
Performance Analysis Report Overview Example.pdf

Performance Analysis

Chapter 2: SPE Overview

SOFT 437

http://www.perfeng.com/papers/perfsol2.pdf - Ch2

http://www.informit.com/articles/article.aspx?p=24009 – Ch1

http://www.perfeng.com/papers/perfsol2.pdf

http://www.informit.com/articles/article.aspx?p=24009

SOFT 437 2

Quick Highlights

• What is Performance?

– Response time

– Throughput

• Responsiveness

• Scalability

• Why Performance?

– Damage of customer relation - Business failure

– Loss of competency - Bad reputation

• How to manage performance

– Reactive x Proactive

• Why do we need SPE?

– Build models to tradeoff between Resources and Demands

SOFT 437 3

Is SPE Necessary?

SPE detect problems early in developments

and use qualitative methods to support cost-

effective analysis

Resource Requirements Capacity

SOFT 437 4

It’s too Expensive to Build Responsive

Software?

• Primary motivation for fix-it-later:

– improve development and maintenance productivity

• Today:

– newer methods, models, and tools actually increase

productivity

• preventing problems that delay delivery

• preventing tricky-code maintenance problems

SOFT 437 5

You Can Tune Software Later?

• Tuning may improve performance, but not as much

as design can

• Problems are usually caused by fundamental

architectural or design problems rather than

inefficient code

• Very expensive (often infeasible) to change

fundamental design choices

SOFT 437 6

Efficiency Implies ‘Tricky Code’?

• Tuning may introduce tricky code to resolve

problems that could have been prevented

• Tricky code may the only option for achieving goals

late in the lifecycle

• Acceptable performance is required, and can be

designed in early

R
ea

ct
iv

e • Let’s build it first and see
what it can do

• We’ll tune it later

• We cannot do anything
until we have something to
measure

• We have fast HW

• Don’t worry, you are in
safe hands

• Problems? We don’t have
problems

P
ro

ac
ti

v
e • The project has a

performance engineer (PE)

• Everyone in the project
knows the name of the PE

• There is a procedure in-
place on how to identify
performance issues

• Team members are trained
in performance processes

SOFT 437 7

Fix-it-later

appeared first in the old days

How should you mange

performance?

Software Development Life Cycle –

Waterfall Model

SOFT 437 8

SDLC - Iterative Model

SOFT 437 9

SDLC - Spiral Model

SOFT 437 10http://www.tutorialspoint.com/sdlc/sdlc_tutorial.pdf

SOFT 437 11

Traditional Software Development

Life Cycle

• Common approaches:

– Consider Functional Requirements only during

development and check Performance Requirements at

the end

– Fix the system if performance is not good!

• Problems:

– It is very costly and time consuming to fix problems

after the system is ready!

– Fixing problems may imply major code refactoring

SOFT 437 12

Traditional Software Development Life

Cycle – Waterfall Model

SOFT 437 13

Why Performance Is Not Addressed

Early

• No established discipline for assessing the

performance characteristics of a design quickly and

easily

• Insufficient time is budgeted for integrating

performance analysis into the design process

• Pressing deadlines

• Emphasis is placed on implementing a system

quickly and improving it later

SOFT 437 14

Systems with High Performance

Requirements?

• End-user related functions

– Reservation systems, merchandise-checkout systems

• Real-time, mission critical systems

– Such as flight-control systems

• Employee support systems

– Inventory control systems, computer-aided design

systems

SOFT 437 15

Software Performance Engineering

• Software Performance Engineering (SPE) is a

systematic, quantitative approach to constructing

software systems to meet performance objectives

– Begins early in the software lifecycle

– Uses quantitative methods

– Identifies problems before developers invest

significant time in implementation

– Used through detailed design, coding, and testing

SOFT 437 16

Integrating SPE Into the Software

Development Life Cycle

SOFT 437 17

SPE Begins in the Requirements

Analysis

• Benefits of early lifecycle steps:

– Increased productivity — don’t need to throw bad

designs

– Improved quality and usefulness of the resulting

software product — selecting suitable design choices

– Controlled costs of the supporting hardware and

software — identifying necessary equipment

– Enhanced productivity during the implementation,

testing, and early operational stages — ensuring that

sufficient computing power is available

Address Questions in Early Stages

• Will your users be able to complete tasks in the

allotted time?

• Are your hardware and network capable of

supporting the load?

• What response time is expected for key tasks?

• Will the system scale up to meet your future needs?

SOFT 437 18

SOFT 437 19

SPE for Object Oriented Systems
• Object oriented systems present special problems for SPE

– Functionality is decentralized

– Collaborations are required to perform a given function

– The interactions are difficult to trace

– UML (Unified Modeling Language) helps to reduce the impact of these

problems.

• SPE is tightly integrated with object-oriented notation, such as

the UML

• Use object oriented analysis or design models to derive a

performance model

• Use cases provides a starting point for constructing

performance models

SOFT 437 20

Performance Analysis

• Use object-oriented analysis or design model to

derive a performance model

• Solving the model gives you feedback on

performance to revise the object-oriented design

• SPE is also language independent

• SPE can be easily integrated into the software

development processes, such as waterfall model,

spiral model and rational unified process

SOFT 437 21

Waterfall Model

SOFT 437 22

SPE Process for Object-Oriented Systems

SOFT 437 23

1. Assess Performance Risk

• Assessing the performance risk at the outset of the project

tells you how much effort to put into SPE activities

– The SPE effort can be minimal, if the project

• Is similar to other projects that you have built before

• Has minimal computer and network usage

• Is not mission critical or economic survival

• Example:

– The performance risk in constructing the ATM is small

– The host software must deal with a number of concurrent ATM

users, and response time

SOFT 437 24

Figure 2-1: The SPE Process for Object-Oriented Systems

SOFT 437 25

2. Identify Critical Use Cases

• The critical use cases are those that are important to

the operation of the system, or are important to

responsiveness as seen by the user

• The selection of use cases is risk driven

– a risk (e.g. if performance goals are not met, the system will fail

or be less than successful)

• Example, ATM use cases include:

– reloading a currency cassette

– customer transaction (e.g., withdraw, deposit)

– going off-line

SOFT 437 26

SOFT 437 27

Figure 2-1: The SPE Process for Object-Oriented Systems

SOFT 437 28

3. Select Key Performance Scenarios

• It is unlikely that all of the scenarios for each critical use case
will be important from a performance perspective

• The key performance scenarios are

– Executed frequently

– Critical to the perceived performance of a system

• Each performance scenario corresponds to a workload

• Workload intensity specifies the level of usage for the
scenario (arrival rate)

• Example:

– Specify the workload intensity of a customer transaction, that is
the number of customer transactions or their arrival rate
during the peak period

Example of Key Performance Scenarios

SOFT 437 29

SOFT 437 30

Figure 2-1: The SPE Process for Object-Oriented Systems

SOFT 437 31

4. Establish Performance Objectives

• Performance objectives specify quantitative criteria

for evaluating performance characteristics of a

system under development

• They are expressed by

– response time, throughput, or constraints on resource

usage

• Example:

– performance objectives: 30 seconds or less to

complete an end-to-end ATM transaction

SOFT 437 32

Figure 2-1: The SPE Process for Object-Oriented Systems

SOFT 437

5. Construct Performance Models

• We use execution graphs to represent software

processing steps in a performance model

Execution Graph Sequence Diagram

ATTENTION!

SOFT 437 34

Make sure your sequence

diagram is a reflection of the

real process!

SOFT 437 35

Figure 2-1: The SPE Process for Object-Oriented Systems

SOFT 437 36

6. Determine Software Resource Requirements

• Software resource requirements capture

computational needs that are meaningful from a

software perspective

• Example software resources that are important for an

ATM:

– Screens – the number of screens displayed the ATM Customer

– Host– the number of interactions with the host bank

– Log – the number of log entries on the ATM machine

– Delay – the relative delay in time for other ATM device

processing, such as the cash dispenser or receipt printer

SOFT 437 37

SOFT 437 38

Figure 2-1: The SPE Process for Object-Oriented Systems

SOFT 437 39

7. Add Computer Resource Requirements

• Computer resource requirements map the software

resource requirements onto the amount of service key

devices in the execution environment

• Example computer resources at an ATM:

– The types of processor/devices (CPU, Disk, Display,

Delay), quantity, speed

Evaluation parameters

SOFT 437 40

SOFT 437 41

Figure 2-1: The SPE Process for Object-Oriented Systems

SOFT 437 42

8. Evaluate the Models

• If the model indicates that there are problems, there

are two alternatives:

– Modify the product concept: looking for feasible cost-

effective alternatives for satisfying the use case

instance

– Revise performance objectives: no feasible alterative

exists, we modify performance goals to reflect this

reality

SOFT 437 43

Figure 2-1: The SPE Process for Object-Oriented Systems

SOFT 437 44

9. Verify and Validate the Models

• Model verification and validation are ongoing

activities that proceed in parallel with the

construction and evaluation of the models

• Model verification is aimed at determining whether

the model predictions are an accurate reflection of

the software’s performance

• Model validation is concerned with determining

whether the model accurately reflects the execution

characteristics of the software

SPE Modeling

SOFT 437 45

SOFT 437 46

SPE Modeling Strategies

1. Simple-Model Strategy

2. Best- and Worst Strategy

3. Adapt-to-Precision Strategy

SOFT 437 47

1. Simple-Model Strategy

• Leverages the SPE effort to provide rapid feedback

on the performance of the proposed software.

Start with the simplest possible model that identifies

problems with the system architecture, design, or

implementation plans

SOFT 437 48

2. Best- and Worst-Case Strategy

• The models rely upon estimates of resource
requirements for the software execution

• The precision of the models depends on the quality
of these estimates

• It is difficult to precisely estimate resource
requirements early in the software process

Use best- and worst-case estimates of resource
requirements to establish bounds on expected

performance and manage uncertainty in estimates

SOFT 437 49

3. Adapt-to-Precision Strategy

• The simple-model strategy is appropriate for early

life cycle studies.

• The adapt-to-precision strategy is used later in the

development process

Match the details represented in the models to your

knowledge of the software processing details

SOFT 437 50

Conventional Modeling Procedure

• Study the exiting computer system

• Construct a system execution model

• Measure current execution patterns

• Characterize workloads

• Develop input parameters to calculate performance

metrics

• Validate the model by solving the performance

metrics

• Calibrate the model

SOFT 437 51

Conventional vs. SPE Models

SOFT 437 52

References

• Course Notes for Performance of Computer Systems by Håkan Grahn,

Department of Software Engineering and Computer Science, Blekinge

Institute of Technology Sweden

• Course Notes for CS 672 by Daniel A. Menasce, Department of Computer

Science, George Mason University

