
Product Line Analysis
for Practitioners

Gary Chastek
Patrick Donohoe

September 2003

TECHNICAL REPORT
CMU/SEI-2003-TR-008
ESC-TR-2003-008

Pittsburgh, PA 15213-3890

Product Line Analysis
for Practitioners

CMU/SEI-2003-TR-008
ESC-TR-2003-008

Gary Chastek
Patrick Donohoe

September 2003

Product Line Practice Initiative

Unlimited distribution subject to the copyright.

This report was prepared for the

SEI Joint Program Office
HQ ESC/DIB
5 Eglin Street
Hanscom AFB, MA 01731-2116

The ideas and findings in this report should not be construed as an official DoD position. It is published in the
interest of scientific and technical information exchange.

FOR THE COMMANDER

Christos Scondras
Chief of Programs, XPK

This work is sponsored by the U.S. Department of Defense. The Software Engineering Institute is a
federally funded research and development center sponsored by the U.S. Department of Defense.

Copyright 2004 by Carnegie Mellon University.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO,
WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED
FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF
ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Internal use. Permission to reproduce this document and to prepare derivative works from this document for internal use is
granted, provided the copyright and "No Warranty" statements are included with all reproductions and derivative works.

External use. Requests for permission to reproduce this document or prepare derivative works of this document for external
and commercial use should be addressed to the SEI Licensing Agent.

This work was created in the performance of Federal Government Contract Number F19628-00-C-0003 with Carnegie Mel-
lon University for the operation of the Software Engineering Institute, a federally funded research and development center.
The Government of the United States has a royalty-free government-purpose license to use, duplicate, or disclose the work,
in whole or in part and in any manner, and to have or permit others to do so, for government purposes pursuant to the copy-
right license under the clause at 252.227-7013.

For information about purchasing paper copies of SEI reports, please visit the publications portion of our Web site
(http://www.sei.cmu.edu/publications/pubweb.html).

CMU/SEI-2003-TR-008 i

Table of Contents

Abstract..vii

1 Introduction ...1
1.1 Product Line Analysis ..1

1.2 Product Line Development ..3

1.3 About This Report..5

2 Refinement...7
2.1 Example 1: Initial HIS Features and Responsibilities8

2.2 Example 2: Product Functionality ..9

2.3 Example 3: Product Quality ...12

2.4 Example 4: Product Line Development Functionality14

2.5 Example 5: Product Line Development Quality..16

3 Summary..19

Appendix A Home Integration Systems (HISs) ...21

Appendix B Stakeholders ...23

Appendix C Product Line Analysis and A Framework for Software Product
Line Practice ...25

References ...29

ii CMU/SEI-2003-TR-008

CMU/SEI-2003-TR-008 iii

List of Figures

Figure 1: Product Line Analysis ..2

Figure 2: Product Line Functionalities and Qualities...4

Figure 3: Product Line Functionalities and Qualities: A Key for the Examples7

Figure 4: The Context of Product Line Analysis..25

iv CMU/SEI-2003-TR-008

CMU/SEI-2003-TR-008 v

List of Tables

Table 1: Example Checklist of Product Line Stakeholders...................................23

Table 2: Practice Areas of the “What to Build” Pattern and Examples of the
Information They Provide ..27

vi CMU/SEI-2003-TR-008

CMU/SEI-2003-TR-008 vii

Abstract

Planning for the development of products early in the lifetime of a software product line is
critical to the success of that product line. Requirements for that development both affect and
are affected by the product requirements.

This technical report describes the addition of development requirements to product line
analysis. It further describes the refinement of product and development responsibilities, and
the relationships among them, by use of examples specifically targeted at the practitioner of
product line analysis.

viii CMU/SEI-2003-TR-008

CMU/SEI-2003-TR-008 1

1 Introduction

Product line analysis was introduced in the technical report titled Product Line Analysis: A
Practical Introduction and described in terms of the requirements model built by the analysis
team [Chastek 01]. That report described the work products constituting the product line re-
quirements model and the relationships among them. The emphasis was on presenting a set of
four essential work products (i.e., the use case model, the feature model, the object model,
and the dictionary) and describing how the systematic elicitation, refinement, and analysis of
product line requirements is made possible by those work products.

This report is aimed at the practitioner who will conduct the product line analysis. This prac-
titioner is referred to as the product line analyst in this report, but the term characterizes a
role rather than a job description. The role may be filled, for example, by a requirements en-
gineer experienced in analyzing functional and “nonfunctional” requirements [Chung 00], by
a software architect experienced in “global analysis” [Hofmeister 00, Ch. 3], or by a technical
manager planning for product line development [Clements 02, Clements 03].

This report has two purposes. The first is to clarify the refinement portion of product line
analysis [Chastek 01, Sect. 4.1]. We do this in Section 2 using examples aimed at the practi-
tioner. The second purpose is to describe briefly a new aspect of product line analysis that has
been added since Product Line Analysis: A Practical Introduction was published: product line
development. Requirements for product line development are now integrated explicitly into
product line analysis. This aspect is factored into the examples presented in Section 2 and
discussed in more detail later in this section. However, before we discuss that aspect, we need
to describe briefly the key premises of product line analysis that figure prominently in this
report.

1.1 Product Line Analysis

Product line analysis

• identifies the stakeholders and other sources of requirements information

• initializes the product line analysis work products that make up the product line require-
ments model and adds the elicited information to those work products

• refines those work products

2 CMU/SEI-2003-TR-008

Figure 1 depicts product line analysis in terms of the requirements sources, the requirements
model, and typical users of the model.

Product
Line

Model

Product Line
Architect

Product Line
Tester

Product
Developer

Technical
Manager

Requirements
Source 1

Requirements
Source n

.

.

.
Product

Line
Model

Product Line
Architect

Product Line
Tester

Product
Developer

Technical
Manager

Requirements
Source 1

Requirements
Source n

.

.

.
Product

Line
Model

Product
Line

Model

Product Line
Architect

Product Line
Tester

Product
Developer

Technical
Manager

Product Line
Architect

Product Line
Tester

Product
Developer

Technical
Manager

Product Line
Architect

Product Line
Tester

Product
Developer

Technical
Manager

Requirements
Source 1

Requirements
Source n

.

.

.

Requirements
Source 1

Requirements
Source n

.

.

.

.

.

.

Figure 1: Product Line Analysis

The first bullet above refers to the left-hand side of the figure, the second bullet refers to the
model in the middle of the figure, and the third bullet refers to the model and its targets on
the right-hand side of the figure. The stakeholder list in Appendix B provides examples of
requirements sources, and Section 2 provides examples of refining the product line model.

Product line analysis identifies opportunities for large-grained reuse across a product line;
hence, it is not concerned with all the requirements. It identifies the system responsibilities
that provide the functional features and quality attributes of the products in the product line,
and permits early reasoning about commonality and variability. The key premises of product
line analysis are

• Product qualities are features.

• System responsibilities are the basis for commonality and variability analysis within the
requirements.

• Initial requirements modeling: Product line analysis analyzes and refines the high-level,
rather than the detailed, requirements for a product line. (Termination criteria for the
modeling are described in Product Line Analysis: A Practical Introduction [Chastek 01,
p. 27].) High-level means an initial and relatively brief pass at the requirements.1

1 The more detailed requirements engineering that is part of any software engineering effort is a

necessary complement to product line analysis but will not be pursued here; abundant documenta-
tion on it is available elsewhere (e.g., Sommerville and Sawyer’s book [Sommerville 97]).

CMU/SEI-2003-TR-008 3

By product qualities, we mean attributes such as performance, scalability, and security. A fea-
ture is a prominent or distinctive user-visible aspect, quality, or characteristic of a software
system or systems [Kang 90]. Product qualities are modeled as features in product line analy-
sis. The feature model categorizes features into functional features and quality features. Qual-
ity features are modeled separately within the feature model because they are characteristics
that are not restricted to particular functional features—they can cut across functional
boundaries. This separation of concerns highlights the importance of quality features while
ensuring that they are subject to the same analysis and refinement as functional features.

The second key premise of product line analysis is that determining the commonality of sys-
tem responsibilities is vital. As Chastek and associates point out in Product Line Analysis: A
Practical Introduction, features do not provide sufficient insight into the internal responsibili-
ties of a product line [Chastek 01, Sect. 3.3]: they capture commonality and variability as
perceived by customers and end users. System responsibilities capture commonality and vari-
ability as perceived by the developer, and it is that commonality and variability that can be
leveraged in the core assets.

The brevity of product line analysis benefits both the architect and the technical managers.
The modeling terminates according to several criteria listed in Product Line Analysis: A
Practical Introduction; for example, the judgment by the product line architect that the re-
quirements model is sufficiently detailed to allow design to begin (i.e., a practical under-
standing of the product line issues has been achieved). This is one of the large-scale decisions
that an architect has to make early in the design process.

A similar argument for brevity arises from the decision a technical manager must make when
deciding on the split between core asset development and product development. That deci-
sion concerns the allocation of resources and its effects on core assets and products; it does
not require minutely detailed requirements as input.

1.2 Product Line Development

Product line development can be viewed as a system that produces products. The sources of
the requirements for that system, at least initially, are available in the business case, the mar-
ket analysis, and so forth (see Appendix C). For example, the business case might specify that
the current technical staff must be used for the product line. The market analysis might spec-
ify that the best opportunity for this organization lies in producing customizable products.
Such business and marketing information provides constraints—that is, requirements—on the
product line development system.

The users of that system are the core asset developers, the product developers, and the techni-
cal managers. The integration of development requirements into product line analysis is a

4 CMU/SEI-2003-TR-008

consequence of recent work on production planning in product lines [Chastek 02]. Certain
features are associated with the development of core assets and products in a product line
(e.g., time to market, cost per product) that are distinct from the features of the products
themselves. The functionality of the product line development system is what developers and
development managers see; qualities of the system characterize how well that system works.

Requirements for the product line development are integrated explicitly into product line
analysis for incorporation into the production strategy [Chastek 02]. The production strategy
for a product line, which describes how products are developed from the core assets, is a key
driver of the core asset design. By defining the product development process, the production
strategy specifies the “prescribed manner” of development called for in the software product
line definition [Clements 02, Clements 03]. Integrating the development into product line
analysis means considering

• the technical manager as both a stakeholder (i.e., source of information) and a target (i.e.,
user) for product line analysis. A Framework for Software Product Line Practice de-
scribes the technical management practices that affect product line development
[Clements 03]. In particular, the “Technical Planning” practice area raises specific ques-
tions concerning core asset development and production planning. There is an implied
assumption that the technical manager makes the decision about the split (i.e., the alloca-
tion of resources) between core asset and product development.

• the functionality and qualities of the development in addition to those of the products in
the product line. Figure 2 illustrates this concept.

Products

Product Line

Development

Functionality Qualities Functionality Qualities

Products

Product Line

Development

Functionality Qualities Functionality Qualities

Products

Product Line

Development

Functionality Qualities Functionality Qualities

Figure 2: Product Line Functionalities and Qualities

Product line development functionality refers to the artifacts that are (or will be) employed
during the building of core assets and products. Examples include

• development tools (e.g., configuration management tools, product generators)

CMU/SEI-2003-TR-008 5

• documented processes (e.g., for testing, for using core assets to build products)

• a production strategy and production plan

These artifacts give rise to requirements for product line development. For example, a gov-
ernment contract may mandate the use of a particular development process, or an organiza-
tion may decide to maximize the use of commercial off-the-shelf (COTS) products as part of
its production strategy. A technical manager must make informed decisions (before and dur-
ing development) based on these requirements.

An example of a product line development quality is the time to market for a product (i.e., the
time from product order to product delivery). This quality is a production constraint that can
have a profound effect on everything from the architecture of the product line to the hiring
and training plans of an organization.

For a software product line, development includes both core asset and product development.
Tradeoffs must be made concerning the allocation of resources for each development effort:

• How should resources be split between core asset and product development?

• How many resources (money, personnel, and time) should be dedicated to core asset de-
velopment?

• How much of the functionality and qualities can be implemented in the core assets? How
much has to be done by the product developers?

• Which split best supports the organization’s business and market goals for the product
line?

These tradeoffs require decisions. Product line analysis captures and refines information
about development that serves as input for making those decisions.

As a final note, the whole point of making the distinction between products and their devel-
opment is to permit early reasoning about the effects of one on the other. This reasoning is
particularly important for the production strategy because a major concern of that strategy is
ensuring that the core assets to be used in a product will actually work together. Example 5
on page 16 discusses some of the effects that product line development qualities have on
products.

1.3 About This Report

The primary audience for this report is product line analysis practitioners who want concrete
information on how to refine the requirements model once the work products have been ini-

6 CMU/SEI-2003-TR-008

tialized. A secondary audience consists of technical managers responsible for allocating re-
sources to core asset and product development.

Section 2 is the heart of the report; it describes how practitioners refine the elicited informa-
tion, using examples drawn from the home integration system (HIS) environment. The exam-
ples clarify the refinement portion of product line analysis and incorporate the newer material
on development functionality and qualities. Section 3 presents a summary of the report.

The authors’ underlying assumption is that readers are familiar with Product Line Analysis: A
Practical Introduction [Chastek 01]. For readers’ convenience, this report provides appendi-
ces that recap some material from that report:

• Appendix A describes the basis of the examples in this report—the HIS that was intro-
duced in Product Line Analysis: A Practical Introduction.

• Appendix B lists possible product line stakeholders and the types of information that can
be provided by or elicited from them.

• Appendix C describes product line analysis and adds new material that places it in the
context of A Framework for Software Product Line Practice [Clements 03].

CMU/SEI-2003-TR-008 7

2 Refinement

This section describes refining the requirements model introduced in Product Line Analysis:
A Practical Introduction [Chastek 01, Sect. 4]. The description uses HIS examples to illus-
trate the various modeling situations that a practitioner will encounter. Each example de-
scribes a modeling situation and a potential modeling resolution to it, and then discusses the
issues raised by that resolution. Potential interactions among the qualities and functionality
for products and product line development are described in the discussion section of each
example. The examples, in turn, describe the initialization of the HIS product responsibilities
and the refinement of responsibilities and qualities for individual products and for product
line development. The examples are keyed to Figure 3—a variant of Figure 2. The shaded
nodes in the figure and the accompanying numeric labels will be referred to when discussing
the refinement of, and connections among, products and product line development.

Products

Product Line

Development

Functionality

1

Qualities

2

Functionality

3

Qualities

4

Products

Product Line

Development

Functionality

1

Qualities

2

Functionality

3

Qualities

4

Products

Product Line

Development

Functionality

1

FunctionalityFunctionality

1

Qualities

2

QualitiesQualities

2

Functionality

3

FunctionalityFunctionality

3

Qualities

4

QualitiesQualities

4

Figure 3: Product Line Functionalities and Qualities: A Key for the Examples

8 CMU/SEI-2003-TR-008

2.1 Example 1: Initial HIS Features and Responsi-
bilities

2.1.1 Description

The kinds of end-user-visible features provided by an HIS include the following:

• monitoring and control of devices and appliances (e.g., furnace and refrigerator)

• security (e.g., intrusion detection and response)

• safety (e.g., fire detection and response)

• comfort (e.g., heating and cooling)

• entertainment (e.g., music and video programming)

• reporting (e.g., system-usage statistics)

This list represents an initial refinement of a product in the HIS product line. Each feature
could be refined further, as indicated by the parenthetical examples, but the ultimate goal of
the refinement is to identify the sets of system responsibilities (i.e., the requirements objects)
associated with each feature.

The initial object model is simply a set of requirements objects corresponding to the features.
For example, a Safety object corresponds to the safety feature, a Report object corresponds to
the reporting feature, and so on. The initial responsibilities of the Safety object might be to
obtain information from the detecting device, alert the occupants of the house, possibly take
some action to suppress the fire, and inform the fire department.

2.1.2 Discussion

This example describes a typical decomposition of a proposed product line into functional
features and their mapping to an initial set of associated system responsibilities.

The initial identification of product functionality and the resultant requirements objects is
only a part of the HIS’s refinement. A first-level refinement should also identify desired
product qualities (e.g., performance) and features of the development (e.g., cost, tool sup-
port). Referring to Figure 3, the initialization of the product line requirements model deals
with all four of the shaded nodes.

Features should be categorized as product or development features initially according to
whichever classification makes the most sense. The initial categorization is not critical (e.g.,

CMU/SEI-2003-TR-008 9

is cost a product feature or a development feature?) because the subsequent refinement takes
care of the issue (e.g., by clarifying exactly what is meant by cost).

The features and their associated requirements objects are not a partitioning of the product
line, but they should cover the product line and its development. Expect overlap between the
qualities of the products and their development (i.e., core assets and product development).
For example, the safety-critical nature of the software for a nuclear power plant is realized in
both the products (e.g., via built-in redundancy) and by their development (e.g., via a formal,
strictly enforced development process).

2.2 Example 2: Product Functionality

2.2.1 Description

In addition to detecting and responding to events (e.g., fire, intrusion) and errors (e.g., the
HIS’s inability to command a device), the HIS maintains a log of all such occurrences. The
main responsibility of the HIS Report object is to process the logged data and present it to an
interested reader in a usable format. For example, an average homeowner doesn’t necessarily
want to wade through a large volume of error logs but might like to know if particular HIS
services are underutilized, or if a particular device requires several retries before it responds
to a command from the HIS.

Refining reporting means answering some basic questions such as

• What gets reported? The logs maintained by the HIS may include items such as HIS
start-up and shutdown times, device errors, devices added/removed, which users logged
in to the HIS over the time period covered by the log, and so forth. What information, ei-
ther taken directly from the log data or derived from it, ends up in the report?

• For whom are the reports intended? For all users or just some of them? Can the contents
be customized for particular users?

• What purpose do the reports serve? Are they simply statistics (e.g., number of device er-
rors, maximum number of simultaneously active devices)? Or does the reporting capabil-
ity analyze the data for trends (e.g., resource-consumption data indicate a need to upgrade
the HIS, or device-usage data indicate that controlled devices are not being used in an en-
ergy-efficient way)?

• What constitutes a report? a static table of numbers? a graphical representation such as a
histogram? or an interactive applet that guides users through the information?

• When are reports issued? daily, weekly, monthly, or on demand? Can a report be issued
to remind a user that periodic maintenance of the furnace is now due? Can reports be ar-
chived? Do particular events—a device failure, for example—trigger particular reports?

10 CMU/SEI-2003-TR-008

The answers to these questions drive the refinement of the Report object. For example, the
refinement might focus on the type of reports to be produced by the HIS. Such a refinement
would yield requirements objects such as

• Report Device Errors

• Report User Logins (who logged in and when, whether the login was local or remote,
etc.)

• Report Access Violations (when a user tries to access information without authorization)

• Report Usage Statistics

• Report Incidents (e.g., fire, attempted break-in)

Object refinement also includes the identification of responsibilities associated with require-
ments objects. To report a device error, for example, requires knowledge about which device
has the error, which kind of error it is, and when to report it and to whom. Reporting usage
statistics implies a responsibility for data reduction and possibly data analysis, in addition to
delivery of the report to the right recipient in the correct format.

Refinement also includes identifying the information exchanges that occur between require-
ments objects. As mentioned above, the Report Device Error object needs information about
which device has the error and which kind of error it is. Getting that information will likely
involve an exchange of information between a Device object and a Report object. Similarly,
the Report Incident object needs information about an incident that might include device in-
formation. Information will also flow to and from the HIS user interface. All information
flows among requirements objects need to be identified and documented in the object model.

2.2.2 Discussion

The initial point of this example is to illustrate basic refinement by posing “who, what, when,
where, and why” kinds of questions (although the “where” question doesn’t seem applicable
here). In terms of Figure 3, this example illustrates the refinement of product functionality
(node 1).

The example illustrated decomposition by report type (the “what” question), but other de-
compositions are possible. A decomposition by “when” would yield periodic, on-demand,
and event-driven reporting, while a decomposition by “why” would yield resource-
consumption reports or energy-efficiency reports. If the decomposition is problematic, a use
case can help focus the discussion and elicit responsibilities.

A second point raised by this example is generalization. When examining the requirements
objects proposed as answers to the refinement questions listed above, it becomes apparent

CMU/SEI-2003-TR-008 11

that the responsibilities associated with reporting can be generalized. Regardless of whether
the report concerns device errors, user logins, or incidents, there are some common system
responsibilities such as

• Access logged data.

• Process this data into a report.

• Customize the reported information for different consumers.

• Allow for multiple representations of the output.

• Exchange information with the user interface.

This sort of generalization during refinement can be extended beyond the scope of the indi-
vidual requirements object or objects that triggered it. For example, one of the basic functions
of an HIS is monitoring and controlling: Monitor the operation of all devices, detect and re-
port abnormal operating conditions (e.g., a faulty device), and perform control actions (e.g.,
activate, deactivate devices, take a faulty device offline). But what does “monitor” actually
mean? The original product line analysis report refined and generalized one aspect of moni-
toring—monitoring incidents such as fires and attempted burglaries—into an Incident Moni-
tor object and associated Incident Logger and Incident Responder objects. Collectively, those
objects are responsible for recognizing incidents that require a response, identifying such in-
cidents so that a response can be made, logging them for future reference, and initiating an
appropriate response. Apart from the real-time detection-response sequence, are the responsi-
bilities of the monitoring portion of monitoring and control all that different from reporting?
Conversely, if reports can be triggered by events such as a device failure, how is that different
from the event notification associated with the typical monitoring and control functions the
HIS performs? And are any monitoring or reporting responsibilities common to the diagnos-
tics capability of the HIS? Recording, accessing, processing, customizing, and presenting
information within the HIS constitutes a set of recurring requirements whose commonality
and variability warrant investigation.

Finally, note that a generalized requirement to customize information for users, or to restrict
its availability to certain kinds of users, implies that something in the HIS has to be responsi-
ble for keeping track of user preferences and user privileges. So, the decomposition and gen-
eralization of requirements objects and responsibilities in one functional area can trigger the
identification of entirely new functionality.

12 CMU/SEI-2003-TR-008

2.3 Example 3: Product Quality

2.3.1 Description

This example is similar to Example 1 in that it illustrates basic refinement. However, the re-
finement is applied to a quality rather than a function. The point of the example is to show
that qualities are subject to the same kind of refinement as functionality.

Because HISs are intended for use by people who do not necessarily possess (or desire to
possess) knowledge of software systems, a pervasive HIS quality is usability. The initial con-
cept may be expressed vaguely in a market analysis as the need to make HIS products “user
friendly,” or in a product feature catalog as “easy to learn” without requiring extensive train-
ing or documentation. There is no universally accepted definition of the usability of a soft-
ware system; which characteristics of usability are important depend on the context of use. A
report by Bass and colleagues examines characterizations of usability and their connection to
software architecture [Bass 01]. The characterizations considered include

• checking for correctness

• providing good help to users

• recovering from failure

• providing modifiable user interfaces (to reflect new functions and/or presentation desires)

• supporting the canceling and undoing of commands

For the purpose of this example, we assume that the initial concept of usability is for the HIS
to be tolerant of users’ mistakes. This means, for example, that it will allow users to cancel
and undo operations, and that simple data-entry mistakes will not require a user to reenter all
the data. Thus, an initial decomposition of usability leads to requirements objects such as

• Undo Operation

• Cancel Operation

• Reuse Data

These objects constitute a more operational definition of usability than “user friendly.” Ap-
plied to the reporting function described in the previous example, it means that a user can
correct errors in the setting up of what to report and when to report it. It also means that
scheduled reports can be cancelled, and that a mistake in setting desired reporting preferences
can be corrected without having to reenter all the other preferences.

CMU/SEI-2003-TR-008 13

2.3.2 Discussion

The requirements objects identified above—Undo Operation, Cancel Operation, and Reuse
Data—are more than just a refinement of the usability quality, however. To undo an operation
or to reuse data introduces the responsibility of maintaining session data. Thus, the refine-
ment of the product quality has led to the discovery of new HIS product functionality. Refer-
ring to Figure 3, this example illustrates an explicit connection between product functionality
(node 1) and product quality (node 2).

The example focused on the relationship between usability and the reporting functionality.
Beyond the reporting function, however, it is clear that undoing and canceling operations, and
correcting user mistakes have applicability across many of the HIS functions (e.g., arming the
security system, operating the heating and cooling, adjusting the lighting, programming the
entertainment system, configuring devices, upgrading the HIS software, and so on). Thus,
refining usability, even within the narrowly defined interpretation of the initial decomposi-
tion, needs to consider the context of usage (which functions are affected and when, why the
quality is important for them, etc.).

System qualities, in addition to being subject to the same kind of decomposition and gener-
alization as functionality, cannot be refined in isolation. They almost always cut across multi-
ple system functions. Refining qualities proceeds in parallel with refining functionality. In
terms of the conceptual table presented in Product Line Analysis: A Practical Introduction,
refining means going down the usability column (and its refinements) and asking questions
about the intersection of that quality with the functionality defined by the rows. Both quali-
ties and functions may be refined further according to the recursive process described in
Product Line Analysis: A Practical Introduction [Chastek 01].

As a variant of this example, consider another case in which refining a quality attribute leads
to the discovery of a need for new functionality. One of the business goals for the HIS prod-
uct line (see Appendix A) is to provide an “expandable” system to which a homeowner can
add new devices. Beyond adding more of the same devices (e.g., additional smoke detectors
or lighting controllers), a homeowner could add a surveillance camera to complement the
motion-detection feature, or a carbon-monoxide detector for added safety. The “user-
friendly” HIS would therefore need to be able to accommodate these new devices. The us-
ability aspect of concern here is the modifiability of the HIS user interface. Adding new de-
vices or services means that the HIS must provide functionality to make their installation,
configuration, and testing simple, and their output customizable for different consumers.
Thus, as in the earlier example dealing with reporting, refinement has led to the discovery of

14 CMU/SEI-2003-TR-008

new HIS functionality, but in this case, the trigger is the refinement of a quality rather than
functionality.2

The fact that qualities cut across multiple functions means that the commonality and variabil-
ity of qualities across a product line should be explored in addition to that functionality. The
refinement of the object model ensures that both functional and quality information, and their
potential interactions, are captured in the object model. As a result, the product line architect
and other core asset developers are presented with a comprehensive statement of the prob-
lems to be solved by the product line.

2.4 Example 4: Product Line Development Func-
tionality

2.4.1 Description

Up to now, the examples have focused on the refinement of product functionality and quali-
ties. This example examines the functionality associated with product development.

As an example of refinement, consider the case of tool support. If the development organiza-
tion concludes that tool support is required to meet the development schedule, the following
questions must be addressed:

• Which parts of the product line development would benefit from tool support?

• At what point during the development will such support be needed?

• Do any commercially available tools meet our needs?

• Do any management decrees constrain our choices? For example

− Use existing in-house tools.
− Use only commercially available tools.

• Do we need to build our own in-house tools?

The developers and technical managers are asked these questions during the elicitation of
requirements information from the sources depicted on the left-hand side of Figure 1. Their
answers result in requirements that are added to the product line requirements model. The
purpose here is to provide the basis for later management planning rather than to supplant
such planning.

2 In fact, there may also be market-driven reasons for providing a customizable user interface: the

high-end Lux-HIS product could offer full customization, while the low-end Econo-HIS product
offers little or no customization. (The actual products in the product line could contain the same
software load and a “key” for enabling or disabling the customization software.)

CMU/SEI-2003-TR-008 15

An even less-open-ended requirement still needs to be scrutinized. For example, a contract
that requires the use of the Unified Modeling Language (UML) has associated responsibili-
ties such as

• determining how UML will be used to support product line development

• selecting an appropriate tool and evaluating it

• identifying training needs (for both UML and other specific tools)

2.4.2 Discussion

The example shows how development-related refinement proceeds in exactly the same way
as product-related refinement. In both, the functionality and qualities of product line devel-
opment affect one another. Tool support, for example, may help improve the time to market
of products in the long run, but the short-term need to provide training in the tool suite may
disrupt the schedule for the first product release.

As in the product-specific case of Example 2, generalization within refinement is possible for
development functionality. The responsibilities shown above are not specific to tool support
for UML; they apply to any tool purchased in the commercial marketplace.3

Another facet of tool support is the programming language to be used. The choice of a pro-
gramming language affects the design; for example, the Ada programming language supports
modularity (and eventually modifiability) better than the C programming language. The ef-
fect on product functionality is probably indirect through the “time to implement.” If more
needs to be done for implementation, less functionality may be achievable by a given date. In
particular, in a product line of real-time systems, a mismatch between the problem (e.g., real-
time control) and the implementation language (e.g., no support for concurrent processes)
requires additional work to overcome the limitations of the language. Referring to Figure 3,
this example illustrates connections among product functionality (node 1), a product quality
(node 2), and development functionality (node 3).

A variant of the programming-language issue is the case where development functionality not
only affects products but also introduces new development responsibilities. Consider the case
of choosing to use the aspect-oriented programming (AOP) language AspectJ—an aspect-
oriented extension of the Java programming language [Kiczales 01]. AOP deals with cross-
cutting aspects—such as the synchronization of concurrent objects or failure handling—by
permitting them to be modeled and coded separately from the functional code. The aspect

3 For a more detailed discussion of tool-support issues, see the “Tool Support” practice area of A

Framework for Software Product Line Practice [Clements 03].

16 CMU/SEI-2003-TR-008

code is then “woven” into the functional code at specific join points by an aspect weaver.
AOP thus brings new responsibilities related to

• identifying concerns that cut across multiple objects

• coding the concerns as aspects

• identifying the join points in the code where the separately coded aspects will be incorpo-
rated

• weaving the aspects into the code

In summary, this example provides an illustration of the fact that the requirements associated
with product line development can affect each other and the actual products to be built. It is
incumbent upon the product line analyst to elicit such requirements (if they are not already
stated somewhere) and clarify them to the point where any connections to product require-
ments (i.e., product functionality or qualities) are exposed. Product line analysis handles the
refinement of either kind of requirement—product or product line development—in the same
way.

2.5 Example 5: Product Line Development Quality

2.5.1 Description

The final example illustrates performance as a quality of product line development. In this
context, “performance” is expressed in terms of cost and time. For example, how much does
it cost to produce a product? How quickly can a product be produced? For the purpose of this
example, we focus on a specific aspect of performance—namely time to market. We also as-
sume that the organization producing the HIS for this example has a market analysis report
specifying that the organization must

• enter the HIS market as soon as possible, even if the initial product has limited function-
ality

• be able to add new features quickly into its HIS products

Both of these goals refer to time to market, the refinement of which leads to two basic alter-
natives:

1. For an organization adopting a product line approach, it can mean the expected delivery
date of the first product.

2. For an up-and-running product line, it can mean the time from the receipt of a customer
order for a product to the delivery of that product.

CMU/SEI-2003-TR-008 17

An organization might not use the term time to market and instead speak of ship date, deliv-
ery date, or release date. It is up to the product line analyst to ferret out such information and
record any relevant terminology in the dictionary. Regardless of the terms used, the funda-
mental quality to be elicited is the fact that there is a target date by which development must
come up with a product.

2.5.2 Discussion

This example is an illustration of the fact that the development of a product can have qualities
associated with it. The refinement of the time-to-market quality feature clarifies its meaning
for the downstream developers and enables them to assess the consequences of any con-
straints imposed by a time-to-market requirement on the development schedule.

The analyst also needs to determine what is meant by “the initial product has limited func-
tionality.” To do that means determining which product features or qualities can be sacrificed
for that initial delivery, and then marking them as such in the requirements model. This is one
way in which a product line development quality can affect product functionality and quali-
ties. In terms of Figure 3, this example illustrates connections among product functionality
(node 1), a product quality (node 2), and development functionality (node 3).

Time to market can be a constraint on

1. product development: How much time a company has from product order to product
delivery limits the amount of time available for production. For example, if the market
analysis says that a certain toy is needed by Christmas, one way to meet that deadline is
to offer minimal functionality in that toy (i.e., node 1 of Figure 3 is affected).

2. core asset development: How much time a company has to develop the first product lim-
its the amount of time available to develop the core assets. Constraints on the delivery
order of products (as specified by market analysis) can also affect the order in which
pieces of the core assets are implemented.

The fundamental message in either case is that the time to market here is a constraint; in fact,
the goals and alternatives listed in the description section above are all production constraints
that need to be factored into the production strategy, production plan, and core assets. Other
constraints, such as those involving predictability and cost, will act in a similar fashion.

As a final example of a product line development quality, consider usability. An organization
might employ relatively “inexperienced” people to be product developers, and hence require
development to be straightforward (i.e., a highly usable product development system). This,
in turn, implies greater responsibility for the core asset developers, more planning, possibly
support tools, and documentation—all to make product development easier. Referring to

18 CMU/SEI-2003-TR-008

Figure 3, this is an example of a connection between development functionality (node 3) and
development quality (node 4).

CMU/SEI-2003-TR-008 19

3 Summary

This report has presented an orchestrated set of examples that illustrate and provide guidance
on the refinement portion of product line analysis. The examples also show how information
elicited early is transformed into system responsibilities that are used by developers as the
basis for analyzing commonality and variability across a product line. This report has intro-
duced a new aspect of product line analysis—the integration of product line development
requirements into the analysis—and woven it into the examples. In addition, this report has
emphasized that product line analysis is not an exhaustive approach to product line require-
ments; the brevity of the approach permits an early start on the design of the architecture and
the product line development system.

Product line analysis is requirements engineering for a product line. Requirements engineer-
ing needs an up-front integrated view of products and their development. A product line
represents a substantial investment, and that investment is at risk if the product line develop-
ment system is not in line with the strategic goals of the organization. An example of such a
risk occurs when an executive’s goals for the product line are not communicated to the devel-
opers. Cross effects between product line development and the products make including de-
velopment responsibilities in requirements engineering imperative. Product line analysis ef-
fectively mitigates the risk of pursuing a product line approach.

20 CMU/SEI-2003-TR-008

CMU/SEI-2003-TR-008 21

Appendix A Home Integration Systems
(HISs)

The home integration system (HIS) enhances the comfort, safety, and security of a home. Ex-
ample services include heating, cooling, lighting, smoke detection, intrusion detection, enter-
tainment, and telecommunications. Integrating services means that, for example, the system
could respond to an attempted break-in by sounding an alarm, turning on all lights, locking
the doors, and sending a message to the police. The following sections describe a hypotheti-
cal company—HIS Inc.—and two products planned for its product line.

Business Context

The marketing department of HIS Inc. has projected a multibillion-dollar market for HISs.
The company intends to become a major player with two initial HIS products: a low-end
product with fire and intrusion detection and control capabilities, and a high-end product with
an additional flood detection and control feature. After securing a large share of the market,
the company plans to introduce new products with additional features such as climate control,
lighting, entertainment, and e-commerce capabilities.

The key marketing strategy of this company is to build scalable products that allow budget-
conscious customers to start with a small system and enlarge it by adding new features rather
than buying entirely new products. Therefore, product flexibility is the most important engi-
neering challenge.

The HIS stakeholders and their roles include

• user (customer, owner, installer, maintainer, and occupant)

• regulatory body (fire safety, electrical safety, and insurance)

• responder (police and fire departments)

• utility (gas, electric power, water, and telecommunications)

The key features of the low-end product (Econo-HIS) and the high-end product (Lux-HIS)
are described in the following subsections.

22 CMU/SEI-2003-TR-008

The Econo-HIS product

The Econo-HIS product has the following features:

• fire detection and control: Fires are detected by smoke detectors installed in the house.
When a fire is detected, the HIS activates the alarm, turns on all sprinklers, and unlocks
all HIS-controlled doors. It also sends a prerecorded voice message to the fire department
and the homeowner over the telephone line to inform them of the incident. Once the fire
is under control, as determined by the level of smoke detected by smoke detectors, the
alarm and all sprinklers will be turned off. The doors will remain unlocked for a duration
preset by the owner to allow the fire department to inspect the building.

• intrusion detection and control: Intrusions are detected by motion sensors throughout the
house. When an attempted intrusion is detected, the HIS triggers the alarm and locks all
HIS-controlled doors to prevent entry. It also sends a prerecorded voice message to the
police station and the homeowner.

• door control: The locking and unlocking of doors can be scheduled by the HIS or con-
trolled directly by users.

A fire event has a higher priority than an intrusion event. Therefore, when both events occur
at the same time, all HIS-controlled doors will remain unlocked.

The Lux-HIS Product

The LUX-HIS product has the following features:

• fire detection and control: same functionality as the Econo-HIS, except that only the
sprinklers near the source of the fire are turned on to minimize water damage elsewhere
in the house. An optional capability for gas supply control is available for this product
that shuts off the gas when a fire is detected.

• intrusion detection and control: same functionality as the Econo-HIS

• flood detection and control: Flood events are detected by moisture sensors installed
throughout the house. When a flood event is detected, the HIS shuts off the home’s water
main. When moisture is detected on the basement floor, the sump pump in the basement,
which is an optional device, will be activated.

A fire event has the highest priority. When all three events occur at the same time, the water
main will remain open and doors will be unlocked.

CMU/SEI-2003-TR-008 23

Appendix B Stakeholders

The following table lists examples of product line stakeholders who are information sources
and lists examples of the information they provide.

Table 1: Example Checklist of Product Line Stakeholders

Stakeholder Example of Information Provided

Architects Technical feasibility of requirements

Customers Product features, expected qualities

Domain experts Knowledge of recurring domain problems, known solutions, and future needs

End users Typical usage scenarios

Executives Business goals, constraints

External systems Interoperability requirements

Legacy systems Interface requirements, potential features

Managers Resource constraints

Maintainers Structuring requirements to allow for feature evolution and different configura-
tions of features; knowledge of past changes needed

Marketers Features of existing and anticipated products, knowledge of competing prod-
ucts

Product designers
and implementers

Technical feasibility of requirements

Regulatory
organizations

Safety requirements, legal issues

Standards experts Conformance requirements, design and implementation constraints, future
standards

System integrators Quality requirements, acceptance criteria

Testers Clarity and precision of functional requirements and quality attributes

Trainers Clarity of requirements, terminology

24 CMU/SEI-2003-TR-008

CMU/SEI-2003-TR-008 25

Appendix C Product Line Analysis and A
Framework for Software
Product Line Practice

Figure 4 is a generalized view of product line analysis. The left side of the diagram depicts
the activities (e.g., creating a business case) an organization must perform to answer basic
questions about which products should be in the product line. This information affects the
product line requirements because, for example, it identifies the likely cost of products, their
targeted market, their time to market, the technologies to be employed, and the domain
knowledge needed to build both products and a product line infrastructure. Product line
analysis refines this basic understanding into a form useful for the people who must define
the product line architecture and plan for how products will be built. The arrows on the left
represent information from the activities and feedback from product line analysis. The arrows
on the right represent the high-level functional and quality requirements that shape the archi-
tecture and production strategy.

Product Line
Analysis

Product Line Scoping

Building a Business Case

Market Analysis

Understanding Relevant
Domains

Technology Forecasting

Architecture

Production
Strategy

Elicited information
and feedback

Requirements
Key

Product Line
Analysis

Product Line Scoping

Building a Business Case

Market Analysis

Understanding Relevant
Domains

Technology Forecasting

Architecture

Production
Strategy

Product Line
Analysis

Product Line
Analysis

Product Line Scoping

Building a Business Case

Market Analysis

Understanding Relevant
Domains

Technology Forecasting

Product Line Scoping

Building a Business Case

Market Analysis

Understanding Relevant
Domains

Technology Forecasting

Architecture

Production
Strategy

Elicited information
and feedback

Requirements
Key

Elicited information
and feedback
Elicited information
and feedback

RequirementsRequirements
Key

Figure 4: The Context of Product Line Analysis

There are many sources of guidance for the activities and artifacts shown outside the product
line analysis box in Figure 4. The activities on the left are all practice areas of A Framework
for Software Product Line Practice [Clements 03]. Guidelines for the architecture and pro-

26 CMU/SEI-2003-TR-008

duction strategy are covered in the “Architecture Definition” practice area [Clements 03] and
the technical report titled Guidelines for Developing a Product Line Production Plan
[Chastek 02], respectively. Chung and colleagues provide useful information about quality
attributes (or nonfunctional requirements, as those authors call them) in software engineering,
and the extensive list of qualities in their book includes development qualities as well as
product ones [Chung 00, p. 160]. Bass and colleagues describe how quality attributes affect
software architecture [Bass 01; Bass 03, Ch. 4].

The “What to Build” Pattern

A Framework for Software Product Line Practice provides guidance for the individual prac-
tice areas on the left side of Figure 4, but there is another source of guidance on how the
practice areas actually work together. Clements and Northrop provide a “divide and conquer”
approach to applying the 29 practice areas of the framework in their book on software prod-
uct lines [Clements 02]. The guidance takes the form of product line practice patterns that
deal with subsets of practice areas acting in concert to achieve a specific goal. The pattern
that has a direct bearing on product line analysis is the “What to Build” pattern—a subset of
practices that an organization must master in order to choose which products should be in its
product line. The practice areas of the pattern are exactly those listed on the left side of
Figure 4.4

Product line analysis is, in effect, a realization of the “What to Build” pattern that emphasizes
the concerns of practitioners tasked with eliciting and analyzing the high-level requirements
for a product line. The pattern also has an Analysis variant that has a broader context and
adds practice areas dealing with requirements for the product line, the architecture, and the
way core assets will be developed. The job of product line analysis is to ensure that the out-
puts of the practice areas are collectively transformed into a useful product line requirements
model.

The product line analyst is the agent who combines and refines information from these
sources and delivers it as the product line requirements of the architecture and production
strategy. In addition, since the practice areas of the pattern can be conducted in parallel by
separate groups, who do not necessarily communicate and coordinate effectively with each
other, the analyst is responsible for maintaining a consistent “big picture” view of the product
line. For example, product line analysis may uncover conflicts between the business and
marketing views of the product line, gaps in the domain knowledge needed to build assets or
products, or ambiguities in the articulation of desired quality attributes.

4 Because the pattern and the interactions between its practice areas are described in detail by

Clements and Northrop, we don’t describe that information here.

CMU/SEI-2003-TR-008 27

Obtaining Development Information

The practice areas of the “What to Build” pattern are sources of early strategic information
about the qualities that affect product and core asset development. Table 2 shows several ex-
amples of that information.

Table 2: Practice Areas of the “What to Build” Pattern and Examples of the Infor-
mation They Provide

This Practice Area Provides Information About

Market Analysis • the time to market (product order to product delivery)

• flexibility (customizability) as a marketing strategy (e.g., targeting custom-

ers who want features not offered by competitors)

Building a Business Case • the cost to develop the product (affects both product development and core

asset development)

• the charge for the product (cost to customer)

• the cost of developing the core assets

• the organizational structure (available personnel and expertise impose con-

straints on core asset and product development)

Scoping • bounds on the variability among the products in the product line

• test cases for verifying core assets

Understanding Relevant

Domains

• the definition of commonality

• the relationship between domain stability and the product production system

Technology Forecasting • the evolution of the products and product line

• domain and product development tools on the horizon (or, conversely, the

lack of suitable tools in the marketplace imposing constraints or limits on the

choices available for product production)

• applicable standards

Product line analysis nominally occurs “downstream” from the activities on the left side of
Figure 4. If the practice areas in Table 2 have no documented outputs (e.g., a scoping report),
the analyst must get the needed information from those responsible for those areas. In reality,
of course, the process of eliciting, analyzing, and refining the information is highly iterative,
with feedback from product line analysis to each activity (e.g., refinement of the product
line’s scope as the understanding of the requirements deepens).

In summary, the basic premise of product line analysis is that you need to analyze the follow-
ing before you build the product line:

• what the product line is supposed to do

28 CMU/SEI-2003-TR-008

• how it is supposed to behave

• how it will be built

This is true whether the approach to building the product line is reactive (i.e., generalizing
core assets from existing products) or proactive (i.e., creating core assets and then using them
to build products).

CMU/SEI-2003-TR-008 29

References

[Bass 01] Bass, Len; John, Bonnie E.; & Kates, Jesse. Achieving Usability
Through Software Architecture (CMU/SEI-2001-TR-005,
ADA393059). Pittsburgh, PA: Software Engineering Institute, Car-
negie Mellon University, 2001. <http://www.sei.cmu.edu
/publications/documents/01.reports/01tr005.html>.

[Bass 03] Bass, Len; Clements, Paul; & Kazman, Rick. Software Architecture
in Practice, Second Edition. Boston, MA: Addison-Wesley, 2003.

[Chastek 01] Chastek, Gary; Donohoe, Patrick; Kang, Kyo Chul; & Thiel, Stef-
fan. Product Line Analysis: A Practical Introduction (CMU/SEI-
2001-TR-001, ADA396137). Pittsburgh, PA: Software Engineering
Institute, Carnegie Mellon University, 2001.
<http://www.sei.cmu.edu/publications/documents/01.reports
/01tr001.html>.

[Chastek 02] Chastek, Gary & McGregor, John. Guidelines for Developing a
Product Line Production Plan (CMU/SEI-2002-TR-006,
ADA407772). Pittsburgh, PA: Software Engineering Institute, Car-
negie Mellon University, 2002. <http://www.sei.cmu.edu
/publications/documents/02.reports/02tr006.html>.

[Chung 00] Chung, Lawrence; Nixon, Brian A.; Yu, Eric; & Mylopoulos, John.
Non-Functional Requirements in Software Engineering. Norwell,
MA: Kluwer Academic Publishers, 2000.

[Clements 02] Clements, Paul & Northrop, Linda. Software Product Lines: Prac-
tices and Patterns. Boston, MA: Addison-Wesley, 2002.

[Clements 03] Clements, Paul & Northrop, Linda. A Framework for Software
Product Line Practice, V4.1. <http://www.sei.cmu.edu/plp
/framework.html> (2003).

30 CMU/SEI-2003-TR-008

[Hofmeister 00] Hofmeister, Christine; Nord, Robert; & Soni, Dilip. Applied Soft-
ware Architecture. Reading, MA: Addison-Wesley, 2000.

[Kang 90] Kang, Kyo C.; Cohen, Sholom G.; Hess, James A.; Novak, William
E.; & Peterson, A. Spencer. Feature-Oriented Domain Analysis
Feasibility Study (CMU/SEI-90-TR-021, ADA235785). Pittsburgh,
PA: Software Engineering Institute, Carnegie Mellon University,
1990. <http://www.sei.cmu.edu/publications/documents/90.reports
/90.tr.021.html>.

[Kiczales 01] Kiczales, Gregor; Hilsdale, Erik; Hugunin, Jim; Kersten, Mik;
Palm, Jeffrey; & Griswold, William G. “Getting Started with As-
pectJ.” Communications of the ACM 44, 10 (October 2001): 59 -
65.

[Sommerville 97] Sommerville, Ian & Sawyer, Pete. Requirements Engineering: A
Good Practice Guide. Chichester, England: John Wiley & Sons
Ltd., 1997.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching
existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding
this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters
Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of
Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY

(Leave Blank)

2. REPORT DATE

September 2003

3. REPORT TYPE AND DATES COVERED

Final
4. TITLE AND SUBTITLE

Product Line Analysis for Practitioners

5. FUNDING NUMBERS

F19628-00-C-0003
6. AUTHOR(S)

Gary Chastek and Patrick Donohoe
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

CMU/SEI-2003-TR-008

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

HQ ESC/XPK
5 Eglin Street
Hanscom AFB, MA 01731-2116

10. SPONSORING/MONITORING AGENCY
REPORT NUMBER

ESC-TR-2003-008

11. SUPPLEMENTARY NOTES

12A DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified/Unlimited, DTIC, NTIS

12B DISTRIBUTION CODE

13. ABSTRACT (MAXIMUM 200 WORDS)

Planning for the development of products early in the lifetime of a software product line is critical to the suc-
cess of that product line. Requirements for that development both affect and are affected by the product re-
quirements.

This technical report describes the addition of development requirements to product line analysis. It further
describes the refinement of product and development responsibilities, and the relationships among them, by
use of examples specifically targeted at the practitioner of product line analysis.

14. SUBJECT TERMS

software product line, requirements modeling, product line practice
areas, product qualities, development qualities

15. NUMBER OF PAGES

42

16. PRICE CODE

17. SECURITY CLASSIFICATION

OF REPORT

Unclassified

18. SECURITY CLASSIFICATION OF
THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18 298-102

	Product Line Analysis for Practitioners
	Table of Contents
	List of Figures
	List of Tables
	Abstract
	1 Introduction
	2 Refinement
	3 Summary
	Appendix A Home Integration Systems (HISs)
	Appendix B Stakeholders
	Appendix C Product Line Analysis and A Framework for Software Product Line Practice
	References

