Figure 3.7: Sequence diagram of the browse catalog top-level use case, success scenario.

The checkout top-level use case is shown in Figure 3.8. Once the customer has some line items

in his shopping cart, the next step is to navigate to the cart page. Here the user can remove or

modify his line items until he is ready to start the checkout process. There, after entering all

shipping and billing information, the customer will confirm the purchase and the system will

request the payment platform to process the payment, displaying the order details in response

to the customer.

 41	

Figure 3.8: Sequence diagram of the checkout top-level use case, success scenario.

The last sequence diagram displays the interactions that the customer has to perform in order

to check the state of an order (Figure 3.9). This scenario requires the customer to previously

sign up to the system and purchase some items as a registered customer. Then at any moment

the user can go to the login page and enter the login information to access his customer profile.

There he can select to list all his orders and select the one he wants to view in detail.

	 42	

Figure 3.9: Sequence diagram of the check order top-level use case, success scenario.

3.3 CONCEPTUAL	 MODEL	

The conceptual model of this project revolves around the cart concept, while all other system

elements are there to provide the required information to the cart, as seen in the class diagram

below (Figure 3.10). Products are related to carts as a list of product variants, forming line

items. Variant is a concept to define the part of the product that contains the particular

characteristics of it, such as color or size, even having sometimes a different price. Therefore

every product has at least one variant, each one with different price or attributes.

Similarly, a cart can be associated with one of the shipping methods available in the system,

resulting in a shipping item, necessary to manage taxes. Both products and shipping methods

have a particular tax category, that can be variable for products and fixed in the case of

shipping. When one of these elements are added to the cart, a tax rate is assigned to the item

according to this tax category and the shipping address of the cart.

As mentioned above carts can have a shipping address, but can have as well a billing address.

A cart can belong to a registered customer, otherwise it is considered to have an anonymous

customer. Once the checkout is finished a cart becomes an order, with information about the

current payment, shipping and order status. If the customer was not anonymous, this order

 43	

will be associated with that customer, along with any of his previous orders. Every customer

can also have a list of addresses comprising the address book.

Figure 3.10: Class diagram of the system.

Products, addresses and shipping methods can change or disappear over time, but the orders

associated with them must stay in the system for an indefinite period of time, having exactly

	 44	

the original information. To solve this issue, cart is not related to the original instances, but to

instances that were created exclusively for this particular cart as a snapshot of those original

instances. While the current cart may optionally have associated information, this information

is mandatory in an order instance.

For simplicity, the conceptual model only accepts product and shipping prices that do not

include taxes. Allowing taxes in prices can be achieved by simply adding a boolean attribute

indicating whether the price in question has taxes included or not. So assuming that taxes are

not included, the net total price in the cart must be the sum of all the line item prices (i.e. the

quantity in each line item multiplied by the corresponding variant price) associated with it,

plus the price of the shipping method selected. In order to calculate the gross total price, taxes

must be added up to this resulting net price. Taxes are calculated multiplying the price of each

shipping or line item by its corresponding tax rate.

Lastly when the shipping address is set in the cart, all tax rates from shipping and line items

are calculated. Only those products that include a tax category corresponding to the zone (e.g.

state, country) of the shipping address can be part of the cart. Missing the tax category means

that the price cannot be calculated, thus the product is not available in that zone.

3.4 STATE	 DIAGRAMS	

There are two interesting state diagrams of this system, both related to the cart element. The

first diagram (Figure 3.11) describes how a cart instance changes until it becomes a complete

order. As the diagram below shows, the current cart is the initial state, which allows to change

its contents in multiple ways, such as adding or removing line items or selecting a shipping

address. Once the checkout is finished the cart becomes an order, being this an irreversible

change. From now on the order can only change from an open to a complete state, and vice

versa.

 45	

Figure 3.11: State diagram of the cart class.

The second diagram (Figure 3.12) describes the whole process of managing the shopping cart

and eventually purchasing these products in the checkout process. This diagram will become

especially useful when designing the checkout interface, as it clearly displays the requirements

of each step of the checkout process.

Figure 3.12: State diagram of the use case for purchasing products.

At the beginning of the process a new cart is created. Once the cart contains an item it can be

further updated, then at any moment the user can start or exit the checkout process. Initially

the checkout process requires a shipping address to display the shipping methods, then it

	 46	

requires a shipping method to display billing options. Of course this sequence can be skipped

if the cart has already these requirements.

When the user provides the billing information and finalizes the checkout, the system charges

the customer. The order is then created after the payment platform confirms that the payment

was successful. The moment the previous cart becomes an order, a new cart is created for the

customer in order to start the process once again.

 47	

4 DESIGN	
The software design describes the final details of a system before it is implemented. During the

design process decisions are taken in order to meet the gathered requirements, decisions that

are then applied to the system defined in the section Specification 3. Both physical and logical

designs of the system are described in detail in the current chapter (sections System Physical

Architecture 4.1 and System Logical Architecture 4.2), with an overview of how the resulting

product needs to be implemented. Every technology used is carefully justified and the major

characteristics are explained (section Description of Used Technologies 4.2.1).

The selection of a technology is a decisive process aimed to obtain the optimal results of a

project. An unwise decision can sometimes seriously affect the total resources needed or the

successful fulfillment of the proposed objectives. It is also important to design correctly the

structure of the system, for example identifying and applying the software patterns that can

solve existing problems in this particular project.

4.1 SYSTEM	 PHYSICAL	 ARCHITECTURE	

The designed system follows a client-server architecture with three tiers: the client, the web

application server and the data server tier. The data tier corresponds to the SPHERE.IO

backend, which offers a scalable cloud-based platform for the e-commerce data, having the

capability of scaling up as the demand increases. The application tier needs an enterprise

hosting solution, suitable for a company web-shop. In order to take advantage of the scalability

of the data tier, a good matching web hosting solution would be a cloud service with easy and

fast scalability, letting the shop grow as the number of customers grow, without any bottleneck.

At the time the system was designed there were only two cloud platforms with built in support

for deploying Play applications: Heroku and Cloudbees; although at the end of 2013 the

number of services has been doubled and the offer will probably continue to increase in the

future. Both services enable a simple automated deployment of the web application to the

platform, which will allow developers to have a working hosted application within minutes.

The specific hosting solution used for this project is irrelevant in terms of requirements, given

that it is only intended to host the test web-shop for SPHERE.IO, and both platforms promise

the same level of quality. In spite of that, it is wise to choose the most likely option the future

	 48	

developers will use, so that it is tested beforehand. While Cloudbees also offers integrated tools

to support development of Java projects, Heroku is a much popular alternative with support

for several programming languages and a wide range of plugins, thus becoming a preferable

option for the project. Unlike SPHERE.IO, Heroku is scalable only under demand.

Figure 4.1: Diagram of the physical architecture of the system.

Figure 4.1 illustrates the physical architecture of the system. As appears in the diagram, any

request to a Heroku deployed web application is first processed by one of the many platform’s

reverse proxies. The reverse proxy forwards the request to a HTTP cache layer, which returns

the page if it is cached, otherwise forwards the request to the corresponding web application

[Rob11].

The communication between the web application and the SPHERE.IO backend is always held

with HTTPS as a requirement of the e-commerce platform. Instead, the protocol of the

requests between the client and the web server are decision of the developer. For this project

 49	

the most reasonable option would be to use HTTPS whenever customer data is being

transferred. This is typically the case of the checkout process, as well as any time the customer

is logged in.

4.2 SYSTEM	 LOGICAL	 ARCHITECTURE	

The logical architecture of the system is designed after the MVC (Model-View-Controller)

architectural pattern, which is widely used in web applications design. Its use in this project is

required, since MVC is the architecture pattern followed by Play Framework, the web

framework on which SPHERE.IO Play SDK has been developed.

As the name suggests, the system logic is divided into three components: Model, View and

Controller. As a rough definition, the Model manages business logic and domain data, the

View is responsible of displaying the information, and the Controller is in charge of changing

Model and View accordingly to the user input.

The specific MVC design of the current system is shown in Figure 4.2 below. One of the

particularities of this design is that SPHERE.IO Play SDK is the main component of the Model,

since it controls all the domain data of the application, as well as most of the business logic.

Only some business rules are added to the Model in order to validate form input coming from

the user, before sending this data to SPHERE.IO Play SDK, as well as some external

functionalities such as email sending and online payment.

	 50	

Figure 4.2: Diagram of the logical architecture of the system between contexts.

When the request reaches the web application server, a routing system analyzes the HTTP

request and invokes a particular action of the corresponding controller. Then the controller

interprets all required input parameters coming from the user and requests the appropriate

changes to the model. In the model, SPHERE.IO Play SDK executes the request, which usually

involves communication with the SPHERE.IO backend in order to create, read, update or

delete (CRUD) some of the stored data.

Once the model finishes processing the request, the controller selects the appropriate template

and sends all information related to the current request to the view. With this information and

some other obtained directly from the model, the view generates a HTML document that is

sent back to the client via a HTTP response.

With this design, a new whole web page must be loaded from the server every time the user

wants to interact with the system. This is known as a “thin client” design, because all the logic

is located in the server, leaving the client with the only task of rendering the web page. In

comparison with that, a “fat client” hosts all the logic of the system; hence Controller, View

and Model are located on the client side, leaving in the server just those parts of the Model

responsible for the security and management of persistence.

 51	

A fat client allows the user to interact with the system while never reloading the web page, only

updating those specific components of the page that changed during the interaction. This

behavior enhances the user experience, because the user can continue interacting with the

system while operations are taking place. Information can also be presented in an incremental

way, so that the user can start interacting with some elements of the page while further

information is being retrieved. Another important fact is that traffic between the client and the

system is reduced to simple data with no presentation information, which speeds up the

communication with the system and decreases network use.

While a fat client solves some external design issues, it also creates several technical problems.

Since the web page is never reloading, the browser can no longer control the routing, caching

or history management of it. Therefore it is the responsibility of the system to replace those

functionalities that the browser is unable to perform.

These technical problems can be considered a too expensive price to pay in order to improve

the user experience. The amount of resources needed to implement a reliable system with a

pure fat client is several times higher than the equivalent with a thin client. Moreover the

complexity of the code is also very significant, which makes this design not suitable for a

template that must be understandable and easy to learn.

A mixed approach between a fat and a thin client can be the solution to improve the user

experience without giving up on the browser logic. The website can be divided into different

contexts that offer the user some common functionalities. Between contexts the web page is

fully reloaded, while operations within the contexts only update some parts of the page

[Con13]. By way of example, each product detail page is a different context, but adding a

product to the shopping cart only updates the mini-cart displayed, while the user never leaves

the page.

	 52	

Figure 4.3: Diagram of the logical architecture of the system within a context.

In order to facilitate understanding of the logical architecture of the system, its design has

been divided into two different diagrams: the one corresponding to the scenario between

contexts and the one displaying the scenario within a context. The former has already been

explained before, so the following explanation will focus on the differences and characteristics

between both scenarios.

Every time a new context is loaded or the user interacts with the web page in some way, an

event is fired by HTML DOM9. The controller on the client side can handle these events, in

which case it gathers the required information and requests the client-side model to validate

this information in order to avoid unnecessary calls to the server. If the validation was

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

9 Stands for HTML Document Object Model and is an object model and programming interface for
HTML, that defines all HTML elements as objects with associated properties, methods and events.

 53	

successful, the controller sends the corresponding HTTP request to the server, which is

analyzed by the routing system and handed over to a controller action the same way as before.

As well as before the controller requests the appropriate changes to the model, but this time

when the model finishes, the controller generates JSON data using the information related to

the current request coming from the model. This JSON data is sent back to the controller

located on the client, which in turn selects a template and sends this data to the view. With

that, the view generates a HTML fragment that uses to replace the corresponding component

on the web page.

4.2.1 DESCRIPTION	 OF	 USED	 TECHNOLOGIES	

The current project has several technologies that are fixed by the requirements, starting with

SPHERE.IO Play SDK. This SDK is designed to be used with Play Framework, and specifically

with the Java language version. Besides the framework has a significant influence on several

other server-side technologies as well, depending on the support it provides. On the other

hand, the payment platform needs to be carefully chosen, because it has inevitably a great

impact on the template reusability and the analysis of the platform.

All client-side technologies need to be selected, specially the templating solution in the view

component. Furthermore, given that maximizing developer experience (i.e. user experience

applied to developers) is one of the main requirements of the project, this system needs

technologies to help organizing and simplifying the code, particularly complex because of the

logical architecture design.

	 54	

Figure 4.4: Diagram of the technologies used in each logical component.

Figure 4.4 above illustrates the use of technologies in each component. As it shows, Play is the

web application framework, that uses the programming language Scala in the templates, and

Java in both model and controllers. In the model SPHERE.IO provides the main commerce

business logic of the system, while Optile supports the payment functionality. Additionally,

LESS and CoffeeScript are used server-side to generate CSS and JavaScript files, respectively.

The server is using HTML5 and JSON files to send information to the client. The logic of the

client side is supported by jQuery and the templating system is implemented with Handlebars.

A description of each chosen technology and the characteristics that influenced the decision-

making are detailed below.

 55	

4.2.1.1 SPHERE.IO	

Figure 4.5: SPHERE.IO official logo.

SPHERE.IO is a cloud-based commerce platform, aimed to unify e-commerce data in a single

place where any kind of external system can access this information. These external systems

are typically web-shops but can actually be any type of application, even those not related to e-

commerce. SPHERE.IO provides a platform to store and process all this data according to

commerce business rules, while at the same time offers several ways to access it.

The primary entry point to the backend is provided by a RESTful API, that offers an interface

for programmatic access to the data and associated functionality. The API services are using

JSON to communicate, always over HTTPS, with previous authorization using OAuth210.

Although it is actually the core of the platform, its direct use might be tedious for slightly

complex applications. That is the reason why it is recommended to use client libraries and

SDKs to communicate with the API, and so improving the development experience.

The SPHERE.IO team chose Java as the first programming language to have a client library

due to its versatility. This library is open source, as it is intended to be improved or used as a

reference to build other libraries by the developer community. In order to provide a better

environment to build websites, a SDK was built on top of the client library: the SPHERE.IO

Play SDK. It allowed to adapt the Java client library to the processes and structure of the Play

Framework.

A command-line interface (CLI) is also available, especially aimed for managing SPHERE.IO

user accounts and projects from a command-line shell. It is also necessary to use the CLI in

order to manipulate and query data in batches or for automated jobs, such as importing

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

10 OAuth 2.0 is a protocol for authentication and authorization.

	 56	

products into SPHERE.IO. As opposed to the API, the CLI is not using OAuth2 since all

operations are done under a user account.

So far all the tools for accessing and managing the backend data were focused on developers,

but merchants have also the possibility to view and update the data using a web application

called Merchant Center. Besides that, merchants can also export and import data between

SPHERE.IO and other external systems using elastic.io11 as an integration platform.

4.2.1.2 Optile	

Figure 4.6: Optile official logo.

Optile is a payment platform that allows to access a set of heterogeneous payment methods

and providers (e.g. credit cards, direct debit, PayPal) under a common interface. Once the

web-shop has the platform integrated, the set of payment options can be extended or reduced

without any extra implementation effort. Optile has five different main levels of integration:

redirected, hosted, half-native and native with and without PCI. These are implemented one

on top of the other without losing the previous implementation, that way one can go back to

lower levels very easily.

The first level is the universal redirect, where the customer is completely redirected to the

payment platform and there he enters his payment data. In the second level that form is

hosted in the system via a HTML frame or JavaScript. With the third level the system is in

charge of querying the platform about the payment options and display them, but once the

user selects one he is redirected to the platform to provide the payment data. The fourth level

displays both payment options and forms, taking care of submitting the forms to the platform.

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

11 A cloud-to-cloud integration platform that allows to connect data between popular services and tools.

 57	

The last level requires the system to be PCI compliant, because it gathers the payment data

and queries the platform to charge the customer with the provided data.

In opposite to traditional payment platforms, the successful integration of Optile will attest

that this web-shop supports a wide range of payment methods and providers, as well as

multiple different ways of integration. It is also a good choice for developers, who will have a

system with several online payment methods already implemented. Optile first integration can

become a little bit tedious, but its flexibility will be profitable for this project.

A valid alternative is Paymill, a popular payment solution which characteristics are completely

opposed to Optile: the integration is very fast and easy, but the payment providers offered are

limited to credit card and direct debit. Also the customer is never redirected to the payment

server, yet there is no need to be PCI compliant. The reason is that the payment form is never

submitted, but its data is sent to the payment server via a JavaScript library, returning a token

in exchange that the system can use to charge the customer from the server side. Nevertheless

the selected solution is Optile, because its implementation will benefit more the project than

Paymill.

4.2.1.3 Play	 Framework	

Figure 4.7: Play Framework official logo.

The use of Play Framework comes as a requirement to test the suitability of SPHERE.IO Play

SDK, which was build to create web-shops using this specific framework. Play is an open

source web application framework that was first released in 2007 and written in Java. In 2012

	 58	

a second release was announced, with a core completely rewritten in Scala12. This is precisely

the version that SPHERE.IO Play SDK works with.

This second version of Play uses Scala in its web template system. Projects in Play are built and

deployed with SBT, a build tool for Scala and Java projects, allowing developers to choose

between these two programming languages in order to implement the logic of their web

applications. Despite this, currently SPHERE.IO Play SDK is supported only in Java projects.

Play follows the MVC logical architectural pattern and is completely RESTful, which means

amongst other things that is stateless, unlike other Java frameworks. It was also designed to

support full asynchronous HTTP programming, to serve long-lived requests without tying up

other threads. Play also includes the Jackson library to manipulate JSON data and native

support for the software testing frameworks JUnit and Selenium. Moreover it also has a

compiler for CoffeeScript and LESS, two programming languages that compile into JavaScript

and CSS respectively.

4.2.1.4 CoffeeScript	

Figure 4.8: CoffeeScript official logo.

CoffeeScript is a programming language that compiles into JavaScript, adding syntactic

sugar 13 to greatly improve the developer experience. The new syntax provides a better

readability of the code and helps developers to write complex scripts much more easily. The

increased readability of the code goes along with a decreased number of lines compared to the

same code in JavaScript, around one third fewer lines. Another interesting feature is an

additional syntax to use JavaScript’s native prototyping as a class-based system, making

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

12 Scala is a object-functional programming language that runs on JVM and is compatible with Java
scripts.

13 Syntactic sugar refers to those syntactic elements introduced to make things easier to read or express.

 59	

object-oriented programming with JavaScript less complex, particularly when it comes to

inheritance.

Improving developer experience is a priority in this project, so CoffeeScript will contribute to

make client-side code easier to understand and modify. It will also be considerably helpful

with the development of the JavaScript code, which is pretty complex due to the logical design

of the system. Therefore its use is very appropriate, especially since a CoffeeScript compiler

comes included in Play Framework.

4.2.1.5 LESS	 CSS	

Figure 4.9: LESS CSS official logo.

Similarly to CoffeeScript, LESS is a language that compiles into CSS. But unlike CoffeeScript,

LESS does not modify the syntax of CSS, but only extends it with dynamic behavior, such as

variables, operations and functions. This makes LESS very easy to learn and converts a simple

CSS-based file into a powerful dynamic stylesheet.

LESS will allow to better organize the stylesheet of the web-shop, thus facilitating a swift

development, fast edition and easy understanding of its code. Although there are other CSS

preprocessors like the popular Sass, the provided functionalities are quite similar and Play

Framework already comes with a native support of the LESS compiler.

	 60	

4.2.1.6 jQuery	

Figure 4.10: jQuery official logo.

jQuery is a very powerful and fast JavaScript library that allows to easily do DOM scripting (i.e.

HTML elements manipulation and event handling), perform animations and simplify the use

of AJAX14 programming; altogether very necessary in this project. The main alternatives, such

as MooTools or YUI Library, are also very satisfactory solutions in the mentioned areas, with

no significant differences. The final choice of jQuery has been mainly determined by the fact

that it has the largest community amongst the options.

4.2.1.7 Handlebars.js	

Figure 4.11: handlebars.js logo.

Handlebars is the web template system used in this project to manage client-side templates. It

is a JavaScript implementation of the platform-independent Mustache project, that allows to

render input data in a template using a very clean syntax. Mustache has a so-called logic-less

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

14 AJAX is a technique used on the client side of a system to perform asynchronous operations, such as
communicating with a server, without keeping the client idle.

 61	

template syntax because there are no explicit control flow statements, all needed logic comes

exclusively from the data in the form of booleans, arrays or lambdas15.

On the contrary Handlebars templates are compiled, allowing to define helpers to reuse code

for presentation. It also comes with built-in helpers to control the default flow of the template,

such as loops or conditional statements. Handlebars comes also with better support for paths

to access the data. In short, this solution makes easier to implement templates than Mustache

while still keeping logic separated from presentation.

There is another project, Dust.js, with the same strong points as Handlebars and with useful

additional features like template composition. Apparently is a better choice but the project has

been abandoned for two years, maybe the reason why Handlebars has the largest community.

During the last year LinkedIn has been contributing actively to a separated Dust.js project that

the company is using for its website [Bas12]. Regardless it has been considered that

Handlebars is a safer option, since the additional features are not indispensable for this project.

4.2.2 EXTERNAL	 DESIGN	

The external design of a system requires the developer team to work closely with a designer

team. While the designers are in charge of creating the interface and aesthetic design, the

other external design areas of the system need a more technical approach. These areas consist

of the navigation and architecture design, as well as some parts of the content design. All these

aspects are covered by the User Experience (UX) Model explained here. It describes, in

particular, how the dynamic content will be structured and organized in different screens, and

how the user will navigate amongst those screens to reach a particular goal.

For this project, the designer team together with the developer team decided to implement a

layout structure and behavior inspired on different web-shops with innovative design, always

focusing on offering the user a smooth interaction with the system. Each screen is going to be

presented and described with wireframe prototypes, and then the storyboard sequence and

navigational paths will illustrate the connections between those screens.

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

15 Lambda is an anonymous function, meaning that it is not bound to any kind of identifier.

	 62	

4.2.2.1 Display	 products	

Product listing is the first functionality that a customer uses when arriving at the web-shop

and the one he will be using for longer periods of time, so it needs to have a comfortable way to

display and paginate the products. At best, traditional web-shops usually have very rigid ways

of listing products: pagination consists of an interface that allows to select the page and the

amount of products per page, while display options let the user select between a list or a grid

type of view.

So instead of showing a traditional shop catalog, it was considered a better option to let the

products flow freely through the web page, using all the width and height possible to show at

once the maximum amount of products to the user (Figure 4.12). On the other hand, the

pagination needs to be natural without losing already viewed products, so when the user

reaches the bottom of the page new products should appear automatically under the previous

ones.

The product thumbnails, besides price and name, will be showing a picture of the product and

the different color variants. The selected variant will be highlighted, and when hovering a

different color the thumbnail will be updated with that variant information, such as picture

and price, if different. The thumbnail will also include a button to add the selected product

variant to the shopping cart. In case the product has different sizes available, when hovering

the button a list of the different sizes will be shown, so that the user can select the desired size

he wants to add to the cart.

 63	

Figure 4.12: Wireframe prototype of the product listing screen, filtering by category.

When clicking on a product thumbnail the user will be redirected to the product detail of the

variant he had selected (Figure 4.13), if any. There he can select any other color variant, in

which case a new page will be loaded in order to update the URL, to let the user share the

product URL that points to this particular color. He can also select a different size, but in this

case the page is not reloading, as it was considered that the user does not have a need to share

the exact size. Below one can add the selected product variant to the cart, optionally indicating

the exact quantity.

	 64	

Figure 4.13: Wireframe prototype of the product detail screen.

The header contains a mini-cart and the login panel throughout the website. In any product

list or product detail page, the header also contains the categories and subcategories of the

shop to let the user filter products by category. The rest of the pages should contain a button to

allow the user go back to the last category or product he visited. When scrolling, the header is

always kept at the top of the page. Below the header, a breadcrumb is showing the current

category path.

Whenever a product is added to the cart, the mini-cart located on the header appears for a few

seconds, to let the customer know that the product was added successfully. At any time the

user can see again the contents of his shopping cart when hovering the cart button on the

header, that will be closed automatically when moving the cursor away from the mini-cart.

 65	

Below, Figure 4.14 and Figure 4.15 presents the storyboard sequence and the navigational

paths, respectively, of the screens just described. In the storyboard sequence it is shown how

the same interactions defined in the sequence diagrams of the specification are performed

through the different screens. This connections are also captured in the following navigational

paths diagram.

Figure 4.14: Storyboard sequence of the browse catalog top-level use case.

The resulting screens and navigational path diagram, besides the connections between screens,

shows the detailed content of each screen. The screen for listing products displays the selected

filtering options and contains a single form to change them. It also has the name of the current

category and the list of matching products, with their different variants for color and size. This

screen has an option to add a product to the cart, while the product detail page has a form to

let the user specify the quantity of items he wants to add. Both screens renders the category

tree so that the customer can list all products from a particular category at any moment.

	 66	

Figure 4.15: Screens and navigational paths of the browse catalog top-level use case.

4.2.2.2 Purchase	 products	

In order to start the checkout process, the user will first access the cart detail page by clicking

on the cart button. This page shows the items and their details, along with the possibility to

remove them or change the number of units of each item (Figure 4.16). Both actions are

performed without reloading the page, just updating the contents of the shopping cart and the

pricing details accordingly.

 67	

Figure 4.16: Wireframe prototype of the shopping cart detail screen.

The checkout page can be accessed from both mini-cart and cart detail page. The checkout

page is probably one of the least frequented pages of a web-shop, but it is for sure the most

important when it comes to user experience. The customer needs to feel he has control of the

flow and that he is able to quit at any time. The checkout needs to be a secure and robust

environment to the user.

Traditional web-shops usually reload when moving from one checkout step to the other, and it

can be sometimes difficult to change the data of a step that is not immediately before the active

one. In some cases it is also hard to know what changes are modifying the price or to review

what was entered on previous steps. All these issues are affecting negatively the feeling of

control the user has.

	 68	

Figure 4.17: Wireframe prototype of the checkout screen, shipping section.

For this design it was considered a good idea to display all the steps throughout the page as

sections that can be expanded, so that the user modifies them (see Figure 4.17). Once edited,

the section closes again and displays a summary with the selected options. Every change

automatically updates the pricing details that are always shown at the bottom of the page. As a

way of guiding the customer through the checkout process, the user can only open new

sections sequentially. Also when a form is still not available due to missing requirements (e.g.

shipping method cannot be displayed until shipping address is set) a message will be shown

instead until the requirements are met.

The checkout is divided into three steps: first a cart summary, to verify the items are correct;

second the shipping information, to determine where and how the goods are being delivered;

and third the billing information, to select the way the products are being paid. Both shipping

 69	

and billing sections have on the left side a form to set the postal address and on the right side

the shipping and payment options, respectively. When the customer is logged in, his address

book will appear on the right side, allowing him to select one of his addresses, which data will

then be copied to the corresponding address form.

Figure 4.18: Storyboard sequence of the checkout top-level use case.

The storyboard sequence from Figure 4.18 is showing how this checkout process is distributed

with the presented screens. Below in Figure 4.19, the screens and navigational paths diagram

expose that all screens have almost the same data, such as a set of line items and some pricing

details, while the checkout page and the order summary have also a billing and shipping

	 70	

address, all them with different multiplicities. The cart has forms to update line items, as many

as line items are in the cart. The checkout is also composed of different forms, one for each

element that the customer must fill, to allow saving each element individually.

Figure 4.19: Screens and navigational paths of the checkout top-level use case.

4.2.2.3 User	 management	

Before attempting to access his profile page, the user needs to identify himself to the system.

This is done in the login screen, a page that also contains a form to register into the system

(see Figure 4.20). In case the user forgot his password, the login form contains an option to

 71	

recover it, which renders a modal window where an email address is requested when the

option is clicked.

Figure 4.20: Wireframe prototype of the login screen.

Submitting this form will send an email to the user with a new URL, that redirects to the same

login page but with a different modal window to enter a new password. Once the password is

submitted the modal window closes, thus showing the login form again to allow the user enter

his new credentials.

	 72	

Figure 4.21: Wireframe prototype of the user profile screen, order list section.

The user profile is a single page with sections to change user data, password, manage the

address book and view the list of orders (see Figure 4.21). The latter consists of some stockable

sections, each one containing all information about a particular order, such as the products

purchased, the price details and all shipping and billing related information. When clicking on

a section, this one expands showing its contents, while all other sections remain closed.

 73	

Figure 4.22: Wireframe prototype of the user profile screen, address book section.

The address book is the only section with a slightly complex design. This component has a list

of existing addresses on the left and an empty form on the right to add a new address (Figure

4.22). When the user selects an address the form changes into edition mode, highlighting the

address and copying its data to the empty form. A button at the top allows the user to return

the form to its initial mode. Whenever the user adds, updates or removes an address, the list of

addresses is updated accordingly.

	 74	

Figure 4.23: Storyboard sequence of the check order top-level use case.

Again, the specification sequence diagram is adapted to the given design, illustrating the

different screens that participate in every interaction in the check order top-level use case (see

Figure 4.23). Figure 4.24 below shows the screens and navigational paths diagram, displaying

every screen component that belong to the customer profile screen, each with its own data and

forms.

 75	

Figure 4.24: Screens and navigational paths of the check order top-level use case.

4.2.3 INTERNAL	 DESIGN	

After representing the external design of the system, every diagram of the UX Model needs to

be adapted to the chosen technologies. An internal class and sequence diagram are resulting

from this process, showing the communication between each component. These diagrams are

	 76	

done with the Web Application Extension (WAE16) to UML, which allows to represent every

significant element of the web presentation layer with the UML modeling language.

In this project, the new class stereotypes of WAE enabled to represent server-side pages,

client-side pages, forms and script libraries; every class with its own attributes and methods.

There are also new association stereotypes to represent the different ways of communication

between elements. These can be, amongst others, a common link with parameters (link), a

form data submission (submit), a forwarding of the request to another element (forward), a

generation of HTML output (build) or an import of a JavaScript file (script).

Internal design diagrams can become quite complex when trying to represent all files that

participate in a use case, particularly when applying some design patterns. For this reason, in

this section only those diagrams that illustrate some special behavior or structure are

displayed, simplifying any characteristic that is later described in the following sections, such

as design patterns that apply to all use cases.

The internal class diagram in Figure 4.25 represents the whole browse catalog top-level use

case. It is worth noticing that usually a client page links first to a server page, which then

forwards to a server page with a “scala” extension. The first server page symbolizes a file in the

Controller component, while the second corresponds to a Scala template from the View, which

builds the client page.

An exception to this rule appears within contexts, when the client page asynchronously makes

a request to the server. The response is simple data, so no HTML output is built, and it is the

client page itself which updates its content with the information sent via forward parameters.

The methods that allow to update the information from the client page are always coming

from the JavaScript files, but generally are represented as methods from the client page. Only

exception appears when the same method is shared between two pages, in which case it is left

in the script for simplicity [Oli10].

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

16 See more information in [Con03].

 77	

Figure 4.25: Internal design class diagram of the browse catalog top-level use case.

So an example of this particular behavior can be observed when adding a product to the cart

from a product page or a product list page. The server page that updates the cart sends to the

mini cart component all the information related to the shopping cart contents. With this data,

	 78	

the JavaScript in charge of the cart updates only the mini cart component with the new

information.

Figure 4.26: Internal design sequence diagram of the pagination use case.

Another example is the functionality to load more products when scrolling to the bottom of the

page. In this case also the corresponding sequence diagram is presented (Figure 4.26) to

observe in detail how the components are behaving. First, the customer navigates to the

SelectCategory server page, which requests to SPHERE.IO the list of products for a particular

 79	

category. This server page forwards all necessary information to the corresponding view,

which creates the entire client page and sends it back to the customer.

Then when the customer scrolls to the bottom of the page, the load more products method is

called from the client page, which starts an asynchronous request to the server while the

control is given back to the customer. In this request the script itself communicates with the

server page ListProducts, which again makes a request to the model, this time asking for the

next page. The resulting data is sent to the client page, that renders and appends a new

Product List component with the received products.

Figure 4.27 below is the internal design class diagram for updating and removing line items

from the cart. The update functionality requires a form where the customer specifies the new

quantity, while removing is just a direct link. Both actions end up in the server page for

updating the cart, which forwards the new cart information to the cart page.

Figure 4.27: Internal design class diagram of the checkout top-level use case, detail of the cart update.

	 80	

Figure 4.28 below presents the internal sequence diagram corresponding to the update item in

cart use case, although the diagram corresponding to the deletion is very similar. The initial

process to access the client page is the same as any other use case: the customer navigates to

the server page, which forwards the information to the template, which builds the client page.

Figure 4.28: Internal design sequence diagram of the update item in cart use case.

Unlike the use case for removing line items, when updating them the customer is filling a form.

But the form does not have a submit button, instead it is automatically submitted when the

user changes the quantity value. That is the reason why after filling the form the page is calling

 81	

the update line item method, which asynchronously submits the form to the server page

UpdateCart.

As in any other background form submission in this project, the server page requests to the

model the corresponding change and the related information is forwarded to the initial client

page. From this page is called the update price details method, which in fact builds several

page components and replaces with them the corresponding elements displayed in the page.

The next two diagrams illustrate together the place order use case, being Figure 4.29 focused

on the checkout page, and Figure 4.30 on the order creation and display of a summary. The

first diagram has several forms, one for each element to be modified individually: the shipping

address, the shipping method, the billing address and finally the payment form.

The payment form does not appear in the diagram because its submission is not directed to

this system, but to the payment platform, as it will be described in the corresponding sequence

diagram. In any case, it would only consist of a submit button and a dynamic payment form

loaded with the data coming from Optile. As the actual content is unknown, it was considered

best to leave it out from the diagram.

All other forms from the diagram are submitting in the background as the previous example.

In every asynchronous call, the updated information regarding the current checkout state is

forwarded to the checkout page. On the other hand, some of the data needs to be requested

explicitly to the server, such as the list of shipping methods or the address book of a registered

customer, to avoid performing repeated unnecessary calls to the SPHERE.IO backend.

The second diagram follows a simple design: the moment the customer is redirected from the

payment platform back to the system with a successful payment, the server page creates the

order and forwards all its information to the template, which in turn creates a page with a

summary of the order to be displayed to the customer.

	 82	

Figure 4.29: Internal design class diagram of the checkout top-level use case, detail of the checkout process.

Figure 4.30: Internal design class diagram of the checkout top-level use case, detail of the order creation.

 83	

In contrast, the internal sequence diagram of the order creation is much more complex than

the class diagram (see Figure 4.31). Once the checkout form is filled and the customer decides

to submit it, the data is sent directly to the payment platform in order to avoid being PCI

compliant. The platform proceeds charging the customer and then redirects him to the system.

There the order is created and the order summary is displayed.

Figure 4.31: Internal design sequence diagram of the place order and payment use cases.

The payment platform redirects the customer to a different server page based on whether the

charging operation was successful. The order is therefore only created when the customer is

	 84	

redirected to the successful server page. But this system would easily lead to fraud, because the

user could try to access the page directly without being charged. To solve this issue, the order

is created but always with a pending payment status.

Figure 4.32: Internal design sequence diagram of the notification event in the payment use case.

The only possible way to update the payment status from the web-shop is to access the

NotifyPayment server page, which access will be limited to the payment platform (see Figure

4.32). Optile requires this notification request to update the payment status of a certain order,

something necessary when there is a change in the payment. This can easily happen when

using PayPal, because the payment needs to be approved first, therefore changing multiple

times of status during an undefined period of time.

4.2.4 DESIGN	 OF	 THE	 MODEL	 COMPONENT	

As described at the beginning of the section System Logical Architectural 4.2, the logic of the

model component is largely located in the SPHERE.IO Play SDK, which contains all the

commerce logic and allows to access all data stored in the e-commerce backend. The Sphere

class shown in the diagram below (Figure 4.33) is precisely the entry point for SPHERE.IO.

There is also a Payment class, a small library that will help to communicate with the Optile

API, that requires the messages to be sent using XML. As explained before (see section 4.2.1.2),

Optile needs to be implemented in an incremental way, reason why the library can effortless

cover all five levels of integration, thus allowing developers to easily switch to the level it fits

best for them.

 85	

The system also requires a class to send emails through any email system of preference. The

Mail class will cover this functionality, as long as the SMTP17 details of the email system are

provided. Given that Heroku does not provide an internal SMTP server, the deployed version

of this project will need to use an external server like Mailjet, a cloud emailing platform that

offers several features that may be of interest for potential clients.

Figure 4.33: Overview of the server-side Model component.

The Model component is also containing different helpers, where some particular logic of this

web-shop is located. The ControllerHelper is composed of methods that allows to abstract

some common logic that is used in the Controller component (i.e. logic to handle and display

messages and errors) or data coming from SPHERE.IO requiring some previous manipulation

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

17 SMTP stands for Simple Mail Transfer Protocol and is a standard for email transmission through the
Internet network.

	 86	

before it is used (i.e. get default category of a product or get address book of the current

customer).

On the other hand, the View Helper is a common design pattern that allows to separate logic

that otherwise needs to be integrated in the template, in this project applied with the

ViewHelper class. Although templates in Play Framework enables to use all the potential of

the programming language Scala, it is a good practice to keep complex logic out of the

templates. All this logic is then placed in these helper classes and called from the views as

necessary.

Lastly, there are a group of classes related to the web forms and the payment information

received by the system (see Figure 4.34). They handle all the server-side validation for every

parameter and may also provide helpful getters and setters to easily convert model data into

form data, and vice versa (e.g. an Address class instance would be converted into the

appropriate form fields street, city, country, etc.)

These form classes also host the methods generating the different content that must be sent

back to the client in relation to the result of the form submission. For example, when updating

a line item from the cart, a success response contains a message for the user and all the

shopping cart related information. This related information is generated with some other

methods located in the forms as well, that convert a model class instance into JSON data.

 87	

Figure 4.34: Overview of the Form package of the server-side Model component.

Due to the design of the system, the client side has also some important elements from the

Model component. Although the separation between Model and Controller is not properly

defined in the client side, mainly because of the simplicity of the business logic located there,

there are also some client-side classes that are dedicated mainly to processing and validation

purposes (see Figure 4.35).

	 88	

Figure 4.35: Overview of the client-side Model component.

On the one hand there are some classes in charge of different elements that are affected by

multiple operations throughout the web-shop, such as the mini cart and the pricing detail of a

cart. Aside from the methods to control the behavior of the elements, there are methods that

allow to replace the page component data with some JSON data fetched from the server. On

the other hand there is a Form class that gives support to all forms of the system, by validating,

displaying messages, marking invalid fields and managing AJAX calls when submitting.

4.2.5 DESIGN	 OF	 THE	 VIEW	 COMPONENT	

The View component is formed of several templates that are directly called by the Controller

component, as seen in the internal design diagrams of the system. All these templates are

making use of a main template file that provides a common HTML structure to all the pages,

such as the basic contents and imports of scripts and stylesheets. They achieve this by

importing the main template, following the design pattern called View Composition (Figure

4.36).

 89	

Figure 4.36: Overview of the composite views and main template of the server-side View component.

Just as in the previous example, the composite views are importing the contents of many other

simple views, like the helpers and forms displayed in Figure 4.37. Both types of templates are

usually offering components that are repeated throughout all client pages, although sometimes

the separation is only intended to extract large pieces of meaningful HTML content from the

composite views, as it is usually the case of the form templates. Unlike forms and helpers, mail

templates are not meant for view composition, but are directly used to generate the HTML

body of the emails sent by the system.

	 90	

Figure 4.37: Overview of the simple views of the server-side View component.

As explained earlier (see section 4.2.1.7), the system is using Handlebars templates on the

client side in order to generate updated content. Below all necessary templates for the system

are displayed (see Figure 4.38), which belong on the one hand to the mini cart and pricing

details components, and on the other hand to the use cases for product pagination, checkout

and address management.

 91	

Figure 4.38: Overview of the templates of the client-side View component.

4.2.6 DESIGN	 OF	 THE	 CONTROLLER	 COMPONENT	 	 	 	 	

Play Framework is applying the Front Controller and Application Controller design patterns to

split the Controller logic between the common logic, located in the Front Controller, and the

one specific for each request, called Application Controller. The Front Controller is mainly

formed by the RoutingSystem, which is in charge of receiving, analyzing and dispatching every

request to the appropriate application controller.

All application controllers of the system are shown in Figure 4.39, along with some classes that

are used as filters. These filters intercept the application controller invocation and allows to

execute code before and after the action is invoked. Filters are applied as a chain of filters to

any desired controller action, although for simplicity the diagram is not specifying which

particular actions are using the filter. A typical filter example is the Authorization class, that

verifies the customer is correctly identified to the system before accessing a restricted

functionality, otherwise it redirects the user to the login screen.

The CartNotEmpty filter checks the shopping cart has at least one line item, a requirement to

access certain areas such as the cart detail page or the checkout, otherwise it redirects to the

last visited browsing page. This last visited page is actually saved using the SaveContext filter,

so that only actions intercepted by this filter are saved as a return page. It was considered a

	 92	

good navigation behavior to save only pages related to products (i.e. product list and detail

screens), leaving out checkout and customer management pages.

Figure 4.39: Overview of the controllers and filters of the server-side Controller component.

Finally, the Form filter class enables the transparent handling of a form submission response,

independently of the technology used. This allows to switch from AJAX to a regular HTML

form without any changes, only disabling the form submission handling in JavaScript. The

filter helps developers to build both thin- and fat-client systems on top of the same Controller

and View components.

 93	

Figure 4.40 shows the files of the Controller component on the client side. These files are

dedicated to handle some of the events triggered by the user (e.g. form submission or page

scrolling) in a specific page or component. The same files host other presentation logic used by

the handlers, as well as methods to load new components from JSON data fetched from the

server.

Figure 4.40: Overview of the controllers of the client-side Controller component.

	 94	

5 IMPLEMENTATION	
The implementation section is describing the actual process followed to develop the web-shop

presented in the previous chapters. On the one hand is explained the set environment (section

Development Environment 5.1), such as the software to assist the implementation or the

stages of the development pipeline. On the other hand, some examples are detailed, along with

the corresponding pieces of code, where it is shown how every technology is applied in order to

solve some particular requirement (section Examples of Used Technologies 5.2).

5.1 DEVELOPMENT	 ENVIRONMENT	

The development pipeline consists of three stages: development, staging and production. The

development environment is a portable machine with OS X as operative system. The source

code is developed with the support of the Java IDE Intellij IDEA Community Edition, mainly

used for its debugging and code edition features. Google Chrome is the preferred web browser,

which has a built in developer tool, Chrome DevTools, highly useful to inspect HTML DOM

and CSS, as well as debugging JavaScript code.

Git is used as a revision control system. The most notable characteristic of Git is its distributed

system, in which each user has his own local repository where changes are committed. Only

when the developer deems it convenient, the local changes are then synchronized with the

remote repository, thus making them accessible to the whole team. The remote repository is

hosted by GitHub, with a very interesting social networking functionality useful for future

collaboration with the developer community.

In everyday’s development, Continuous Deployment technique is followed (see Figure 5.1).

Jenkins is used in the staging environment as a continuous deployment tool, triggering a

process to deploy the system every time changes are pushed to the remote repository. This

process consists of building and testing the system, running automated acceptance test and

deploying the project to production once staging is stable and ready. Whenever these steps fail

at some point, the process is stopped and feedback is registered in order to solve the problem.

For this to work, every new feature developed for the system should always go along with tests

validating that feature. Automating these tests on a staging system allows to flawlessly merge

small pieces of code with the mainline of the project at a rapid pace. The code merging also

 95	

triggers a review process with all developers involved, which results in higher code quality.

Besides, acceptance tests that verify the business logic can be run each time to ensure that the

project requirements are met.

Figure 5.1: Sequence diagram of the continuous delivery process.

5.2 EXAMPLES	 OF	 USED	 TECHNOLOGIES	

Next are presented three different examples of functionalities that allow to demonstrate how

technologies are used in the project. These examples have been selected according to the

importance of the process within the system or because it presented some challenges that are

worth being mentioned.

Code generation required some extra effort to guarantee the stability of the system when data

from the e-commerce backend is changed. Although the set of data used in the template has

some fixed characteristics, the system has been implemented to support any kind of data that

may be variable, such as product attributes, categories or currencies. The primary goal is to

avoid crashing the system or break some elemental functionality when data is changed.

	 96	

5.2.1 FORMS	

Any form submission requires the use of most of the technologies presented in this project,

making this functionality very appropriate to show examples of how the technologies are used.

In particular, the update item in cart use case is going to be explained, which design was

already detailed in the section Internal Design 4.2.3.

As mentioned before, form data can be either sent as a regular HTML form submission or via

an AJAX call, indistinctly. The server logic processes both requests the same way thanks to the

intercepting filter Form.java, which is in charge of returning the most convenient response to

the client. This system improves understandability and changeability of the code, as it will be

explained along this section.

The flowchart below (Figure 5.2) illustrates the process that takes place from the moment the

user submits the form until the server returns a response. As a guide, on the left side is

indicated the element or file where each action is executed in this particular use case, although

the process itself is the same for every use case with form submission. The source code

corresponding to some of these actions is presented in this section, along with some detailed

explanation.

 97	

Figure 5.2: Flowchart of the form submission process.

When the user is submitting a form, the HTML DOM triggers an event that is then captured by

a handler. The handler stops the regular form submission and sends the request via AJAX. If

the handler is not found, the form is submitted in a traditional way to the server via HTML

forms. Below is displayed the specific Coffeescript code that implements the handler for the

update item in cart use case (see Figure 5.3).

	 98	

Figure 5.3: Source code for handling form submission, in cart.coffee.

In this particular case the handler is not called after submission, but after changing the value

of the input field for the quantity. It is interesting to notice the use of the “on” jQuery method

to bind the event handler. As shown below there are three different ways to bind an event: the

first method is preferred and is actually a shortcut of the second one (see Figure 5.4). The

difference between these two and the last method lies in the object to which the event handler

is attached when the script is loaded.

 99	

Figure 5.4: Comparison of the different jQuery methods to bind an event handler to the “change” JavaScript event.

While the handler is directly attached to the quantity input in the first two options, in the latter

is attached to the HTML object identified by “cart”, specifying as a parameter the path of the

quantity input. This difference is important when a particular object that can trigger the event

may not exist at load time, which is the case of this form, since all the line items are being

loaded via AJAX after the page is loaded. In this case the event is attached to a stable parent

object, so that jQuery executes the handler for every descendant object that matches the path.

Submitting the form each time the input value is changed can lead to an excess of calls to the

server if the user changes the quantity value too often. This has been solved with a delayed

submission, implemented with the JavaScript event setTimeout, which is restarted every time

the user changes the input field (see Figure 5.5 for an example of CoffeeScript code based on

this functionality). This JavaScript timing event executes a function that is called after the

specified period of time, in this case sending the form data via AJAX and processing the

response accordingly.

Figure 5.5: Example of CoffeeScript code and the corresponding generated JavaScript after compilation.

In order to handle forms easily a new instance of the Form class is created, which processes all

data related to the form to allow quick access to the information (see Figure 5.6). The method

for sending the form data is simply calling the jQuery “ajax” function, additionally specifying

in the URL that the request is performed via AJAX. The method returns jqXHR, a

	 100	

XMLHttpRequest18 object with jQuery added information. A series of methods can be chained

to the jqXHR object, and executed once the server response has been received under certain

circumstances. It is the case of “done” for successful requests, “fail” for failures and “always”

for any condition; all of them used in this use case.

Figure 5.6: Source code for sending form data with AJAX, in lib-form.coffee.

Once the request reaches the server, the routing system built in Play Framework analyses the

incoming HTTP method and the request path to decide the action controller to be invoked. For

that matter, the system reads a file where every request pattern is linked with an action

controller (see Figure 5.7), and selects the first pattern that matches the request. In addition,

routing patterns can also have dynamic parts using the power of regular expressions.

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

18 API to send HTTP or HTTPS requests to a web server and receive information in response, from a
web browser scripting language such as JavaScript.

 101	

Figure 5.7: Extract of the Route file for cart management.

Figure 5.8 below shows the invoked controller action for this particular use case. Right before

the method definition one can notice the “With” annotation, which Play Framework provides

in order to attach a set of intercepting filters to an action. In this case the filter that intercepts

the call is the Form class, in charge of detecting, before the action in called, whether the

request from the client was made via AJAX.

The controller has a static attribute of an instance of Play’s native Form, wrapping the class

UpdateCart that handles incoming parameters to execute this action. When starting the call,

the request is bound to the form instance and is checked for missing or invalid data, in which

case errors are prepared for being displayed and the cart page is returned as a “bad request”

(i.e. with a 400 HTTP status code).

Figure 5.8: Source code for executing the action for updating the cart, in Carts.java

	 102	

When the request contains no errors, the SPHERE.IO Play SDK is called to update the cart,

setting the new quantity requested for a particular line item. Then the success messages are

prepared and the cart page is returned, this time with a 200 HTTP status code. The controller

code appears therefore simple and clean of all related presentation logic. This is particularly

important for this project, as controllers are the main place where SPHERE.IO Play SDK is

used to execute e-commerce logic. Here is where code is most required to be understandable.

As seen in Figure 5.9 below, the message method consists of saving on the one hand a success

message for the HTML result and, on the other hand, the JSON data with the same success

message and the necessary cart information. The source code is also showing how request

parameters are defined in a form, so that Play can bind and validate them. Some annotations

are provided in order to specify constraints to incoming parameters, such as declaring a value

required or accepting only a certain range. Any other type of pattern-based limitation can be

applied as well with regular expressions.

Figure 5.9: Source code for handling form submission and saving JSON result, in UpdateCart.java.

Once the action call finishes, the intercepting filter again takes control, receiving as a result of

the call a HTML file with a HTTP status code (see Figure 5.10). In some cases the result can

also be a URL redirection instead of a HTML file, like is the case of the login use case. On the

other hand, the filter has access as well to all JSON data that was stored earlier. So according

to the type of incoming request, the filter returns either the result coming from the action call

 103	

or a JSON response with the same HTTP status code. With JSON, if the result was a

redirection, the URL is extracted and sent to the client as part of the JSON data.

This system allows future developers to add new ways of handling form submissions without

affecting the core of the system. Disabling a method, such as AJAX submission, is as simple as

removing the event handler bound to the submit. Therefore the changeability of the code is not

affected by the complexity of the presentation logic meant to improve user experience.

Figure 5.10: Source code for returning corresponding result to the client, in FormHandler.java.

When the AJAX call started on the client receives the response from the server, the methods

chained to the jqXHR are then executed, depending on the HTTP status code obtained. In the

current use case, if the response was successful, the pricing details and the mini cart will be

replaced with new generated content, and each line item will be updated.

	 104	

Moreover, some common logic for successful form submissions is executed, which source code

is shown in detail below (see Figure 5.11). This common logic allows to handle properly the

response sent by the Form intercepting filter: when required, it forces to handle URL

redirections by executing a redirection with JavaScript, otherwise it updates automatically

some tagged data from the page and displays the success message.

Figure 5.11: Source code for handling successful form submissions, in lib-form.coffee.

As mentioned before, each line item on the page is updated with every successful submission.

Actually the only element from the line items that needs to be updated is the total line item

price (i.e. the product price multiplied by the new quantity), and this calculation could even be

performed on the client side. But all the required data is already included in the JSON data

nonetheless, needed to update the mini cart. Besides it is safer to always force a complete

update of the cart contents, in case the user changes the cart from another browser window.

 105	

Figure 5.12: Source code for replacing the cart contents, in cart.coffee.

The method displayed in Figure 5.12 is the one in charge of replacing the cart line items. To do

so, the Handlebars template that renders a single line item is obtained and compiled once

when the page is loaded. When the method is called, the current contents of the cart are

removed from the cart container and each line item is rendered with the template and then

appended to it.

The following two figures helps one understand how these templates are being rendered. The

first one corresponds to the template itself (Figure 5.13), with the Handlebars expressions

surrounded by curly brackets. When the expression starts with a hash symbol, the expression

corresponds to a helper to control the flow, like the looping statement “each” used here.

Otherwise it refers to a value extracted from the JSON data sent as parameter to the template.

	 106	

Figure 5.13: Simplified source code of the Handlebars template to render a cart line item, in carts.scala.html.

An extract of the JSON data is presented next (Figure 5.14), as it is received by the client after

the request. It should be noted that the replaceCart method is only sending to the template

one “item” object each time. It is easy then to understand the correspondence between the

JSON data and the expressions appearing in the template.

 107	

Figure 5.14: Example of JSON data received from the server, in update item in cart use case.

5.2.2 LIST	 PRODUCTS	

Product listing is another interesting feature in the implementation process. As explained in

the section Internal Design 4.2.3, pages of products are being loaded automatically when the

user is near the bottom of the page. This way customers are not fully aware of browsing

	 108	

through pages, from their point of view new products are constantly presented as they scroll

down the window of the browser, in what appears to be a large single page.

Figure 5.15 below illustrates the code of a function that decides when the page needs to load

more products and when a button to allow a quick return to the top of the page is shown. The

criteria to execute both actions depend on the vertical scrolling position of the display, so this

position needs to be checked regularly for changes. One option was to trigger the function

whenever the user scrolls, but this event is fired too often when scrolling and would affect

negatively the performance of the page. An alternative is to execute the function in a fixed

interval of time, that balances a smooth navigation with a fast loading before the user reaches

the bottom.

Figure 5.15: Source code to load more products and other actions related to page scrolling, in product-list.coffee.

The method to load more products calls the server via AJAX, requesting to the controller

action below a particular page of a list of products. The action starts building the product

search request that is sent to SPHERE.IO backend in order to get the desired list of products,

first requesting all products available. If a category slug19 was provided, the category object is

fetched from SPHERE.IO and is used to filter the initial list in the filterBy method, which

source code is presented next (Figure 5.16).

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

19 Slug is understood in this context as the human-readable keywords identifying a resource, as part of a
URL.

 109	

Figure 5.16: Source code to list products for a particular page and matching criteria, in Categories.java.

The search of products can be performed with either regular filters (e.g. all products within a

price range) or faceted searches, in which is returned, besides the list of filtered products, all

possible options for that attribute and the number of products that belong to each options (e.g.

a faceted search for the color attribute returns all possible colors for that search and, for each

color, the number of products with that color).

Figure 5.17: Source code to filter the list of products, in Categories.java.

SPHERE.IO Play SDK provides a set of filter and faceted search expressions to flexibly build

requests for products matching a certain criteria for a certain attribute. For example, above is

used a category filter expression to get all the products that are present in the set of categories

provided, or any of the descendent categories (see Figure 5.17). The SDK also offers some

classes to help implementing filters for the user interface, such as search boxes to find

	 110	

products. These classes have methods to parse the filter values from the URL query string and

build the product search request from those values easily. They can also provide some useful

data for specific filters, like the maximum and minimum prices of a product list for the price

filter.

Figure 5.18: Source code with the declaration of filters, in ProductFilters.java.

Figure 5.18 shows the code that declares two of the filters used in this project with the

corresponding keyword used in the URL query string. They are both included in the filter list

that is directly bound to the request in the Figure 5.17. The only piece missing to have a

functional product search is the template rendering the search form, shown below (Figure

5.19). The HTML input name and value are obtained from the fullTextSearch parameter

defined before, hence connecting the user filter interface with the SPHERE.IO filter request.

Figure 5.19: Template of the product search box, in searchBox.scala.html.

 111	

As can be observed, in a Scala template expressions to be evaluated with Scala are preceded by

a “@” sign. This way classes can be imported and used directly in the template like is the case

with the filter fullTextSearch. It is also interesting to notice how URLs are generated, using the

corresponding “reverse routing” method for the controller action that handles searches.

Figure 5.20: Source code to sort the list of products, in Categories.java.

Figure 5.21: Source code to paginate the list of products, in Categories.java.

Using the methods for sorting (Figure 5.20) and paging (Figure 5.21) is very simple, as the two

pieces of code above demonstrates. Sorting is achieved by specifying the correct sorting

criterion, provided via a ProductSort enumeration that contains all the possibilities currently

offered by the SDK. Pagination requires the desired page and the amount of products per page.

Once the request is completely built, the list of products is fetched from the SPHERE.IO

backend and sent to the client as JSON data.

	 112	

Figure 5.22: Source code to append a page of products to the list, in product-list.coffee.

When the response is received on the client side, the method appendProducts shown above

(Figure 5.22) is called to attach the new data to the previous list and update the information

about the next page. In order to achieve the product grid layout described in the section

External Design 4.2.2, the JavaScript library Masonry has been used. This library takes all

available space of the parent container and places each product thumbnail in optimal position,

forming a condensed grid where elements perfectly fit together. A small library called

imagesLoaded is also used to fire an event when all the images of the products have been fully

loaded, so that Masonry can use the correct final size of each thumbnail.

Thumbnails are showing at first a certain product variant, but they should also allow to see

and buy a different variant directly from the thumbnail. This functionality is only enabled for

 113	

color and size attributes variations, as more attributes would saturate the design. A list of

variants is received from the server, with matching attributes but different color. The different

variants are displayed as small pictures, and when the user hovers the cursor on these pictures

the thumbnail variant changes to the hovered one, replacing all variant related information.

Figure 5.23: Source code of the Handlebars template to display matching color variants, in productList.scala.html.

As shown in the Handlebars template presented in Figure 5.23, there are several data that can

change amongst variants: image, price, available sizes and, of course, the variant identifier. In

order to determine the image and sizes for each variant, Handlebars helpers have been used.

The helper to generate the image is displayed in Figure 5.24, which sets as the new context a

specific size of the picture, depending on whether the product is featured or not.

Figure 5.24: Handlebars helper to get correct variant image according to product characteristics.

When a product variant has different sizes, a list of sizes is shown to the customer when he

hovers on the “quick buy” button, to allow him select the correct size. Next is shown the style

	 114	

applied to the list of sizes, as an example of the use of LESS to generate CSS stylesheets (see

Figure 5.25). The example uses the most important features of LESS: variables, here used for

colors; functions, used to apply the CSS border-radius property cross-browser20; mixins, to

remove the default style of the list; and nested rules, to better specify inheritance.

Figure 5.25: Example of LESS stylesheet on the left and the corresponding generated CSS stylesheet on the right.

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

20 Cross-browser refers to the ability of a web application feature to work correctly in all browsers,
regardless of whether they provide the required functionality.

 115	

5.2.3 PAYMENT	

A notable initial effort was required in order to integrate Optile in a flexible way. But despite of

the fact that the payment platform was in the end correctly integrated in the system during the

implementation process, the final result was not entirely satisfactory and was replaced for the

second option: Paymill. The problem resided on a certain incompatibility in the checkout

process designed for the SPHERE.IO Play SDK and the workflow expected by Optile.

The Optile workflow was already explained (see section 4.2.1.2), but the most characteristic

behavior to remember is that it uses notification requests in order to keep the payment state of

an order updated. Each notification needs to be handled, otherwise the SPHERE.IO backend

may have wrong payment information.

On the other hand, the SPHERE.IO Play SDK was initially designed so that the creation of an

order cannot be reversed. This means that once the order is created the customer’s cart does

not longer exist, so the only possible moment to create the order is right after the payment has

succeed. But then the order creation process can still fail under some expected escenarios21

and charge the customer without actually buying the items. The source code below shows the

required workflow by SPHERE.IO Play SDK in order to create an order, and how the creation

needs to be stopped if the customer changes anything from the cart (Figure 5.26).

Figure 5.26: Source code example to create an order with SPHERE.IO Play SDK.

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

21 When the customer is filling his billing information and opens another browser window to modify the
cart, if he did not reload the checkout page before submitting the checkout form, the order will fail
because the cart submitted does not match the current cart.

	 116	

Of course a payment cancellation can always be requested in failure cases, the customer is

usually already charged but then he is refunded, depending on the payment provider. But this

behavior was considered to be too uncomfortable for the customer, especially because of the

uncertainty of a scenario that should be perfectly controlled. Besides, there were other minor

issues adding more instability to the process, so it was not considered a good solution for the

implementation of the template until the issues were solved.

Paymill, despite of accepting only direct debit and credit cards as payment methods, allows on

the other hand to keep control of the workflow along the process, thus allowing to charge the

customer only when the order can be created. This is achieved by separating the submission of

the payment data from the proper charging to the customer.

Figure 5.27: Source code to send payment data to Paymill and return a token, in Paymill.js.

 117	

The payment data is sent via JavaScript to the platform, using a library provided by Paymill.

This request is executed the moment the customer submits the payment form, and returns a

token in response. The token is attached to the checkout form, so when the customer submits

the final form this token is sent to the server. Figure 5.27 shows the code snippet that is part of

the class that was implemented to help validating the payment form and sending the data.

Once the checkout form submission reaches the server, the system has complete control over

the order creation and payment execution, as the next code shows (Figure 5.28). First the cart

is checked for any changes, then the customer is charged and, only when it is successful, the

order is created. This process is robust and ensures that no customer is charged without the

order being created.

Figure 5.28: Source code to execute payment and create order, in Checkouts.java.

	 118	

But this system lacks flexibility, because it expects that the payment is executed immediately

in a single step, which result cannot be changed. Unfortunately some payment providers, such

as PayPal, are first requested and then the payment is executed at some moment in the future.

Therefore Paymill is not a solution strong enough for this template either, but at least it offers

a robust solution until SPHERE.IO and Optile evolve to become fully compatible.

 119	

6 SYSTEM	 TESTS	
This section describes all kind of tests that have been run against the system, both periodical

and one-time tests. As explained earlier (see section 5.1), every time a change is merged with

the remote repository, a series of tests are executed to verify those changes did not introduce

any error that may prevent the system from meeting the agreed requirements. This system

triggers only those tests that allow to check the functional requirements of the system, called

functional tests, but any other type of automated test can be executed as well to check, for

example, that the response time of the system is within the agreed limit.

After functional testing is explained (section Functional Tests 6.1), the next section covers the

usability tests used to check those non-functional requirements related to user and developer

experience (section Usability Tests 6.2). And although it was not explicitly a requirement, it

has been considered important to run some performance tests in order to detect and possibly

fix those issues that may slow down the application (section Performance Tests 6.3).

The rest of requirements do not need any special setup to be checked. For example, in order to

check the stability of the system, it is enough to change the SPHERE.IO project to another

project with different structure of data and see if it meets the specified requirement (see list in

Appendix B.2).

6.1 FUNCTIONAL	 TESTS	

As explained in the section Development Environment 5.1, this project follows a continuous

deployment process which requires functional tests to be implemented along with the feature,

to ensure the functionality is working correctly every time a change is merged with the project.

A major difficulty of developing functional tests in this project is that they should work with

any set of commerce data, so that when developers switch from the test web-shop data to their

own, the tests are still functional.

Tests must therefore be independent from the backend data used. The best way to achieve this

is mocking the Sphere class that handles the requests and responses from the SPHERE.IO

backend, to simulate the call to the backend getting only controlled information as response.

This means that during the tests execution, all objects returned by the class whenever a call to

the backend is theoretically executed are actually objects constructed by the testing code.

	 120	

Not only this solution allows to execute the tests independently of the system’s environment,

but moreover performance is improved significantly since no remote resources are used, which

hastens the feedback provided by the continuous development process. Also, mocking allows

to easily test any situation that may prove complicated otherwise, like provoking certain errors

from the backend (e.g. a “500 Internal Server Error” HTTP status code).

At the moment this project was developed there was no support for mocking coming from the

SPHERE.IO Play SDK to ease this process. Besides the initial design was not contemplating

the possible need to manipulate the response, so mostly all classes had private constructors,

thus forcing the necessity to mock practically all SDK classes involved in the system and stub

every method before any test could actually be executed. In most cases, SDK logic that was

intended to work directly had to be simulated first in order to mock other classes, sometimes

changing excessively the original behavior of the SDK.

Not only this process proved to be notably complex, but also testing code became messy and at

some point it was even difficult to be sure that the tests were really meaningful. So in the end

only the classes related to browsing products were completely mocked, ensuring at least some

example tests to include with the template until a better approach is discussed and provided

with the SPHERE.IO Play SDK. One of the best solutions for the developers would be to offer

some methods to directly mock the response from the server, without requiring the developer

to understand the internal structure of the SDK.

The selected technology to mock Java code was Mockito, a very popular testing framework due

to the simplicity of the resulting code, yet a complete solution like any of the alternatives.

Figure 6.1 presents an extract of the source code in charge of mocking the search request for

products. In this example, the only element that is actually interesting to modify amongst tests

is the list of products returned, all other stubbed methods and mocked objects are just adding

unnecessary complexity to the code.

 121	

Figure 6.1: Source code to mock the product search request, in SphereTestable.java.

The functional tests are designed after the descriptions given for the functional requirements

of the system, which are detailed in the Appendix B.1. These aspects should be eventually

covered by the set of unit, integration and acceptance tests as a whole; always taking into

consideration that unit tests are using fewer resources than the others, in opposition to

acceptance tests, which are the most resource-intensive of all. This means that unit testing will

be preferably used to test everything that can be possibly covered by it, while acceptance tests

will be left for giving feedback about the proper functioning of the system to the future clients.

6.1.1 UNIT	 TESTS	

Unit tests are focused on checking the correct behavior of individual components when they

are isolated from the rest of the system. JUnit is the testing framework provided by Play to

implement unit tests for the web application, allowing testing each route in the routing system,

each controller action and each template individually.

Template testing is useful to check the correct behavior of some common elements, such as the

mini-cart or the breadcrumb generation shown in Figure 6.2. To assert on HTML content

returned by the implementation, the library Jsoup is used to find and extract the data in a

simple and clean way thanks to DOM traversal and CSS selectors.

	 122	

Figure 6.2: Source code to test the breadcrumb view, in ViewsTest.java.

The routing system is tested by verifying that all the required routes are found by the system,

while the controller actions are tested setting up different requests and checking the response

is as expected. The test should analyze the HTTP status code, content type and charset of the

response are correct, as well as to verify that the content is well formed and displays correct

information.

In Figure 6.3 below it is shown how the Sphere class is mocked with certain products to be

returned by the product request. Then the action is called with a category slug and requesting

the second page. The type of result is verified and its content, in this case JSON data, is then

analyzed to check the required products are sent. After that, the search request prepared for

the backend is examined with Mockito, verifying that the correct filters were applied and the

second page was actually requested before mocking the response. Unfortunately the former

case is still not possible because the FilterExpression is lacking an overridden equals method

to compare them, so currently the test would always fail.

 123	

Figure 6.3: Source code to test the product list returned by the action controller, in CategoriesTest.java.

6.1.2 INTEGRATION	 TESTS	

Integration tests are in charge of checking that the previously tested components are correctly

working together. To prove that, Play Framework provides Selenium WebDriver to start a test

browser and FluentLenium to easily write tests with it, wrapping the Selenium WebDriver in a

convenient API with a fluent interface. These tests will validate the proper functioning of the

components when they are integrated in the web application.

Unlike unit testing, here the tests only need to verify that the response is the expected when an

action is requested. The content is not checked, as this should be already verified by the unit

tests. Figure 6.4 below shows an example of how the test browser navigates to the home page

and there clicks on a category, which displays the category page. In this case the class used in

the body element, as well as the title, are used to check whether the response is correct, but

other ways are valid as well, such as checking the URL. The navigation related logic have been

separated from the testing logic, so that tests are better isolated and the navigation code is

reused.

	 124	

Figure 6.4: Source code of some integration tests, in IntegrationTest.java.

6.1.3 ACCEPTANCE	 TESTS	

Acceptance tests are ensuring that the main requirements agreed for the project are met in the

current version. So they need to prove that it is possible for a user to achieve at least the main

goals for which he is using the web application, reason why they will be covering the top-level

use cases described in the early section Use Case Model 3.1. Given that acceptance tests are

guaranteeing the correctness of the current version, it is imperative to use real data instead of

mocking it.

These type of tests need to be supervised by the client of the product, usually non-technical

people. This makes it a requirement to be easy to understand them by using a plain language

to define the rules. Cucumber is used in this project as a tool to write these acceptance tests,

allowing to write the rules in plain text (see Figure 6.5), while describing the technical details

of each rule in Ruby in a separated file.

 125	

Figure 6.5: Example of rules to verify that browsing catalog can be achieved, in browseCatalog.feature.

Figure 6.6 shows how the rules are implemented for registering a new customer account. The

query language XPath is used to select the different HTML elements in order to click on them,

change their value or verify their existence. Error messages are always specified along with

every action, so it becomes easy for non-technical people to identify any issue.

Figure 6.6: Example of the rules implementation for registering a new customer, in steps.rb.

6.2 USABILITY	 TESTS	

With iterative methodologies, usability tests would be ideally performed by the end of the

sprint, so that tasks for fixing any issue resulting from the test output can be assigned to the

next sprint. This iteration is repeated until the reports from the tests are satisfactory, meaning

that the user story is concluded.

But this system may not be convenient for most of the projects if the tests are meant to be too

strict. Usually during the Sprint Review Meeting, when a member of the team is showing the

tasks he managed to accomplish, the other members are participating in the demonstration by

	 126	

evaluating and giving feedback, so that the feature can be improved further. This process

already acts like an informal usability test every sprint.

Formal usability tests are still necessary in order to receive feedback from some controlled and

prepared environments, giving a more reliable source of information. Given that this project

needed to reach some usability requirements focused both on developers and end users, it was

necessary to set up two different scenarios separately.

On the one hand, an API hackathon about e-commerce was organized in April 2013, called

Berlin ECOMMHACK I/O. This hackathon consisted of developing an application connecting

two or more of the participant platforms, amongst which was SPHERE.IO. Contestants could

use the web-shop of the current project as a template to implement their applications or just as

documentation of the SPHERE.IO Play SDK. As a result, two of the winning projects were

based on the web-shop, developed by teams of four members average in within twelve hours.

Around September, a smaller hackathon of six hours was held internally, only for the staff of

commercetools GmbH. About five teams used the web-shop as a template, achieving notable

results as well. Both events and the feedback received allowed to improve the template, but

also to confirm that the understability, learnability and changeability requirements expected

for the current project were safely met.

On the other hand, a test was designed in order to evaluate the operability and likeability of

the template by the users. Five people were selected for this test [Nie12], all with different

profiles of online shopping experience and computer expertise. Their task consisted first of

registering a new customer account and adding a postal address to their address book. After

that, they were told to add two specific products to the cart, which later they were asked to

remove or modify in the cart. Next, they had to purchase the products, using the address they

previously entered.

Besides measuring the total time it took them to actually buy the items, it is most important to

observe their reactions and ask them about their first thoughts regarding what they expect

when they perform an operation. This will give an insight of the most common usability issues

and the best way to solve them.

The results were very satisfactory and provided some issues with clear solutions. For example,

most of them had problems with the lack of loading animations when AJAX is performing a

request in the background, which is something that has repeatedly been postponed, although

 127	

it is practically implemented since the beginning. Some evident examples they gave were the

poor feedback the system shows when adding an address or selecting one during the checkout

process.

In contrast, they apparently did not have any trouble with browsing products and navigating

throughout the web-shop. Especially giving very positive feedback about pagination and the

checkout process, which were the main concerns of the design process. Also their average time

required for purchasing an item for the first time was considerably low, around 1:50 minutes.

In addition, they liked the whole look and feel of the web-shop, although some reported

missing some visual aid to understand the behavior of certain elements, such as the category

navigation.

In short, participants considered it very easy to operate, which can be translated as a success of

the logical design of the system. The negative evaluation responds to missing features rather

than bad design or implementation. The animation on AJAX operations was already planned

and the implementation was always taking into account this issue, although it had never

enough priority to be implemented. Also the category navigation menu is missing feedback

from a designer, so it still has a very basic design, enough to be operative.

6.3 PERFORMANCE	 TESTS	

Constantly during the project development, the tool Chrome DevTools was used to check the

performance of the web-shop, paying special attention to repeated calls or some unexpected

behavior resulting from a flaw in the software. This way it was possible to detect a bug in the

endless scroll for the product list, which executed repeated calls to the web application server

even when there were no more product available. Also some methods with high response times

could be fine-tuned with this tool.

Another tool from Google, PageSpeed Insights, is an online performance test that analyzes the

web page looking for elements that may affect its fast execution, such as resources that may

unnecessary block the page. This test suggested to use minified versions of the JavaScript and

CSS files, which was an easy task thanks to Play Framework built-in support.

It also reported that there were too many JavaScript and CSS files being fetched before the

page could even be loaded, which meant that the browser had to wait until the last file was

fetched in order to allow the user take control of it. It was necessary to find a solution for this,

	 128	

because in order to make the system’s CoffeeScript more understandable for the developer, the

code was split into several files and classes, which in some cases raised the amount of files

fetched to more than ten.

The best way to face this issue was to use RequireJS, an asynchronously module and file loader

for JavaScript files, that allowed to fetch a JavaScript file in the background first, and then

load all its dependencies in parallel. Although it required a bit of effort to integrate with the

current code, the results were very satisfactory. It is also worth mentioning that almost all

third-party client-side libraries are being fetched from CDNJS, a community-driven CDN22 for

web libraries that allows to decrease the loading time considerably.

A load test was also performed against the system to check the maximum operating capacity

and detect bottlenecks. As explained in the Physical Design section, both the web application

and the data tier are scalable systems, although Heroku needs to be scaled up under demand.

Therefore the bottleneck should theoretically be located in the web application tier. The test

was executed with Blitz, a very interesting tool that allows to easily integrate load testing in the

Continuous Integration process, although in this case only the online tool provided in their

website is going to be used for these one-time tests.

A first test with a duration of one minute, going from 1 to 250 concurrent users, will serve to

test the regular configuration of the system, which consists of a single processing unit with

512MB of memory RAM in Heroku. After repeating the same test severals time to check for

anomalies, the average results show how the web application has no problems with light pages

(e.g. a product detail page), although the response time is not stable, which suggests that

might have problems with a bigger amount of users (see Figure 6.7).

On the other hand, heavier pages like any product list, have grave problems with memory,

which starts failing with around 170 concurrent users, and then Heroku keeps serving a “503

Service Unavailable” error. This is more prominent as the number of displayed products

increases, being the best example the home page where all products are listed. In this case, the

memory fails before reaching 100 users.

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

22 CDN stands for Content Management Network and it is a large distributed system of servers deployed
in multiple data centers across the Internet, allowing to server content with high availability and
performance.

 129	

Figure 6.7: Load test results of 1 minute with 250 users against product detail page with 1 processing unit.

This problem has two solutions: either the number of processing units is increased, so the load

can be distributed and units can be replaced when they fail, or the unit can be upgraded to

have double memory. If the number of processing units is increased by one, having then two

units, then the product detail page shows stable responses and the product list page with few

products has no more memory problems, but the home page is still having trouble, this time at

170 concurrent users (see Figure 6.8).

	 130	

Figure 6.8: Load test results of 1 minute with 250 users against home page with 2 processing units.

Increasing up to four processing units solves the problem, but still 10% of the responses end

up exceeding 1.000 milliseconds. This memory issue may be related to a memory leak from

Play Framework23 or from the same application, but in any case probably has a solution that

should be found in order to increase the performance of the system.

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

23 See unresolved issue for more information: http://stackoverflow.com/questions/19400493/after-
updating-to-play-2-2-i-get-memory-quota-exceeded-errors-on-heroku

 131	

Figure 6.9: Load test results of 3 minutes with 1.000 users against category page with 4 processing units.

Lastly, a load of 1.000 concurrent users during 3 minutes was tested against the light product

list page with these four processing units (see Figure 6.9). The results are completely

satisfactory, with very stable responses except for one timeout period after the first minute,

which could be related to Heroku reacting to the load or simply isolated network problems.

Here the average response time was of 58 milliseconds, which is more or less the average of

the whole web-shop when no bigger issues are affecting the performance.

	 132	

7 ACTUAL	 PLANNING	 AND	 ECONOMICAL	 ANALYSIS	
Now that every step of the project has been described, it is time to review the actual planning

resulting from the final developing process. Analysing the deviation and the reasons behind it

will help to better plan similar projects in the future (section Deviation from Initial Timeline

7.1). At the same time, knowing the total amount of hours invested allows to estimate the total

cost of the project (section Economical Valuation 7.2), which helps as well for others projects,

especially the development of a SPHERE.IO based web-shop that needs to be budgeted to be

presented to the client.

7.1 DEVIATION	 FROM	 INITIAL	 TIMELINE	

As it was already contemplated as a possibility during the risk analysis, it was necessary to

sacrifice the constraint of time24 of the project. The 725 total hours of work initially planned

became 1.361 hours; resulting from an increase of 60 hours in implementation and 576 hours

in documentation. Also, the project was postponed some months in order to finish some other

projects that required a higher priority in the moment.

Moreover, several times during implementation, some malfunction or missing functionality of

SPHERE.IO Play SDK had to be reported and in some cases a workaround had to be applied

until a fix was provided, therefore delaying the current development. But it was necessary just

one extra sprint of two weeks to deliver an acceptable product that allowed to fulfill the

objectives of the project. In fact, the main responsible of the large deviation between estimated

and actual planning was the drawing up of the documentation, which was expected to be two

months shorter. Taking a closer look at the planning (see Figure 6.10), there are three sections

that were considerably underestimated: Introduction, Design and Implementation.

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

24 A project is considered to have three constraints (scope, time and cost) that cannot be optimized at
the same time, at least one constraint will inevitably suffer.

 133	

Figure 6.10: Gantt diagram of the actual timeline of the project.

The main reason is that the amount of valuable information of the project was considered to

be less extensive than it actually was, especially related to technical aspects of the system. The

same can be applied to the Introduction, because initially it was not contemplated the need of

explaining the definition and the history of e-commerce, but eventually it was decided best to

give some solid background before SPHERE.IO could be evaluated.

The scope was mostly kept the same, but many small user stories were left out of the current

product due to its low priority, while others had to be released as a slimmed down version of

the original feature, mainly because of SPHERE.IO Play SDK deficiencies that could not be

fixed in time. Most of these cases were already mentioned, like the issues with the payment

platform or the functional tests.

	 134	

Product filtering and sorting was also affected, but in this case due to missing external design.

While the necessary logic was fully implemented, the user interface component was never

included in the template. Despite of that, the objectives are still covered since the developer

can use the code to learn how to filter products or build his own product sorting reusing the

code.

7.2 ECONOMIC	 VALUATION	

Once the total amount of working hours is known, it can be estimated the total cost of the

project. This calculation consists of adding up the costs of human resources, equipment and

facilities used during the development process. Below are presented two tables with detailed

information about the human resources used and the total cost of the project.

All the tasks described in this document and the document itself were developed by the same

person during an internship at the company commercetools GmbH. The contract established a

gross monthly salary of 1.200 €, for forty hours a week and twenty days of leave. Adding up

20%25 of the employee’s gross salary as social security contributions, results in the 17.280 €

yearly cost for the company. Considering 232 working days during 201326, this resource costed

around 9,31 €/hour, that applied to 1.361 hours of work ends up in 12.671 € cost for the whole

project (see Table 1).

Although other IT professionals collaborated with some minor changes for the template, none

of their tasks are covered by this particular project, reason why they are not considered in the

economic valuation. On the other hand, the designer team was composed by a single freelance

worker, but the collaboration was terminated before the project was finished, thus lasting less

than one week. Also usability tests were not contemplated in the company’s budget, therefore

the testers were picked from the social environment and received no monetary compensation.

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

25 The employee worked at the office located in Berlin, Germany, where in 2013 social security
contributions of companies were around 20%.

26 Resulting from 252 working days in Berlin for 2013 minus 20 days of leave.

 135	

Resource Yearly cost Hourly cost Hours Total cost

Intern 17.280 €/year 9,31 €/hour 1.361 hours 12.671 €

Designer 45 €/hour 24 hours 1.080 €

Total 13.751 €

Table 1: Detail of the human resources costs of the project.

Facilities costs, such as supplies and office rental, are shared with multiple teams and projects

in the company, so their cost is not relevant for the project. As for the equipment, a 15-inch

MacBook Pro laptop was used, with a processor Intel Core i7 of 2.2 GHz and 8GB of DDR3

memory, from the late 2011. The price is not known but it is guessed to have costed around

2.000 €. It was used for this project during a period of 16 months, although it was shared with

other projects and therefore only 75% of the time is counted, making a total of one year.

Considering that laptops are paid along three years27 and therefore this laptop is still being

paid, its cost for this project is around 667 €.

All platforms used in the project (i.e. Heroku, Paymill, Mailjet, SPHERE.IO) are permanently

in trial or free version, with no associated costs. AgileZen, used for project management, was a

free beta version during the development of the project. GitHub, the project hosting service, is

free of charge for projects in public repositories, which is the case of this particular project. All

other technologies and software were used under free licenses, most of them belonging to open

source projects.

The total cost is then calculated only with the human resources and the computer cost, which

results in 14.418 € (see Table 2). This number is of course just an estimation, but it is enough

to give an idea of how much this project costed, especially interesting since it is not a project

for a customer and thus it is not supposed to produce any direct revenue.

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

27 In Germany, annual depreciation of computers is of 33,3% in 2013.

	 136	

Resource Total Cost

Human 13.751 €

Equipment 667 €

Total 14.418 €

Table 2: Detail of the total cost of the project.

 137	

8 CONCLUSION	
E-commerce needed the web to be born in order to start being a profitable business. Nobody

knows for sure what other technologies may appear to change the e-commerce world we know

today, but running businesses should get ready for them beforehand. SaaS product model is an

easy-to-use but powerful e-commerce solution, although it is really slow reacting to changes

and it needs to be designed for a particular business model and technologies.

The new e-commerce PaaS model not only allows to give a fast answer to new e-commerce

scenarios, but also gives flexibility to developers to choose their programming language and

framework of preference. Furthermore, it can still emulate mostly all advantages of software

solutions by distributing open source templates, like the one developed in the current project,

that can be easily deployed to a cloud platform.

The future of e-commerce relies on PaaS solutions, like SPHERE.IO, to have a specialized e-

commerce data backend without technology and business boundaries. A product ready to be

used from any system, independently of the uncommon business process that the company

follows or the experimental technology that needs to be used.

Although SPHERE.IO is still in development and improvement process, it is already a very

competitive solution with many built scenarios that attest this capability of working in any

environment. Starting with the fancy web-shop developed in this project, many other followed

pursuing to check different shop concepts. As a direct opposite example, a traditional shop

with regular pagination, filters, sorting and displaying options was developed, with additional

multi language support in Italian, Spanish, Chinese and Russian, that demonstrated no issues

with character encoding (see “Fedora store” in Appendix A.6 for more details).

Another example is a subscription model with detailed billing information, which was possible

thanks to the easy integration with other platforms, Pactas and Paymill in this case. At the

same time this shop proved how comfortable was to develop something apparently so trivial

but actually so complicated with SaaS solutions as a single-product web-shop (see “I Want

Donuts shop” in Appendix A.6 for more details).

Other interesting business models were implemented with SPHERE.IO, like a web-shop where

customers could purchase a product and ask somebody else to pay it for them, in which case

this person receives an email with a link to a webpage where to fill his billing information; a

model especially thought for kids (see “PayforMe” in Appendix A.6 for more details).

	 138	

All these web-shop models may seem simple to implement because the required changes do

not look difficult whatsoever. But as in the case of the single-product web-shop, the reality is

quite different. As mentioned before, SaaS solutions are modelled for a specified system, and

anything outside this system can fail. Instead, PaaS simply supports commerce data and logic,

while the system is built on top of it as the client requires. So as long as the platform supports

all possible data and logic, or it can be connected to another platform that supports the

missing functionality, anything can be built.

In this case, supporting a functionality does not mean literally to provide a full support, but

rather to allow integrating any custom feature with the e-commerce platform. As an example,

currently SPHERE.IO does not fully support discounts, but instead provides custom line items

that flexibly allows the developer to add or subtract a specific amount of money from the cart.

The amount has to be calculated by the developer according to the business rule applied, but

the logic to integrate any discount or fee to the cart is supported by SPHERE.IO.

To put it briefly, well-built e-commerce SaaS solutions might provide full support to all the

most demanded business models, but they shall unavoidably create limits on what they really

support. They simply cannot cover all possible cases, especially when it comes to innovative

technologies or new business models. Well-built e-commerce PaaS solutions do not require to

provide any fully supported model, they just have to make sure they are not limiting what they

really support. Developers should then use templates in order to reuse code or find inspiration

to implement their own web-shop requirements.

During the development of this web-shop, many flaws were found in SPHERE.IO Play SDK,

most of them already solved, while the biggest problems are currently in progress. These major

issues have been already explained in detail in this project: the resulting system is not entirely

testable and the checkout is incompatible with some payment platforms; and it can be added a

certain limitation on filtering and sorting products with complex rules.

But none of these problems is structural, because all come from the SPHERE.IO Play SDK, not

the platform itself. Also they respond to missing functionalities rather than design problems.

This not only means that the solution is easier to apply, but also that the core of the system is

well built. Moreover, given that the SDK is an open-source project, any developer can fix any

bug or collaborate with missing functionalities, or simply extend it to support his needs as a

parallel project.

 139	

The template developed in this project, as the first template offered by the platform, ended up

being a versatile web-shop with a flexible code and design, as the usability tests results

describes (see Usability Tests 6.2). It is difficult to count the number of success cases of this

template, but in any case its code has been reused to build more than five web-shop templates

in less than a year and even real business cases.

Some objectives were changed during the development process and others took longer than

expected to finish, but the result is that the template is widely used, which makes the project a

success. Even at an early stage, the template was already public and it was used to develop

other systems, like it was the case in the e-commerce hackathon ECOMMHACK I/O (see

section 6.2 for more details).

But this is normal, since the template will be constantly evolving at the same time it is used,

including new features as the platform grows and also improving the structure as these new

features are introduced. In the end, the product described in this document is no more than a

snapshot of the template as it was. It is also possible that this template has already finished its

lifecycle and is not being further developed, but then certainly one of the templates based in

this one has taken over the leading role.

8.1 FUTURE	 WORK	

Independently of the main template being developed for the platform, there are many open

issues that need to be fixed or improved, as well as new functionalities to be implemented. As a

priority issue, once SPHERE.IO Play SDK provides support for functional testing, all unit and

integration tests need to be completed. Missing acceptance tests must be implemented as well,

and some JavaScript testing needs to be provided, due to the extensive use of it.

Another important feature missing from the initial planning is the Optile integration. At the

moment of implementing the payment process, both SPHERE.IO and Optile were products

that had released their first version not so long ago. They were therefore young products giving

full support to only certain selected workflows, reason why they did not offer much flexibility

to work together. One of the solutions that solves this incompatibility is, on the one hand, to

allow an early creation of the order before the payment is executed and reverse it when it fails

and, on the other hand, to improve communication between the web server and the payment

platform.

	 140	

Currently Optile is already offering repeated notification calls when the web server has failed

to return a successful response, ensuring that the e-commerce backend has the latest payment

state. This modification has already allowed to use Optile in some of the newest SPHERE.IO

based web-shops successfully, but still some work must be done in order to offer it as a simple

template solution.

The rest of pending features are closely related to the missing design, being the lack of filters

and sorting interface components the most noticeable. Although possibly the most important

is to ensure that the template is responsive to different devices and has cross-browser support.

Currently it has some minimal support to small devices and it is rendered correctly in most of

the newest browsers available (i.e. the latest versions of Chrome, Firefox, Opera, Safari and

Internet Explorer), but the support is not guaranteed and the design still has to be applied.

Other smaller improvements for the template include elements to improve the user experience,

such as the loading animation for all those components that are loaded in the background. As

well as saving in the browser’s history the last page of the product list that was loaded, so that

the user returns to the same product list area when he uses the browser’s back functionality. It

may also be useful to modify the browser’s URL path when the customer selects a different

color in the product detail page, to make sure the user can still share the URL of the specific

product variant with no need to reload the page.

Additionally, it would be also interesting to further improve performance, specially analyzing

the reason why the web application is running out of memory when listing products. And of

course, the template should continue to integrate features as SPHERE.IO grows, like different

catalogs, internationalization, wish list and any other new functionality that can be interesting

for future developers.

8.2 PERSONAL	 CONCLUSIONS	

After explaining how I have contributed to make this project a reality, I did not want to finish

this document without expressing before how this project has contributed in my academic and

professional learning. This has been an exceptional year in which I had the opportunity to

work in a very dynamic and innovative environment, surrounded by extremely talented and

splendid people.

 141	

In this atmosphere I was encouraged to try new approaches and technologies to solve design

and implementation problems. In fact, it is precisely the acquired technological knowledge I

value the most of my learning, especially when compared with my previous experience, which

basically consisted of traditional and outdated technologies. This obtained knowledge largely

includes the complete functional testing of a web system, a pending subject in my professional

and academic life.

Working with a proper development environment was also a gratifying experience that I never

had the chance to put in practice before. I enjoyed as well getting to know agile methodologies

from inside instead of learning the theory from a book. And not only the methodology, but also

the work philosophy of the company, which can be simply summarized with the feeling of

joining a professional team that cares about doing things right from the start, valuing quality

over quantity.

And of course, the development of this template became a very challenging and motivational

project to me, with a concept completely different from those I have developed before. It was

particularly a pleasure to work with requirements that involved a more humanistic approach

of the solution, such as user and developer experience. And yet it was quite surprising how

technological these requirements can be.

	 142	

BIBLIOGRAPHY	

[Ald09] M. Aldrich. Finding Mrs. Snowball. Michael Aldrich Archive, 2009.

[Ald10] M. Aldrich. E-commerce, e-business and online shopping. Sussex Enterprise
Magazine, 2010.

[Ald11] M. Aldrich. Online shopping in the 1980s. Annals of the History of Computing,

October-December 2011 edition, volume 33, number 4, pages 57-61, 2011.

[BB05] J. Barlow and M. Breeze. Teleshopping for older and disabled people: an

evaluation of two pilot trials. Joseph Rowntree Foundation, 2005.

[Ber00] T. Berners-Lee. Weaving the Web: the original design and ultimate destiny of

the World Wide Web by its inventor. HarperBusiness, 1st edition, 2000.

[Con03] J. Conallen. Building Web applications with UML. Addison-Wesley, 2nd edition,

2003.

[GWL11] S. Guo, M. Wang and J. Leskovec. The role of social networks in online

shopping: information passing, price of trust, and customer choice. Stanford
University, 2011.

[Kha04] A. Khan. A tale of two methodologies: heavyweight versus agile. University of
Melbourne, 2004.

[KRSS12] S. Koulayev, M. Rysman, S. Schuh and J. Stavins. Explaining adoption and use

of payment instruments by U.S. consumers. Harvard University, 2007.

[MERJ13] S. Mulpuru, P. F. Evans, D. Roberge and M. Johnson. US mobile retail forecast,

2012 to 2017. Forrester, 2013.

[Nem11] R. Nemat. Taking a look at different types of e-commerce. Department of IT,
Al-Azhar University. World Applied Programming, 2011.

[OG13] M. O’Grady. Forrester research online retail forecast, 2012 to 2017 (Western

Europe). Forrester, 2013.

 143	

[Oli10] E. de Oliveira. Um estudo de caso de utilizaça ̃o da WAE para UML em

aplicaço ̃es GWT. Adilson Vahldick, 2010.

[SS13] K. Schwaber and J. Sutherland. The Scrum Guide, the definitive guide to

Scrum: the rules of the game. Scrum.org, 2013.

[TNW01] P. Tarasewich, R. C. Nickerson and M. Warkentin. Wireless/mobile e-

commerce technologies, applications, and issues. Seventh Americas Conference
on Information Systems, 2001.

[Akr11] G. Akrani. What is commerce? Meaning and importance of commerce. Source:

http://kalyan-city.blogspot.com/2011/03/what-is-commerce-meaning-and-
importance.html [Visited on August 16th 2013]

[Bas12] V. Basavaraj. The client-side templating throwdown: mustache, handlebars,

dust.js and more. Source: http://engineering.linkedin.com/frontend/client-

side-templating-throwdown-mustache-handlebars-dustjs-and-more [Visited
on November 20th 2013]

[Con13] T. Conroy. Cutting the fat: when to use Ajax and when to reload. Source:

http://www.slideshare.net/Codemotion/cutting-the-fat-by-tiffany-conroy-
21208849 [Visited on December 17th 2013]

[eMa113] eMarketer. Record retail sales on smartphones, tablets take greater ecommerce

share. Source: http://www.emarketer.com/Article/Record-Retail-Sales-on-

Smartphones-Tablets-Take-Greater-Ecommerce-Share/1009595 [Visited on
September 1st 2013]

[eMa313] eMarketer. Ecommerce sales topped $1 trillion for first time in 2012. Source:

http://www.emarketer.com/Article/Ecommerce-Sales-Topped-1-Trillion-
First-Time-2012/1009649 [Visited on August 29th 2013]

[eMa413] eMarketer. Retail ecommerce set to keep a strong pace through 2017. Source:

http://www.emarketer.com/Article/Retail-Ecommerce-Set-Keep-Strong-
Pace-Through-2017/1009836 [Visited on August 29th 2013]

	 144	

[eMa613] eMarketer. B2C ecommerce climbs worldwide, as emerging markets drives

sales higher. Source: http://www.emarketer.com/Article/B2C-Ecommerce-

Climbs-Worldwide-Emerging-Markets-Drive-Sales-Higher/1010004 [Visited
on August 28th 2013]

[Hoa12] A. Hoar. US B2B e-commerce sales to reach $559 billion by the end of 2013.

Source: http://blogs.forrester.com/andy_hoar/12-10-18-

us_b2b_ecommerce_sales_to_reach_559_billion_by_the_end_of_2013
[Visited on October 5th 2013]

[Nie12] J. Nielsen. How many test users in usability study? Source:

http://www.nngroup.com/articles/how-many-test-users/ [Visited on
December 26th 2013]

[Off93] Office of Inspector of National Science Foundation. Review of NSFNET.

Source: http://www.nsf.gov/pubs/stis1993/oig9301/oig9301.txt [Visited on

August 12th 2013]

[Pie12] A. Pietka. E-commerce new business models. Source:

http://www.slideshare.net/AnnaPietka/e-commerce-new-business-models-

14291829 [Visited on September 23th 2013]

[Rob11] T. Robinson. How does Heroku work? Source:

http://www.quora.com/Scalability/How-does-Heroku-work [Visited on

December 4th 2013]

 145	

Appendix	 A DEVELOPER	 MANUAL	

A.1 LIVE	 DEMO	

Visit a live demo of this template at http://snowflake.sphere.io.

You can also consult the source code of this template at

https://github.com/commercetools/sphere-snowflake.

A.2 SET	 IT	 UP	

➔ Install Play 2.1.5 (http://www.playframework.com/documentation/2.1.x/Installing).

➔ Clone28 sphere-snowflake project from GitHub, or download it as a zip file

(https://github.com/commercetools/sphere-snowflake/archive/master.zip).

➔ Run “play run” command in root project directory.

➔ Open your browser and point it to http://localhost:9000.

A.3 CONFIGURE	 IT	

To connect your web-shop with SPHERE.IO29:

➔ Go to SPHERE.IO Administration page (https://admin.sphere.io) and log in with an

existing account or register a new account.

➔ Go to “Developers > API Clients” to retrieve your project data.

➔ To connect your web-shop with your SPHERE.IO project, modify “sphere.project”,

“sphere.clientId” and “sphere.clientSecret” from “conf/application.conf”.

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

28 For more information see: https://help.github.com/articles/github-glossary#clone

29 For more information about SPHERE.IO see: http://www.sphere.io

	 146	

To connect your web-shop with Paymill30:

➔ Go to Paymill page (https://app.paymill.com/en-gb/auth/) and login with an existing

account or register a new account.

➔ Go to “Paymill Cockpit > My account > Settings > API Keys” to retrieve your keys.

➔ To connect your web-shop with Paymill, modify “paymill.apiKey” from

“conf/application.conf”.

A.4 DEPLOY	 IT	

➔ Install Heroku Toolbelt (https://toolbelt.heroku.com) and create an account if needed.

➔ Run “heroku create” command in root project directory31, it will create a new remote for

Git.

➔ Run “git push heroku master” to push the project to Heroku and deploy it.

➔ Run “heroku open” to open your deployed website in a browser.

A.5 DEVELOP	 IT	

➔ Install your favourite IDE (preferably IntelliJ, Eclipse or Netbeans).

➔ Generate configuration files for your chosen IDE, following these instructions:

http://www.playframework.com/documentation/2.1.x/IDE

➔ Run “play” command in root project directory.

➔ Inside Play Shell32, type “clean test” for compiling and testing it.

➔ Check SPHERE.IO Play SDK documentation (http://www.sphere.io/dev/play-sdk.html)

to further develop your application.

Have fun!

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

30 For more information about Paymill see: http://www.paymill.com

31 For more information see: http://www.playframework.com/documentation/2.1.x/ProductionHeroku

32 For more information about Play see: http://www.playframework.com/documentation/2.1.x/Home

 147	

A.6 OTHER	 SPHERE.IO	 WEB-‐SHOPS	

➔ Fedora shop, a traditional webshop with multi-language.

Running on: http://fedora.sphere.io

Source code: https://github.com/commercetools/sphere-fedora

Main developers: Laura Luiz

➔ I Want Donuts store, a single-product webshop with subscription payment system.

Running on: http://iwantdonuts.com

Source code: https://github.com/commercetools/sphere-donut

Main developers: Martin Koníček, Laura Luiz, Christoph Menge and Nicola Molinari.

➔ PayforMe, a web-shop with request of payment to a third person.

Source code: https://github.com/payforme/payforme

Main developers: Hajo Eichler, Mathias Fiedler, Gregor Goldmann, Jonas Knipper, Nicola

Molinari and Christian Zacharias.

➔ Kokon, a production web-shop with BC2 and B2B support.

Main developers: Hajo Eichler, Laura Luiz and Sven Straubinger.

	 148	

Appendix	 B PRODUCT	 BACKLOG	
General structure of a user story described in this document:

{User story name}: As a {role}, I want {goal}, so that {benefit} ({priority}).

B.1 FUNCTIONAL	 REQUIREMENTS	

B.1.1 BROWSE	 PRODUCTS	

➔ List products: As a customer, I want to list all products of the shop (1).

➔ Filter by category: As a customer, I want to see only those products that belong to a

particular category and any category descendant, so that I can narrow down the list to what

fits best my needs (2).

➔ Filter by price: As a customer, I want to see only those products from the product list

which prices fall within a specific price range, so that I can narrow down the list to best fit

my economic requirements (3).

➔ Filter by color: As a customer, I want to see only those products from the product list

which main color matches any of the colors I selected, so that I can narrow down the list to

best fit my liking (4).

➔ Sort by name: As a customer, I want to sort the products from the product list by their

name in an ascendant or descendant order (9).

➔ Sort by price: As a customer, I want to sort the products from the product list by their

price in an ascendant or descendant order (8).

➔ Pagination: The product list needs to be displayed divided into pages and the customer

should be given the ability to browse through them (3).

➔ Product detail: As a customer, I want to see all information regarding a particular

product and its variants, so that I can make a better decision about buying it (1).

 149	

➔ Breadcrumb: As a customer, I want to be informed of my location inside the category

tree via a breadcrumb, so that it can help me to navigate and have a better understanding

of the web-shop structure (6).

➔ Empty list message: As a customer, I want to be informed with an informative message

when a product list request has no results (5).

➔ Not found message: As a customer, I want to be informed with an informative message

when a category or product I requested cannot be found (10).

B.1.2 PURCHASE	 PRODUCTS	

➔ Add item to cart: As a customer, I want to add a particular product to the shopping cart,

so that I can buy it with the next order (1).

➔ Update item in cart: As a customer, I want to change the number of units of a particular

item in the shopping cart, so that I can buy a different quantity of the product with the next

order (6).

➔ Remove item from cart: As a customer, I want to remove a particular item from the

shopping cart, so that I do not buy it with the next order (3).

➔ Place order: As a customer, I want to place an order, so that I can actually buy the items

in my shopping cart (2).

➔ Payment: As a customer, I want to be able to pay online my orders, so that I can pay

immediately the moment I buy them instead of using other possibly unpleasant billing

options (4).

➔ List orders: As a registered customer, I want to see a list of my orders, so that I can see

all the purchases I did in the past (5).

➔ Mini cart: As a customer, I want to be able to see my current shopping cart from any page

via a so-called mini-cart, so that I can always be aware of its contents and pricing details

(5).

	 150	

B.1.3 USER	 MANAGEMENT	

➔ Sign up: As an anonymous customer, I want to sign up a new customer account, so that I

can place orders more easily and take advantage of many other benefits (4).

➔ Log in: As an anonymous customer, I want to log in with an existing customer account, so

that I take advantage of the benefits of being a registered customer (4).

➔ Log out: As a registered customer, I want to logout from my customer account, so that

nobody else can use it from the same machine (5).

➔ Recover password: As an anonymous customer, I want to be able to recover my

password, so that I can log in with my account when I forget my current password (7).

➔ Update account: As a registered customer, I want to update my personal data such as

the email address used (6).

➔ Change password: As a registered customer, I want to change my current password to

another one of my choice (5).

➔ Add address: As a registered customer, I want to add a postal address to my address

book, so that I can select it as shipping or billing address when placing an order (5).

➔ Update address: As a registered customer, I want to update the data of a particular

postal address from my address book, so that it corresponds to my current situation (6).

➔ Remove address: As a registered customer, I want to remove a particular postal address

from my address book, so that I cannot longer select it when placing an order (5).

B.2 NON-‐FUNCTIONAL	 REQUIREMENTS	

B.2.1 USABILITY	

➔ Understandability: As a developer, I want to identify and understand a particular

business logic code of the template in less than 1 person-hour (2).

➔ Learnability: As a developer, I want to learn how the application is structured and how I

can modify and extend it to build my own web-shop in less than 8 person-hour (3).

 151	

➔ Operability: As a customer, I want to learn how to purchase an item for the first time in

less than 5 minutes (7).

➔ Likeability: The template should achieve an average of 7 out of 10 points from users

when asked of how much do they like it (10).

B.2.2 MAINTAINABILITY	

➔ Testability: As a developer, I want to be able to test any new feature of my web

application with unit, integration and acceptance tests, in less than 2 person-hour (4).

➔ Stability: As a developer, I want to be able to safely change the set of data fetched from

the platform without affecting the proper functioning of the template, at least in 95% of the

cases (6).

➔ Changeability: As a developer, I want to be able to perform simple changes on user

interface elements of the template in less than 10 minutes (4).

B.2.3 FUNCTIONABILITY	

➔ Security: The system must block any external attacker from reading or modifying

sensitive information (6).

➔ Compliance: The system must avoid to store or process any payment data. (2)

➔ SEO-Friendly: As a merchant, I want my web-shop with a SEO-friendly URL structure,

so that my web-shop can improve its ranking position in Internet search engines (8).

➔ User-Friendly: As a customer, I want the web-shop with a human-readable URL

structure, so that I can identify the type of content before visiting the web page.

	 152	

Appendix	 C TESTING	 INFORMATION	

C.1 UNIT	 TESTING	 DESIGN	

List of scenarios to be tested for each user story.

C.1.1 BROWSE	 PRODUCTS	

List home products

➔ When the home page is requested, display all products of the shop.

➔ When no products found, show an informative message.

List products from a category

➔ When a category is requested, the chosen category will be indicated and its immediate

children categories will be displayed, as well as all products belonging to that category or

any descendant category.

➔ When the selected category does not exist, show a not found error message.

➔ When no products found, show an informative message.

Filter products by price

➔ When a price range filtering is requested in any product list page, the chosen price range

will be displayed, as well as all products from the previous list (discarding any previous

price filtering) whose price falls within the range.

➔ When minimum and maximum price are swapped, recover exchanging them.

➔ When invalid price provided, dismiss the price filter request.

➔ When no products found, show an informative message.

Filter products by color

➔ When a color filtering is requested in any product list page, the chosen color will be

displayed, as well as all products from the previous list whose main color matches the

selected color.

 153	

➔ When more than one color is selected at once, products whose main color matches any of

the selected colors will be displayed.

➔ When no products found, show an informative message.

Show product detail

➔ When a product is requested, the chosen product will be displayed with all its information

and pictures, as well as all the possible variants of that product.

➔ When the selected product does not exist, show a not found error message.

Show product variant detail

➔ When a product variant is requested, the chosen product variant will be displayed with all

its information and pictures, as well as all other possible variants of that product.

➔ When the selected product variant does not exist, display the default variant instead.

➔ When the selected product does not exist, show a not found error message.

C.1.2 PURCHASE	 PRODUCTS	

Show cart detail

➔ When the shopping cart is requested, display the cart contents and the price details.

➔ When the shopping cart is empty, show an informative message.

Add item to cart

➔ When a product is requested to be added to the shopping cart, add the selected variant in

the cart and display the updated cart content.

➔ When the product is already in the cart, the quantity will be updated with the addition.

➔ When the selected product does not exist, show a bad request error message.

	 154	

Update item in cart

➔ When the quantity of an item in the shopping cart is requested to be updated in the cart

detail page, replace the previous quantity with the new one provided and display the

updated cart content.

➔ When the item does not exist in the cart, show a bad request error message.

➔ When the new quantity is invalid, show a bad request error message.

Remove item from cart

➔ When a product from the shopping cart is requested to be removed in the cart detail page,

remove the item from the cart and display the updated cart content.

➔ When the item does not exist in the cart, show a bad request error message.

Start checkout

➔ When the checkout process is requested to start, display an order summary (i.e. cart

content and price details) and the corresponding shipping and billing forms.

➔ When the shopping cart is empty, display the last visited page.

Finish checkout

➔ When the checkout process is requested to finish, display success message and all order

details (i.e. cart content, price details, shipping and billing options).

➔ When invalid data provided, show a bad request error message and pre-fill the forms.

➔ When the shopping cart is empty, display the last visited page.

C.1.3 USER	 MANAGEMENT	

Show user profile

➔ When the user profile is requested, display the user data, change password and address

book forms, as well as the list of orders from the user.

➔ When the user is not logged in, show an unauthorized error message and display login.

 155	

Do sign up

➔ When signing up a new user is requested, register the user and display the user profile.

➔ When user already registered, show a bad request error message and pre-fill form.

➔ When invalid data provided, show a bad request error message and pre-fill the form.

Do log in

➔ When logging in a user is requested, sign in with the user and display the user profile.

➔ When invalid credentials provided, show an unauthorized error message and pre-fill form.

➔ When user already logged in, display the user profile.

Do log out

➔ When logging out a user is requested, sign out the user and display the last visited page.

➔ When user already logged out, display the last visited page.

Edit user data

➔ When the user data is requested to be updated, edit data and display updated user profile.

➔ When invalid data provided, show a bad request error message and pre-fill the form.

➔ When the user is not logged in, show an unauthorized error message and display login.

Edit user password

➔ When the user password is requested to be updated, change password and display user

profile.

➔ When invalid current password provided, show a bad request error message.

➔ When the user is not logged in, show an unauthorized error message and display login.

	 156	

Recover password

➔ When the user password is requested to be recovered, send email to the address provided

with a temporary link to the recovery page, where the user can insert a new password.

➔ When the email provided does not exist, show a bad request error message and pre-fill

form.

Add address to address book

➔ When an address is requested to be added to the address book in the user profile page, add

the selected address in the address book and display the updated user profile.

➔ When the address is invalid, show a bad request error message and pre-fill the form.

Update address in address book

➔ When an address is requested to be updated in the user profile page, replace the previous

address with the new provided and display the updated user profile.

➔ When the address does not exist in the address book, add it to the address book.

➔ When the address is invalid, show a bad request error message and pre-fill the form.

Remove address from address book

➔ When an address is requested to be removed in the user profile page, remove the address

from the address book and display the updated user profile.

➔ When the address does not exist in the address book, show a bad request error message.

C.2 ACCEPTANCE	 TESTS	 DESIGN	

Cucumber based list of rules.

Browse catalog

➔ Given I visit the web shop

And I select a product

When I add the product to the cart

 157	

And I go to the cart

Then I have only the chosen item

And the total price is correctly calculated

When I add one more item

Then the total price is correctly updated

Checkout

➔ Given I visit the web shop

And I select a product

When I add the product to the cart

And I go to the checkout

And I enter a valid address

Then taxes are correctly calculated

And the shipping methods are listed

When I select a shipping method

Then shipping cost is added to the total price

And the payment form is displayed

When I enter valid payment data

And I finish the checkout

Then I have purchased the product

Check order

➔ Given I visit the web shop

And I go to the signup page

When I enter valid personal information

Then I am successfully registered

When I select a product

And I add the product to the cart

When I go to the checkout

And I enter a valid address

And I select a shipping method

And I enter a valid payment data

	 158	

When I finish the checkout

And I go to the user profile page

And I go to the order history

Then I have only one order

When I select the order

Then the total price is correct

And the address is correct

And the shipping method is correct

And the payment is paid

C.3 USABILITY	 TESTS	 RESULTS	

➔ Subject #1 (GK)

Age: 64

Online shopping experience: Medium

Computer expertise: Low

Necessary time to purchase: 01:56 minutes

Liking rate: 8/10

Problems with:

◆ Missing feedback on adding an address.

◆ Optional fields in form.

➔ Subject #2 (HB)

Age: 29

Online shopping experience: Medium

Computer expertise: Medium

Necessary time to purchase: 00:49 minutes

Liking rate: 8/10

Problems with:

◆ Missing feedback on adding address.

◆ Selecting address in checkout.

◆ Understanding categories listing.

 159	

➔ Subject #3 (RE)

Age: 53

Online shopping experience: Low

Computer expertise: Medium

Necessary time to purchase: 02:18 minutes

Liking rate: 9/10

Problems with:

◆ Missing feedback on adding address.

◆ Noticying address book listed in checkout.

◆ Optional fields in form.

◆ Noticying quantity field in cart.

➔ Subject #4 (AL)

Age: 16

Online shopping experience: Low

Computer expertise: Medium

Necessary time to purchase: 01:18 minutes

Liking rate: 9/10

Problems with:

◆ Noticying address book.

◆ Optional fields in form.

◆ Noticying quantity field in cart.

➔ Subject #5 (SK)

Age: 37

Online shopping experience: High

Computer expertise: High

Necessary time to purchase: 01:12 minutes

Liking rate: 7/10

Problems with:

◆ Missing feedback on adding address.

◆ Noticying address book.

	 160	

C.4 PERFORMANCE	 TEST	 RESULTS	
	

Figure C1: Load test results of 1 minute with 250 users against home page with 1 processing unit.

 161	

Figure C2: Load test results of 1 minute with 250 users against category page with 1 processing unit.

	 162	

Figure C3: Load test results of 1 minute with 250 users against product detail page with 1 processing unit.

 163	

Figure C4: Load test results of 1 minute with 250 users against home page with 2 processing units.

	 164	

Figure C5: Load test results of 1 minute with 250 users against category page with 2 processing units.

 165	

Figure C6: Load test results of 1 minute with 250 users against product detail page with 2 processing units.

	 166	

Figure C7: Load test results of 1 minute with 250 users against home page with 4 processing units.

 167	

Figure C8: Load test results of 1 minute with 250 users against category page with 4 processing units.

	 168	

Figure C9: Load test results of 1 minute with 250 users against product detail page with 4 processing units.

 169	

Figure C10: Load test results of 1 minute with 3000 users against category page with 4 processing units.

	 170	

Figure C11: Load test results of 3 minutes with 1.000 users against category page with 4 processing units.

