

TECHNICAL REPORT
CMU/SEI-2001-TR-001

ESC-TR-2001-001

 Product Line
Analysis:
A Practical
Introduction

Gary Chastek

Patrick Donohoe

Kyo Chul Kang
(Pohang University of Science and Technology)

Steffen Thiel
(Robert Bosch GmbH)

June 2001

Pittsburgh, PA 15213-3890

Product Line
Analysis:
A Practical
Introduction

CMU/SEI-2001-TR-001
ESC-TR-2001-001

Gary Chastek
Patrick Donohoe
Kyo Chul Kang (Pohang University of Science and Technology)
Steffen Thiel (Robert Bosch GmbH)

June 2001

Product Line Systems Program

Unlimited distribution subject to the copyright.

Last printed 9/27/01 7:47 AM / version 2.1 / bw4le

This report was prepared for the

SEI Joint Program Office
HQ ESC/DIB
5 Eglin Street
Hanscom AFB, MA 01731-2116

The ideas and findings in this report should not be construed as an official DoD position. It is published in the interest of
scientific and technical information exchange.

FOR THE COMMANDER

Norton L. Compton, Lt Col., USAF
SEI Joint Program Office

This work is sponsored by the U.S. Department of Defense. The Software Engineering Institute is a
federally funded research and development center sponsored by the U.S. Department of Defense.

Copyright 2001 by Carnegie Mellon University.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO,
WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED
FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF
ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Internal use. Permission to reproduce this document and to prepare derivative works from this document for internal use is
granted, provided the copyright and "No Warranty" statements are included with all reproductions and derivative works.

External use. Requests for permission to reproduce this document or prepare derivative works of this document for external
and commercial use should be addressed to the SEI Licensing Agent.

This work was created in the performance of Federal Government Contract Number F19628-00-C-0003 with Carnegie
Mellon University for the operation of the Software Engineering Institute, a federally funded research and development
center. The Government of the United States has a royalty-free government-purpose license to use, duplicate, or disclose the
work, in whole or in part and in any manner, and to have or permit others to do so, for government purposes pursuant to the
copyright license under the clause at 52.227-7013.

For information about purchasing paper copies of SEI reports, please visit the publications portion of our Web site
(http://www.sei.cmu.edu/publications/pubweb.html).

CMU/SEI-2001-TR-001 i

Table of Contents

Abstract vii

1 Introduction 1
1.1 The Context of Product Line Analysis 2
1.2 About This Report 3

2 Product Line Requirements 5
2.1 Sources of Product Line Requirements 6

2.1.1 Product Line Stakeholders 6
2.1.2 Product Line Practice Areas 8

2.2 Users of Product Line Requirements 10
2.3 From Requirements to Architecture 10
2.4 Introduction to the Example: Home

Integration System (HIS) 11
2.4.1 Business Context 11
2.4.2 The Econo-HIS product 12
2.4.3 The Lux-HIS Product 12

2.5 Summary 13

3 The Requirements Model 15
3.1 The Use-Case Model 15
3.2 The Object Model 17
3.3 The Feature Model 19
3.4 The Dictionary 21
3.5 Work Product Relationships 21
3.6 Summary 24

4 Requirements Modeling 25
4.1 Recursive Refinement 25

ii CMU/SEI-2001-TR-001

4.2 Analysis 28
4.2.1 Commonality and Variability

Analysis 28
4.2.2 Consistency Analysis 30
4.2.3 Feature Interaction Analysis 30
4.2.4 Model Quality Analysis 31
4.2.5 Requirements Priority Analysis 31

4.3 Verification 32
4.4 Summary 33

5 Modeling Strategies 35
5.1 A Feature-Driven Strategy 36

5.1.1 Strategy Context 36
5.1.2 Feature Modeling 37
5.1.3 Use-Case Modeling 38
5.1.4 Object Modeling 38

5.2 A Use-Case-Driven Strategy 39
5.2.1 Strategy Context 39
5.2.2 Use-Case Modeling 40
5.2.3 Feature Modeling 40
5.2.4 Object Modeling 41

5.3 Summary 41

6 Conclusions and Future Work 43
6.1 Robustness 43
6.2 Extensions 44

References 47

Appendix A: Example Stakeholder
Checklist 51

Appendix B: Work Product Interactions 53

CMU/SEI-2001-TR-001 iii

List of Figures

Figure 1: Product Line Requirements: Coverage 5

Figure 2: Stakeholder Views 7

Figure 3: Practice Areas: Initial Requirements
Information Sources 9

Figure 4: Stakeholder Hierarchy 16

Figure 5: Requirements Objects and Information
Exchanges 19

Figure 6: HIS Feature Model – Upper Levels 20

Figure 7: Safety Features of HIS 20

Figure 8: Relationships Among Use Cases,
Objects, and Features 22

Figure 9: Work Product Relationships 22

Figure 10: Model Relationships Under the Feature-
Driven Strategy 37

Figure 11: Model Relationships Under the Use-
Case-Driven Strategy 40

iv CMU/SEI-2001-TR-001

CMU/SEI-2001-TR-001 v

List of Tables

Table 1: Recursive Refinement of the
Requirements Model 26

Table 2: Example Checklist of Product Line
Stakeholders 51

vi CMU/SEI-2001-TR-001

CMU/SEI-2001-TR-001 vii

Abstract

Product line analysis applies established modeling techniques to engineer the requirements
for a product line of software-intensive systems. This report provides practitioners with a
practical introduction to product line requirements modeling. It describes product line analy-
sis in the context of product line development. The report also shows how a requirements
model is built from work products that are based on object modeling, use-case modeling, and
feature-modeling techniques. A running example, based on home automation systems, illus-
trates concepts and terminology. Two different strategies for creating the requirements model
are also presented.

The product line analysis work is evolving. This report describes its current status and
planned development.

viii CMU/SEI-2001-TR-001

CMU/SEI-2001-TR-001 1

1 Introduction

Product line analysis is requirements engineering for a product line of software-intensive sys-
tems. It encompasses the elicitation, analysis, specification, and verification1 of the require-
ments for a product line. It is the requirements analyst’s perspective of the role of require-
ments engineering in a product line development.

Requirements are statements of what a system must do, how it must behave, the properties it
must exhibit, the qualities it must possess, and the constraints that the system and its devel-
opment must satisfy. The Institute of Electrical and Electronic Engineers (IEEE) defines a
requirement as

1. a condition or capability needed by a user to solve a problem or achieve an objective

2. a condition or capability that must be met or possessed by a system or system compo-
nent to satisfy a contract, standard, specification, or other formally imposed document

3. a documented representation of a condition or capability as in (1) or (2) [IEEE 90]

Product line analysis specifies requirements for a product line in a model rather than a natu-
ral-language document [Böckle 00, Jacobson 97]. Its primary goal is identifying and analyz-
ing opportunities for large-grained reuse within the requirements. To achieve this, it creates a
requirements model that identifies common requirements across the product line and the ac-
ceptable variations of those requirements. The model has two important characteristics:

1. It specifies the functionality and quality attributes (such as performance or modifiability)
of the products in the product line.

2. Its structure reflects decisions about common and variant capabilities and behaviors
across the product line.

The requirements model also serves as a fundamental communications mechanism between
developers and other stakeholders of a product

1 For brevity, in this report the term verification also includes validation, except in cases where the

specific activities of one or the other are discussed.

2 CMU/SEI-2001-TR-001

1.1 The Context of Product Line Analysis
Product line analysis is part of product line development.2 The decision to develop and man-
age a product line begins with identifying a business opportunity that, potentially, can be real-
ized by exploiting strategic reuse; that is, creating sets of related products from common
parts. Product line development spans the path from the initial recognition of such a business
opportunity to the creation of the actual products. The products result from business and en-
gineering decisions that determine what products to offer, how they should be built, and how
they should evolve over the life of the product line. These decisions center on an organiza-
tion’s ability to develop assets that can be reused in multiple products. Furthermore, decisions
about the evolution of a single product are made within the broader context of the evolution
of the product line.

Clements and Northrop define a software product line as follows [Clements 01]:

A software product line is a set of software-intensive systems sharing a common,
managed set of features that satisfy the specific needs of a particular market or
mission and that are developed from a common set of core assets in a prescribed
way.

The requirements for a product line cover not only products and their features, but also in-
formation to support business and technical decisions.

This report focuses on product line analysis as it applies to asset development, in particular
the assets created by the product line architect (for reasons discussed in Section 2). Product
line analysis ensures that the asset requirements are specified in a form that facilitates reason-
ing about the products in the product line, and the reusable assets that support them. The em-
phasis is on understanding what needs to be done to make the product line a reality from a
development (as opposed to a managerial or organizational) point of view. This understand-
ing must be represented in a way that can be communicated to the design team before design
or implementation decisions are made.

To be effective, product line analysis must capture

• current products being built by the organization that are candidates for inclusion in the
product line

• future envisioned products

• the relevant requirements of the various product line stakeholders and the associated ra-
tionales and tradeoffs

2 The term development is an abstraction that covers the multiple ways in which assets or products

actually come to fruition. Development may involve building, acquiring, purchasing, retrofitting
earlier work, or any combination of these options.

CMU/SEI-2001-TR-001 3

The modeling activities elicit requirements information from stakeholders, and specify, ana-
lyze, and verify the requirements across the product line. The requirements model is struc-
tured to meet the needs of the stakeholders and to provide a framework for commonality and
variability analysis.

1.2 About This Report
This report introduces product line requirements as a set of essential work products. It de-
scribes these work products and their functions, strengths, and weaknesses. It also shows how
they relate to each other, and how they express decisions about commonality and variability.
A running example presents concepts and terminology.

This report does not prescribe a process for product line analysis, nor is it a product line
analysis process model. It does describe two modeling strategies: a feature-based strategy and
a use-case-based strategy. While the modeling does not necessarily represent all modeling
techniques required by any application domain (e.g., finite state modeling for real-time em-
bedded systems), it is the authors’ experience that the requirements model contains the in-
formation vital for product line asset development. Particular application domains may sup-
plement the requirements model with additional representations where useful.

The content of this report evolved from a collaborative effort between the Software Engineer-
ing Institute (SEI) and an industrial partner, the Robert Bosch Corporation, to define the re-
quirements and the architecture of a new product line [Thiel 00]. The initial requirements
model, based on domain analysis techniques, proved awkward because the product line
crossed multiple domains. The solution was an approach that utilized techniques from do-
main analysis and object technology but that focused on the product line rather than domains.
Feature-oriented domain analysis [Kang 90, Lee 00] and use-case modeling [Jacobson 97]
were employed for this purpose, and the approach evolved into product line analysis. The
approach has also been influenced by Martin Griss’s work on adding features to the Reuse-
driven Software Engineering Business [Griss 98], and work of the SEI on the Architecture
Tradeoff Analysis MethodSM (ATAMSM) [Kazman 00] and the Attribute Driven Design
(ADD) method (formerly known as the Architecture Based Design method) [Bachmann 00].

This document is intended for product line requirements engineers, product line designers
who need usable, useful representations of requirements, and technology developers inter-
ested in creating tools to support them. Technical managers may be interested in Sections 1
and 2. Readers should be familiar with the Framework for Software Product Line Practice
[SEI 00], as well as Software Product Lines: Practices and Patterns by Clements and North-
rop [Clements 01]). Familiarity with object technology is also assumed.

SM Architecture Tradeoff Analysis Method and ATAM are service marks of Carnegie

Mellon University.

4 CMU/SEI-2001-TR-001

The remainder of this report describes the product line requirements model, how it is con-
structed, and how it is used. Section 2 describes the various sources of information for prod-
uct line requirements, and the various users of these requirements. It also introduces the ex-
ample used throughout the document. Section 3 describes the four work products constituting
the requirements model, and the relationships among them. Section 4 describes building the
model from the four work products and the accompanying elicitation, refinement, analysis,
and verification activities. Section 5 presents two alternative modeling strategies. Section 6
presents some conclusions and describes possible future work. Appendix A contains an ex-
ample checklist of product line stakeholders and Appendix B describes how work product
relationships are maintained as the requirements model develops.

CMU/SEI-2001-TR-001 5

2 Product Line Requirements

The requirements for a product line include current needed capabilities, anticipated future
requirements, and likely future product variations (which may include combinations of fea-
tures not supported in current products). Since requirements will change over the life of the
product line, product line analysis must incorporate both current and anticipated requirements
in the requirements model. In addition, the model must be able to adapt to product line re-
quirements as they evolve.

Deciding which products to build depends on business goals, market trends, technological
feasibility, etc. There are many sources of information to be considered and many tradeoffs to
be made. Not all “products” described by the product line requirements are, or ever will be, in
the product line. However, the product line requirements must be general enough to support
reasoning about the scope of the product line, likely future changes in requirements, and an-
ticipated product line growth.

Figure 1 depicts this generality for a simplified product line of three products. The smaller
rectangles represent the requirements of the three products to be built. The set of require-
ments for the product line, represented by the largest shaded rectangle, is potentially larger
than the combined requirements for actual products.

Product Line Requirements

Product 1

Product 3

Product 2

Figure 1: Product Line Requirements: Coverage

6 CMU/SEI-2001-TR-001

A product line makes a more extensive exploration of requirements sources economically
feasible. The cost of this analysis can be justified in terms of understanding the true scope of
the product line, identifying opportunities for strategic reuse, and supporting decisions about
product line assets. Once the product line asset base has been established, there will be a di-
rect savings associated with reuse each time a new product is created.

Initially, a business opportunity that could exploit a product line approach is identified. This,
in turn, triggers product line requirements elicitation and analysis.3 Multiple sources of in-
formation are investigated for potential requirements. The resulting requirements become
inputs to other activities of product line development; in particular, the design of the product
line architecture. This is, of course, an extreme simplification. In practice, establishing the
requirements for a product line is an iterative, incremental effort covering multiple require-
ments sources with many feedback loops and validation activities. The information sources
for product line requirements and the users of the requirements are the subject of the next two
sections.

2.1 Sources of Product Line Requirements
Product line analysis has to deal with many sources of requirements throughout the course of
product line development. Some of these requirements are known initially; many others are
discovered as the effort advances and the understanding of the requirements deepens. Product
line analysis refines the initial, incomplete understanding of the product line into a validated
specification that satisfies the needs and expectations of a diverse set of stakeholders.

The information sources for product line requirements include the stakeholders of the product
line and the product line development activities—the product line practice areas [Clements
01, SEI 00]. Needs and expectations are elicited from the stakeholders. Essential require-
ments information is obtained from each practice area. Treating the practice area activities as
sources underscores the fact that requirements can be discovered throughout product line de-
velopment. Product line analysis is not a one-time activity that determines all the require-
ments ahead of time and then stops.

2.1.1 Product Line Stakeholders
Traditionally, stakeholders are seen as people with a vested interest in the product line. Prod-
uct line analysis takes a broader view, analogous to the concept of an actor in a use case [Ja-
cobson 97]. From the viewpoint of requirements modeling, a product line stakeholder is a
role played by any of the various people or systems involved in, or affected by, a product line
development effort. These stakeholders could include the organization’s executives, product
end users, and product line analysts, designers, and implementers. Furthermore, a single per-
son may play the role of more than one stakeholder (e.g., designer and coder). The point is,

3 A more interesting case is when product line analysis uncovers new business opportunities but this

is beyond the scope of this report.

CMU/SEI-2001-TR-001 7

each stakeholder has a particular view of the product line, as shown in Figure 2, and a par-
ticular set of expectations for it.

Executive

Product Line
Developer

End User

Identified
Opportunity

Products

Product Line Development

Asset
Development

Figure 2: Stakeholder Views

For example,

• An executive sees the product line “as a whole”—a way to meet the organization’s goals.
The executive’s view can provide cost and personnel constraints. These are requirements
on the product line development effort.

• A product line developer builds products from relevant assets. The composability and
extensibility of these assets are also requirements on the product line.

• An end user sees products that provide useful services. The kinds of services expected,
the quality of services, and their adaptability for particular users are requirements on the
product line levied by end users.

Product line stakeholders also validate the requirements, providing feedback about whether
or not their interests have been correctly represented in the requirements model.

There are many other stakeholders in a product line. A government agency, for example, may
impose emissions restrictions on automobile engines or safety rules for aircraft flight-control
systems. These requirements are based on the agency’s view of the product line. A legacy
system that must be part of the product line is also a stakeholder. It imposes interface re-
quirements on the product line. It may also be a source of features. In fact, it may be a surro-
gate for an entire group of stakeholders since it represents a source of requirements, design,
and implementation information. Requirements modeling treats both categories—people and
systems—as sources of product line requirements information.

8 CMU/SEI-2001-TR-001

Table 2 in Appendix A lists some of the stakeholders in a product line and some examples of
the kind of information each can provide. While not necessarily exhaustive, the list does il-
lustrate that there are more stakeholders than just end users and developers, and that each
stakeholder’s viewpoint contributes information that can generate or affect the requirements.

Product line analysis is based on capturing these stakeholder views [Kotonya 96,
Sommerville 97 (Chapter 13)]. The information covers the significant characteristics of the
product line and its development. The different views help determine the effect of a develop-
ment decision (who is affected and how). They support prioritizing requirements. They also
identify potential conflicts and inconsistencies, and record the necessary tradeoffs among
stakeholder concerns.

2.1.2 Product Line Practice Areas
The second major category of information sources comes from activities performed during
product line development. This set of activities springs from the product line practice areas. A
practice area is defined as

A body of work or a collection of activities that an organization must master to
successfully carry out the essential work of a software product line [Clements
01].

Product line practice areas are classified into three broad categories. The categories and some
examples of the associated practice areas are listed below:

1. Software engineering practice areas

− architecture definition

− architecture evaluation

− requirements engineering

− testing

− understanding relevant domains

2. Technical management practice areas

− configuration management

− scoping

− technical risk management

3. Organizational management practice areas

− building a business case

− market analysis

− technology forecasting

CMU/SEI-2001-TR-001 9

From the point of view of product line analysis, a practice area is a focused set of activities
(e.g., testing) carried out by one or more stakeholders with specific goals (e.g., unit testing,
integration testing, regression testing). The focused set of activities is, in effect, a particular
view of the product line. For example, evaluating a product line architecture requires a view
of the product line quite different from that required for scoping. Each practice area brings its
own set of stakeholder needs and expectations. The list of practice areas represents sources
and the actual practice-area activities represent opportunities to uncover new requirements or
to refine existing requirements as the product line progresses. In addition, a practice area pro-
duces tangible outputs that document the particular view of the product line (e.g., a test plan
and test cases).

Product Line AnalysisProduct Line Scoping

Building a Business Case

Market Analysis

Understanding Relevant
Domains

Technology Forecasting

Figure 3: Practice Areas: Initial Requirements Information Sources

Figure 3 shows the initial practice area inputs to product line analysis. The double-headed
arrows represent the iteration between product line analysis and the practice area activities
that turns the elicited information into validated requirements. The early understanding of the
product line is then refined as these practice areas and others are applied. There is consider-
able interplay between the requirements modeling and the ongoing practice areas as the
requirements evolve over time.

There is also potential overlap in the elicited information. For example, the executive’s view
of the product line and the business case for the product line may lead to the same require-
ments. This overlap is not a problem since the goal is to cover all sources of information. Re-
dundant requirements will be addressed in the subsequent analysis. Similarly, the raw elicited
information will likely take many forms, ranging from vaguely expressed expectations (such
as “our next-generation products must be more configurable”) to detailed descriptions of
functionality (especially if legacy systems are a source of information). Product line analysis
turns this unstructured information into structured product line requirements.

10 CMU/SEI-2001-TR-001

2.2 Users of Product Line Requirements
Not surprisingly, many of the stakeholders that help define the requirements also use those
requirements. These users have different expectations of the outputs of product line analysis.
Some (e.g., stakeholders defining the scope of the product line) may simply want to confirm
that their interests have been represented (e.g., decisions about what products and services are
within scope). Others (e.g., architects and other asset builders) may want to describe pro-
posed functional and non-functional capabilities, and their commonality and variability
across the product line, so that decisions about architectural solutions and asset construction
can be made.

Viewed another way, the initial requirements analysis may confirm that it is indeed worth-
while to pursue a product line approach. Subsequent analysis is necessary to assess the tech-
nical feasibility and the likely consequences of stakeholder or practice area requirements. It is
important, therefore, to ensure that the requirements resulting from a product line analysis are
both usable and useful.

The usability and usefulness of the requirements model are directly related to its structure and
contents. To be usable, the model must be easy to navigate, easy to communicate to stake-
holders, and easy to update. To be useful, it must present accurate, consistent information that
reflects stakeholder views and the levels at which assumptions are made. In a product line of
hospital information management systems, for example, some requirements may relate spe-
cifically to scheduling nurses and doctors. Others will deal with the general problem of re-
source scheduling. In fact, resource scheduling is not specific to hospitals. It occurs in appli-
cation domains ranging from elevator control to air-traffic control. A broader view of the
problem helps uncover new products and markets.

This example shows that how a problem is stated in the requirements model can influence
how solutions will be proposed and perceived. Each assumption potentially limits the appli-
cability (generality) of the solution and its future reusability. In addition, there are require-
ments that persist for the life of the product line (e.g., the need to schedule resources) while
others are shorter lived (e.g., the particular kinds of resources to be scheduled may change as
the product line evolves). As a result, these issues require careful analysis before any deci-
sions are made. It is imperative that product line requirements be properly structured and be
free of design and implementation assumptions. The requirements model presented here
achieves these goals.

2.3 From Requirements to Architecture
This technical report focuses on the product line architect for several reasons:

• The architect is the bridge between the requirements and the earliest set of design deci-
sions for the product line. Product line requirements must have sufficient meaning for a
solution to be designed.

CMU/SEI-2001-TR-001 11

• Experience working with architects developing and applying ATAM and ADD led to the
desire to ensure that requirements affecting quality attributes were specified as part of re-
quirements engineering (i.e., the requirements aren’t solely about functionality).

• Identifying architecturally significant requirements, in particular the “architectural driv-
ers” [Bachmann 00] early in the design process has two benefits: It allows a fuller explo-
ration of the product line architecture and it avoids “analysis paralysis” since the explora-
tion can (and usually must) be conducted in parallel with requirements modeling to save
time.

The architect is concerned with the subset of product line assets directly related to the product
line architecture (e.g., architecture, components, generators). For the requirements model to
be useful, it must contain the information the architect needs: the functional features and
quality attributes of the product line, the internal system responsibilities supporting them, and
commonality and variability across the product line. How the requirements model does this is
the subject of Sections 3 and 4. The remainder of this section introduces the running example.

2.4 Introduction to the Example: Home Integration
System (HIS)

To illustrate the product line requirements model, we introduce the example of a home inte-
gration system (HIS).4 The home integration system enhances the comfort, safety, and secu-
rity of a home. Example services include heating, cooling, lighting, smoke detection, intru-
sion detection, entertainment, and telecommunications. Integrating services means that, for
example, the system could respond to an attempted break-in by sounding an alarm, turning on
all lights, locking the doors, and sending a message to the police. The following sections de-
scribe a hypothetical company, HIS Inc., and two products planned for its product line.

2.4.1 Business Context
The marketing department of HIS Inc. has projected a multi-billion-dollar market for home
integration systems. The company intends to become a major player with two initial HIS
products: a low-end product with fire and intrusion detection and control capabilities, and a
high-end product with an additional flood detection and control feature. After securing a large
share of the market, the company plans to introduce new products with additional features
such as climate control, lighting, entertainment, and e-commerce capabilities.

The key marketing strategy of this company is to build scalable products that allow budget-
conscious customers to start with a small system and grow by adding new features rather than
by buying new products. Therefore, product flexibility is the most important challenge for the
engineers.

4 Note that “home automation” or “smart home” are commonly used terms for these systems. The

term “home integration” is used in this report to emphasize the fundamental problem to be solved:
the integration of different services and their associated devices using a computer.

12 CMU/SEI-2001-TR-001

The HIS stakeholders and their roles include

• user (customer, owner, installer, maintainer, occupant)

• regulatory body (fire safety, electrical safety, insurance)

• responder (police, fire department)

• utility (gas, electric power, water, telecommunications)

The key features of the low-end product, named Econo-HIS, and the high-end product,
named Lux-HIS, are described in the following subsections.

2.4.2 The Econo-HIS product
The Econo-HIS product has the following features:

Fire detection and control: Fires are detected by smoke detectors installed in the house.
When a fire is detected, HIS activates the alarm, turns on all sprinklers, and unlocks all HIS-
controlled doors. It also sends a pre-recorded voice message to the fire department and the
home owner over the telephone line to inform them of the incident. Once the fire is under
control, as determined by the level of smoke detected by smoke detectors, the alarm and all
sprinklers will be turned off. The doors will remain unlocked for a duration preset by the
owner to allow the fire department to inspect the building.

Intrusion detection and control: Intrusions are detected by motion sensors throughout the
house. When an attempted intrusion is detected, HIS triggers the alarm and locks all HIS-
controlled doors to prevent entry. It also sends a pre-recorded voice message to the police
station and the home owner.

Door control: Locking and unlocking of doors can be scheduled by HIS or controlled directly
by users.

A fire event has a higher priority over an intrusion event. Therefore, when both events occur
at the same time, all HIS-controlled doors will remain unlocked.

2.4.3 The Lux-HIS Product
The LUX-HIS product has the following features:

Fire detection and control: Same as Econo-HIS, except that only the sprinklers near the
source of the fire are turned on to minimize water damage elsewhere in the house. An op-
tional gas supply control capability is available for this product. It shuts off gas in the case of
fire.

CMU/SEI-2001-TR-001 13

Intrusion detection and control: Same as Econo-HIS.

Flood detection and control: Flood events are detected by moisture sensors installed
throughout the house. When a flood event is detected, HIS shuts off the home’s water main.
When moisture is detected on the basement floor, the sump pump in the basement, which is
an optional device, will be activated.

A fire event has the highest priority. When all three events occur at the same time, the water
main will remain open and doors will be unlocked.

As more details of the work products that constitute the requirements model are presented in
this report, examples from the HIS will be used to clarify terms and concepts.

2.5 Summary
A fundamental premise of product line analysis is that product line requirements cannot ade-
quately be specified by considering just the viewpoint of a single stakeholder (e.g., a devel-
oper or the end user). The requirements model is an essential means of obtaining the relevant
information. Modeling elicits information from multiple sources, and refines, analyzes, and
verifies product line requirements. The model contains the stakeholder requirements in a
form that specifies product line features, system responsibilities, stakeholder interactions with
the product line, and commonality and variability across the product line. Since the require-
ments model specifies both functional requirements and quality attributes, it is aimed primar-
ily at meeting the needs of the product line architect.5

The next two sections describe the requirements model, moving in a bottom-up fashion from
the details of the individual work products of the model and their relationships with each
other (Section 3), to how the elicited stakeholder information is refined and analyzed through
modeling (Section 4).

5 The scope of the present work does not include, for example, targeting other users of product line

requirements such as testers or product builders.

14 CMU/SEI-2001-TR-001

CMU/SEI-2001-TR-001 15

3 The Requirements Model

This section describes the four interrelated work products that form the product line require-
ments model. Requirements are elicited, analyzed, specified, and verified through these work
products. In that sense, the four work products are the product line requirements. The work
products are based on object modeling, use-case modeling, and feature-modeling techniques:

• The use-case model specifies the product line stakeholders and their key interactions with
the product line. Those stakeholders will verify the acceptability of the product line (and
of the requirements).

• The feature model specifies the stakeholders’ views of the product line.

• The object model specifies the product line responsibilities that support those features.

• The dictionary defines the terminology utilized in the work products and supports a con-
sistent view of the product line requirements.

Use cases and features help elicit the requirements. The features and the objects are analyzed
for commonalities and variabilities, consistency, quality, interactions, and priority, as dis-
cussed in the next section. The stakeholders verify the accuracy and completeness of the re-
quirements.6

Together these work products form the basis of a systematic method for capturing and model-
ing the product line requirements. Each of the work products is created at the start of the re-
quirements modeling, is maintained jointly by the requirements analyst and the product line
stakeholders, and persists for the lifetime of the product line. Each affects, and is affected by,
the other three work products (i.e., they are interrelated).

The next four subsections describe the work products, their purpose, strengths, and weak-
nesses. The fifth subsection describes the relationships among the work products.

3.1 The Use-Case Model
A use case is a specific interaction between a stakeholder and the product line, and consists of

• the stakeholder’s goal for the interaction

• a description of the interaction that identifies associated product line responsibilities

6 The product line architect is a special stakeholder in this report in the sense that he or she also

verifies the usefulness of the requirements work products.

16 CMU/SEI-2001-TR-001

Since the product line will comprise multiple products, product line analysis includes use
cases that explore the variations across those products. For a single system development, use
cases and change cases are distinct. Use cases capture what that system does, while change
cases capture how that system might change, for example, in response to a new market envi-
ronment. For a product line, however, the two notions overlap because of the variation among
the products within that product line. For example, the product line might explicitly antici-
pate new market environments. Change cases are an effective mechanism for exploring such
product variations, and are treated as use cases [Ecklund 96].

The use-case model consists of the set of use cases that explore the product line and the
stakeholder hierarchy, which is illustrated in Figure 4. The stakeholder hierarchy includes the
roles played by the various stakeholders and the relationships among those roles. For exam-
ple, an end user of the system can play the roles of owner and of user. An owner can have
special privileges. In the HIS example, this could be the ability to configure the home secu-
rity characteristics and set the privileges of the other residents. A resident might be able to
adjust the home temperature but not the security settings. A maintenance user also could have
special privileges. An electrician could have complete access to the electrical system but not
to the phone system.

End User

Owner Resident Guest Maintainer

Stakeholder

.

Figure 4: Stakeholder Hierarchy

The use-case model records the use cases employed during product line requirements model-
ing. Use cases are viewed as an elicitation and understanding aid rather than a means of mod-
eling the structural relationships between requirements. They support the exploration and dis-
covery of opportunities for reuse, but the structure is represented elsewhere in the
requirements model, as described in the next section.7 As the modeling progresses, the previ-

7 Several use-case modeling methods, notably Jacobson’s, store the relations between use cases

within the use-case model [Jacobson 97]. The “extends” and “includes” are examples, represent-
ing relations between system responsibilities as relations between the use cases that invoke them.

CMU/SEI-2001-TR-001 17

ously created use cases aid the requirements analyst in exploring the ramifications of, and
verifying the effects of, changes to the requirements.

In the HIS example, a principal requirement is to automatically monitor and control devices
that enhance the comfort, safety, and security of the occupants of the house. In the case of
safety, the HIS will be able to detect and respond to incidents such as fires or burglary at-
tempts. The following use case explores this feature.

Use Case Name: Detect and Respond to Incidents.

Description: The HIS recognizes situations that pose risks to the house and
its occupants (e.g., a fire or attempted break-in) and responds appropriately.

Pre-Conditions: Detection and response devices are in an operating condi-
tion.

Identified Responsibilities:
1. HIS receives information from a device indicating a situation that requires a re-
sponse from HIS.
2. HIS identifies the situation, the severity, and appropriate responses.
3. HIS responds to the situation. Responses to a fire could include, for example, rais-
ing an alarm, turning on sprinklers (all of them, or just the ones in a particular room,
depending on the severity of the fire), notifying the fire department, and notifying the
owner of the house.

Post-Conditions: Incident response is completed.

Use cases have both strengths and weaknesses. Their strength is that they effectively explore
specific instances of the product line’s behavior. They are also useful for exploring new or
unknown product line features. The weakness of use cases is that their narrow scope makes it
difficult to capture product-line-wide commonalities in system responsibilities and informa-
tion exchanges.

3.2 The Object Model
Objects encapsulate behavior and state [Jacobson 97]. Design objects have attributes, com-
municate via messages, and encapsulate architectural mechanisms. Requirements objects are
conceptual, meaning they

• Encapsulate system responsibilities and owned information (information controlled and
supplied by that object).

• Exchange information, not messages (i.e., requirements typically do not address specific
architectural mechanisms).

18 CMU/SEI-2001-TR-001

For requirements objects, state is an object’s owned information, and behavior is that object’s
associated responsibilities. Unlike design objects, they do not contain data, do not send or
receive messages, and do not contain mechanisms. Requirements objects are precursors to
design objects. They supply the information needed to make design decisions, but do not con-
tain design decisions. They describe opportunities for reuse, but the decision to exploit that
opportunity in a particular product line is a design decision.8

The requirements object model groups related product line responsibilities (based on infor-
mation sharing) into objects. Information exchanges between the requirements objects are
represented by arcs among those objects.

The object model captures product line responsibilities and identifies opportunities for large-
grained reuse. It describes the acceptable solutions but does not provide the mechanisms for
those solutions. The structure of the object model plays a role similar to the “uses” and “ex-
tends” relationships in the Jacobson use-case model but clarifies product line responsibilities
and groupings.

Figure 5 shows a portion of the HIS object model. At this point, the responsibilities related to
detecting and monitoring incidents (such as a fire or attempted burglary), logging such inci-
dents, and responding to them have been grouped into the three objects shown. The boxes
represent objects and the arrows represent information exchanges.

The Incident Monitor object is the locus of responsibilities for recognizing incidents that re-
quire a response by the HIS. The responsibilities of this object include

• Recognizing incidents that require a response by the HIS. 9

• Identifying the incident so that

− the appropriate response can be made, and

− the incident can be logged for future examination.

• Recognizing when an incident has ended.

8 In the authors’ experience, the first hurdle in requirements modeling is abstracting what the system

must do from how it will do it. In practice, this can be a difficult distinction.

9 This will likely involve detection by a particular device and a flow of information from the device
to the HIS. How the information gets to the HIS is a design issue. For example, the HIS could poll
the device or the device could signal the HIS. The requirements object captures the responsibility
to recognize an incident but doesn’t force a design choice to solve the problem.

CMU/SEI-2001-TR-001 19

Incident
Monitor

Incident
Information

Incident
Information Incident

Logger

Incident
Responder

Figure 5: Requirements Objects and Information Exchanges

The other two objects in the diagram contain responsibilities for logging an incident and its
response (e.g., raising an alarm, turning on sprinklers, etc.). These responsibilities require
knowing that an incident requires a response. The arrows labeled Incident Information repre-
sent this knowledge. The direction of the arrows indicates that the Incident Monitor object is
the source of the knowledge and their destinations indicate that the Incident Logger and Inci-
dent Responder objects need the information to fulfill their responsibilities.

The strength of the object model is that it represents the internal view of the product line re-
quirements needed by the architect. It supports grouping similar system responsibilities and
information exchanges, and identifying opportunities for large-grained reuse. Its weakness is
that it is not helpful in analyzing how the product line interacts with its stakeholders or for
eliciting requirements. Objects abstract away the stakeholder focus; typical stakeholders (ex-
cluding developers) do not think in terms of system internals.

3.3 The Feature Model
A feature is a prominent or distinctive user-visible aspect, quality, or characteristic of a soft-
ware system or systems. (Kang provides an instructive description of feature modeling for
systems [Kang 90].)

The feature model represents the product line features in a hierarchy. General features are
located at the top and detailed features are located below. The feature model captures stake-
holder-visible characteristics and aspects of the product line, such as

• functional features of individual products in the product line

• software quality attributes of both the product line and the products in that product line10

Figure 6 shows the upper levels of the feature hierarchy. In the HIS example, safety services
are located higher than smoke detectors. Some functional and quality features are also visible.

10 Integrating software quality attributes into the feature model will be described in a future report.

20 CMU/SEI-2001-TR-001

HIS

Communication Configuration Monitor/
Control

Reporting

Fax
Internet

Phone
Device

UserService

Direct

Event-based

Scheduled

Periodic
On-demand

Services

Security
(Intrusion)

Safety
Entertainment

E-Commerce

Comfort

Diagnostics

Qualities

Scalability

Performance
Reliability

Figure 6: HIS Feature Model – Upper Levels

Figure 7 shows the portion of the HIS feature hierarchy dealing with safety services.

Safety

Fire Flood

Detection Action

Smoke
detector Alarm

Sprinkler
Fire

station

Storm Earthquake
Gas

Moisture
detector

Sump
pump

Figure 7: Safety Features of HIS

Features to handle fires and flooding are planned for the HIS product line. There will be dif-
ferent possible responses to a fire: raise an alarm, activate the sprinklers, and notify the fire
department. Which features will be incorporated in which specific products is a decision that
is supported by having them explicitly represented in the feature model as potential features
of the product line.

The strength of features is that they provide an abstract view of the interface between the
stakeholders and the product line. Features are easily understood by stakeholders. They also
capture commonalities and variabilities as perceived by customers and end users. The con-
nections among functional and quality features in the model are of particular importance to

CMU/SEI-2001-TR-001 21

designers. The weakness of features is that they do not provide insight into the internal re-
sponsibilities of the product line and are not useful for exploring new or poorly understood
system characteristics.

3.4 The Dictionary
The dictionary is a central collection of the terms used in the requirements modeling effort
(i.e., by the other work products). Terms are paired with definitions. The initial version of the
dictionary contains domain-specific terminology, associated definitions, and the sources of
the terminology. Subsequent versions of the dictionary contain these definitions, as well as
use-case goals, feature names, information exchanges, and product line responsibilities.

The following list shows examples of dictionary entries.

• Use case
Detect and Respond to Incidents: The HIS recognizes situations that pose risks to the
house and its occupants (e.g., a fire or attempted break-in) and responds appropriately.

• Object
Incident Monitor: The HIS recognizes situations that require a response.

• Feature
Fire: A safety feature that detects fires and informs the occupants of the house. The fea-
ture includes the capabilities to suppress the fire and notify external entities that a fire has
occurred.

The dictionary manages the requirements modeling name space. This is crucial for maintain-
ing the consistency of the requirements work products and for their effective development. It
is also crucial for identifying commonalities and variabilities in information exchanges, sys-
tem responsibilities, features, and use cases.

The strength of the dictionary is that it supports consistency in the requirements work prod-
ucts and identification of commonalities within the product line. A naming convention is re-
quired to support the consistent use of terminology within the work products. The weakness
of the dictionary is the high degree of discipline required on the part of the requirements ana-
lyst to keep the dictionary up to date. There is a natural tendency to let the dictionary slip,
which will render it ineffective. Maintaining the dictionary must be a high priority.

3.5 Work Product Relationships
Each work product consists of a set of modeling elements (e.g., the use cases in the use-case
model, the requirements objects in the object model, the features in the feature model, and the
terms in the dictionary). This section describes the relationships among the modeling ele-
ments. Figure 8 illustrates this for a particular stakeholder and a particular feature. It de-
scribes how a feature relates to objects and use cases.

22 CMU/SEI-2001-TR-001

Stakeholder

Product Line

Object

Object

Object

Use Case Path

F
ea

tu
re

Figure 8: Relationships Among Use Cases, Objects, and Features

The object and feature models are tightly coupled at the start of the requirements modeling,
but become more loosely coupled as the modeling progresses. This relationship is depicted
by the double-ended arrow labeled “1” in Figure 9. At the start of modeling, each feature cor-
responds directly to a requirements object whose responsibility is to provide that feature.
Traceability links among the features and the supporting requirements objects are established.
As the modeling progresses, combinations of requirements objects support each feature of-
fered by the products in the product line.

Object
Model

Feature
Model

Use Case
Model

Dictionary

1 2

3

Figure 9: Work Product Relationships

For each feature in the feature model, there is a set of requirements objects in the object
model that realize that feature. That is, the feature is provided by that set of objects and their

CMU/SEI-2001-TR-001 23

corresponding information exchanges. Conversely, for each object, there is at least one fea-
ture that requires that object for the feature’s realization.

The object and the use-case models are tightly coupled throughout the requirements modeling
effort (the double-ended arrow labeled “2” in the figure). Combinations of requirements ob-
jects and the exchanges of information among them satisfy the goal of each use case. The
responsibilities identified by each use case are incorporated in the requirements objects. For
each object in the object model there is (in theory) at least one use case that utilizes that ob-
ject.11

The feature model and the use-case model are loosely coupled throughout the modeling (the
doubled-ended arrow labeled “3” in the figure). Features start and end use cases, and satisfy
the goal of each use case. A stakeholder interacts with the product line by utilizing a product
line feature or a set of features. For each feature there is (in theory) at least one use case.

The dictionary is tightly coupled to the other work products for the life of the requirements
model (the unlabeled double-ended arrows in the figure). The dictionary contains definitions
for all feature names, use-case goals, requirements object names, and the names of the infor-
mation exchanged between requirements objects. A consistent naming convention is critical.

To illustrate these relationships, consider the examples presented in the preceding three sub-
sections. The use case “Detect and Respond to Incidents” identifies several responsibilities
that are explicitly captured in the object model. Some of these responsibilities are distributed
among the objects “Incident Monitor,” “Incident Logger,” and “Incident Responder” shown
in Figure 5. The safety features, shown in Figure 7, are also directly supported by responsi-
bilities in the object model. For example, the HIS features include several possible responses
to detecting a fire. The underlying system responsibilities cover these cases, and the object
model also includes other related responsibilities that aren’t directly visible as features (e.g.,
the responsibility for knowing when an incident has ended).

There are additional relationships among these work products that are not shown directly in
the examples given. For instance, the use case contains a pre-condition that devices be opera-
tional. This led to a set of responsibilities in the object model (grouped together in a Diagno-
sis object) having to do with knowledge of device configurations, the operational status of
devices (e.g., on, off, error), and recording device errors. There are security features with as-
sociated lower-level detection and response features (e.g., motion sensing and alarm signal-
ing) that, like the safety features, have underlying system responsibilities. There are quality
features that deal with the reliability and performance of the HIS. There are also use cases
that explore what it means for HIS to respond to a particular situation. The dictionary con-
tains entries describing the use cases, objects, and features. Thus the four work products

11 This is dependent on the use-case-driven strategy, as described in Section 6. It is certainly concep-

tually true.

24 CMU/SEI-2001-TR-001

complement one another and provide different yet related perspectives of product line re-
quirements. In general, developing any work product will create related information in one or
more of the other work products. The task of maintaining the relationships among the work
products is discussed in the next section.

3.6 Summary
The work products described in this section are tailored for modeling product line require-
ments, and are highly interrelated and interdependent. The structures of the use-case model
and the dictionary are simple: They are effectively lists. As the requirements modeling pro-
gresses, the use-case model and the dictionary change as expected, growing as new use cases
or terms are added.

The structures of the feature and requirements object models, however, are more complex
and change in less obvious ways. Multiple, seemingly unrelated features can rely on common
underlying product line responsibilities that are encapsulated in a single requirements object.
In the HIS example, the apparently distinct entertainment and safety features “Display TV
Listing” and “Respond to Fire” would both rely on common communications responsibilities.
The “Display TV Listing” feature would phone an external service to retrieve the most cur-
rent TV information, while the “Respond to Fire” feature would phone the local fire station
when a fire is detected. These features would map to the same requirements object responsi-
ble for establishing external phone communications. The next section describes requirements
modeling and how common product line responsibilities are identified and modeled.

CMU/SEI-2001-TR-001 25

4 Requirements Modeling

This section describes the requirements modeling activities. The modeling is performed by
the requirements modeling team. The team is led by a requirements analyst and includes the
product line stakeholders and the architect. The analyst is responsible for the modeling effort
and for gathering the appropriate mix of stakeholders to support the modeling tasks as they
arise.

The goal of product line analysis modeling is to systematically

• Define features that specify the functional requirements.

• Define specific quality attributes.

• Describe the precise relationship between requirements objects and quality attributes.

Systematic modeling focuses the requirements elicitation and helps establish the complete-
ness of the requirements model. Recursive refinement drives product line requirements mod-
eling and provides a framework for systematically engineering those requirements.

The requirements model is initialized to seed the recursive refinement activities described in
Section 4.1. The feature model is initialized with a set of functional features required by the
product line stakeholders and a set of quality attributes that the products in the product line
must possess. The object model is initialized with a set of objects that support those features.
The use-case model is initialized with a set of use cases that explores those features, both in-
dividually and collectively. The dictionary is initialized with a set of domain-specific termi-
nology definitions (with their sources), and the definitions of the objects and features intro-
duced during the initialization.

Systematic elicitation and refinement activities are presented in Section 4.1. Analysis activi-
ties are described in Section 4.2. These activities refine the model by identifying opportuni-
ties for large-grained reuse, feature interactions, and requirement priorities. They also ensure
model consistency and quality. Verification activities are described in Section 4.3.

4.1 Recursive Refinement
Table 1 illustrates how the recursive refinement algorithm functions. Each cell represents a
focus for elicitation, discussion, and analysis. The table is effectively a checklist that keeps
track of the refinement effort. The table also provides a place to record important issues that
are unrelated to the discussion at hand.

26 CMU/SEI-2001-TR-001

As shown in Table 1, the modeling loops through the cells in the table in row (i.e., object)
order. Each cell in the table represents a focus for refinement: that is, how does that quality
feature affect that object and how does the object affect the quality feature?12 Although fo-
cused on the objects and the quality features, the algorithm refines all the work products. As
each requirements object and quality feature is refined, the related requirements objects, fea-
tures, and use cases are also refined (see Appendix B).

Table 1: Recursive Refinement of the Requirements Model

 Quality feature 1 Quality feature 2 . . . Quality feature M

Object 1 Refine Refine . . . Refine

Object 2 Refine Refine

.

Object N Refine Refine . . . Refine

The requirements modeling team focuses on a particular cell. The quality feature in that cell
is refined by determining the precise meaning of the software quality attribute for the object.
The object in that cell is refined by determining

• the precise meaning of the object’s responsibilities

• the information the object needs to fulfill the responsibilities for the cell's quality feature

• the recipients of the object-generated information

• the product line responsibilities that are common to objects examined and how those re-
sponsibilities vary across the objects

When the discussion ends, the object is reexamined to determine if any other software quality
features are potentially important to the object, and the quality feature in the cell is reexam-
ined to determine if it applies to any other object.

Objects can be added by identifying common sources of information or responsibilities. Ob-
jects can be subdivided into multiple objects by refining the original object’s responsibilities.
For example, the HIS requirements model might contain a security services object responsi-
ble for determining and responding to threats. This object can be refined further in light of the
quality feature “modifiability.” For example, “determine threats” can be refined into “detect
fire,” “detect flood,” and “detect intruder.” Similarly, “respond to threat” can be refined into

12 Not all quality attributes apply to every object.

CMU/SEI-2001-TR-001 27

“contact fire department,” “engage sprinklers,” “turn house water supply off,” “turn exterior
lights on,” “turn alarm on,” and “contact police.” The original security services object may
then be refined into a “determine security threat” object, a “contact external help” object, and
an “activate security device” object.

These new objects trigger a parallel refinement of the feature model (e.g., contact fire de-
partment becomes a specific sub-feature of the security system). New use cases are also sug-
gested that explore interactions between the security services and the external communication
services.

New qualities (represented by new columns) and new objects (represented by new rows) are
added to the end of the table. As the modeling progresses, the recursive refinement algorithm
is applied to the new objects and quality features introduced by the refinement.

When a new feature is added, traceability links are established between that feature and the
requirements objects that support it. When an object is refined, the existing traceability links
to the features are adjusted to reflect changes in the requirements object’s responsibilities or
in the structure of the object model.

Requirements modeling terminates when

• Object refinement is localized; that is, when the refinement of an existing object yields
new objects that fit entirely within the scope of the existing object, and when the
information exchanges external to the new objects are the same as the information
exchanges of the replaced object.

• No additional variability across the products in the product line is discovered.

• The product line architect decides that the model is sufficiently detailed to begin design
(i.e., a practical understanding of the product line issues has been achieved).

• Business or market constraints force it (e.g., budget or time to market).

The first two termination criteria ultimately depend on the experience and judgment of the
requirements analyst. The third depends on the experience and judgment of the product line
architect. Each termination criterion is linked to the identification of opportunities for large-
grained reuse. The algorithm terminates when such opportunities can no longer be identified.

So far, we’ve described requirements modeling in a top-down fashion. This is because prod-
uct line requirements must be engineered within the scope of the product line. In practice,
features and requirements will enter the model at all levels. Typically an organization will
have domain experience directly related to the product line being developed. They will have
built related products, and will want to leverage their existing product requirements (i.e., via
synthesis) in the product line. Such product-specific requirements need to be considered
within the larger context of the product line. Product line requirements modeling is funda-
mentally a process of refinement rather than of synthesis. Refinement maintains the focus on

28 CMU/SEI-2001-TR-001

the entire product line while it systematically elicits and analyzes the requirements. This, in
turn, can

• Present opportunities for reuse that are not reflected in the existing products, but arise
within the product line.

• Address a set of quality features that differs from that of the existing products.

4.2 Analysis
Analysis is woven into the refinement effort. Each of the analyses described in this section is
performed incrementally as the modeling progresses. Five types of analysis are discussed in
this section: commonality and variability analysis, model consistency analysis, feature inter-
action analysis, model quality analysis, and requirements priority analysis. Commonality and
variability analysis examines the opportunities for large-grained reuse in the product line.
Consistency analysis seeks to discover discrepancies among the feature model, the use-case
model, and the object model. Feature interaction analysis examines dynamic interactions to
uncover undesirable side effects that can occur when integrating features. This analysis also
verifies that system responsibilities for resolving problems are properly defined in the object
model. Model quality analysis examines the usability and adaptability of the requirements
model. It also helps determine if the models embody the structural qualities necessary to sup-
port reuse.

4.2.1 Commonality and Variability Analysis
Commonality and variability analysis structures the features and the requirements objects,
identifying and specifying large-scale reuse opportunities within the product line. The analy-
sis is applied to both the functional and quality features of all existing and anticipated prod-
ucts. This is key to success; for it is the basis for planning the products and designing the as-
sets of the product line.

Commonality and variability analysis is performed continuously as the modeling proceeds.
The analysis can be initiated by the addition of a new feature, use case, object, or term. Each
of these can reveal a commonality.

Commonalities and variabilities are captured in the groupings of responsibilities, in the types
of information exchanged in the object model, and in the hierarchical structure of the feature
model. Generalization is a key technique for capturing commonalities in responsibilities, in-
formation exchanges, and features. Variabilities are captured as variations in the information

CMU/SEI-2001-TR-001 29

flows (e.g., parameters), in objects in the object model, and as alternatives in the feature
model.13

Commonality and variability analysis activities include the following:

• Check for commonality and variability within the feature model. The description of a
new feature can be similar to that of an existing feature. This similarity can suggest a
more general feature that subsumes the new and existing feature (i.e., the new and exist-
ing features are variants of the general feature).

• Check for commonality and variability within the use-case model. The exploration of a
new use case can reveal similar stakeholder goals, responsibilities already modeled in the
object model, or similarities among features.

• Check for commonality and variability within the object model. A new object can utilize
responsibilities similar to those of an existing object. Those objects can be combined into

− a more general object, or

− an object that captures the common responsibilities, with the differing responsibilities
captured in separate objects.

• Check for commonality and variability within the dictionary. The addition of a new term
can reveal similarities among features in the feature model, similar stakeholder goals in
the use-case model, or identify similar types of information exchanges and system re-
sponsibilities within the object model.

For example, the HIS object model might contain “contact police” and “contact fire depart-
ment” objects from the example in Section 4.1, a “contact TV listing service” object as part
the HIS entertainment services, and a “contact specified person” object from the HIS com-
munications services address book. These objects could be combined into a more general
“contact external person” object with information flows of “police” and “fire department”
from the security services, “TV listing service” from the entertainment services, and “speci-
fied person” from the communication services.

Commonality in requirements is only loosely coupled with commonality in design. A set of
responsibilities may be identified as common to all appliances in the home integration sys-
tem, such as the reporting of status information. A single requirements object would represent
those responsibilities. The architecture, however, could realize that single requirements object
as multiple, differing design objects (e.g., perhaps each appliance manufacturer currently
supplies its appliance with the status-reporting facility built in).

13 Commonality and variability analysis for a product line owes much to earlier domain analysis

work. Also see the “Understanding Relevant Domains” section of the Framework for Software
Product Line Practice [SEI 00].

30 CMU/SEI-2001-TR-001

4.2.2 Consistency Analysis
The work products created by product line analysis describe the same products from different
viewpoints or levels of abstraction. Since these work products are for the same product line,
the information represented by one work product must not contradict that of others.

Consistency analysis restores the relationships among work products when one of those work
products is altered. For example, the addition of a new feature can trigger a refinement of
existing objects and information exchanges, or the addition of new objects, as well as the ad-
dition of use cases to explore the implications for system responsibilities. The removal of an
existing feature can trigger the refinement or removal of existing objects, and invalidate or
alter existing use cases.

The consistency analysis activities are as follows:

• Check consistency between the feature model and the use cases. The set of features is an
abstraction of the product line as seen by the stakeholders, while use cases describe inter-
actions between stakeholders and the product line. Therefore, the functional features and
use cases should correspond. A number of use cases may be possible for a functional fea-
ture, and a use case may be used for several functional features. All use cases must be di-
rectly or indirectly related to functional features. Likewise, all functional features must be
related to use cases.

• Check consistency between the feature model and the object model. A functional feature
is realized by a sequence of interactions between objects. For each functional feature,
verify that the object model can realize the required interactions.

• Check consistency between the object model and the use cases. System responsibilities
defined as part of the use cases are allocated to objects. Verify that all system responsi-
bilities are allocated to objects, all use cases can be realized by sequences of interactions
between objects, and information flows between objects in an orderly way in each se-
quence of interactions.

Building on the example from the previous section, consistency analysis would assure that
the “contact external person” object satisfies the goals of the existing use cases associated
with the “contact police,” “contact fire department,” “contact TV listing service,” and “con-
tact specified person” objects.

Work products capture the required functionality abstractly. Therefore they must be refined
for specific products by repeating consistency analyses. That is, for each planned product,
features are selected and the use-case and object models are refined for these selected fea-
tures. This verifies the consistency of the refined model.

4.2.3 Feature Interaction Analysis
When features are integrated for a product, the features may interact in unexpected ways. In
the HIS example, the fire-control feature that turns on the sprinklers and the flood-control

CMU/SEI-2001-TR-001 31

feature that shuts off the water main could interact unexpectedly during a fire, making the
sprinklers useless. To detect feature-interaction problems, all possible combinations of fea-
tures must be analyzed, which is practically impossible for systems with a large set of fea-
tures. Therefore, the analysis must focus on quality attributes that are important for the prod-
uct line. The analysis identifies use cases that may adversely affect those quality attributes,
then checks if they can indeed happen with a given set of features.

Feature interaction analysis includes the following activities:

• Identifying quality attributes that are important for the product line (e.g., safety), and de-
velop use cases that may adversely affect the quality attributes (e.g., no water supply dur-
ing a fire event). Define pre-, post-, and invariant conditions (e.g., uninterrupted water
supply during a fire event) for each feature. Verify that the problematic use cases would
not happen for a given set of features.

• If interaction problems are found, verifying that the problems are adequately addressed in
the object model. Semantics of each feature may be defined as a sequence of interactions
(i.e., information exchanges) among objects. While integrating these interaction se-
quences, check if the object model (i.e., responsibilities of objects) addresses interaction
problems. In the home integration system, for example, a fire event must be handled with
a higher priority than a flood event when both occur concurrently. This requirement must
be specified as one or more system responsibilities in the object model.

Feature interaction analysis must be performed thoroughly whenever a new feature is added.

4.2.4 Model Quality Analysis
Model quality analysis is concerned with the requirements model qualities required to sup-
port a product line; for example, whether the model is understandable, adaptable, etc. This is
distinct from the quality attributes of the product line, which were discussed in Section 4.1.

Model quality analysis activities are as follows:

• Verify that the requirements model is understandable and can be refined for the products
in the product line. Refinements must generally occur at a low level in the abstraction hi-
erarchy.

• Verify that the requirements model can adapt to future changes in services and technolo-
gies. Like refinements, adaptations should generally occur at a low level in the abstrac-
tion hierarchy.

4.2.5 Requirements Priority Analysis
Not all requirements have the same level of importance. Different stakeholders may have dif-
ferent priorities for the same requirement. The priority of some requirements may also de-
pend on implementation costs. Therefore, requirements must be evaluated and prioritized.
This information should be made available for architecture exploration. Consensus building
might be the most difficult task in this activity.

32 CMU/SEI-2001-TR-001

Requirements priority is mainly concerned with defining and assigning priorities. Priority
analysis activities are as follows:

• Develop a prioritized list of requirements in terms of product features.

• Define the values used in the prioritization and their definitions in terms of exclusion or
inclusion in the product. For example, priority values may be “high” and “low.” “High”
means that the requirements represent core functionality and must be included at all
costs. “Low” means that the requirements represent non-core functionality that may be
excluded.

4.3 Verification
Verifying the requirements model is built into the interactions among the four work products
and in the consistency analysis described above.

For a product line, however, the requirements model must also satisfy the existing and envi-
sioned products of the product line. Activities of this further verification are as follows:

• Generate a list of all products that either exist or are planned for the product line. If a
scoping report for the product line exists, this information is already available. (See the
“Scoping” practice area of the Framework for Software Product Line Practice [SEI 00].)
If possible, group the products into categories based on common functionality or uses.

• Identify the features of the existing and envisioned products, and verify that the product
line feature model addresses them.

• Validate the product line requirements model by instantiating it for several products, in-
cluding those envisioned for the product line. It should adequately characterize each
product and its required features. The model should also differentiate products. If prod-
ucts differ based on quality attributes (e.g., security, performance, etc.), the model should
verify that the functional features can be instantiated for these products, taking into ac-
count the influence of the qualities on other features (e.g., a secure product may not offer
performance or the ability to access the Internet).

• Verify that the product line requirements object model can realize the product-specific
requirements. Also, verify that the model can evolve with the product line.

• Validate the requirements model with the product line stakeholders. If domain experts did
not participate in the modeling, the experts must review and ascertain the accuracy and
completeness of features and system responsibilities.

CMU/SEI-2001-TR-001 33

4.4 Summary
This section describes how work products are used to engineer requirements for a product
line. The method systematically elicits, analyzes, specifies, and verifies these requirements:

• Elicitation is by recursive refinement, as described in Section 4.1. A conceptual table of
requirements objects and quality features drives the elicitation and refinement efforts.

• Analysis is described in Section 4.2. Commonality and variability analysis, model consis-
tency analysis, feature interaction analysis, model quality analysis, and requirements pri-
ority analysis are woven into the refinement and performed continuously.

• Specification is driven by the architect’s needs. Software qualities are captured in the
quality features and linked to the affected functional features. System responsibilities are
grouped and parameterized according to commonalities and variabilities.

• Verification is conducted with the stakeholders, including the developers. Concrete use
cases verify that the recorded system functionality and qualities match stakeholder needs
and expectations. Verification also takes into account existing and expected products, as
described in Section 4.3.

The method further supports rapidly initiating the architectural definition.

34 CMU/SEI-2001-TR-001

CMU/SEI-2001-TR-001 35

5 Modeling Strategies

This section describes two strategies for product line requirements modeling: a feature-driven
strategy and a use-case-driven strategy. Both strategies use the method introduced in the pre-
ceding sections. They differ in how that method is applied. Although other strategies are pos-
sible, the authors have used these two in real product line development efforts.

In the feature-driven strategy, requirements modeling primarily focuses on features. The use
cases validate the feature model and identify system responsibilities. That is, the use cases
play a supporting rather than a primary role. In the use-case-driven strategy, use-case model-
ing elicits and discovers requirements. The feature model organizes and represents the com-
monalities and variabilities of these requirements. Both strategies use object modeling to or-
ganize and structure system responsibilities.

A process model for the strategies is not prescribed. Although the focus of the strategies is
different, each strategy develops the work products iteratively and incrementally. The work
products are interrelated, so continuous and incremental verification is necessary to detect
and correct inconsistencies.

The requirements analyst can choose the strategy that makes sense at the time. If domain ex-
perts are available, then the feature-driven strategy is more appropriate. If they are not, then
the use-case-driven strategy can be employed.

The first step in each strategy is to generate a list of products. If a scoping report exists, this
information is already available. This list contains both products that are relevant and those
that are planned for the product line. Once a product list is generated, check if the products
can be grouped into product categories based on common functionality or uses.

Each of the two strategies initializes the work products in a similar fashion. Typically, the
requirements analyst elicits an initial set of functional and quality features from the stake-
holders. Then the object model is initialized with a set of objects that provides those features.
The objects encapsulate the product line responsibilities needed to realize the stakeholder-
visible system characteristics (i.e., the features), as illustrated in Figure 8. The objects suggest
an initial set of use cases that probe those objects and the interactions among them. The sys-
tem responsibilities and information exchanges explored by the use cases are specified in the
objects and information exchanges in the object model. Objects “cooperate” to satisfy the
goal of a use case through the information arcs. The dictionary is initialized with the domain-
specific terminology to be used in the requirements modeling, the names of the features in the

36 CMU/SEI-2001-TR-001

initial feature model, the responsibilities in the object model, and the use-case goals. Once the
work products are initialized, one of the following strategies may be applied to complete the
product line analysis.

5.1 A Feature-Driven Strategy
The feature-driven strategy is appropriate for organizations with experience developing prod-
ucts similar to those planned for the product line. The feature-driven strategy exploits domain
experts’ knowledge to rapidly develop the requirements model, enabling designers to explore
architectures early in the product line development cycle.

Feature modeling focuses on the commonalties of functional features planned for the product
line, and then introduces variations as refinements of these features. Experts apply use cases
to verify the identified features and their variants and make sure they are organized properly.
They also check that the features of each product can be instantiated from the model.

5.1.1 Strategy Context
The feature-driven strategy is most effective when development experts are available for re-
quirements modeling. These experts should cover the spectrum of systems development,
ranging from requirements analysis and design to coding and maintenance. The strategy
works best when these experts have developed and maintained at least two systems that are
similar to those planned.

The success of the product line depends on understanding the application domain. The ex-
perts not only must understand how products have evolved but what changes in functionality
and in implementation technologies are expected, so that these expected changes can be
eventually encapsulated in components. They also must understand emerging technologies
and how they may affect the product evolution.

In the feature-driven strategy, the requirements analyst and domain experts rapidly populate
the feature model. All other modeling activities are influenced by the feature modeling activ-
ity, as shown in Figure 10. Each feature in the feature model must have a stakeholder (or
stakeholders) and associated use cases. Therefore, the feature model triggers use-case model-
ing. As use cases are developed and refined, it is possible that new features are identified or
existing features are found to be unnecessary; these findings are fed back to feature modeling.
Also, candidate objects for object modeling are identified from the feature model. System
responsibilities are allocated to objects. The objects are refined by analyzing both the func-
tional cohesion of their responsibilities and the coupling between objects. The object model is
verified by generating object interaction scenarios for the use cases [Wirfs-Brock 90].

CMU/SEI-2001-TR-001 37

Derivation
of objects

Derivation
of use cases

System
responsibilities

Validation of
feature semantics,

discovery of new features

Use case
scenarios

Feature Model

Object Model Use Case Model

Derivation

Feedback,
verification
analysis

Figure 10: Model Relationships Under the Feature-Driven Strategy

This strategy supports early architectural exploration. The modeling activities discussed in
the following subsections proceed in parallel.

5.1.2 Feature Modeling
Feature modeling involves discovering and modeling functional and quality features of the
product line, and validating the model. The following are specific tasks of feature modeling:

• Generate features for the existing and anticipated products. Identify the common features
of all the products in the list. Follow the refinement approach in Section 4.1 to abstract
product-specific features away and update the feature model.

• Validate the model, as discussed in Section 4.3.

• Add the definition of each feature to the dictionary. Each feature’s semantics must be de-
fined precisely and the definitions of related features must be compared for accuracy.

• Analyze the model for feature interaction problems, as discussed in Section 4.2.3. Inte-
grating features may result in unexpected side effects. This information should be made
available to use-case and object modeling efforts.

As the feature model is being developed, use-case modeling proceeds in parallel, exchanging
information with feature modeling.

38 CMU/SEI-2001-TR-001

5.1.3 Use-Case Modeling
The following are specific use-case modeling activities:

• Generate use cases. Features are abstractions of the system functionality as seen by the
stakeholders and these may be used as a starting point for use-case modeling. However,
care must be taken that use-case modeling is not limited to the features in the feature
model.

• Identify system responsibilities for each use case. A use case defines an interaction be-
tween the end-user and the system, and there are responsibilities that the system must ful-
fill to provide the required interaction.

• Check consistency between the feature model and the use cases. (See Section 4.2.2 for a
discussion of consistency analysis.)

− Check if each use case can be mapped to features; if not, there may be features that
are missing from the feature model.

− Check if all the features are addressed by the use cases; if not, there may be use cases
that are missing.

− Check if the use cases are consistent with the semantics of the features defined in the
dictionary.

The use of a feature model in conjunction with the use cases may improve productivity.
However, there is a danger that the use cases could be biased toward the feature model, losing
the ability to crosscheck different models for missing or contradictory information. The fea-
ture model must only be used as a reference and to initiate use-case modeling.

The feature model and the use cases provide information to object modeling. The feature
model may identify candidate objects. System responsibilities identified in the use cases are
allocated to those objects. The object modeling tasks are discussed below.

5.1.4 Object Modeling
The information for object modeling has been gathered through feature and use-case model-
ing. Object modeling packages the system responsibilities into objects. This packaging is per-
formed by considering functional cohesion—sharing of common information among respon-
sibilities allocated to the same object—and the coupling between objects. The goal is to
achieve high cohesion and low coupling. Specific tasks are as follows:

• Identify candidate objects from the feature model [Lee 00]. Functional features are the
primary candidates as each represents distinct functionality.

• Allocate responsibilities to candidate objects. For each object, identify the information
that is necessary to fulfill the allocated responsibilities. Some information may come
from other objects, some may be maintained within the object. Check if the system re-
sponsibilities allocated to an object require a common set of information. Responsibilities
allocated to an object should be functionally cohesive and share the same information.
Coupling between objects (i.e., data dependencies) should be kept low. Based on how in-
formation is shared among responsibilities, objects may be decomposed or integrated.

• Define information exchanges between objects. An object may require information from
other objects to perform its allocated responsibilities. These information flows between
objects should be defined in the model.

CMU/SEI-2001-TR-001 39

• Update the dictionary with object definitions.

• Verify that the object model is consistent with the feature model. (See Section 4.2.2.)

• Verify that the functions of each product in the product line can be instantiated from the
object model. (See Section 4.3.)

The requirements object model created by product line analysis defines functionally cohesive
sets of system responsibilities as objects. It is used as a basis for the design object model.

5.2 A Use-Case-Driven Strategy
While the feature-driven strategy can be effective when domain experts are available for the
product line analysis, the use-case-driven strategy can be applied without their direct and
constant participation. Rather, this strategy limits experts to reviewing and validating the
models. The strategy can also be applied when a clear product vision has not been estab-
lished. As in the feature-based strategy, modeling and validation are iterative and incremental.

5.2.1 Strategy Context
This strategy requires expertise in use-case-driven object-modeling methods. The analysts
must be well versed in use-case-driven methods and, ideally, should have applied these meth-
ods for product line analysis or software reuse. They should also have some exposure to, and
understanding of, the domain of the product line. This strategy is most appropriate when the
domain experts are not available, or when new features (i.e., features not in existing products)
are being evaluated.

The use-case-driven strategy focuses on use cases to explore stakeholders’ requirements. The
product line context considers all products planned for the product line and their expected
evolution. As product line requirements are elicited, feature and object models are con-
structed based on the use cases. The feature model represents service commonalities and
variabilities provided by the product line. The object model represents system responsibili-
ties. Figure 11 illustrates model relationships.

40 CMU/SEI-2001-TR-001

Derivation
of objects

Derivation
of features

Consistency
analysis

Feature ModelObject Model

Use Case Model

Derivation

Feedback,
consistency
verification

Figure 11: Model Relationships Under the Use-Case-Driven Strategy

This strategy discovers product line requirements by constructing use cases and developing
other work products based on use cases. The modeling activities discussed in the following
subsections proceed in parallel.

5.2.2 Use-Case Modeling
Use-case modeling involves characterizing a stakeholder’s interactions with the product line,
and identifying the associated product line responsibilities. The following are specific tasks
of use-case modeling:

• Generate use cases to explore stakeholder interactions with the existing and anticipated
products.

• Identify system responsibilities for each use case. A use case describes an interaction be-
tween a stakeholder and the product line. It also identifies the product line responsibilities
associated with that interaction.

• Validate the model with domain experts. If domain experts did not participate in the use-
case modeling, they must review the model and ascertain the accuracy and completeness
of system responsibilities.

• Add product line specific terminology to the dictionary. As a new term is added to the
dictionary, check that its semantics do not overlap with those of other terms in the dic-
tionary and resolve any problems.

5.2.3 Feature Modeling
A feature is an abstraction of services provided by a system. Feature modeling captures and
represents commonalities and variabilities of the features in a model so that this information
may be used to build product line assets. Specific tasks for feature modeling are as follows:

CMU/SEI-2001-TR-001 41

• Update the feature model. A feature model is intended to capture “user visible character-
istics” abstractly and therefore the detailed operational use cases must be abstracted ap-
propriately. For instance, if there are “add resource,” “remove resource,” and “update re-
source” use cases, these operational use cases should be abstracted, for example, as
“resource management” in feature modeling.

• Validate the model by instantiating it for several products. (See Section 4.3.)

• Check consistency between the feature model and the use cases. (See Section 4.2.2.)

− Check if each use case can be mapped to the features; if not, there may be features
missing.

− Check if all features are addressed by the use cases; if not, there may be use cases
that are missing.

• Add the definition of each feature to the dictionary. Semantics of each feature must be
defined precisely and definitions of related features must be compared for accuracy.

• Analyze the model for feature interaction problems. Integrating features may yield unex-
pected side effects. This information should be made available to use-case and object
modeling. (See Section 4.2.3.)

5.2.4 Object Modeling
As system responsibilities are defined, group functionally cohesive ones into objects to de-
velop an object model. The tasks of the object modeling are the same as for the feature-driven
strategy. (See Section 5.1.4.)

5.3 Summary
Feature-driven and use-case-driven strategies can be employed to perform product line analy-
sis. Each of these strategies carries out the requirements modeling activities described in Sec-
tion 4. Each has strengths and weaknesses. Depending on the context of a given product line,
one strategy may be more effective than the other. The feature-driven strategy relies heavily
on the knowledge and availability of domain experts. When the experts are available, the fea-
ture-driven strategy can be highly effective. The use-case-driven strategy can be effective
when domain experts are not available for product line analysis or when product visions are
not clearly established. Organizations without any product line experience, but with some
exposure to object-oriented methods, may want to start with the use-case-driven strategy for
at least one project, then move to the feature-driven strategy as experience is gained.

42 CMU/SEI-2001-TR-001

CMU/SEI-2001-TR-001 43

6 Conclusions and Future Work

This report is a snapshot of ongoing product line analysis work. It supplies the architect with
the information necessary to design the assets for a product line.

The product line analysis approach is based on, and is consistent with, previous work on
software quality attributes [Barbacci 00], architecture evaluation [Kazman 00], and architec-
ture design [Bachmann 00]. The strengths of this approach include

• covering product line stakeholders’ needs and expectations

• systematically eliciting, analyzing, and refining product line requirements

• targeting a specific requirements user, namely the architect, for the design of product line
assets

The work products, as described in Section 3, are the requirements. Referring to the IEEE
definition of a requirement introduced in Section 1, the

• feature model specifies the conditions and capabilities needed by a user (i.e., the stake-
holders) to solve a problem or achieve an objective

• requirements object model specifies the conditions and capabilities that must be met or
possessed by the system

Together, the work products are a documented representation of the product line require-
ments.

Again, this work is evolving, and much remains to be done. There are two broad areas for
future work:

1. How can the described work be made more robust?

2. How can the described work be extended beyond asset development?

6.1 Robustness
Work to improve the robustness of the approach includes explicitly capturing tradeoffs
among stakeholder requirements, strengthening the refinement algorithm described in Section
4, and enhancing its usability.

This report is silent on the issue of tradeoffs between conflicting stakeholder requirements. In
effect, it assumes a single product line requirements model in which those tradeoffs are ex-

44 CMU/SEI-2001-TR-001

ternally resolved. In practice, how are those conflicts and tradeoffs recorded and resolved as
part of the modeling effort, and does this require a requirements model for each stakeholder?

The refinement algorithm is described in terms of objects and quality features. It targets the
product line architect responsible for designing product line assets. A similar refinement is
possible based on functional features and quality features (i.e., substitute functional features
for objects in Section 4.1). The intent of the two algorithms is somewhat different: when ap-
plied to functional and quality features, the refinement algorithm would capture stakeholder-
visible qualities.

The refinement algorithm depends on the experience and judgment of the requirements ana-
lyst and that dependency should be reduced. The dependency is implicit in the refinement
effort; that is, given a specific requirements object and quality feature, its refinement depends
on the experience of the requirements analyst. The dependency is explicit in the termination
criteria for the refinement algorithm. The termination criteria are strongly related to the level
of detail sufficient to produce product line assets. Certainly not every possible product line
requirement is needed or even wanted. The current approach used the architects to verify the
requirements model; part of that entails determining the proper level of detail.

Finally, the refinement algorithm does not address testability [McGregor 01]. Tailoring prod-
uct line analysis to better support the testability would improve the product line assets, and
ultimately, the products in that product line.

Expanding the usability of the refinement algorithm requires investigating traceability. Trace-
ability can occur between the requirements work products, or between the requirements
model and the downstream artifacts. Both types are needed, but it is not clear what extent of
traceability is useful, and what tool support is available.

Tool support is also an issue. Ideally, a tool would support the dictionary, including automati-
cally enforcing naming conventions and identifying commonalities within the definitions. It
is unclear how currently available requirements tools can support product line analysis. Is-
sues include how a feature model can be effectively represented in the Unified Modeling
Language (UML), and how to deal with the design assumptions that are implicit in UML.

6.2 Extensions
To extend the approach beyond asset development, the following issues must be addressed:

• How can product line analysis target other requirements users, such as the product build-
ers? There are other potential outputs from product line analysis, such as work products
to help elicit specific product requirements and build the specified product.

• What additional representations are useful? For example, the feature model may be trans-
formed to more effectively present the product line features to a customer (for sales pur-
poses). Other representations may be domain specific. For example, for an embedded real

CMU/SEI-2001-TR-001 45

time domain, a finite state diagram clarifies the state-related responsibilities captured in
the requirements object model. A related issue is the possibility of developing domain-
specific naming conventions.

• How can the product line requirements model be leveraged for a specific product in the
product line? The requirements model for a specific product must be kept consistent with
the product line requirements.

• What properties make a product line requirements model good? There may be some
structural properties that are desirable for product line requirements models. For exam-
ple, the requirements analyst may wish to push the differences between products to the
lower levels of the feature and object models.

Further research into product line requirements modeling will be required to explore these
issues.

46 CMU/SEI-2001-TR-001

CMU/SEI-2001-TR-001 47

References

[Bachmann 00] Bachmann, Felix; Bass, Len; Chastek, Gary; Donohoe, Patrick &
Peruzzi, Fabio. The Architecture Based Design Method (CMU/SEI-
2000-TR-001, ADA375851). Pittsburgh, PA: Software Engineering
Institute, Carnegie Mellon University. Available WWW. URL:
<http://www.sei.cmu.edu/publications/documents/
00.reports/00tr001.html> (2000).

[Barbacci 00] Barbacci, Mario R; Ellison, Robert J; Weinstock, Charles B. &
Wood, William G. Quality Attribute Workshop Participants Hand-
book (CMU/SEI-2000-SR-001). Pittsburgh, PA: Software Engineer-
ing Institute, Carnegie Mellon University. Available WWW. URL:
<http://www.sei.cmu.edu/publications/documents/
00.reports/00sr001.html> (2000).

[Böckle 00] Böckle, Günter. “Model-Based Requirements Engineering for
Product Lines.” 193–203. Donohoe, Patrick, ed. Software Product
Lines: Experience and Research Directions. Proceedings of the
First Software Product Line Conference (SPLC1). Denver, Colo-
rado, August 28–31, 2000. Norwell, MA: Kluwer Academic Pub-
lishers, 2000.

[Clements 01] Clements, Paul & Northrop, Linda. Software Product Lines: Prac-
tices and Patterns. Boston, MA: Addison Wesley Longman, Inc.,
2001.

[Cockburn 97] Cockburn, Alistair. “Goals and Use Cases.” Journal of Object-
Oriented Programming 10, 5 (September 1997): 35–40.

[Ecklund 96] Ecklund, Earl Jr.; Delcambre, Lois & Freiling, Michael. “Change
Cases: Use Cases that Identify Future Requirements,” 342–358.
Proceedings of OOPSLA ’96. San Jose, California, October 6–10,
1996. New York, NY: ACM Press, 1996.

48 CMU/SEI-2001-TR-001

[Griss 98] Griss, Martin L.; Favaro, John & d’Alessandro, Massimo. “Integrat-
ing Feature Modeling with the RSEB,” 76-85. Proceedings of the
Fifth International Conference on Software Reuse. Victoria, British
Columbia, Canada, June 2–5, 1998. Los Alamitos, CA: IEEE Com-
puter Society Press, 1998.

[IEEE 90] Institute of Electrical and Electronic Engineers. IEEE Standard
Glossary of Software Engineering Terminology (IEEE Std 610.12-
1990). New York, NY: Institute of Electrical and Electronics
Engineers, 1990.

[Jacobson 97] Jacobson, Ivar; Griss, Martin & Jonsson, Patrik. Software Reuse:
Architecture, Process, and Organization for Business Success. New
York, NY: Addison Wesley Longman, 1997.

[Kang 90] Kang, Kyo C.; Cohen, Sholom G.; Hess, James A.; Novak, William
E. & Peterson, A. Spencer. Feature-Oriented Domain Analysis Fea-
sibility Study (CMU/SEI-90-TR-21, ADA235785). Pittsburgh, PA:
Software Engineering Institute, Carnegie Mellon University, 1990.

[Kazman 00] Kazman, Rick; Klein, Mark & Clements, Paul. ATAM: Method for
Architecture Evaluation (CMU/SEI-2000-TR-004, ADA382629).
Pittsburgh, PA: Software Engineering Institute, Carnegie Mellon
University. Available WWW. URL: <http://www.sei.cmu.edu/
publications/documents/00.reports/00tr004.html> (2000).

[Kotonya 96] Kotonya, Gerald & Sommerville, Ian. “Requirements Engineering
with Viewpoints.” Software Engineering Journal 11, 1 (January
1996): 5–18.

[Lee 00] Lee, Kwanwoo; Kang, Kyo C; Chae, Wonsuk & Choi, Byoung
Wook. “Feature-Based Approach to Object-Oriented Engineering of
Applications for Reuse.” Software—Practice and Experience 30, 9
(July 2000): 1025–1046.

[McGregor 01] McGregor, John D. & Sykes, David A. A Practical Guide to Testing
Object-Oriented Software. Upper Saddle River, NJ: Addison-
Wesley, 2001.

CMU/SEI-2001-TR-001 49

[SEI 00]

Software Engineering Institute. A Framework for Software Product
Line Practice – version 3. Available WWW. URL:
<http://www.sei.cmu.edu/plp/framework.html> (2000).

[Sommerville 97] Sommerville, Ian & Sawyer, Pete. Requirements Engineering; A
Good Practice Guide. Chichester, England: John Wiley & Sons
Ltd., 1997.

[Thiel 00] Thiel, Steffen & Peruzzi, Fabio. “Starting a Product Line Approach
for an Envisioned Market.” 495–512. Donohoe, Patrick, ed. Soft-
ware Product Lines: Experience and Research Directions. Proceed-
ings of the First Software Product Line Conference (SPLC1). Den-
ver, Colorado, August 28–31, 2000. Norwell, MA: Kluwer
Academic Publishers, 2000.

[Wirfs-Brock 90] Wirfs-Brock, Rebecca; Wilkerson, Brian & Wiener, Lauren. De-
signing Object-Oriented Software. Englewood Cliffs, NJ: Prentice-
Hall, Inc., 1990.

50 CMU/SEI-2001-TR-001

CMU/SEI-2001-TR-001 51

Appendix A: Example Stakeholder
Checklist

The following table lists examples of product line stakeholders who are information sources.
The table also lists examples of the types of information provided by these sources.

Table 2: Example Checklist of Product Line Stakeholders

Stakeholder Example of information provided
Architects Technical feasibility of requirements

Customers Product features, expected qualities

Domain experts Knowledge of recurring domain problems, known
solutions, and future needs

End users Typical usage scenarios

Executives Business goals, constraints

External systems Interoperability requirements

Legacy systems Interface requirements, potential features

Managers Resource constraints

Maintainers Structuring requirements to allow for feature
evolution and different configurations of features;
knowledge of past changes needed

Marketers Features of existing and anticipated products,
knowledge of competing products

Product designers and implementers Technical feasibility of requirements

Regulatory organizations Safety requirements, legal issues

Standards experts Conformance requirements, design and
implementation constraints, future standards

System integrators Quality requirements, acceptance criteria

Testers Clarity and precision of functional requirements
and quality attributes

Trainers Clarity of requirements, terminology

52 CMU/SEI-2001-TR-001

CMU/SEI-2001-TR-001 53

Appendix B: Work Product Interactions

When the requirements model is updated, the work product relationships are potentially af-
fected. The interactions described in this appendix address how the work product relation-
ships are restored when a modeling element is added or altered. The interactions are de-
scribed in terms of the specific example of the addition of a new feature to the feature model.
Since the work products are highly inter-related, the interactions described in this example
encompass the changes required in other modeling situations, such as the addition of a use
case or the removal of an object.

A typical modeling situation arises when a stakeholder requests the addition of a feature. As-
suming that the feature is to be provided by the product line, is the feature really “new” or is
it an instance of an existing feature?

• Where is the new feature incorporated into the feature model?

• Can the existing objects combine to realize the new feature?

• If so, what has to be changed to make the existing objects “realize” the new feature?

• What are the additional or altered requirements object responsibilities?

• What are the additional or altered information exchanges?

• Are new features suggested by the altered model?

Additional use cases might be required to explore these issues.

If the requested feature is really new (i.e., no combinations of existing objects and
information exchanges realize that feature),

• Where does the feature “fit” into the feature tree?

• What new use cases are needed to explore the system responsibilities and information
needs required to realize this feature?

• What new objects are required to realize the new feature?

• What are the responsibilities of these new objects?

• What are the information exchanges between the new objects?

54 CMU/SEI-2001-TR-001

• What are the information exchanges between the new and existing objects?

• How are the existing objects altered by the new feature?

• How do the new objects corresponding to this feature fit into the object model?

• Are new features suggested by the altered model?

Throughout the modeling effort, the dictionary is continuously updated with the definitions
for any new feature names, use-case goals, requirements object names, and the names of the
information exchanged between requirements objects. These names have been chosen ac-
cording to the naming conventions. Further, existing dictionary entries whose definitions
have changed are updated.

CMU/SEI-2001-TR-001 55

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any
other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations
and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-
0188), Washington, DC 20503.

1. AGENCY USE ONLY

(Leave Blank)

2. REPORT DATE

June 2001

3. REPORT TYPE AND DATES COVERED

Final
4. TITLE AND SUBTITLE

Product Line Analysis: A Practical Introduction

5. FUNDING NUMBERS

F19628-00-C-0003
6. AUTHOR(S)

Gary Chastek, Patrick Donohoe, Kyo Chul Kang, Steffen Thiel
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

CMU/SEI-2001-TR-001

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

HQ ESC/XPK
5 Eglin Street
Hanscom AFB, MA 01731-2116

10. SPONSORING/MONITORING AGENCY
REPORT NUMBER

ESC-TR-2001-001

11. SUPPLEMENTARY NOTES

12A DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified/Unlimited, DTIC, NTIS

12B DISTRIBUTION CODE

13. ABSTRACT (MAXIMUM 200 WORDS)

Product line analysis applies established modeling techniques to engineer the requirements for a product line of soft-
ware-intensive systems. This report provides a practical introduction to product line requirements modeling. It describes
product line analysis in the context of product line development and shows how a requirements model is built based on
object modeling, use-case modeling, and feature-modeling techniques. A running example, based on home automation
systems, illustrates concepts and terminology. Two different strategies for creating the requirements model are also
presented.

The product line analysis work is evolving. This report describes its current status and planned development.
14. SUBJECT TERMS

software product line, requirements engineering, requirements modeling, work prod-
ucts, dictionary, use-case model, feature model, product line practice areas, stake-
holder requirements

15. NUMBER OF PAGES

67

16. PRICE CODE

17. SECURITY CLASSIFICATION OF

REPORT

Unclassified

18. SECURITY CLASSIFICATION OF
THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18 298-102

	Contents
	Figures
	Tables
	Abstract
	1 Introduction
	2 Product Line Requirements
	3 The Requirements Model
	4 Requirements Modeling
	5 Modeling Strategies
	6 Conclusions and Future Work
	References
	Appendix A: Example Stakeholder

Checklist
	Appendix B: Work Product Interactions

