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  Abstract   Every scientist knows that research results are only as good as the data 
upon which the conclusions were formed. However, most scientists receive no training 
in methods for achieving, assessing, or controlling the quality of research data—
topics central to clinical research informatics. This chapter covers the basics of 
collect and process research data given the available data sources, systems, and 
people. Data quality dimensions specifi c to the clinical research context are used, 
and a framework for data quality practice and planning is developed. Available 
research is summarized, providing estimates of data quality capability for common 
clinical research data collection and processing methods. This chapter provides 
researchers, informaticists, and clinical research data managers basic tools to plan, 
achieve, and control the quality of research data.  

  Keywords   Clinical research data  •  Data quality  •  Research data collection  • 
 Processing methods  •  Informatics  •  Management of clinical data  •  Data accuracy      

   Clinical Research Data Processes and Relationship 
to Data Quality 

 Data quality is foundational to our ability to human research. Data quality is so impor-
tant that an Institute of Medicine report  [  1  ]  was written on the topic. Further, two key 
thought leaders in the quality arena, W. E. Deming and A. Donabedian, specifi cally 
addressed data quality  [  2–  4  ] . 

 Failing to plan for data quality is an implicit assumption that errors will not 
occur. Emphasizing that failing to plan for data quality further threatens data quality 
by inhibiting the detection of errors when they do occur, Stephan Arndt et al. state, 
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“Ironically, there is a major difference between a process that is presumed through 
inaction to be error-free and one that monitors mistakes. The so-called error-free 
process will often fail to note mistakes when they occur”  [  5  ] . 

 Quality is broadly defi ned by Juran as fi tness for use  [  6  ] . Unfortunately, for clini-
cal investigators and research teams, the use varies from study to study. In clinical 
research, data collection processes are often customized according to the scientifi c 
questions and available resources, resulting in different processes for individual 
studies or programs of research. Because data quality assurance and control are 
largely dependent on how data are collected and processed, they are complicated by 
this mass customization. (The label  mass customization  used to describe clinical 
research by Karen Koh in a meeting at Duke Clinical Research Institute.) Given the 
likely persistence of science-driven customization, an antidote may lie in methods 
for data quality planning. It is only when a planning framework exists and is used 
that knowledge gained from work on prior projects can translate to new projects 
with different data sources, processes, and people. 

 The types of data collected in clinical research include data that are: manually 
abstracted or electronically extracted from medical records, observed in clinical 
exams, obtained from laboratory and diagnostic tests, or from various biological 
monitoring devices, and patient-reported items. Each data source is associated 
with a method by which the data were acquired. After acquisition, these data are 
subject to further processing. Whether data are collected specifi cally for a research 
project, or whether data collected for other purposes are used, a data quality plan 
should take into account the data source, precollection processing, the data acqui-
sition method, and, fi nally, postprocessing. While these elements of the data qual-
ity plan apply regardless of where the data were collected, the data sources will 
likely infl uence the plan. In other words, one method does not fi t all. Using the 
same method to treat all data will overlook both errors and opportunities to prevent 
them. For example, data recorded on a form may be retrospectively abstracted 
from medical records, may be written directly onto the form by the patient, or may 
be recorded directly on the form by a provider during a study visit. Each of these 
data acquisition processes is subject to different sources of error and, therefore, 
may benefi t from different error prevention or correction methods, thus the need to 
take into account the data source, precollection processing, data acquisition, and 
postprocessing in data quality planning. This chapter is primarily concerned with 
how to accomplish this and will give the reader a framework to use to assure and 
control quality regardless of the data source, acquisition method, or processing. 

 Similar to the decreased property value of a house with a serious foundation 
problem, it is no surprise that research conclusions are only as good as the data 
upon which they were based. As plans and construction of a house help determine 
quality, well-laid research protocols must address data quality considerations, for 
example, by specifying a consistent suitable collection method, planning interrater 
reliability assessments for subjective assessments, or other collection of indepen-
dent data. The resulting degree of data quality affects how data can be used and, 
ultimately, the level of confi dence that can be reposed in research fi ndings or other 
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decisions based on the data. Thus, protocol and Case Report Form (CRF) design, 
including data capture methods, must be concerned with data quality assurance 
measures from the start. 

 Data quality and the discipline of informatics are inextricably linked. Data defi ni-
tion, collection, processing, representation, and use are central to informatics 
(Fig.  10.1 ). Defi nition, collection, processing, representation, and use impact data and 
information quality, and data and information quality impact use. In turn, data and 
information that are used are more likely to have higher quality. In clinical research, 
data can be collected both prospectively and retrospectively, depending on the proto-
col and local procedures at the clinical investigational site. Therefore, information use 
in clinical care as well as information use in the study may impact data quality.  

 Each step in the collection, handling, and processing of data affects data quality. 
International Conference on Harmonization (ICH) guidelines state, “Quality con-
trol should be applied to each stage of data handling to ensure that all data are reli-
able and have been processed correctly”  [  7  ] . We suggest a less literal interpretation 
of the ICH E6 guidance document. The gold standard in achieving quality is preven-
tion rather than after-the-fact fi nding and fi xing errors; thus, interventions aimed at 
preventing errors are typically designed into data collection and handling processes, 
i.e., part of the process rather than an after-the-fact checking activity applied to a 
data handling step. Similarly, methods for monitoring data quality are built into data 
collection and handling processes. 

Definition, collection, processing, and
representaion impact data and

information quality

Data and information
quality impact use

Data
Definiton

Data
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Data
Processing

Data
Representaion

Data
Quality

Data and information
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  Fig. 10.1    Impacts of data generation and handling features on data and information quality. The 
way data and information are handled impacts the quality of that data and information. The quality 
of data and information impacts our willingness and ability to use it. Use of data and information 
causes more care to be taken in their handling, increasing the quality       
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 Assuring and controlling data quality are largely a focus on the presence of  data 
errors , defi ned here as a data value that does not accurately refl ect the true state of the 
thing being represented. Data represent things (or states of things) in the real world. 
Since all things change with time, so does the accuracy with which a data value rep-
resents the true state of the represented thing. Thus, data that are correct will not 
necessarily remain so with the passage of time. The qualifi ers necessary for a given 
datum to remain accurate over time are often referred to as context, for example, 
patient age as of the fi rst study visit; or air temperature in degrees Celsius at latitude 
35.620252°N, longitude −82.542933°W, at an elevation of 2,310 ft at noon on May 
23, 2009; or medications taken within the 10-day time window before the blood draw 
(see discussions of reliability and validity in Chaps.   4     and   11    ). The use of a broader 
defi nition than “inaccuracies created in data processing,” or “nonconformance to 
data specifi cations,” is intentional because inaccuracies from any source may render 
data values incorrect. Data quality can be compromised at any point along the con-
tinuum of data collection and processing, as demonstrated by the following examples 
adapted from actual cases. In this chapter, we develop and apply a framework for 
preventing and controlling data errors in the context of clinical research. The following 
examples come from the Society for Clinical Data Management  [  8  ] .    

 Example 1 
 A large multisite clinical trial was sponsored by a pharmaceutical company to 
obtain marketing authorization for a drug. During the fi nal review of tables 
and listings, an oddity in the electrocardiogram (ECG) data was noticed. The 
mean heart rate, QT interval, and other ECG parameters for one research site 
differed signifi cantly from those from any other site; in fact, the values were 
similar to ones that might be expected from rather than human subjects. The 
data listed on the data collection form were checked and were found to match 
the data in the database, thereby ruling out data entry error; moreover, there 
were no outliers from that site that would have skewed the data. After further 
investigation, it was discovered that a single ECG machine at the site was the 
likely source of the discrepant values. Unfortunately, the site had been closed, 
and the investigator could not be contacted. 

 Example 2 
 In the course of a clinical research study, data were single entered at a local 
data center into a clinical data management system. During the analysis, the 
principle investigator noticed results for two questions that seemed unlikely. 
The data were reviewed against the original data collection forms, and it was 
discovered that on roughly half of the forms, the operator entering the data had 
transposed “yes” and “no.” Closer examination failed to identify any charac-
teristics particular to the form design or layout that might have predisposed the 
operator to make such a mistake; rather, the problem was due to simple human 
error, possibly from working on multiple studies with differing form formats. 
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 Each of these scenarios describes a data quality problem, one in device-based 
data collection, one in data processing, one in measurement procedure. Despite the 
differences in setting and in the sources of the errors, the end result was the same: 
inaccurate data. 

 The 1999 Institute of Medicine Report  [  1  ]  emphasized the importance of data 
quality to regulatory decision-making, i.e., drawing conclusions from clinical trials. 
At the time, there was little in the literature base to synthesize in the report. Further, 
since the IOM report, there has been scant methodological progress toward data 
quality assurance, assessment, and control in clinical research. The framework pre-
sented here draws from a synthesis of experience and fi rst principles.  

   Errors Exist 

 Errors occur naturally by physical means and human fallibility. Some errors cannot 
be prevented or even detected, for instance, a study subject who deliberately pro-
vides an inaccurate answer on a questionnaire or a measurement that is in range but 
due to calibration drift or measurement error. Nagurney reports that in a recent 
study, up to 8% of subjects could not recall historical items and up to 30% gave 
different answers on repeat questioning  [  9  ] . A signifi cant amount of clinical data 
consists of information reported from patients. Further, as Feinstein eloquently 
states,

  In studies of sick people, this [data accuracy] problem is enormously increased because (1) 
the investigator must contemplate a multitude of variables, rather than the few that can be 
isolated for laboratory research; (2) the variables are often expressed in the form of verbal 
descriptions rather than numerical dimensions; (3) the observational apparatus consists 
mainly of human beings, rather than inanimate equipment alone  [  10  ] .   

 Example 3 
 A clinical trial of subjects with asthma was conducted at 12 research sites. 
The main eligibility criterion was that subjects must show a certain percent-
age increase in peak expiratory fl ow rate following inhalation of albuterol 
using the inhaler provided in the drug kits. Several sites had an unexpectedly 
high rate of subject eligibility compared with other sites. This was noticed 
early in the trial by an astute monitor, who asked the site staff to describe their 
procedures during a routine monitoring visit. The monitor realized that the 
high-enrolling sites were using nebulized albuterol (not permitted under the 
study protocol), instead of the albuterol inhaler provided in the study kits for 
the eligibility challenge. Because nebulized albuterol achieves a greater 
increase, these sites enrolled patients who would not otherwise have been 
eligible. Whether due to misunderstanding or done deliberately to increase 
their enrollment rate (and fi nancial gain), the result was the same: biased and 
inaccurate data. 
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 Even with clinician observation, reading test results, or interpreting images, 
human error and variability remain as factors. Simply put, where humans are 
involved, human error exists  [  11  ] . For most types of assessment, observation, or 
interpretation of test results, reports of error or agreement rates can be found in the 
literature. These known and real errors and inconsistencies are often not accounted 
for in data quality planning in clinical research. 

 Moreover, in every process, nature affects every project every day, increasing 
disorder. As time passes, natural forces cause machines to wear, settings to drift, and 
attention to wander. Thus, while measurements and processes capable of achieving 
the desired levels of quality are often sought and employed in a research project, 
energy and vigilance must continuously be applied to maintain them. 

 Natural laws, logic, and empirical evidence together suggest that it is unwise to 
assume any data set is truly error-free. Still, respondents to a data quality survey 
conducted by the author  [  12  ]  and others  [  13  ]  noted perfect data as their acceptance 
criterion. References to fear of consequences from regulators and potential data 
users observing obvious errors  [  1  ] , such as a diastolic blood pressure of 10, suggest 
that the real concern may be the doubt that a user-discovered data error casts on the 
rest of the data set. Such concern should be taken into account in data quality plan-
ning; for example, many organizations perform a review of blinded tables, listings, 
and fi gures prior to closing a database, to identify such obvious errors. The concern 
of obvious errors discrediting a data set will likely increase with more public data 
sharing, so methods such as looking at descriptive statistics, outliers, frequencies, 
and distribution graphs to effi ciently scan a data set will persist. 

 It is important to note that cleaner data can save time in programming and data 
use, but this is likely concomitant with additional costs. As such, and within the 
context of a given research project, pursuing data quality to a greater extent than 
needed to support the conclusions is unnecessary. Thus, data quality plans must be 
informed by the necessary level of data quality and must target the necessary level 
of data quality in the most cost effective way. Two questions naturally result from 
this line of thought:

    1.    How clean do the data need to be to support the intended analysis?  
    2.    What is the best method, given the study context, to achieve this?     

 The fi rst is a statistical question, and the second is for the experienced informati-
cist to explore.  

   Defi ning Data Quality 

 The Institute of Medicine (IOM) defi nes quality data as “data strong enough to sup-
port conclusions and interpretations equivalent to those derived from error-free 
data”  [  1  ] . Like Joseph Juran’s famous “fi tness for use” defi nition  [  6  ] , the IOM defi -
nition is use dependent. Further, the robustness of statistical tests and decisions to 
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data errors differs. Thus, applying the IOM defi nition requires a priori knowledge of 
how a statistical test or mode of decision-making behaves in the presence of data 
errors. For this reason, in clinical research, it is most appropriate that a statistician 
set the acceptance criterion for data quality. 

 Further specifi cation of the IOM defi nition of data quality is necessary for opera-
tional application. Other authors who have discussed data quality defi ne it as a  mul-
tidimensional concept   [  14–  20  ] . In clinical research, the dimensions most commonly 
considered are  reliability ,  validity ,  accuracy , and  completeness   [  21  ] . Reliability and 
validity address the underlying concept being measured, i.e., is this question a reli-
able and valid measure of depressive mood? Accuracy is important with respect to 
and intrinsic to the data value itself. For example, does a heart rate of 92 represent 
the patient’s true heart rate at the time of measurement? That is,  is it correct?  And 
completeness is a property of a set of data values; i.e.,  are all of the data there?  
More recently, as research methods have matured and data are increasingly used for 
monitoring and decision-making during the trial (as in the case of data and safety 
monitoring boards),  timeliness  has emerged as an important data dimension. Further, 
regulatory authorities are concerned with trustworthiness of the data and initially 
identifi ed the following data quality dimensions for clinical research: “electronic 
source data and source documentation must meet the same fundamental elements of 
data quality (e.g., attributable, legible, contemporaneous, original, and accurate) 
that are expected of paper records and must comply with all applicable statutory and 
regulatory requirements”  [  22  ] . 

 These “fundamental elements,”  attributable ,  legible ,  contemporaneous ,  original , 
and  accurate , are commonly referred to as ALCOA. Registries commonly report 
data quality in terms of accuracy and completeness  [  23  ] . As secondary use of data 
has grown, so has the need for data to be  specifi ed ,  accessible , and  relevant . 
Similarly, the dimension of  volatility , or how quickly the data change, becomes a 
concern; for example, studies in adult populations seldom collect height at annual 
study visits, but studies in pediatric populations are likely to do so. These funda-
mental dimensions are attributes, or descriptors of data quality, allowing users, 
especially secondary users, to evaluate the likelihood that data will support their 
specifi c (secondary) use. As we begin to see an increase in secondary, particularly 
research, uses of clinical data, the need for fundamental dimensions of data quality 
will become a necessary data itself. 

 The multidimensionality data quality causes ambiguity because any given use 
of the term might refer to a single dimension or to a subset of possible dimensions. 
Further, different data users may emphasize some dimensions while excluding oth-
ers; for instance, the information technology (IT) sector tends to assess data quality 
according to conformance to data defi nitions stated business rules, while regula-
tory authorities are concerned with attribution and verifi ability  [  22  ] . Although 
accuracy and completeness historically have been emphasized in the clinical 
research literature, multiple dimensions ultimately affect and determine the useful-
ness of data. Each individual dimension describes an element of quality that is 
necessary but usually not suffi cient for data to be useful for their intended purpose. 



182 M. Nahm

When maintained as metadata, can be used to assess the quality of the data for 
primary and secondary uses. 

 All dimensions apply to any use of data, but often the circumstances surround-
ing a given (or the primary) use include built-in processes that assure a relevant 
dimension is present and addressed. For example, in a clinical trial, those who use 
data often have a role in defi ning it, meaning the  defi nition  is of little concern. 
However, when data are considered for secondary uses, such as a pooled analysis 
spanning a number of studies,  relevance  and  defi nition  become primary concerns. 
By employing a dimension-oriented approach to data quality, these assumptions 
become transparent, helping us to avoid overlooking important considerations 
when working in new situations. In other words, carving data quality up into 
dimensions helps us design for, measure or assess, control, and increase data qual-
ity. A consensus set of dimensions for clinical research does not yet exist. Here, 
we will primarily address the dimensions of  accuracy ,  completeness ,  timeliness , 
 accessibility ,  relevance ,  and volatility .  Reliability  and  validity  are addressed in 
Chaps.   4     and   11    , as noted, and data  defi nition  (full specifi cation) is addressed in 
Chap.   13    . 

 Using multiple dimensions to characterize data quality, and measuring those 
dimensions to assess data quality, requires both operational defi nitions and accep-
tance criteria for each dimension of quality. An approach that will allow collabora-
tion across studies and domains includes standard operational defi nitions for 
dimensions, with project-specifi c acceptance criteria. For example,  timeliness  can 
be operationally defi ned as the difference between the date a given set of data is 
needed and the actual date it is available. The acceptance criterion—“How many 
minutes, days, or weeks late is too late?”— is set based on study needs. Further, 
some dimensions are inherent in the data, i.e., characteristics of data elements or 
data values themselves, while others are context dependent. Table  10.1  contains 
common clinical research data quality dimensions, labels each dimension as inher-
ent or context sensitive, labels the level at which it applies, and suggests an opera-
tional defi nition.   

   Framework for Data Quality Planning 

 Over the past decade or more, the number and diversity of both new technology and 
new data sources have increased. Managing new technology or data sources on a 
given project is now a normal aspect to clinical research data management. One of 
the largest problems is preparing data managers to work with new technology and 
data sources. Simply put, a framework is needed that will enable data managers to 
assess a given data collection scenario, including new technology and data sources, 
and systematically evaluate that scenario, apply appropriate methods and processes, 
and achieve the desired quality level. 

 A dimension-oriented approach provides a framework that practitioners can rely 
on when handling data in a novel situation (e.g., data from a different source, in a 
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   Table 10.1    Data quality dimensions for clinical research   

 Dimension  Type 
 Natural language 
defi nition 

 Operational defi nition/
metric 

 Accuracy  Inherent   States in the data match the 
intended state in the real 
world  

 Number of errors 
divided by number 
of fi elds inspected 
(implies compari-
son with gold 
standard) 

 Currency  Inherent  Length of time a data value 
has been stored (since last 
update) 

 Use/need date minus 
date data last 
updated 

 Completeness  Inherent   The extent to which every 
represented real-world 
state is refl ected in the 
data  

 Number of missing 
values divided by 
number of fi elds 
assessed 

 Consistency 
(internal) 

 Inherent  Data values representing the 
same real-world state are 
not in confl ict 

 Number of discrepant 
values divided by 
number of values 
subject to data 
consistency checks 

 Timeliness  Context 
dependent 

  Length of time from a change 
in the real-world state to 
the time when the data 
refl ect the change  

 Data need date minus 
date data ready for 
intended use 

 Relevance  Context 
dependent 

 Data can be used to answer a 
particular question 

 Percentage of data 
values applicable 
to intended use 

 Granularity  Context 
dependent 

 Level of detail captured in 
data 

 Percentage of values 
at level of detail 
appropriate for 
intended use 

 Specifi city 
(nonambiguity) 

 Inherent   Each state in the data 
defi nition  (metadata) 
 corresponds to one  (or 
no)  state of the real world  

 Number of values with 
full ISO 11179 
metadata including 
defi nition divided 
by number 
assessed 

 Precision  Context 
dependent 

 Number of signifi cant digits 
to which a continuous 
value was measured (and 
recorded); for categorical 
variables, the resolution of 
the categories 

 Percentage of values 
with precision 
appropriate for 
intended use 

 Attribution  Inherent  Source and individual 
generating and updating 
data are inextricably 
linked to data values 

 Percentage of data 
values linked to 
source and user ID 
of individual who 
generated and 
changed record 

  Italicized wording quoted from Wand and Wang  [  18  ]   
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new environment, or using new technology). Such a framework helps guard against 
methodological omissions and assures that data will meet specifi ed needs. However, 
data quality dimensions alone are an incomplete solution. A systematic way to 
assess data sources and processes on a project is necessary. Figure  10.2  shows the 
set of steps comprising the data-related parts of the research process. These steps 
are described at a general level so that they can be applied to any project. From the 
data-oriented point of view, the steps include: (1) identifying data to be collected, 
(2) defi ning data elements, (3) observing and measuring values, (4) recording those 
observations and measurements, (5) processing data to render them in electronic 
form and prepare them for analysis, and (6) analyzing data. While research is ongo-
ing, data may be used to manage or oversee the project. After the analysis is com-
pleted, results are reported, and the data may be shared with others.  

   Identifying and Defi ning Data to Be Collected 

 Identifying and defi ning the data to be collected are critical aspects of clinical 
research. Data defi nition initially occurs as the protocol or research plan is devel-
oped. Too often, however, a clinical protocol reads more like a shopping list (with 
higher-level descriptions of things to be collected, such as  paper towels ) than a sci-
entifi c document (with fully specifi ed attributes such as  brand name ,  weight ,  size of 
package ,  and color of paper towels ). When writing a protocol, the investigator be as 
specifi c as possible because in multicenter trials, the research team will use the 
protocol to design the data collection forms. Stating in the protocol that a pregnancy 
test is to be done at baseline is not suffi cient—the protocol writer should specify the 
sample type on which the test is to be conducted (e.g., pregnancy test is to be per-
formed on women of childbearing potential). 

 As standards such as the Protocol Representation Standard  [  24  ]  mature and sup-
porting software becomes available, full specifi cation of protocol elements will 
become the most effi cient method for defi ning data, as metadata specifi ed in the 

Identify data to
be collected

Record Process

Report
(status) Reuse?

Analyze
Observe/
Measure

Report
(results)

Define

  Fig. 10.2    Data-centric view of the research process. A set of general steps for choosing, defi ning, 
observing, or otherwise measuring, recording, analyzing, and using data apply to almost all 
research (From Data Gone Awry  [  8  ] , with permission)       
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protocol will be immediately available for generation of data collection forms. (See 
Chap.   9    ) Lack of specifi city in data defi nition is the mechanism by which data iden-
tifi cation and defi nition can cause serious data quality problems, for example, two 
sites using different measurement methods, or not measuring the same construct. 
The information necessary to fully specify a clinical measurement, with context 
suffi cient to remove ambiguity, differs based on the type of data. For example, spec-
ifi cation of the specimen (and often, the method by which the specimen is obtained) 
is important for some tests. For blood pressure measurements, the position, location 
of measurement, and device used may be important. Without careful identifi cation 
and specifi cation of this context, data collectors at clinical sites may inadvertently 
introduce unwanted variability. 

 The principle of “Occam’s razor” applied to clinical research suggests that it is 
necessary only to collect the data needed to assure patient safety, answer the scien-
tifi c question(s), and uniquely identify the collected data elements. Jacobs and 
Studer report that for every dollar spent to produce a data collection form, $20–$100 
are required to fi ll each one in, process it, and store it, emphasizing that “the true 
cost of a form involves people not paper”  [  25  ] . When extensive data cleaning is 
required, this ratio becomes even more exaggerated. Eisenstein and colleagues 
report extensive cost savings in clinical trials by decreasing the number of data col-
lection form pages  [  26,   27  ] . At the time of this writing, the relationship between 
form length and data accuracy for online forms remains unprobed  [  28  ] . Further, the 
evidence relating form length to decreased response rate while considered equivocal 
by some  [  28  ]  has been demonstrated in controlled and replicated experiments  [  29, 
  30  ] . There is no question, however, that collecting more data increases costs and 
places additional burden on clinical investigational sites and data centers  [  26,   27  ] . 

 These two principles, parsimony in the number of data elements collected, and 
full specifi cation of those that are collected, are preventative data quality interven-
tions. Parsimony, or lack thereof, may impact data accuracy and timeliness dimen-
sions, while data defi nition impacts the specifi city dimension and signifi cantly 
impacts secondary data users.  

   Defi ning Data Collection Specifi cations 

 The previous section covered the defi nition and specifi cation of data elements them-
selves. This section covers defi nition of the tools, often called data collection forms 
or case report forms, for acquiring data. The design of data collection forms, whether 
paper or electronic, directly affects data quality. Complete texts have been written 
on form design in clinical trials, (see Data Collection Forms in Clinical Trials by 
Spilker and Schoenfelder (1991) Raven Press NY). There are books on general form 
design principles, for example, Jacobs and Studer (1991) Forms Design II: The 
Complete Course for Electronic and Paper Forms. In addition, the fi eld of usability 
engineering and human-computer interaction has generated many publications on 
screen or user interface design. A good introductory work is Shneiderman and 
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Plaisant (2004) Designing the User Interface: Strategies for Effective Human-
computer Interaction. While this topic is too broad to discuss in depth here, two 
principles that are directly relevant to clinical research informatics, and not covered 
in more general texts, warrant attention here. The fi rst is the match between the type 
of data and data collection structure; the second is the  compatibility-proximity prin-
ciple   [  31  ] . A general assumption is that the more structured the data, the higher the 
degree of accuracy and ease of processing. We will see, however, that this can be 
counterbalanced by considerations related to ease of use. 

 As a general principle, the data collection structure should match the type data. 
Data elements can be classifi ed according to Stevens’ scales (nominal, ordinal, 
interval, and ratio)  [  32  ] , or as categorical versus continuous. Likewise, classifi cation 
can also be applied to data collection structures describing how the fi eld is repre-
sented on a form, including: verbatim text fi ll in the blank, drop-down lists, check 
boxes (“check all that apply”), radio buttons (“check one”), and image maps. 
Examples of data collection structures are shown in Fig.  10.3 .  

 Mismatches between data type and collection structure, for example, collecting 
data in a structure more or less granular than reality, can cause data quality prob-
lems. Collecting data at a more granular structure than exists or than can be dis-
cerned in reality, for example, 20 categories of hair color, invites variability in 
classifi cation. Collecting data at a less granular structure,  data reduction , than can 
be discerned in reality also invites variability and results in information loss. The 
real granularity cannot be resolved once the data are lumped together into the 
 categories. For example, if height is collected in three categories, short, medium and 

a. Write in (the electronic equivalent of “fill in the blank”)

Method of Birth Control: Barrier method

Method of Birth Control:

Method of Birth Control:

Sterilization

Sterilization

Sterilization

Barrier method

Barrier method

Abstinence
Birth control pills

Abstinence

Abstinence

Birth control pills

Birth control pills

b. Drop down list

c. Check lists (the electronic equivalent of “check all that apply”)

d. Radio button (the electronic equivalent of a“check”)

a. Write in (the electronic equivalent of “fill in the blank”)
Method of Birth Control: Barrier method

  Fig. 10.3    Example data collection structures. For many data elements, more than one data collection 
structure exists       
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tall, the data cannot be used to answer the question, “how many subjects are over 6 
feet tall?” Another way to think about data reduction is in terms of Steven’s scales. 
Data are reduced through collection at a lower scale, for example, collecting a yes 
or no indicator for high cholesterol. When the defi nition of high cholesterol changed, 
data sets that collected the numerical test result continued to be useful, while the 
data sets that contained an indicator, yes or no to high cholesterol, became less use-
ful. There are many cases such as high-volume data collected through devices where 
reduction in the number of data values collected or retained or stored is necessary 
and desirable. The amount of information loss is dependent on the method employed. 
Reduction of CRF data is through both data collection at a lower scale than the 
actual data and through decision not to collect certain data values. Because data 
reduction results in information loss, it limits reuse of the data and should only be 
employed after careful deliberation. 

 Data collection structure can cause quality problems in capturing categorical 
data in other ways. When the desired response for a fi eld is to mark a single item, 
the available choices should be exhaustive (i.e., comprehensive) and mutually exclu-
sive  [  33–  35  ] . Lack of comprehensiveness causes confusion when completing the 
form, leading to unwanted variability. Similarly, overlapping categories cause con-
fusion and limit reuse of the data. 

 The  compatibility-proximity principle  was fi rst recognized in the fi eld of cogni-
tive science. When applied to the design of data collection forms, it means that the 
representation on the form should as closely as possible the cognitive task of the 
person completing the form. For example, if body mass index (BMI) is a required 
measurement, but the medical record captures height and weight, the form should 
capture height and weight, and the BMI should be calculated by a computer. 
Sometimes, this principle is stated as “collect raw data.” Values on the form should 
allow data to be captured using multiple units so that the person completing the 
form is not required to convert units. Importantly, the fl ow of the form should fol-
low as closely as possible the fl ow of the source document  [  33–  35  ] . An additional 
application of the compatibility-proximity principle is that all items that the person 
completing the form needs to complete his or her task should be immediately 
apparent on the form itself (separate form completion instruction booklets are less 
effective)  [  34  ] . There is evidence that data elements with higher cognitive load on 
the abstractor or form completer also have higher error rates  [  35–  47  ] . Adhering 
to the compatibility-proximity principle, by decreasing cognitive load, may help 
prevent this. 

 There are, however, four countervailing factors that must be weighed against the 
compatibility-proximity principle: (1) for projects involving multiple sites, match-
ing aspects of each site’s medical record in the data collection form, representation 
may not be possible; (2) there may be reasons for using a more structured data col-
lection form that outweigh the benefi ts of precisely matching the medical record; 
(3) in circumstances where a calculated or transformed value is necessary for imme-
diate decision-making at the site, a real-time solution or tool to support the addi-
tional cognitive tasks is needed; such a tool may require raw data as input; and (4) 
it may not be possible to design forms that match clinical workfl ow, for example, 
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some electronic systems limit data collection structure to one question-answer pair 
per line, precluding collection of data using tabular formats. 

 Defi ning data collection is not limited to the data collection structure. It also 
includes the source and means by which the data will be obtained. For example, 
will data be abstracted from medical records, collected de novo from patients 
directly, or collected electronically through measuring devices? The identifi cation 
of possibilities and selection of one over the alternatives is a design decision requir-
ing knowledge of the advantages and disadvantages of each option and how they 
impact costs and the dimensions of data quality. Thus, ability to characterize data 
sources and processes in these terms is a critical competency of clinical research 
informaticists. 

 Like parsimony and full specifi cation, defi ning the data collection mechanism is 
a preventative data quality intervention. The chosen data sources and mechanisms 
of collection and processing may impact data accuracy, precision, and timeliness 
dimensions, while the defi nition itself may impact the specifi city dimension and the 
utility of data for secondary uses.  

   Observing and Measuring Data 

 The different types of measurement and observations used in clinical research are 
too many and too various to enumerate here. Clinical data may be reported by the 
patient, observed by a physician or other healthcare provider, or measured directly 
via instrumentation. Some measurements return a concrete number (e.g., tempera-
ture) or answer, while others require interpretation (e.g., the trace output of an 
electrocardiogram). 

 It is diffi cult (and sometimes impossible) to correct values that are measured 
incorrectly, biased, or gathered or derived under problematic circumstances. 
Recorded data can be checked to ascertain whether they fall within valid values or 
ranges and can be compared with other values to assess consistency, but doing so 
after the data have been collected and recorded eliminates the possibility to cor-
rect errors in observation. For this reason, error checking processes should be 
built into measurement and observation whenever feasible. This can be accom-
plished by building redundancy in to data collection processes  [  48,   49  ] . Some 
examples include: (1) measurement of more than one value (e.g., taking three 
serial blood pressures), (2) drawing an extra vial of blood and running a redundant 
assay for important measurements, (3) asking a different question to measure the 
same construct, and (4) measuring the same parameter via two independent meth-
ods. Immediate independent measurement with immediate feedback can be used 
to identify and correct discrepancies at the point of measurement. Independent 
measurement alone can also provide a replacement value if needed (e.g., the sec-
ond vial of blood that saves the day when the fi rst vial hemolyzes). Independent 
assessment with immediate feedback should be distinguished from error checking 
with immediate feedback. Error checking is a comparison of a recorded value 
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against a known standard, for example, valid ranges, or relative comparison to 
another value. While error checking can identify some errors, it will miss those 
within the valid value set. Errors within the valid value set can only be identifi ed 
through redundancy. Secondly, error checking may occur at the point of measure-
ment or recording, but is usually not built in to measurement processes, and thus 
occurs after the fact, and only serves as an identifi cation mechanism, rather than 
as a correction mechanism. In summary, measurement discrepancies can be miti-
gated through careful procedures and training; however, errors are nonetheless 
inevitable. While error checking near or after measurement can identify errors, 
immediate independent verifi cation with contemporaneous feedback remains the 
safest option. 

 Another important aspect of measurement and observation, one that has a criti-
cal effect on data quality, is ensuring consistency between or among clinical 
investigational sites. The “albuterol” example given at the beginning of the chap-
ter refl ects an all-too-common problem rooted in the fact that clinical investiga-
tional sites each practice medicine and research differently and institutional 
policies vary from location to location. In addition, equipment may vary from site 
to site, and there is usually at least some degree of staff turnover during studies, 
meaning that levels of available skill, knowledge, and experience at a given site 
will fl uctuate over time. These and other factors contribute to variations in proce-
dures governing observation and measurement, adding unwanted variability to 
clinical data. 

 For these reasons, clear, unambiguous, and uniform procedures that all study 
personnel can follow are essential to maintaining data quality. Consistency can 
often be improved    by providing sites with critical study-related equipment or devices 
(so that all study data are being gathered with the same devices), training site per-
sonnel in study procedures and the administration of tests and questionnaires, using 
central reading centers where rating or interpretation of data is required, and requir-
ing all sites to follow equipment calibration schedules that offer preventative meth-
ods to improve data quality from measurement and observation. 

 Measurement and observation should also be subject to ongoing assessment 
and control. Some methods directly assess the measurement or observation; 
examples include assessing interrater reliability, reviewing recorded interviews, 
and monitoring investigational sites for adherence to procedure are all ways of 
providing ongoing assessment and control. While other assessment and control 
methods are indirect, examples include counts of data inconsistencies, instances 
of noncompliance to protocol specifi ed    time windows, and statistical methods of 
checking for aberrant by site. These indirect methods may identify sites or study 
staff that may be performing aspects of the study differently from other sites. 
However, these indirect measures are only surrogates for data quality, i.e., mea-
sures of inconsistency, rather than direct assessment of accuracy. With such 
 indirect assessments, care must be taken to respect natural variations (including 
those caused by variations in population) among sites. Assessment and control 
methods are usually targeted at the accuracy, timeliness, or completeness 
dimensions.  
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   Recording Data 

  Recording  data is the process of writing down (e.g., as from a visual readout or 
display) or directly capturing electronically data that have been measured, thereby 
creating a permanent record. The fi rst time a data value is recorded—whether by 
electronic means or handwritten, on an offi cial medical record form, or a piece of 
scratch paper, by a principal investigator or anyone else— is considered the source  
 [  7  ] . If questions about a study’s results arise, the researcher (and ultimately, the 
public) must rely upon the source to reconstruct the research results. Several key 
principles are applicable: (1) the source should always be clearly identifi ed; (2) 
the source should be protected from untoward alteration, loss, and destruction; 
and (3) good documentation practices, as described by US Food and Drug 
Administration regulations codifi ed in 21 CFR Part 58  [  50  ] , should be followed. 
These practices include principles    such as data should be legible, changes should 
not obscure the original value, the reason for change should be indicated, and 
changes should be attributable (to a particular person). While it seems obvious 
that the  source  is foundational, even sacred to the research process, cases where 
the source is not clearly identifi ed or varies across sites have been reported and are 
common  [  51,   52  ] . Data quality is also affected at the recording step by differences 
such as the recorder’s degree of fi delity to procedures regarding number of signifi -
cant fi gures and rounding; such issues can be checked on monitoring visits or 
subjected to assessment and control methods discussed in the previous section. 
Data recording usually impacts the accuracy, timeliness, or completeness dimen-
sions. However, where recording is not adequately specifi ed, precision may also 
be impacted.  

   Processing Data 

 In a recent literature review and pooled analysis that characterized common data 
collection and processing methods with respect to accuracy, data quality was seen 
to vary widely according to the processing method used  [  53  ] . Further, it appears that 
the process most associated with accuracy-related quality problems, medical record 
abstraction, is the most ubiquitous, as well as the least likely to be measured and 
controlled within research projects  [  53  ] . 

 Although not as signifi cant in terms of impact on quality as abstraction, the 
method of data entry and cleaning can also affect the accuracy of data. On average, 
double data entry is associated with the highest accuracy and lowest variability, 
followed by single data entry (Table  10.2 ). While optical scanning methods could 
provide accuracy comparable to key-entry methods, they were associated with 
higher variability. Other factors such as on-screen checks with single data entry, 
local versus centralized data entry and cleaning, and batch data cleaning checks 
may act as substantial mediators with the potential to mitigate differences between 
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methods  [  53  ] . Additionally, other factors have been hypothesized in the literature, 
but an association has yet to be established, for example, staff experience  [  53  ] , 
number of manual steps  [  54  ] , and complexity of data  [  51  ] . For these reasons, mea-
surement of data quality is listed as a minimum standard in the Good Clinical Data 
Management Practices document  [  54  ] . Because of the potentially signifi cant impact 
that variations in data quality can have on the overall reliability and validity of 
conclusions drawn from research fi ndings  [  55  ] , publication of data accuracy with 
clinical    research results should be required.  

 While our focus thus far has been on the accuracy dimension, data processing 
methods and execution can also impact timeliness and completeness dimensions. 
Impact on timeliness can be mitigated by using well-designed data status reports to 
actively manage data receipt and processing throughout the project or even pre-
vented by designing processes that minimize delays. The impact of data processing 
on completeness can be mitigated in the design stages through collecting data that 
are likely to be captured in routine care or through providing special capture mecha-
nisms, for example, measuring devices, capture directly from participants, or use of 
worksheets. Additionally, throughout the study, completeness rates for data ele-
ments can be measured and actively managed.  

   Analyzing Data, Reporting Status, and Reporting Results 

 Analyzing and reporting data differ fundamentally from other steps discussed in the 
preceding sections, as they lack the capacity to introduce error into the data values 
themselves. Errors in analysis and reporting programming or data presentation, 
while potentially costly, do not change underlying data. Analysis and reporting pro-
gramming is typically applied to a copy of the database. However, analysis and 
reporting do have the potential to misrepresent the data. Assuring and controlling 
quality at the analysis and reporting stage is achieved through choice of appropriate 
methods, through validation of programming, and through applying the compatibility-
proximity principle to data displays through matching the scale of represented data 
and representing display.  

   Table 10.2    Accuracy associated with common data processing methods   

 Min.  Median  Mean  Max.  Std. Dev.  LCL  UCL 

 Abstraction  70  647  960  5,019  1,018  510  818 
 Optical  2  81  207  1,106  338  4  220 
 Single entry  4  26  80  650  150  21  36 
 Double entry  4  15  16  33  10  6  24 
 No batch data 

cleaning 
 2  270  648  5,019  946  200  475 

 Batch data 
cleaning 

 2  36  306  1,351  428  23  287 
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   Using the Framework to Plan for Data Quality 

 When starting a new project, the clinical data manager and/or clinical research 
informaticist is faced with a design task: match the data collection scenario for the 
project to the most appropriate data sources and processing methods. The frame-
work presented here can be used to structure this task to increase the transparency 
of decisions to the research team and lessen the likelihood that anything is missed. 
The fi rst step is to group the data to be collected into categories depending on source, 
for example, medical history and medications will be abstracted from the medical 
record, blood pressures will come from a study provided device, lab values will be 
transferred electronically from a central lab, and so on. Where data sources within 
the medical record are varied, a more granular treatment may be required. The data 
sources and process by which the data are obtained can then be diagrammed, and 
alternative sources, methods, and processes can be considered. For example, some 
data sources may have undesirable preprocessing steps or known higher variability 
and may be excluded from consideration. Once the data sources have been chosen 
and the data gathering process has been specifi ed, the steps in Fig.  10.4  can be 
applied to identify known error sources, to consider the possibility or desirability of 
preventing or mitigating the error, and to evaluate the methods for accomplishing 
the change. Data quality dimensions that are important to the research study are 
assessed for each type of data and each processing step. The output of this process 
is then discussed with the research team and incorporated into the plan for data col-
lection and management. Importantly, application of this framework is a tool and 
mental exercise to use in planning and a tool to promote discussion and informed 
decision-making by the research team. Use of such a framework should impact the 
data collection and management plan, ultimately optimizing data quality. Use of 
this framework to produce an additional written document is explicitly not the intent 
(Fig.  10.4 ).    

   Infrastructure for Assuring Data Quality 

 Whenever organizations depend solely upon the skill, availability and integrity of 
individuals to assure data quality, they place themselves at risk. Levels of skill, 
ability, and knowledge not only differ from one person to another, but may even 
differ in the same person depending on circumstances (e.g., fatigue can degrade the 
performance of a skilled operator). Further, in the absence of clear and uniform 
procedures and standards, different persons will perform tasks in different ways; 
and while free expression is honored in artistic pursuits, it is dangerous when oper-
ationalizing research. A data quality assurance infrastructure provides crucial guid-
ance and structure for humans who work with research data. Simply put, it assures 
that an organization will consistently produce the required level of data quality. 
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The following criteria are commonly assessed in preaward site visits and audits. It 
is no surprise that they comprise a system for assuring data quality.

    1.     Organizational consensus regarding the required level of data quality, informed 
by an understanding of the cost of achieving it and the consequences of failing to 
achieve it  
  Because the leaders of organizations or clinical trials are not typically data qual-
ity professionals, informaticists, or statisticians, data quality-related information, 
i.e., needs and impacts of not meeting them, may need to be communicated to 
leadership in a manner that can be acted upon, for example, a draft policy for 
approval. Where organizations exhibit inadequate support data quality, it may be 
because this critical information has not been conveyed to leadership in a com-
pelling way that demonstrates the need, the associated costs, and the benefi ts.  

    2.     Appropriate tools for supporting the collection and management of data  
  Although specialized devices and software are of themselves neither necessary 
nor suffi cient for producing quality data, their presence is often perceived as 
representing rigor or important capabilities. Specialized tools often automate 
workfl ow and enforce controls on the collection and processing of data. Controls 

Data Quality Planning and Assessment

Data and Error Source

1. List the data to be collected

2. Group data according to data source

3. List common sources of error for
    each data source
    – Consider each processing step 
    (Fig 10.2)

4. Choose strategies to prevent
    or mitigate  

Assessment Dimensions 

1. State the intended uses of the data

2. List the DQ/IQ dimensions important
    for the use

3. List the metrics, operational 
    definitions and acceptance 
    criteria for each dimension

4. Decide monitoring frequency
    and reporting plan

  Fig. 10.4    Data Quality Planning and Assessment. This framework links data quality planning and 
assessment with the decisions about which data elements to collect. During planning, data to be 
collected are listed and grouped by type and or source of data. Known error sources for each are 
considered and deliberate decisions are made about prevention, mitigation, or doing nothing. At 
the same time, the data quality dimensions important to the intended use are identifi ed. Metrics, 
acceptance or action criteria and operational defi nitions for each are developed as well as reporting 
plans. Some mitigation strategies may prompt inclusion of metrics and monitoring for known error 
types       
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built into software are referred to as technical controls. These features can poten-
tially increase effi ciency, accuracy, and adherence to procedures by eliminating 
the variance associated with manual steps and options; for these reasons, data 
managed using automated systems are often perceived to be of higher quality. 
Where specialized software with these technical controls is not available, custom 
programming can be done to create them in available software. Other types of 
controls are managerial and procedural controls. These use policies, manuals of 
operations, and work procedures to assure consistency and quality. It is worth 
emphasizing that high-quality data can be achieved without specialized systems 
through the use of managerial and procedural controls; however, doing so often 
entails more highly qualifi ed staff and additional costly manual checking and 
review. Where specialized technical controls are not in place, depending on the 
quality needed, their function may need to be developed or addressed through 
procedural controls.  

    3.     Design of processes capable of assuring data quality  
  Likened to mass customization, in clinical research, scientifi c differences in 
studies and circumstances of management by independent research groups drive 
variation in data collection and processing. Because each study may use different 
data collection and management processes, the design and assessment of such 
processes is an important skill in applied clinical research informatics. The fi rst 
step in matching a process to a project is to understand how the planned pro-
cesses, including any facilitative software, perform with respect to data quality 
dimensions. For example, it is common practice for some companies to send a 
clinical trial monitor to sites to review data prior to data processing; thus, data 
may wait for a month or more prior to further processing. Where data are needed 
for interim safety monitoring, processes with such delays are most likely not 
capable of meeting timeliness requirements. 

 Designing and using capable processes is a main component of error preven-
tion. For this reason, clinical research informaticists must be able to anticipate 
error sources and types and ascertain which errors are preventable, detectable, 
and correctable and the best methods for doing so. Processes should then be 
designed to include error mitigation, detection, and correction. Process control 
with respect to data quality involves ongoing measurement of data quality dimen-
sions such as accuracy, completeness, and timeliness, plus taking corrective 
action when actionable issues are identifi ed. A very good series of statistical 
process control books has been published by Donald Wheeler. Several articles 
have been published on SPC applications in clinical research  [  55–  61  ] .  

    4.     Documented standard operating procedures (SOPs) are required by FDA regula-
tion and in most research contracts . 
  The complete data collection and management process should be documented 
prior to system development and data collection. The importance of SOPs is 
underscored by the fact that documented work procedures are mandated by 
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International Standards Organization (ISO) quality system standards. Variation 
in approaches to documenting procedures are common, but the essential 
requirement is that each process through which data pass should be docu-
mented in such a way that the published data tables and listings can be traced 
back to the raw data. Differences between the scientifi c and operational aspects 
of clinical research projects often necessitate multiple levels of documenta-
tion; for example, a standard procedure level that applies across studies, cou-
pled with a project-specifi c level that pertains to individual studies or groups 
of similar studies. Further, because organizations, regulations, and practices 
change, process documentation should be maintained in the context of a  regular 
review and approval cycle.  

    5.     Personnel management infrastructure; job descriptions, review of and feedback 
on employee performance, and procedures for managing performance . 
  Written job descriptions generally include minimum qualifi cations and experi-
ence, a detailed list of job responsibilities, and reporting structure. These 
descriptions help the candidate as well as the hiring manager(s) assess a per-
son’s suitability for a job. In addition, they help organizations communicate 
expectations and maintain performance standards for a given position. 
Appropriate data quality assurance infrastructure also includes regular review 
of employees’ work and a means of providing meaningful and actionable feed-
back to employees. If management is nonexistent or incapable of reviewing 
employees’ work and providing oversight and technical guidance, a key com-
ponent of the quality assurance infrastructure is absent. Managers should also 
identify and defi ne both good and inadequate performance, and there should 
be organizational procedures for encouraging the former and correcting the 
latter. While these concerns may sound more appropriate for a business offi ce, 
personnel management  infrastructure is crucial to data quality in clinical 
research because even with continuing technological development, humans 
still perform all of the design, and much of the data collection and processing, 
and human performance directly affects data quality.  

    6.     Project management in clinical research informatics begins with understanding 
the basic data-related requirements of a study, i.e., the data deliverables, associ-
ated costs, the necessary levels of quality, and the amount of time required or 
available . 
  Project management also includes planning to meet requirements as well as ongo-
ing tracking, assessment, and reporting of status with respect to targets. Project 
management profoundly affects data quality; for example, good planning and 
forecasting make the necessary resources and time for a given project transparent. 
Keeping a project on schedule eliminates (or at least mitigates) pressure to rush 
or cut corners and often results in employees who feel less harassed or fatigued.     

 Together, these six structural components form a quality system for the collec-
tion and management of data in clinical research (Fig.  10.5 ).   
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   Impact of Data Quality on Research Results 

 In most clinical research, the goal is to answer a scientifi c question. This is often 
done through inferential statistics. Unfortunately, a “one size fi ts all” data quality 
acceptance criterion is not possible because statistical tests vary in their robustness 
to data errors. Further, the impact on the statistical test depends on the variable in 
which the errors occur and the extent of the errors. Further still, data that are of 
acceptable quality for one use may not be acceptable for another, i.e., the “fi tness for 
use” aspect addressed earlier. It is for these reasons that regulators cannot set a data 
quality minimum standard or an “error rate threshold.” 

 What we can say is that data errors, measurement variability, incompleteness, 
and delays directly impact the statistical tests through adding variability, potentially 
decreasing power. As shown conceptually in Fig.  10.6 , added variability makes it 
more diffi cult to tell if two distributions (i.e., a treatment and a control group) are 
different. Data error rates reported in the literature are well within ranges shown to 
cause power drops or necessitate increases in sample size in order to preserve 
 statistical power  [  62,   63  ] . While it is true that sample size estimates are based on 
data that also have errors, i.e., the sample size accounts for some base level of vari-
ability, data errors have been shown to change p values  [  26  ]  and attenuate correla-
tion coeffi cients to the null  [  64–  66  ]  (i.e., for trials that fail to reject the null hypothesis, 
data errors rather than a true lack of effect could be responsible)  [  67  ] . In the context 
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  Fig. 10.5    Components of a data quality system. The environment in which data are collected 
and processed impacts data quality. Thus, achieving and controlling data quality usually requires 
action from entities in the broader environment       
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of large data error rates, a researcher must choose either to: (1) accept power loss, 
risking an incorrect indication toward the null hypothesis due to data error, or (2) 
undertake the expense of measuring the error rate and possibly also the expense of 
increasing the sample size accordingly to maintain the original desired statistical 
power  [  55,   63,   66  ] . The adverse impact of data errors has also been demonstrated in 
other secondary data uses such as registries and performance measures  [  68–  74  ] . 
Thus, whether or not data are of acceptable quality for a given analysis is a question 
to be assessed by the study statistician. The assessment should be based on mea-
sured error and completness rates.   

  Fig. 10.6    Effect of adding variability. The top two distributions have less variability (are narrower) 
than the bottom two, making it easier to tell them apart both visually and statistically       
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   Summary 

 The following important points apply to data and information collected and man-
aged in clinical research: (1) errors occur naturally, (2) sources of error are numer-
ous, (3) some errors can be prevented, (4) some errors can be detected, and (5) some 
errors can be corrected. The sets in 3–5 do not completely overlap. At the same time, 
there are errors that cannot be prevented, detected, or corrected (e.g., a study subject 
who deliberately provides an inaccurate answer on a questionnaire). Errors exist in 
all data sets, and it is foolish to assume that any collection of data is error-free. While 
higher quality data are often associated with overall savings, preventing, detecting, 
and correcting errors are associated with additional or redistributed costs. 

 The skilled practitioner possesses knowledge of error sources and matching 
methods for prevention, mitigation, detection, and correction where they exist. 
Further, the skilled practitioner applies this knowledge to design clinical research 
data collection and management processes that provide the needed quality at an 
acceptable cost. Achieving and maintaining data quality in clinical research is a 
complex undertaking. If data quality is to be maintained, it must also be measured 
and acted upon throughout the course of the research project. 

 There is widespread agreement that the validity of clinical research rests on a 
foundation of data. However, there is limited research to guide data collection and 
processing practice. The many unanswered questions, if thoughtfully addressed, 
can help investigators and research teams balance costs, time, and quality while 
assuring scientifi c validity.      
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