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Prologue


This book is not a complete introduction to statistical theory. It should also not be the first statistics


book you read. Instead, this book shows you how to implement many useful data analysis routines


in R. Sometimes we explain a bit of theory behind the method, but this is an exception. We really
assume that you have already learned statistics elsewhere and are here to learn how to actually do the


analyses.


We have learned from experience that data practictioners, that means scientists and everyone else


who has an interest in learning from data, do not learn statistical analyses by studying the underlying


theory. They learn from doing, and from using examples written by others who have learned by doing.


For this reason the book in front of you is largely a compendium of examples. We have chosen the


examples and the exercises in the hope that they resemble real-world problems.


We have designed this book so it can be used for self-study. The exercises at the end of each chapter


aim to test important skills learned in the chapter. Before you start on the exercises, read through the


text, try to run the examples, and play around with the code making small modifications. We have also


placed many Try it yourself boxes throughout the text to give you some ideas on what to try, but try to
be creative and modify the examples to see what happens.


You can download the example datasets used in this book (see Appendix A), as well as the solutions to


the exercises at bit.ly/RDataCourse.


An index with the functions and packages used is provided at the end of this book.


What is data analysis?


Most scientists would answer that this is the part of the work where the p-values are calculated, per-


haps alongside a host of other metrics and tables. We take the view that data analysis includes everystep from raw data to the outputs, where outputs include figures, tables and statistics. This view is
summarized in the figure on the next page.


Because every step from raw data to output affects the outcome, every step should be well docu-


mented, and reproducible. By ’reproducible’, we mean it should be possible for some other person


(even if this is the future you) to re-run the analysis and get the same results. We agree with many


others that R is particularly good for reproducible research of this kind 1
, because it has utilities for all


steps of data analysis.


We stress that it is absolutely vital to a successful data analysis to visualize at every step of the analysis
2
. When analyzing data, you should apply a continuous loop of statistical inference and visualizing


the data (Find a significant effect you did not expect? Visualize it!; Visually find something interesting?


Analyze it!).


Assumed skills of the reader


This book is written for scientists and data analysts who do not have a background in computer sci-


ence, mathematics, or statistics. The astute R programmer might notice that some terminology has
been simplified, for reasons of clarity. Experience with programming in any language is therefore not


required. We do assume that the reader has completed at least an Introduction to Statistics course, as
this book does not explain the fundamentals of statistical analysis.


1
Gandrud, C. Reproducible Research with R and R Studio. CRC Press, 2015. 2nd Edition.
2
Anscombe 1973 "Graphs in Statistical analysis", The American Statistician 27:17-21


1



bit.ly/RDataCourse





Figure 1: A broader view of data analysis. The view we take in this book is that all operations on the


data should be viewed as part of data analysis. Usually, only the statistical analysis is viewed as the


analysis, but in many applications there are numerous steps from the initial raw data (produced from


some data source, perhaps an experiment or an observational study) leading to the eventual figures


and statistics. One of these steps is the combining of several raw data files into a processed dataset,


which may also include data cleaning, calculation of new variables, renaming of columns, reshaping,


and so on. Derived datasets are common as well, and these include summary variables (e.g. averages


by treatment, totals over some time period). The process of visualizing the data via figures, and testing


for significant effects and other statistical procedures is a two-way street: figures inform the statistics


to be applied and vice versa (uncovering statistical significance on some effect mandates visualizing


the effect). We stress to all data practitioners that all steps of data analysis are implemented in such a


way to be fully reproducable, and documented in its entirety.


If you have used R before, you will very likely still learn many new skills, and perhaps understand the
more basic skills a little better.


2







About the Authors


Remko Duursma was an Associate Professor at the Hawkesbury Institute for the Environment, West-


ern Sydney University, and is now searching for a new direction as an independent data scientist. His


research at HIE focused on understanding vegetation function and structure in response to the en-


vironment, using models and data. In his research, he routinely analyses large datasets arising from


sensor networks, climate change experiments, literature syntheses, and other sources. He has been


using R since 2001.


Jeff Powell is an Associate Professor based at the Hawkesbury Institute for the Environment at Western


Sydney University. His research interests centre on understanding community assembly processes,


particularly in the context of soil ecology and plant-microbe interactions, and relating these to ecosys-


tem function. He utilises a variety of approaches to ecological informatics approach in his research, de-


veloping new tools and extending existing tools to test ecological hypotheses with large datasets from


surveys of ecological communities, ecosystem properties, and species and environmental attributes.


He has been using R since 2005.


Glenn Stone is a statistician and data scientist currently working in the private sector. Previously he


has been a Professor of Data Science in the Centre for Research in Mathematics at Western Sydney


University and, before that, a Principal Research Analyst with Insurance Australia Group and a Senior


Research Statistician with the CSIRO. His research interests are in computational statistics and data


science, as applied to a wide variety of scientific and commercial applications. He has been using R


since 2003.


Acknowledgments


This book accompanies the five-day course ’Data analysis and visualization with R’, taught twice a year


at the Hawkesbury Institute for the Environment (www.westernsydney.edu.au/hie). The PDF of this
book is available at www.westernsydney.edu.au/rmanual. The class website can be reached at bit.ly/
RDataCourse.


We have used knitr (with Sweave and LATEX) (see http://yihui.name/knitr/) to produce this book,
from within Rstudio (www.rstudio.com). We also use numerous add-on packages. Thanks to the devel-
opers for making these tools freely available.


Thanks also to those who have contributed original datasets that are used throughout this book (see


Appendix A).


September 5, 2018


3



www.westernsydney.edu.au/hie

www.westernsydney.edu.au/rmanual

bit.ly/RDataCourse

bit.ly/RDataCourse

http://yihui.name/knitr/

www.rstudio.com





Contents


1 Basics of R 9
1.1 Installing R and so on . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9


1.1.1 R installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9


1.1.2 Using and installing RStudio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9


1.2 Basic operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10


1.2.1 R is a calculator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10


1.3 Working with scripts and markdown files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11


1.3.1 R scripts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11


1.3.2 Using scripts to program with objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12


1.3.3 Working with markdown files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13


1.3.4 R code in markdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15


1.3.5 Body text in markdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16


1.3.6 Putting it together: notebooks in markdown . . . . . . . . . . . . . . . . . . . . . . . . . 17


1.4 Working with vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17


1.5 Working with matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21


1.6 Generating data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22


1.6.1 Sequences of numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22


1.6.2 Random numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23


1.7 Objects in the workspace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24


1.8 Files in the working directory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24


1.9 Keep a clean memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25


1.10 Packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26


1.10.1 Using packages in markdown files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26


1.11 Updating R and packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27


1.12 Accessing the help files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28


1.13 Save a session in RData format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28


1.14 Functions used in this chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30


1.15 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34


1.15.1 Calculating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34


1.15.2 Simple objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34


1.15.3 Working with a single vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35


1.15.4 Scripts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35


1.15.5 To quote or not to quote . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35


1.15.6 Working with two vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36


1.15.7 Alphabet aerobics 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36


1.15.8 Comparing and combining vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37


1.15.9 Into the matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37


1.15.10 Packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37


1.15.11 Save your work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38


2 Reading and subsetting data 39


4







2.1 Reading data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39


2.1.1 Reading CSV files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39


2.1.2 Reading other data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40


2.2 Working with dataframes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42


2.2.1 Variables in the dataframe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42


2.2.2 Changing column names in dataframes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44


2.3 Extracting data from vectors and dataframes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44


2.3.1 Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44


2.3.2 Subsetting dataframes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47


2.3.3 Difference between [] and subset() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51


2.3.4 Deleting columns from a dataframe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51


2.4 Exporting data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52


2.5 Functions used in this chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53


2.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56


2.6.1 Working with a single vector 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56


2.6.2 Alphabet aerobics 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56


2.6.3 Basic operations with the Cereal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56


2.6.4 A short dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57


2.6.5 Titanic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57


2.6.6 Managing your workspace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57


3 Special data types 59
3.1 Types of data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59


3.2 Working with factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59


3.2.1 Changing the levels of a factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62


3.3 Working with logical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62


3.4 Working with missing values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63


3.4.1 Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63


3.4.2 Missing values in dataframes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65


3.4.3 Subsetting when there are missing values . . . . . . . . . . . . . . . . . . . . . . . . . . . 66


3.5 Working with text . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66


3.5.1 Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66


3.5.2 Column names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67


3.5.3 Text in dataframes and grep . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68


3.6 Working with dates and times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71


3.6.1 Reading dates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71


3.6.2 Date-Time combinations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73


3.7 Converting between data types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76


3.8 Functions used in this chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79


3.9 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86


3.9.1 Titanic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86


3.9.2 Hydro dam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86


3.9.3 HFE tree measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87


3.9.4 Flux data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87


3.9.5 Alphabet Aerobics 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87


3.9.6 DNA Aerobics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88


4 Visualizing data 89
4.1 The R graphics system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89


4.2 Plotting in RStudio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89


4.3 Choosing a plot type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89


4.3.1 Using the plot function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90


4.3.2 Bar plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90


4.3.3 Histograms and curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92


5







4.3.4 Pie charts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93


4.3.5 Box plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95


4.4 Fine-tuning the formatting of plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97


4.4.1 A quick example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97


4.4.2 Customizing and choosing colours . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98


4.4.3 Customizing symbols and lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102


4.4.4 Formatting units, equations and special symbols . . . . . . . . . . . . . . . . . . . . . . 106


4.4.5 Resetting the graphical parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107


4.4.6 Changing the font . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107


4.4.7 Adding to a current plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108


4.4.8 Changing the layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109


4.4.9 Finding out about more options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111


4.5 Formatting examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112


4.5.1 Vessel data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112


4.5.2 Weather data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113


4.6 Special plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114


4.6.1 Scatter plot with varying symbol sizes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116


4.6.2 Bar plots of means with confidence intervals . . . . . . . . . . . . . . . . . . . . . . . . . 116


4.6.3 Log-log axes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117


4.6.4 Trellis graphics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118


4.7 Exporting figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122


4.7.1 Sharing figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122


4.7.2 Plots with many points or lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122


4.8 Functions used in this chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124


4.9 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128


4.9.1 Scatter plot with the pupae data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128


4.9.2 Flux data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128


4.9.3 Hydro dam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129


4.9.4 Coloured scatter plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129


4.9.5 Superimposed histograms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129


4.9.6 Trellis graphics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129


5 Basic statistics 130
5.1 Probability Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130


5.2 Descriptive Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131


5.3 Inference for a single population . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134


5.4 Inference for two populations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137


5.4.1 Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139


5.5 Simple linear regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141


5.5.1 Diagnostic plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142


5.6 Functions used in this chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147


5.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149


5.7.1 Probabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149


5.7.2 Univariate distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149


5.7.3 More t-tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
5.7.4 Simple linear regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150


5.7.5 Quantile Quest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150


6 Summarizing, tabulating and merging data 152
6.1 Summarizing dataframes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152


6.2 Making summary tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154


6.2.1 Summarizing vectors with tapply() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154


6.2.2 Summarizing dataframes with summaryBy . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
6.2.3 Tables of counts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159


6







6.2.4 Adding simple summary variables to dataframes . . . . . . . . . . . . . . . . . . . . . . 161


6.2.5 Reordering factor levels based on a summary variable . . . . . . . . . . . . . . . . . . 161


6.3 Combining dataframes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164


6.3.1 Merging dataframes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164


6.3.2 Row-binding dataframes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168


6.4 Exporting summary tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170


6.4.1 Inserting tables into documents using R markdown . . . . . . . . . . . . . . . . . . . . 170


6.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174


6.5.1 Summarizing the cereal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174


6.5.2 Words and the weather . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174


6.5.3 Merge new data onto the pupae data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174


6.5.4 Merging multiple datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175


6.5.5 Ordered boxplot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175


6.5.6 Variances in the I x F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175


6.5.7 Weight loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175


7 Linear modelling 177
7.1 One-way ANOVA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177


7.1.1 Multiple comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179


7.2 Two-way ANOVA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180


7.2.1 Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182


7.2.2 Comparing models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184


7.2.3 Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185


7.3 Multiple linear regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186


7.4 Linear models with factors and continuous variables . . . . . . . . . . . . . . . . . . . . . . . . 190


7.4.1 Predicted effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192


7.4.2 Using predicted effects to make sense of model output . . . . . . . . . . . . . . . . . . 196


7.4.3 Quadratic and polynomial terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201


7.5 Generalized Linear Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204


7.5.1 Logistic Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204


7.5.2 Poisson regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209


7.6 Functions used in this chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211


7.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213


7.7.1 One-way ANOVA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213


7.7.2 Two-way ANOVA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213


7.7.3 Multiple regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213


7.7.4 Linear Model with factor and numeric variables . . . . . . . . . . . . . . . . . . . . . . . 213


7.7.5 Logistic regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214


7.7.6 Generalized linear model (GLM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214


8 Functions, lists and loops 215
8.1 Writing simple functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215


8.2 Working with lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217


8.2.1 Creating lists from dataframes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221


8.2.2 Applying functions to lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222


8.3 Loops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225


8.4 Advanced working example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227


8.5 Functions used in this chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230


8.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231


8.6.1 Writing functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231


8.6.2 Working with lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231


8.6.3 Using functions to make many plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232


8.6.4 Monthly weather plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232


8.6.5 The Central limit theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232


7







9 Project management and workflow 234
9.1 Tips on organizing your code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234


9.2 Set up a project in Rstudio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235


9.3 Directory structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235


9.4 The R scripts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236


9.5 Archiving the output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238


10 Hints 240
10.1 Identifying and managing different types of objects . . . . . . . . . . . . . . . . . . . . . . . . . 240


10.1.1 Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240


10.1.2 Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241


10.1.3 Lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242


10.1.4 Dataframes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243


11 Getting Help 245
11.1 Web . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245


11.2 Free online books . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245


11.3 Blogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245


11.4 Finding packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246


11.5 Offline paper books . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246


A Description of datasets 247
A.1 Tree allometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247


A.2 Coweeta tree data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247


A.3 Hydro dam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248


A.4 Rain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248


A.5 Weight loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248


A.6 Pupae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248


A.7 Cereals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249


A.8 Flux tower data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249


A.9 Pulse rates before and after exercise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250


A.10 Weather data at the HFE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251


A.11 Age and memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251


A.12 Passengers on the Titanic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251


A.13 Xylem vessel diameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252


A.14 Eucalyptus leaf endophytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252


A.15 I x F at the HFE - plot averages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252


A.16 I x F at the HFE - tree observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253


A.17 Dutch election polls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253


A.18 Tibetan Plateau plant community data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254


A.19 Genetically modified soybean litter decomposition . . . . . . . . . . . . . . . . . . . . . . . . . 254


A.20 EucFACE ground cover data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255


A.21 Tree canopy gradients in the Priest River Experimental Forest (PREF) . . . . . . . . . . . . . . 255


A.22 Seed germination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255


A.23 Leaf gas exchange at the EucFACE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256


A.24 Howell height, age and weight data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257


A.25 Wild mouse metabolism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257


A.26 Plant drought tolerance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257


A.27 Child anthropometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258


A.28 Alphabet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258


8







Chapter 1


Basics of R


1.1 Installing R and so on


If you are reading this at the HIE R course, the computers in this room already have R and RStudio
installed. There is no need to update. Do take note of the recommended settings in RStudio discussed


in Section 1.1.2.


1.1.1 R installation


Throughout this book, we assume you use RStudio. However, you still have to install R. RStudio is
a program that runs R for us, and adds lots of functionality. You normally don’t have to open the R
program directly, just use RStudio (see next Section 1.1.2).


To install R on your system, go here : http://cran.r-project.org, click on the download link at the
top, and then ’base’, and finally download the installer.


Run the installer, and simply press OK on all windows (since you will be using RStudio, the settings here


don’t matter).


It is a good idea to install newer versions of R when they become available. Simply repeat this process
or see another solution in Section 1.11.


1.1.2 Using and installing RStudio


We will use RStudio throughout this course (but see note above, you need to install R first). To down-
load RStudio, go here: www.rstudio.org to download it (Windows or Mac).


Take some time to familiarize yourself with RStudio. When you are using a new installation of RStudio,


the default behaviour is to save all your objects to an ’RData’ file when you exit, and loads the same


objects when you open RStudio. This is very dangerous behaviour, and you must turn it off. See


Section 1.13 for more information on ’RData’ files. For now, make sure you go to Tools Global Options...


and on the General tab, make sure the settings are like the figure below.


Another feature you may want to turn off is the automatic code completion, which is now a standard


feature in RStudio. If you are using an older version of RStudio, this won’t apply (and you won’t be able


to find the settings in the figure below).
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Figure 1.1: Settings in Tools/Global Options/General, to prevent automatically loading objects from a


previous session. This contaminates your workspace, causing problems that are difficult to spot.


Figure 1.2: Settings in Tools Global Options Code Completion to avoid automatic completion of your


code, which opens hint windows as you type. Some people find this helpful, others find it annoying


and distracting.


1.2 Basic operations


1.2.1 R is a calculator


When you open the R console, all you see is a friendly > staring at you. You can simply type code, hit
Enter , and R will write output to the screen.
Throughout this tutorial, R code will be shown together with output in the following way:
# I want to add two numbers:
1 + 1


## [1] 2


Here, we typed 1 + 1, hit Enter , and R produced 2. The [1]means that the result only has one element
(the number ’2’).


In this book, the R output is shown after ##. Every example can be run by you, simply copy the section
(use the text selection tool in Adobe reader), and paste it into the console (with Ctrl + Enter on aWindows


machine, or Cmd + Enter on a Mac).


We can do all sorts of basic calculator operations. Consider the following examples:


# Arithmetic
12 * (10 + 1)


## [1] 132


# Scientific notation
3.5E03 + 4E-01


## [1] 3500.4


# pi is a built-in constant
sin(pi/2)


## [1] 1


# Absolute value
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abs(-10)


## [1] 10


# Yes, you can divide by zero
1001/0


## [1] Inf


# Square root
sqrt(225)


## [1] 15


# Exponents
15^2


## [1] 225


# Round down to nearest integer (and ceiling() for up or round() for closest)
floor(3.1415)


## [1] 3


Try typing ?Math for description of more mathematical functions.


Also note the use of # for comments: anything after this symbol on the same line is not read by R.
Throughout this book, comments are shown in green.


1.3 Working with scripts and markdown files


When working with R, you can type everything into the console, just as you did in the last few examples.
However, you’ve probably already noticed this has some disadvantages. It’s easy tomakemistakes, and


annoying to type everything over again to just correct one letter. It’s also easy to loose track of what


you’ve written. As you move on to working on larger, more complicated projects (in other words, your


own data!) you will quickly find that you need a better way to keep track of your analyses. (After all,


have you ever opened up a spreadsheet full of data six months after you started it, and spent the


whole day trying to reconstruct just what units you used in column D?)


Luckily R and RStudio provide a number of good ways to do this. In this course we will focus on two,
scripts and markdown documents.


1.3.1 R scripts


Scripts offer the simplest form of repeatable analysis in R. Scripts are just text files that contain code
and comments. Script files should end in .R.


In RStudio, open a new script using the File menu: File New File R Script , and save it in your current


working directory with an appropriate name (for example, ‘rcourse_monday.R’). (Use File Save , note


that your working directory is the default location).


A brand new script is completely empty. It’s a good idea to start out a new script by writing a few


comments:


# HIE R Course - Monday
# Notes by <your name here>
# <today's date>
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# So far we've learned that R is a big calculator!
1 + 1


As we mentioned in Section 1.2.1, the # symbol indicates a comment. On each line, R does not evaluate
anything that comes after #. Comments are great for organizing your code, and essential for reminding


yourself just what it was you were intending. If you collaborate with colleagues (or your supervisor),


you’ll also be very grateful when you see comments in their code – it helps you understand what they


are doing.


Try this yourself Sometimes, you might want to write code directly into the console, and add


it to a script later, once it actually works as expected. You can use the History tab in RStudio to save


some time. There, you can select one or more lines, and the button To Source will copy it to your


script.


Try it now. Select one line by clicking on it, and send it to your script file using To Source.
You can use this feature to add all of the examples we typed in Section 1.2.1 to your notes. To select


more than one line at a time, hold down Shift . You can then send all the examples to your new


script file with one click.


1.3.2 Using scripts to program with objects


It getsmore interesting whenwe introduce objects. Objects are named variables that can hold different


values. Once you have to keep track of objects, you’ll naturally want to use scripts so that you can easily


remember what value has been assigned to what object. Try adding these examples to your sample


script:


# Working with objects


# Define two objects
x <- 5
y <- 2 * x


# ... and use them in basic a calculation.
x + y


Note the use of <- : this is an operator that assigns some content to an ’object’. The arrow points from
the content to the object. We constructed two objects, x and y.


Now let’s run the script. You can run your entire script by clicking the Source button in the top right. Or,
more conveniently, you can select sections of your script with the mouse, and click Run , or by pressing


Ctrl + Enter ( Cmd + Enter on a Mac). If nothing is selected, the current line of code will be executed. The


results from running the script above look like this (note that the comments are sent to the console


along with the code):


# Working with objects


# Define two objects
x <- 5
y <- 2 * x


# ... and use them in a basic calculation.
x + y
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## [1] 15


Objects you’ve created (in this case, x and y) remain in memory, so we can reuse these objects until we


close R. Notice that the code and comments are echoed to the console, and shown along with the final
results.


Let’s add some more calculations using x and y:


# ... a few more calculations:
x * y
y / x
(x * y) / x


Run your script by clicking source or highlighting a few lines and typing Ctrl-Enter or Cmd-Enter . You


should get these results:


## [1] 50
## [1] 2
## [1] 10


If you like, try adding some of your own calculations using x and y, or creating new objects of your own.


You can also assign something else to the object, effectively overwriting the old x.


# Reassigning an object
# Before:
message(x)


## 5


x <- "Hello world"
# After:
message(x)


## Hello world


Here we assigned a character string to x, which previously held an numerical value. Note that it is not a
problem to overwrite an existing object with a different type of data (unlike some other programming


languages).


Try this yourself Note that RStudio has four panes: the R script, the R console, Files/Plot-


s/Packages/Help and Environment/History. You can change the placement of the panes in Tools


Global options... Pane layout . Change the layout to your liking.


You can also change the appearance of code in the script pane and the R console pane. Take a look


at the styles in Tools Global Options... Appearance , and then pick one in the Editor theme list.


1.3.3 Working with markdown files


Script files are good for simple analyses, and they are great for storing small amounts of code that


you would like to use in lots of different projects. But, they are not the best way to share your results


with others. Most of all, R scripts, no matter how well commented, are not suitable for submission as


journal articles. For that, we need to incorporate all our exciting results and beautiful figures into a


document with an introduction, methods, results, and discussion and conclusions.


Fortunately, there is an easy way to do this. It also makes a great way to keep track of your work as


you are developing an analysis. This is know as an R markdown file. Markdown is a simple set of rules


for formatting text files so that they are both human-readable and processable by software. The knitr


13







Chapter 1 Basics of R 1.3 Working with scripts and markdown files


package (as used by RStudio) will take a markdown-formatted text file and produce nicely-formatted


output. The output can be a Word document, HTML page, or PDF file. If you need to install knitr,
instructions for installing new packages can be found in Section 1.10. In the next example, we will show


you how to use R markdown to output a word file. Word files are excellent for collaborating with your


colleagues when writing manuscripts. HTML files can also be very useful – RStudio produces them


quickly, and they are great for emailing and viewing online. They can also be used to present results


in an informal meeting. PDF files are good for publishing finished projects. However, producing PDFs


using RStudio and knitr requires installing other packages, which we won’t cover here (see the Further


Reading for more suggestions if you are interested in doing this.)


Further reading To make PDFs using R markdown, you will need to install ad-


ditional software. This software interfaces with a typesetting environment called La-


TeX. On Windows, you will need to install MiKTeX (miktex.org, for instructions see
miktex.org/howto/install-miktex). On Mac OS, you will need MacTeX (for both instruc-


tions and a download link see tug.org/mactex/mactex-download.html). On Linux, you


will need to install TeX Live (see www.tug.org/texlive/). The other packages needed


are automatically downloaded when you install RStudio. Once you have this software,


http://rmarkdown.rstudio.com/pdf_document_format.html has a nice explanation of differ-
ent features you can add to your document using this format.


In addition to Word, HTML, and PDF, it is also possible to create many other types of files


with R markdown. You can for instance, make slideshows (select File New File R Markdown...


then choose Presentation from the list of file types on the left). You can also make interactive


documents, websites, and many other things using templates available in various R packages.
See http://rmarkdown.rstudio.com/ for tutorials on how to take advantage of this simple, but
powerful way of writing documents.


RStudio offers a handy editor for markdown files. Start a newmarkdown file by choosing File New File


R Markdown... . You will see the following dialogue box:


Figure 1.3: Go to File New File R Markdown , enter a title for your document and select Word docu-


ment.


The new Rmarkdown document (which is just a text file with the extension .Rmd) already contains some


14



miktex.org

miktex.org/howto/install-miktex

tug.org/mactex/mactex-download.html

www.tug.org/texlive/

http://rmarkdown.rstudio.com/pdf_document_format.html

http://rmarkdown.rstudio.com/





Chapter 1 Basics of R 1.3 Working with scripts and markdown files


example code. Run this example by clicking the button just above the markdown document Knit Word
(it will ask you to save the document first if you haven’t already).


The example code will generate a new document, which opens inMSWord. You can see that the output


contains text, R code, and even a plot.


We suggest using R markdown to organize your notes throughout this course, and especially to orga-


nize any analyses that you are producing for scientific projects.


Let’s take a look at the example markdown file and see what things need to be changed to make it your


own. The first thing in the file is the header. This probably already includes your name, a title, the date


you created the file, and the type of output you would like to produce (in this case, a Word document).


---
title: "Basic R calculations in markdown"
author: "Remko Duursma"
date: "16 September 2015"
output: word_document
---


After the header, you’ll see two kinds of text: chunks of R code and regular text.


1.3.4 R code in markdown


The first thing you will see under the header in your new markdown document is a grey box:


```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE)
```


You can delete the rest of the example code that came with the file, but keep this box. It contains a


chunk of R code to set the options for the markdown document and the software that processes it


(a package known as knitr). Don’t worry too much about these options right now. Instead, notice
that the chunk starts and ends with three accent characters (found to the left of the numeric keys on


QWERTY keyboards):


```


This tells the software that you are starting a chunk of R code. You can use this syntax to add your own


chunks of code to the markdown file. At the start of the chunk, you have several options – you can give


the chunk a name (for example, setup), you can set whether to show or not show the code (echo), and
whether or not to evaluate code (eval). There are other options, but these are the ones you will use
the most.


Table 1.1: Options for code chunks within an markdown document.


Option What it sets Possible values


echo Should the code be shown in the final document? TRUE, FALSE
eval Should the results be shown in the final document? TRUE, FALSE


Try this yourself Make code chunks that vary the options echo and eval. For instance, try
{r echo=TRUE, eval=FALSE} and compare the results with {r echo=FALSE, eval=TRUE}. Can you
imagine situations where you would want to use one or the other?
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Within the code chunks themselves, you can type R code just as you normally would. #Comments are
treated as comments, objects are treated as objects, and expressions are evaluated and values are


returned.


1.3.5 Body text in markdown


What makes markdown distinct from a script is the flexibility you have to create much larger and more


descriptive text blocks (and in RStudio, you can spell check them, too!) This allows you to write docu-


ments that contain complex analyses and results that a ready to share.


All of the text outside of the R code chunks is interpreted as body text. Markdown is designed to be


simple to use, but you may find the first few symbols you see a bit mysterious. Here’s a quick guide to


what’s going on:


Table 1.2: Basic markdown formatting


Formatting option Symbols Example


Headings # #Example Heading
Subheadings ## ##Subheading
Bold ** **bold text**
Italic * *italic text*
Strike through ˜˜ ˜˜crossed-out text˜˜
Superscript ˆ xˆ2ˆ
Subscript ˜ CO˜2˜
Bulleted lists * * A list item


* Another list item
* Yet another list item


Numbered lists 1. 1. First list item
2. Second list item
3. Third list item


Horizontal rule three or more - ----
Line break two or more spaces plus return


Here’s a silly example that combines headings, emphasis, lists, superscripts, and line breaking:


# Making your mark


When you first start your degree, you might be confident that a person with your talents
will impress his or her colleagues, and that you will be able to make lasting
contributions to your field. Or, you might feel the opposite: sure that everyone around
you is brilliant, and just hopeful that you will be allowed to work away without
attracting too much notice. Both are very common ways to feel, and as you move through
your degree, both feelings are likely to change. Don't get discouraged! As Dory would
say,


"Just keep swimming,
swimming,
swimming..."


## The *R Markdown* way
1. Get a good marker^^1^^
2. Strike **boldly**
3. Watch out for the people with the erasers!
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###^^1^^Suggested marker brands
* Sharpie
* Expo
* Mr. Sketch


When processed by knitr and opened in Word, the results look something like this:


Figure 1.4: A short example of a Word document formatted using markdown.


Try this yourself Experiment with the different types of markdown formatting. If you would


like a guide, the file Ch1_Basics_of_R.Rmd can be found with your course notes and contains the
examples shown in this section. Try rearranging or changing the code in this file.


1.3.6 Putting it together: notebooks in markdown


The real power of markdown, though, is to be able to build notebooks that you can use to combine


code and text.


1.4 Working with vectors


A very useful type of object is the vector, which is basically a string of numbers or bits of text (but not
a combination of both). The power of R is that most functions can use a vector directly as input, which
greatly simplifies coding in many applications.


Let’s construct an example vector with 7 numbers:


nums1 <- c(1,4,2,8,11,100,8)
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We can now do basic arithmetic with this numeric vector :


# Get the sum of a vector:
sum(nums1)


## [1] 134


# Get mean, standard deviation, number of observations (length):
mean(nums1)


## [1] 19.14286


sd(nums1)


## [1] 35.83494


length(nums1)


## [1] 7


# Some functions result in a new vector, for example:
rev(nums1) # reverse elements


## [1] 8 100 11 8 2 4 1


cumsum(nums1) # cumulative sum


## [1] 1 5 7 15 26 126 134


There are many more functions you can use directly on vectors. See Table 1.3 for a few useful ones.


Table 1.3: A few useful functions for vectors. Keep in mind that R is case-sensitive!
Function What it does Example


length Returns the length of the vector length(nums1)
rev Reverses the elements of a vector rev(nums1)
sort Sorts the elements of a vector sort(nums1)
order Returns the order of elements in a vector order(nums1)
head Prints the first few elements of a vector head(nums1, 3)
max Returns the maximum value in a vector max(nums1)
min Returns the minimum value in a vector min(nums1)
which.max Which element of the vector contains the max value? which.max(nums1)
which.min Which element of the vector contains the min value? which.min(nums1)
mean Computes the mean of a numeric vector mean(nums1)
median Computes the median of a numeric vector median(nums1)
var Computes the variance of a vector var(nums1)
sd Computes the standard deviation of a vector sd(nums1)
cumsum Returns the cumulative sum of a vector cumsum(nums1)
diff Sequential difference between elements of a vector diff(1:10)
unique Lists all the unique values of a vector unique(c(5,5,10,10,11))
round Rounds numbers to a specified number of decimal points round(2.1341,2)


Try this yourself Some of the functions in Table 1.3 result in a single number, others give a


vector of the same length as the input, and for some functions it depends. Try to guess what the


result should look like for the listed functions, and test some of them on the nums1 vector that we
constructed above.
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Vectorized operations


In the above section, we introduced a number of functions that you can use to do calculations on a


vector of numbers. In R, a number of operations can be done on two vectors, and the result is a vector
itself. Basically, R knows to apply these operations one element at a time. This is best illustrated by
some examples:


# Make two vectors,
vec1 <- c(1,2,3,4,5)
vec2 <- c(11,12,13,14,15)


# Add a number, element-wise
vec1 + 10


## [1] 11 12 13 14 15


# Element-wise quadratic:
vec1^2


## [1] 1 4 9 16 25


# Pair-wise multiplication:
vec1 * vec2


## [1] 11 24 39 56 75


# Pair-wise division
vec1 / vec2


## [1] 0.09090909 0.16666667 0.23076923 0.28571429 0.33333333


# Pair-wise difference:
vec2 - vec1


## [1] 10 10 10 10 10


# Pair-wise sum:
vec1 + vec2


## [1] 12 14 16 18 20


# Compare the pair-wise sum to the sum of both vectors:
sum(vec1) + sum(vec2)


## [1] 80


In each of the above examples, the operators (like + and so on) ’know’ to make the calculations one
element at a time (if one vector), or pair-wise (when two vectors). Clearly, for all examples where


two vectors were used, the two vectors need to be the same length (i.e., have the same number of


elements).


Applying multiple functions at once


In R, we can apply functions and operators in combination. In the following examples, the innermost
expressions are always evaluated first. This will make sense after some examples:


# Mean of the vector 'vec1', *after* squaring the values:
mean(vec1^2)


## [1] 11


# Mean of the vector, *then* square it:
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mean(vec1)^2


## [1] 9


# Standard deviation of 'vec1' after subtracting 1.2:
sd(vec1 - 1.2)


## [1] 1.581139


# Standard deviation of vec1, minus 1.2:
sd(vec1) - 1.2


## [1] 0.3811388


# Mean of the log of vec2:
mean(log(vec2))


## [1] 2.558972


# Log of the mean of vec2:
log(mean(vec2))


## [1] 2.564949


# Mininum value of the square root of pair-wise sum of vec1 and vec2:
min(sqrt(vec1 + vec2))


## [1] 3.464102


# The sum of squared deviations from the sample mean:
sum((vec1 - mean(vec1))^2)


## [1] 10


# The sample variance:
sum((vec1 - mean(vec1))^2) / (length(vec1) - 1)


## [1] 2.5


Try this yourself Confirm that the last example is equal to the sample variance that R calcu-
lates (use var).


Character vectors


A vector can also consist of character elements. Character vectors are constructed like this (don’t
forget the quotes, otherwise R will look for objects with these names - see Exercise 1.15.5).
words <- c("pet","elk","star","apple","the letter r")


Many of the functions summarized in the table above also apply to character vectors with the excep-
tion of obviously numerical ones. For example, the sort function to alphabetize a character vector:


sort(words)


## [1] "apple" "elk" "pet" "star"
## [5] "the letter r"


And count the number of characters in each of the elements with nchar,


nchar(words)


## [1] 3 3 4 5 12
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We will take a closer look at working with character strings in a later chapter (see Section 3.5)


1.5 Working with matrices


Another type of object is a matrix. A matrix is like a vector, except that it contains both rows and


columns (a bit like an Excel spreadsheet.) Like vectors, matrices can contain only one type of data at a


time.


The easiest way to construct a matrix is to make a vector, then give it dimensions:


# Notice that, by default, R fills down columns, from left to right:
mat1 <- matrix(c(1,2,3,4,5,6,7,8,9), nrow=3, ncol=3)


# A matrix can also be filled by rows:
mat2 <- matrix(c(1,2,3,4,5,6,7,8,9), nrow=3, ncol=3, byrow=TRUE)


As with vectors, we can do basic arithmetic with a numeric matrix :


# Get the sum of a vector:
sum(mat1)


## [1] 45


# Get mean, standard deviation, and number of observations (length):
mean(mat1)


## [1] 5


sd(mat1)


## [1] 2.738613


length(mat1)


## [1] 9


We can also do arithmetic on matrices. As with vectors, simple arithmetic will be applied to each


element at a time:


# Addition
# Add a single number to all the elements of a matrix:
mat1 + 10


## [,1] [,2] [,3]
## [1,] 11 14 17
## [2,] 12 15 18
## [3,] 13 16 19


# Multiplication
# Each element is multiplied by 10:
mat2 * 10


## [,1] [,2] [,3]
## [1,] 10 20 30
## [2,] 40 50 60
## [3,] 70 80 90


Again as with vectors, if we do arithmetic on two matrices at a time, each corresponding element in


the two matrices is used:
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# Multiply two matrices; this multiplies each element with each other
# Obviously, the matrices have to have the same dimensions for this to work:
mat1 * mat2


## [,1] [,2] [,3]
## [1,] 1 8 21
## [2,] 8 25 48
## [3,] 21 48 81


In addition to basic arithmetic, there are many functions designed specifically to work with matrices.


For instance, diag returns a vector with the diagonal elements of a matrix:


diag(mat1)


## [1] 1 5 9


The functions rowSums and colSums calculate the sums of rows and columns,


# Sums of rows and columns:
rowSums(mat1)


## [1] 12 15 18


colSums(mat1)


## [1] 6 15 24


and corresponding functions rowMeans and colMeans calculate the means.


One of the special operations that applies only tomatrices is the t function, which stands for transpose.
To transpose a matrix is to flip it so that the rows become the columns, and the columns become the


rows:


# Transpose a matrix
t(mat1)


## [,1] [,2] [,3]
## [1,] 1 2 3
## [2,] 4 5 6
## [3,] 7 8 9


Matrices can be a useful way to organize data, but in R it is generally more common to use dataframes,
which allow you to combine more than one type of data in a single object. Nonetheless, some basic


skills in matrices are useful as a number of built-in functions in R return matrices as output.
Further reading The Quick-R website has a good explanation of matrix-related functions


http://www.statmethods.net/advstats/matrix.html, as well as many other resources and cheat
sheets. If you are well-versed in linear algebra and would like to use R to do these type of calcula-
tions, http://www.ats.ucla.edu/stat/r/library/matrix_alg.htm has a helpful guide.


1.6 Generating data


1.6.1 Sequences of numbers


Let’s look at a few ways to generate sequences of numbers that we can use in the examples and


exercises. There are also a number of real-world situations where you want to use these functions.
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First, as we saw already, we can use c() to ’concatenate’ (link together) a series of numbers. We can also
combine existing vectors in this way, for example:


a <- c(1,2,3)
b <- c(4,5,6)
c(a,b)


## [1] 1 2 3 4 5 6


We can generate sequences of numbers using :, seq and rep, like so:


# Sequences of integer numbers using the ":" operator:
1:10 # Numbers 1 through 10


## [1] 1 2 3 4 5 6 7 8 9 10


5:-5 # From 5 to -5, backwards


## [1] 5 4 3 2 1 0 -1 -2 -3 -4 -5


# Examples using seq()
seq(from=10,to=100,by=10)


## [1] 10 20 30 40 50 60 70 80 90 100


seq(from=23, by=2, length=12)


## [1] 23 25 27 29 31 33 35 37 39 41 43 45


# Replicate numbers:
rep(2, times = 10)


## [1] 2 2 2 2 2 2 2 2 2 2


rep(c(4,5), each=3)


## [1] 4 4 4 5 5 5


The rep function works with any type of vector. For example, character vectors:


# Simple replication
rep("a", times = 3)


## [1] "a" "a" "a"


# Repeat elements of a vector
rep(c("E. tereticornis","E. saligna"), each=3)


## [1] "E. tereticornis" "E. tereticornis" "E. tereticornis" "E. saligna"
## [5] "E. saligna" "E. saligna"


1.6.2 Random numbers


We can draw random numbers using the runif function. The runif function draws from a uniform
distribution, meaning there is an equal probability of any number being chosen.


# Ten random numbers between 0 and 1
runif(10)


## [1] 0.04716799 0.08509539 0.42394039 0.78775717 0.45260913 0.88198248
## [7] 0.94862297 0.35602048 0.22584017 0.33768113


# Five random numbers between 100 and 1000
runif(5, 100, 1000)
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## [1] 950.4077 220.5953 860.9565 928.9190 296.6690


Try this yourself The runif function is part of a much larger class of functions, each of which
returns numbers from a different probability distribution. Inspect the help pages of the functions


rnorm for the normal distribution, and rexp for the exponential distribution. Try generating some
data from a normal distribution with a mean of 100, and a standard deviation of 10.


Next, we will sample numbers from an existing vector.


numbers <- 1:15
sample(numbers, size=20, replace=TRUE)


## [1] 9 13 14 2 14 14 15 7 11 13 5 7 3 12 7 11 13 3 11 14


This command samples 20 numbers from the numbers vector, with replacement.


1.7 Objects in the workspace


In the examples above, we have created a few new objects. These objects are kept in memory for the


remainder of your session (that is, until you close R).
In RStudio, you can browse all objects that are currently loaded in memory. Objects that are currently


loaded in memory make up your workspace. Find the window that has the tab ’Environment’. Here you
see a list of all the objects you have created in this R session. When you click on an object, a window
opens that shows the contents of the object.


Alternatively, to see which objects you currently have in your workspace, use the following command:


ls()


## [1] "nums1" "vec1" "vec2" "words" "x" "y" "a"
## [8] "b" "numbers"


To remove objects,


rm(nums1, nums2)


And to remove all objects that are currently loaded, use this command. Note: you want to use this
wisely!


rm(list=ls())


Finally, when you are ending your R session, but you want to continue exactly at this point the next
time, make sure to save the current workspace. In RStudio, find the menu Session (at the top). Here


you can save the current workspace, and also load a previously saved one. Alternatively, you can use


the save.image function (see also Section 1.13).


1.8 Files in the working directory


Each time you run R, it ’sees’ one of your folders (’directories’) and all the files in it. This folder is called
the working directory. You can change the working directory in RStudio in a couple of ways.
The first option is to go to the menu Session Set Working Directory Choose Directory... .
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Or, find the ’Files’ tab in one of the RStudio windows (usually bottom-right). Here you can browse


to the directory you want to use (by clicking on the small ... button on the right ), and click More


Set as working directory .


You can also set or query the current working directory by typing the following code:


# Set working directory to C:/myR
setwd("C:/myR")


# What is the current working directory?
getwd()


Note: For Windows users, use a forward slash (that is, /), not a back slash!
Finally, you can see which files are available in the current working directory, as well as in subdirecto-


ries, using the dir function (Note: a synonym for this function is list.files).
# Show files in the working directory:
dir()


# List files in some other directory:
dir("c:/work/projects/data/")


# Show files in the subdirectory "data":
dir("data")


# Show files in the working directory that end in csv.
# (The ignore.case=TRUE assures that we find files that end in 'CSV' as well as 'csv',
# and the '[]' is necessary to find the '.' in '.csv'.
dir(pattern="[.]csv", ignore.case=TRUE)


Try this yourself List the R scripts in your current working directory (Hint: an R script should
have the extension .R).


1.9 Keep a clean memory


When you start R, it checks whether a file called .RData is available in the default working directory. If it
is, it loads the contents from that file automatically. This means that, over time, objects can accumulate


in yourmemory, cluttering your workspace and potentially causing problems, especially if you are using


old objects without knowing it.


We recommend you collect all your working code in scripts or markdown files (see Section 1.3). For


each new project, add a line of code to the top that guarantees you start out with a clean memory, as


in the following example. It is also good practice to set the working directory at the top of your script,


with setwd (see Section 1.8), to make sure all the relevant files can be accessed.


# Set working directory
setwd("C:/projects/data")


# Clean workspace
rm(list=ls())


This sort of workflow avoids common problems where old objects are being used unintentionally. In


summary, always:
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• Make sure you are in the correct working directory


• Make sure your workspace is clean, or contains objects you know


• Write scripts or markdown files that contain your entire workflow


• Once you have a working script (or markdown file), run the full file to make the final output


1.10 Packages


Throughout this tutorial, we will focus on the basic functionality of R, but we will also call on a number
of add-on ’packages’ that include additional functions. We will tell you which packages you need as they


are called for. If, after running code from the book, you get "Error: could not find function ’example’",


you can look up the function in the table at the end of the chapter to find out which package it comes


from. You can find a full list of packages available for R on the CRAN site (http://cran.r-project.org/,
navigate to ’Packages’), but be warned – it’s a very long list! A more palatable index of packages is


provided at http://r-pkg.org/.


In RStudio, click on the Packages tab in the lower-right hand panel. There you can see which packages


are already installed, and you can install more by clicking on the Install button.


Alternatively, to install a particular package, simply type:


install.packages("gplots")


You will be asked to select a mirror (select a site closest to your location), and the package will be


installed to your local library. The package needs to be installed only once. To use the package in your


current R session, type:
library(gplots)


This loads the gplots package from your library into working memory. You can now use the functions


available in the gplots package. If you close and reopen R, you will need to load the package again.
To quickly learn about the functions included in a package, type:


library(help=gplots)


If you are using packages in a script file, it is usually considered a good idea to load any packages you


will be using at the start of the script.


1.10.1 Using packages in markdown files


Unfortunately, it is not possible to install new packages at the beginning of a markdown file. Any


attempt to knit a file with install.packages will fail miserably. But, if you want the code in your file
to run correctly, you need to have any relevant packages not only installed, but also loaded using the


library() function. We may also not want any of the package startup messages to appear in our final
document. What should we do?


We suggest two different ways of handling this. The first is simply to make sure that any needed pack-


ages are already installed before knitting, and include a block at the start of your markdown document


that loads these packages:


---
title: "Basic R calculations in markdown"
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author: "Remko Duursma"
date: "16 September 2015"
output: word_document
---


```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE)
library(importantpackage1)
library(importantpackage2)
library(importantpackage3)
```


## R Markdown
Add the rest of the text and code here...


Alternatively, you can use a package called pacman. This package is great for documents that you will
be sharing – it means that your collaborators will not have to spend time finding any packages they


don’t have. It has a function p_load that checks whether a package is installed, installs it if it is not,
and makes sure it is loaded. Using p_load in a markdown document will not cause knitting to fail. With
pacman, the start of a markdown document would look like this:


---
title: "Basic R calculations in markdown"
author: "Remko Duursma"
date: "16 September 2015"
output: word_document
---


```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE)
library(pacman)
p_load(importantpackage1)
p_load(importantpackage2)
p_load(importantpackage3)
```


## R Markdown
Add the rest of the text and code here...


1.11 Updating R and packages


It is generally a good idea to always have the latest version of R installed on your computer. You can
follow the installation instructions described in Section 1.1.1, or alternatively use the installr package
(for Windows) or the updateR package (for Mac):


# On Windows:
library(installr)


# Downloads and installs the newest R version, if available.
# Just follow the instructions and click OK.
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updateR()


# On Mac (requires the 'devtools' package is installed):
devtools::install_github("AndreaCirilloAC/updateR")
library(updateR)


# Downloads and installs the newest R version, if available.
updateR(admin_password = "YOUR_PASSWORD_HERE")


The various contributed packages are routinely updated by the maintainers. Again, it is a very good


idea to keep these up to date. If your code depends on an old package version, it may prevent your


code from working on another computer. To update all packages, run the following command. Note:
make sure to run this when you have just opened RStudio.


update.packages(ask=FALSE)


We recommend updating your packages about once a month.


1.12 Accessing the help files


Every function that you use in R has its own built-in help file. For example, to access the help file for
the arithmetic mean, type:


?mean


This opens up the help file in your default browser (but you do not need to be online to read help files).


Functions added by loading new packages also have built-in help files. For example, to read about the


function bandplot in the gplots package, type:


library(gplots)
?bandplot


Don’t get overwhelmed when looking at the help files. Much of R’s reputation for a steep learning curve
has to do with the rather obscure and often confusing help files. A good tip for beginners is to not read


the help files, but skip straight to the Example section at the bottom of the help file. The first line of


the help file, which shows what kind of input, or arguments, the function takes, can also be helpful.


If you know what type of function that you are looking for but do not know its name, use ??. This
searches the help files for a given keyword:


??ANOVA


1.13 Save a session in RData format


It is often useful to copy the results of an R session, so that you can continue later exactly where you
left off - without having to execute all the code again.


We do this using save.image, which writes all objects that are currently in the workspace in a special
file (an ‘.Rdata’ file).


# Save the entire workspace:
save.image("august8.RData")
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# So you can return to where you were, like this:
load("august8.RData")


You can also write one or more selected objects an ‘.RData’ file, using save.


# Save one object, for later use.
save(myobject, file="myobject.RData")


# and load it (this will make the object available in the workspace again).
load("myobject.RData")


# or save multiple objects:
save(obj1, obj2, obj3, file="someobjects.RData")
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1.14 Functions used in this chapter


For functions not listed here, please refer to the index at the end of this book.


Function What it does Example use


: A handy little function that generates a sequence


of numbers, counting by 1, backwards or forwards.


0:18
48:-8


? Finds help files for a specific function, package or


dataset.


?max


?? Finds help files that match a given topic ??correlation


c Combines input to form a vector. Input must be


of the same data type (e.g., only letters, only num-


bers, etc.)


c(1,2,5,9)
c("imagine","that")


cbind Can be used to combine two matrices horizon-


tally, keeping the same number of rows but adding


more columns.


cbind(matrix(1:4,2,2),
matrix(1:4,2,2))


ceiling Rounds numbers in its input to the next highest


whole number. Returns a vector.


ceiling(c(4.999,4.001))


colMeans Returns means for each column of a matrix. colMeans(matrix(1:4,2,2))


colSums Returns sums for each column of a matrix. colSums(matrix(1:4,2,2))


cor Returns the correlation between two vectors, or


between the columns of a matrix.


cor(c(1,3,5,7),c(4,2,8,6))


cumsum Calculates the cumulative sum of its input. For


vectors, it returns a vector. For matrices, it adds


down a column first, then continues with the next


column. The result is returned as a vector.


cumsum(c(5,10,2,9))


diag Returns a vector with the diagonal elements of


matrix.


diag(matrix(1:25,5,5))


diff Calculates the sequential difference between a se-


ries of numbers. The result is returned as a vector.


diff(c(2,4,5,8))


dir Lists the files in a directory or folder. Default is


the working directory, but other locations can be


provided. The same as list.files.


dir()
dir("C:/") Windows
dir("/Users/") Mac


example Runs the example code at the bottom of the help


page for a given function.


example(cumsum)


floor Rounds numbers in its input to the next lowest


whole number. Returns a vector.


floor(c(4.999,4.001))


head Shows the first six elements of a vector or the first


six rows of a matrix.


head(letters)


intersect Returns the matching elements in two vectors. intersect(c(2,4),c(1,2))


length Returns the length of a vector. For a matrix, it re-


turns the total number of elements.


length(LETTERS)
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Function What it does Example use


LETTERS,
letters


Not really functions, but vectors of the uppercase


and lowercase English alphabet, always loaded


and ready to use.


LETTERS
letters


list.files The same as dir; provides a list of files in a direc-
tory.


list.files()


ls Gives the names of all the objects currently in


working memory.


ls()


max Returns the largest value in its input. max(1:100)


mean Returns the arithmetic average of its input. mean(c(1,2,3,10))


median Returns the middle value of its input. median(c(1,2,3,10)


min Returns the smallest value in its input. min(1:100)


nchar Gives the number of characters in each element of


a vector containing strings of text.


nchar(c("imagine","that"))


order Returns the order of elements in a vector. Note


that this does not sort the vector. Instead, it tells


you how the elements of the vector would need to


be rearranged to sort them.


order(c(9,5,8,2))


rbind A function that can be used to combine two


matrices vertically, keeping the same number of


columns but adding more rows.


rbind(matrix(1:4,2,2),
matrix(1:4,2,2))


rep Repeats its input a given number of times. Can


be used on numbers, characters, and other kinds


of data. Takes the arguments times: a number
of times to repeat the input, each: a number of
times to repeat each element of the input, and


length.out: useful if you need output of an exact
length.


rep(1, times=5)
rep(1:3, times=5)
rep(1:3, each=5)
rep(1:3, times=5, each=2)
rep(1:3, length.out=5)
rep("okay",10)


rev Reverses the contents of its input, and returns


them as a vector.


rev(c("is","it","cool"))


rexp Generates randomdata with an exponential distri-


bution. The first argument is the number of data


points to generate, the second argument is the


rate parameter. The rate parameter changes the


steepness of the distribution. The default is one.


It can be set as 1/the desired mean of the data.


(rexp(1000, rate=(1/5)))


rm Can be used to remove objects in the current


workspace. To remove all objects, give ls() as the
first argument.


rm(x)
rm(list=ls())


rnorm Generates random data with a normal distribu-


tion. The first argument is the number of points to


generate, the second argument is the mean, and


the third argument is the standard deviation. De-


fault for mean is 0, and default for sd is 1.


rnorm(100)
rnorm(10, mean=50, sd=25)
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Function What it does Example use


round Takes a vector of values, and rounds them to a


given number of digits. The default for digits is
0.


round(3.1415)
round(99.99999, digits=2)


rowMeans Returns means for each row of a matrix. rowMeans(matrix(1:4,2,2))


rowSums Returns sums for each row of a matrix. rowSums(matrix(1:4,2,2))


runif Generates random data with a uniform distribu-


tion. The first argument is the number of points to


generate, the second argument is the maximum


value, and the third argument is the minimum.


Default for max is 1, and default for min is 0.


runif(10)
runif(10, min=1, max=6)


sample Takes a given number of samples from a vector or


a matrix. Can be set to sample with or without


replacement. With replacement means that the


same element can be sampled more than once.


Without replacement allows each element to be


sampled only once. Default is without replace-


ment.


sample(1:6, size=6)
sample(1:6, 6, replace=TRUE)


save Saves an object to disk for later use. save(x, file="My_object")


save.image Saves a copy of the current workspace, which can


be loaded at a later time. You can supply a file


name.


save.image(file="Aug8.RData")


sd Returns the standard deviation of the values in a


vector or matrix.


sd(c(99,85,50,87,89))


seq Generates a sequence of numbers from a given


value to another given value. Can be set to count


by 1s, 2s, 4s, etc.


seq(1, 10)
seq(1, 10, by=2.5)


setdiff Takes two vectors of numbers as arguments. Re-


turns only the numbers that are found in the first
vector, but not in the second.


setdiff(1:5,4:8)
setdiff(4:8,1:5)


setwd Sets the current working directory. The working


directory is the folder that R can see. By default, R
will assume files are located in the working direc-


tory.


setwd("C:/RProject") Windows
setwd("˜/RProject") Mac


sort Sorts a vector in ascending or descending order. sort(1:5, decreasing=TRUE)


t Stands for ’transpose’. Can be used to transpose


a matrix – that is, to flip it so that rows become


columns, and columns become rows.


t(matrix(c(1,2,3,1),2,2))


union Produces the union of two vectors, without dupli-


cates.


union(1:5,4:8)


unique Returns only the unique values in a vector. unique(c(1,2,1,5,5,2))


var Returns the variance of a vector or matrix. var(c(99,85,50,87,89))
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Function What it does Example use


which.max Returns the position of the largest value in a vec-


tor. Contrast with max.
which.max(c(99,85,50,87,89))


which.min Returns the position of the smallest value in a vec-


tor. Contrast with min.
which.min(c(99,85,50,87,89))
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1.15 Exercises


In these exercises, we use the following colour codes:


∎ Easy: make sure you complete some of these before moving on. These exercises will follow
examples in the text very closely.


⧫ Intermediate: a bit harder. You will often have to combine functions to solve the exercise in
two steps.


▲ Hard: difficult exercises! These exercises will require multiple steps, and significant departure
from examples in the text.


We suggest you complete these exercises in an R markdown file. This will allow you to combine code
chunks, graphical output, and written answers in a single, easy-to-read file.


1.15.1 Calculating


Calculate the following quantities:


1. ∎ The sum of 100.1, 234.9 and 12.01


2. ∎ The square root of 256


3. ∎ Calculate the 10-based logarithm of 100, and multiply the result with the cosine of π. Hint: see
?log and ?pi.


4. ∎ Calculate the cumulative sum (’running total’) of the numbers 2,3,4,5,6.


5. ⧫ Calculate the cumulative sum of those numbers, but in reverse order. Hint: use the rev function.
6. ⧫ Find 10 random numbers between 0 and 100, rounded to the nearest whole number (Hint: you
can use either sample or a combination of round and runif).


1.15.2 Simple objects


Type the following code, which assigns numbers to objects x and y.


x <- 10
y <- 20


1. ∎ Calculate the product of x and y


2. ∎ Store the result in a new object called z


3. ∎ Inspect your workspace by typing ls(), and by clicking the Environment tab in Rstudio, and find
the three objects you created.


4. ∎Make a vector of the objects x, y and z. Use this command,


myvec <- c(x,y,z)


5. ∎ Find the minimum, maximum, length, and variance of myvec.


6. ∎ Remove the myvec object from your workspace.
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1.15.3 Working with a single vector


1. ∎ The numbers below are the first ten days of rainfall amounts in 1996. Read them into a vector


using the c() function (recall Section 1.4 on p. 17).


0.1 0.6 33.8 1.9 9.6 4.3 33.7 0.3 0.0 0.1


Inspect Table 1.3 on page 18, and answer the following questions:


2. ∎What was the mean rainfall, how about the standard deviation?


3. ∎ Calculate the cumulative rainfall (’running total’) over these ten days. Confirm that the last value


of the vector that this produces is equal to the total sum of the rainfall.


4. ∎Which day saw the highest rainfall (write code to get the answer)?


1.15.4 Scripts


This exercise will make sure you are able to make a ’reproducable script’, that is, a script that will


allow you to repeat an analysis without having to start over from scratch. First, set up an R script (see
Section 1.3 on page 11), and save it in your current working directory.


1. ∎ Find the History tab in Rstudio. Copy a few lines of history that you would like to keep to the
script you just opened, by selecting the line with the mouse and clicking To Source.


2. ∎ Tidy up your R script by writing a few comments starting with #.


3. ∎ Now make sure your script works completely (that is, it is entirely reproducible). First clear the
workspace (rm(list=ls()) or click Clear from the Environment tab). Then, run the entire script
(by clicking Source in the script window, top-right).


1.15.5 To quote or not to quote


This short exercise points out the use of quotes in R.
1. ∎ Run the following code, which makes two numeric objects.


one <- 1
two <- 2


2. ⧫ Run the following two lines of code, and look at the resulting two vectors. The first line makes


a character vector, the second line a numeric vector by recalling the objects you just constructed.


Make sure you understand the difference.


vector1 <- c("one","two")
vector2 <- c(one, two)


3. ⧫ The following lines of code contain some common errors that prevent them from being evalu-


ated properly or result in error messages. Look at the code without running it and see if you can


identify the errors and correct them all. Also execute the faulty code by copying and pasting the


text into the console (not typing it, R studio will attempt to avoid these errors by default) so you


get to know some common error messages (but not all of these result in errors!).


vector1 <- c('one', 'two', 'three', 'four, 'five', 'seven')


vec.var <- var(c(1, 3, 5, 3, 5, 1)
vec.mean <- mean(c(1, 3, 5, 3, 5, 1))
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vec.Min <- Min(c(1, 3, 5, 3, 5, 1))


Vector2 <- c('a', 'b', 'f', 'g')
vector2


1.15.6 Working with two vectors


1. ∎ You have measured five cylinders, their lengths are:


2.1, 3.4, 2.5, 2.7, 2.9


and the diameters are :


0.3, 0.5, 0.6, 0.9, 1.1


Read these data into two vectors (give the vectors appropriate names).


2. ∎ Calculate the correlation between lengths and diameters (use the cor function).


3. ∎ Calculate the volume of each cylinder (V = length * pi * (diameter / 2)
2
).


4. ∎ Calculate the mean, standard deviation, and coefficient of variation of the volumes.


5. ⧫ Assume your measurements are in centimetres. Recalculate the volumes so that their units are


in cubic millimetres. Calculate the mean, standard deviation, and coefficient of variation of these


new volumes.


6. ⧫ You have measured the same five cylinders, but this time were distracted and wrote one of the


measurements down twice:


2.1, 3.4, 2.5, 2.7, 2.9


and the diameters are :


0.3, 0.5, 0.6, 0.6, 0.9, 1.1


Read these data into two vectors (give the vectors appropriate names). As above, calculate the


correlation between the vectors and store in a new vector. Also generate a vector of volumes


based on these vectors and then calculate the mean and standard deviations of the volumes.


Note that some steps result in errors, others in warnings, and some run perfectly fine. Why were


some vectors created and others were not?


1.15.7 Alphabet aerobics 1


For the second question, you need to know that the 26 letters of the Roman alphabet are conveniently


accessible in R via letters and LETTERS. These are not functions, but vectors that are always loaded.


1. ⧫ Read in a vector that contains "A", "B", "C" and "D" (use the c() function). Using rep, produce
this:


"A" "A" "A" "B" "B" "B" "C" "C" "C" "D" "D" "D"


and this:


"A" "B" "C" "D" "A" "B" "C" "D" "A" "B" "C" "D"


2. ⧫ Draw 10 random letters from the lowercase alphabet, and sort them alphabetically (Hint: use
sample and sort). The solution can be one line of code.
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3. ⧫ Draw 5 random letters from each of the lowercase and uppercase alphabets, incorporating


both into a single vector, and sort it alphabetically.


4. ⧫ Repeat the above exercise but sort the vector alphabetically in descending order.


1.15.8 Comparing and combining vectors


Inspect the help page union, and note the useful functions union, setdiff and intersect. These can
be used to compare and combine two vectors. Make two vectors :


x <- c(1,2,5,9,11)
y <- c(2,5,1,0,23)


Experiment with the three functions to find solutions to these questions.


1. ⧫ Find values that are contained in both x and y


2. ⧫ Find values that are in x but not y (and vice versa).


3. ⧫ Construct a vector that contains all values contained in either x or y, and compare this vector
to c(x,y).


1.15.9 Into the matrix


In this exercise you will practice some basic skills with matrices. Recall Section 1.5 on p. 21.


1. ∎ Construct a matrix with 10 columns and 10 rows, all filled with random numbers between 0 and


1 (see Section 1.6.2 on p. 23).


2. ∎ Calculate the row means of this matrix (Hint: use rowMeans). Also calculate the standard devia-
tion across the row means (now also use sd).


3. ▲ Now remake the above matrix with 100 columns, and 10 rows. Then calculate the column


means (using, of course, colMeans), and plot a frequency diagram (a ’histogram’) using hist. We
will see this function in more detail in a later chapter, but it is easy enough to use as you just


do hist(myvector), where myvector is any numeric vector (like the column means). What sort
of shape of the histogram do you expect? Now repeat the above with more rows, and more


columns.


1.15.10 Packages


This exercise makes sure you know how to install packages, and load them. First, read Section 1.10


(p. 26).


1. ∎ Install the car package (you only have to do this once for any computer).


2. ∎ Load the car package (you have to do this every time you open Rstudio).


3. ∎ Look at the help file for densityPlot (Read Section 1.12 on p. 28)


4. ∎ Run the example for densityPlot (at the bottom of the help file), by copy-pasting the example
into a script, and then executing it.


5. ∎ Run the example for densityPlot again, but this time use the example function:


example(densityPlot)


Follow the instructions to cycle through the different steps.


37







Chapter 1 Basics of R 1.15 Exercises


6. ⧫ Explore the contents of the car package by clicking first on the Packages tab, then finding the car
package, and clicking on that. This way, you can find out about all functions a package contains


(which, normally, you hope to avoid, but sometimes it is the only way to find what you are looking


for). The same list can be obtained with the command library(help=car), but that displays a list
that is not clickable, so probably not as useful.


1.15.11 Save your work


We strongly encourage the use of Rmarkdown files or scripts that contain your entire workflow. Inmost


cases, you can just rerun the script to reproduce all outputs of the analysis. Sometimes, however, it is


useful to save all resulting objects to a file, for later use. First read Section 1.13 on p. 28.


Before you start this exercise, first make sure you have a reproducable script as recommended in the


third exercise to this chapter.


1. ∎ Run the script, save the workspace, give the file an appropriate name (it may be especially


useful to use the date as part of the filename, for example ‘results_2015-02-27.RData’.


2. ∎ Now close and reopen Rstudio. If you are in the correct working directory (it should become a


habit to check this with the getwd function, do it now!), you can load the file into the workspace
with the load function. Alternatively, in Rstudio, go to File/Open File... and load the workspace
that way.
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Reading and subsetting data


2.1 Reading data


There aremany ways to read data into R, but we are going to keep things simple and show only a couple
of options. Let’s assume you have a fairly standard dataset, with variables organized in columns, and


individual records in rows, and individual fields separated by a comma (a comma-separated values


(CSV) file). This is a very convenient and safe way to read in data. Most programs can save data to


this format if you choose File Save As... and select Comma Separated Values from the drop-down Format


menu. If your data is not in a CSV file, see Section 2.1.2 on how to read other formats into R.


2.1.1 Reading CSV files


Use the function read.csv to read in the first example dataset (‘Allometry.csv’). This assumes that the
file ‘Allometry.csv’ is in your current working directory. Make sure you fully understand the concept of


a working directory (see Section 1.8) before continuing.


allom <- read.csv("Allometry.csv")


If the file is stored elsewhere, you can specify the entire path (this is known as an absolute path).
allom <- read.csv("c:/projects/data/Allometry.csv")


Or, if the file is stored in a sub-directory of your working directory, you can specify the relative path.
allom <- read.csv("data/Allometry.csv")


The latter option is probably useful to keep your data files separate from your scripts and outputs in


your working directory. We will not discuss how to organize your files here, but return to this important


topic in Chapter 9.


The previous examples read in an entire dataset, and stored it in an object I called allom. This type
of object is called a dataframe. We will be using dataframes a lot throughout this book. Like matrices,
dataframes have two dimensions: they contain both columns and rows. Unlike matrices, each column


can hold a different type of data. This is very useful for keeping track of different types of information


about data points. For example, youmight use one column to hold height measurements, and another


to hold the matching species IDs. When you read in a file using read.csv, the data is automatically
stored in a dataframe. Dataframes can also be created using the function data.frame. More on this in
Section 2.1.2.
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To read a description of this example dataset, see Section A.1 on page 247.


To look at the entire dataset after reading, simply type the name of the dataframe. This is called printing
an object.


allom


Alternatively, in RStudio, find the dataframe in the Environment tab. If you click on it, you can inspect
the dataframe with a built-in viewer (opens up in a separate window).


It is usually a better idea to print only the first (or last) few rows of the dataframe. R offers two conve-


nient functions, head and tail, for doing this.


head(allom)


## species diameter height leafarea branchmass
## 1 PSME 54.61 27.04 338.485622 410.24638
## 2 PSME 34.80 27.42 122.157864 83.65030
## 3 PSME 24.89 21.23 3.958274 3.51270
## 4 PSME 28.70 24.96 86.350653 73.13027
## 5 PSME 34.80 29.99 63.350906 62.39044
## 6 PSME 37.85 28.07 61.372765 53.86594


tail(allom)


## species diameter height leafarea branchmass
## 58 PIMO 73.66 44.64 277.494360 275.71655
## 59 PIMO 28.19 22.59 131.856837 91.76231
## 60 PIMO 61.47 44.99 121.428976 199.86339
## 61 PIMO 51.56 40.23 212.443589 220.55688
## 62 PIMO 18.29 12.98 82.093031 28.04785
## 63 PIMO 8.38 4.95 6.551044 4.36969


Note that the row numbers are shown on the left. These can be accessed with rownames(allom).


The function read.csv has many options, let’s look at some of them. We can skip a number of rows
from being read, and only read a fixed number of rows. For example, use this command to read rows


10-15, skipping the header line (which is in the first line of the file) and the next 9 lines. Note: you have
to skip 10 rows to read rows 10-15, because the header line (which is ignored) counts as a row in the


text file!


allomsmall <- read.csv("Allometry.csv", skip=10, nrows=5, header=FALSE)


2.1.2 Reading other data


Excel spreadsheets


A frequently asked question is: "How can I read an Excel spreadsheet into R?" The shortest answer is:don’t do it. It is generally good practice to store your raw data in comma-separated values (CSV) files,
as these are simple text files that can be read by any type of software. Excel spreadsheets may contain


formulas and formatting, which we don’t need, and usually require Excel to read.


In this book, we assume you always first save an XLS or XLSX file as a CSV. In Excel, select File Save as... ,


click on the button next to ’Save as type...’ and find ’CSV (Comma delimited) (*.csv)’ .


If you do need to read an XLS or XLSX file, the readxl package works very well. Note: avoid older
implementations like the xlsx package and read.xls in the gtools package, which are less reliable.
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Tab-delimited text files


Sometimes, data files are provided as text files that are TAB-delimited. To read these files, use the


following command:


mydata <- read.table("sometabdelimdata.txt", header=TRUE)


When using read.table, you must specify whether a header (i.e., a row with column names) is present
in the dataset.


If you have a text file with some other delimiter, for example ;, use the sep argument:


mydata <- read.table("somedelimdata.txt", header=TRUE, sep=";")


Reading typed data


You can also write the dataset in a text file, and read it as in the following example. This is useful if you


have a small dataset that you typed in by hand (this example is from the help file for read.table).


read.table(header=TRUE, text="
a b
1 2
3 4
")


## a b
## 1 1 2
## 2 3 4


Reading data from the clipboard


A very quick way to read a dataset from Excel is to use your clipboard. In Excel, select the data you


want to read (including the header names), and press Ctrl-C (Windows), or Cmd-C (Mac). Then, in R,
type:


# for Windows:
mydata <- read.delim("clipboard", header=TRUE)


# or for Mac:
mydata <- read.delim(pipe("pbpaste"), header=TRUE)


This is not a long-term solution to reading data, but is a very quick way to read (part of) a messy


spreadsheet that someone shared with you.


Other foreign formats


Finally, if you have a dataset in some unusual format, consider the foreign package, which provides a
number of tools to read in other formats (such as SAS, SPSS, etc.).


Convert vectors into a dataframe


Suppose you have two or more vectors (of the same length), and you want to include these in a new


dataframe. You can use the function data.frame. Here is a simple example:
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vec1 <- c(9,10,1,2,45)
vec2 <- 1:5


data.frame(x=vec1, y=vec2)


## x y
## 1 9 1
## 2 10 2
## 3 1 3
## 4 2 4
## 5 45 5


Here, we made a dataframe with columns named x and y. Note: take care to ensure that the vectors
have the same length, otherwise it won’t work!


Try this yourself Modify the previous example so that the two vectors are not the same
length. Then, attempt to combine them in a dataframe and inspect the resulting error message.


2.2 Working with dataframes


This book focuses heavily on dataframes, because this is the object you will use most of the time in


data analysis. The following sections provide a brief introduction, but we will see many examples using


dataframes throughout this manual.


2.2.1 Variables in the dataframe


Let’s first read the allom data, if you have not done so already.


allom <- read.csv("Allometry.csv")


After reading the dataframe, it is good practice to always quickly inspect the dataframe to see if any-


thing went wrong. I routinely look at the first few rows with head. Then, to check the types of variables
in the dataframe, use the str function (short for ’structure’). This function is useful for other objects as
well, to view in detail what the object contains.


head(allom)


## species diameter height leafarea branchmass
## 1 PSME 54.61 27.04 338.485622 410.24638
## 2 PSME 34.80 27.42 122.157864 83.65030
## 3 PSME 24.89 21.23 3.958274 3.51270
## 4 PSME 28.70 24.96 86.350653 73.13027
## 5 PSME 34.80 29.99 63.350906 62.39044
## 6 PSME 37.85 28.07 61.372765 53.86594


str(allom)


## 'data.frame': 63 obs. of 5 variables:
## $ species : Factor w/ 3 levels "PIMO","PIPO",..: 3 3 3 3 3 3 3 3 3 3 ...
## $ diameter : num 54.6 34.8 24.9 28.7 34.8 ...
## $ height : num 27 27.4 21.2 25 30 ...
## $ leafarea : num 338.49 122.16 3.96 86.35 63.35 ...
## $ branchmass: num 410.25 83.65 3.51 73.13 62.39 ...
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Individual variables in a dataframe can be extracted using the dollar $ sign. Let’s print all the tree
diameters here, after rounding to one decimal point:


round(allom$diameter,1)


## [1] 54.6 34.8 24.9 28.7 34.8 37.9 22.6 39.4 39.9 26.2 43.7 69.8 44.5 56.6
## [15] 54.6 5.3 6.1 7.4 8.3 13.5 51.3 22.4 69.6 58.4 33.3 44.2 30.5 27.4
## [29] 43.2 38.9 52.6 20.8 24.1 24.9 46.0 35.0 23.9 60.2 12.4 4.8 70.6 11.4
## [43] 11.9 60.2 60.7 70.6 57.7 43.1 18.3 43.4 18.5 12.9 37.9 26.9 38.6 6.5
## [57] 31.8 73.7 28.2 61.5 51.6 18.3 8.4


It is also straightforward to add new variables to a dataframe. Let’s convert the tree diameter to inches,


and add it to the dataframe as a new variable:


allom$diameterInch <- allom$diameter / 2.54


Instead of using the $-notation every time (which can result in lengthy, messy code, especially when


your variable names are long) you can use with to indicate where the variables are stored. Let’s add a
new variable called volindex, a volume index defined as the square of tree diameter times height:


allom$volindex <- with(allom, diameter^2 * height)


For comparison, here is the same code using the $-notation. Note that the previous example is proba-


bly easier to read.


allom$volindex <- allom$diameter^2 * allom$height


The with function allows for more readable code, while at the same timemaking sure that the variables
diameter and height are read from the dataframe allom.


Try this yourself The above examples are important – many times throughout this book


you will be required to perform similar operations. As an exercise, also add the ratio of height to


diameter to the dataframe.


After adding new variables, it is good practice to look at the result, either by printing the entire dataframe,


or only the first few rows:


head(allom)


## species diameter height leafarea branchmass diameterInch volindex
## 1 PSME 54.61 27.04 338.485622 410.24638 21.500000 80640.10
## 2 PSME 34.80 27.42 122.157864 83.65030 13.700787 33206.72
## 3 PSME 24.89 21.23 3.958274 3.51270 9.799213 13152.24
## 4 PSME 28.70 24.96 86.350653 73.13027 11.299213 20559.30
## 5 PSME 34.80 29.99 63.350906 62.39044 13.700787 36319.09
## 6 PSME 37.85 28.07 61.372765 53.86594 14.901575 40213.71


A simple summary of the dataframe can be printed with the summary function:


summary(allom)


## species diameter height leafarea
## PIMO:19 Min. : 4.83 Min. : 3.57 Min. : 2.636
## PIPO:22 1st Qu.:21.59 1st Qu.:21.26 1st Qu.: 28.581
## PSME:22 Median :34.80 Median :28.40 Median : 86.351
## Mean :35.56 Mean :26.01 Mean :113.425
## 3rd Qu.:51.44 3rd Qu.:33.93 3rd Qu.:157.459
## Max. :73.66 Max. :44.99 Max. :417.209
## branchmass diameterInch volindex
## Min. : 1.778 Min. : 1.902 Min. : 83.28
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## 1st Qu.: 16.878 1st Qu.: 8.500 1st Qu.: 9906.35
## Median : 72.029 Median :13.701 Median : 34889.47
## Mean : 145.011 Mean :13.999 Mean : 55269.08
## 3rd Qu.: 162.750 3rd Qu.:20.250 3rd Qu.: 84154.77
## Max. :1182.422 Max. :29.000 Max. :242207.52


For the numeric variables, the minimum, 1st quantile, median, mean, 3rd quantile, and maximum


values are printed. For so-called ’factor’ variables (i.e., categorical variables), a simple table is printed


(in this case, for the species variable). We will come back to factors in Section 3.2. If the variables have
missing values, the number of missing values is printed as well (see Section 3.4).


To see howmany rows and columns your dataframe contains (handy for double-checking you read the


data correctly),


nrow(allom)


## [1] 63


ncol(allom)


## [1] 7


2.2.2 Changing column names in dataframes


To access the names of a dataframe as a vector, use the names function. You can also use this to change
the names. Consider this example:


# read names:
names(allom)


## [1] "species" "diameter" "height" "leafarea" "branchmass"


# rename all (make sure vector is same length as number of columns!)
names(allom) <- c("spec","diam","ht","leafarea","branchm")


We can also change some of the names, using simple indexing (see Section 2.3.1)


# rename Second one to 'Diam'
names(allom)[2] <- "Diam"


# rename 1st and 2nd:
names(allom)[1:2] <- c("SP","D")


2.3 Extracting data from vectors and dataframes


2.3.1 Vectors


Let’s look at reordering or taking subsets of a vector, or indexing as it is commonly called. This is an
important skill to learn, so we will look at several examples.


Let’s recall the our last two numeric vectors:


nums1 <- c(1,4,2,8,11,100,8)
nums2 <- c(3.3,8.1,2.5,9.8,21.2,13.8,0.9)
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Individual elements of a vector can be extracted using square brackets, [ ]. For example, to extract
the first and then the fifth element of a vector:


nums1[1]


## [1] 1


nums1[5]


## [1] 11


You can also use another object to do the indexing, as long as it contains a integer number. For


example,


# Get last element:
nelements <- length(nums1)
nums1[nelements]


## [1] 8


This last example extracts the last element of a vector. To do this, we first found the length of the


vector, and used that to index the vector to extract the last element.
We can also select multiple elements, by indexing the vector with another vector. Recall how to con-
struct sequences of numbers, explained in Section 1.6.1.


# Select the first 3:
nums1[1:3]


## [1] 1 4 2


# Select a few elements of a vector:
selectthese <- c(1,5,2)
nums1[selectthese]


## [1] 1 11 4


# Select every other element:
everyother <- seq(1,7,by=2)
nums1[everyother]


## [1] 1 2 11 8


# Select five random elements:
ranels <- sample(1:length(nums2), 5)
nums2[ranels]


## [1] 2.5 13.8 8.1 0.9 21.2


# Remove the first element:
nums1[-1]


## [1] 4 2 8 11 100 8


# Remove the first and last element:
nums1[-c(1, length(nums1))]


## [1] 4 2 8 11 100


Next, we can look at selecting elements of a vector based on the values in that vector. Suppose we


want to make a new vector, based on vector nums2 but only where the value within certain bounds. We
can use simple logical statements to index a vector.


# Subset of nums2, where value is at least 10 :
nums2[nums2 > 10]
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## [1] 21.2 13.8


# Subset of nums2, where value is between 5 and 10:
nums2[nums2 > 5 & nums2 < 10]


## [1] 8.1 9.8


# Subset of nums2, where value is smaller than 1, or larger than 20:
nums2[nums2 < 1 | nums2 > 20]


## [1] 21.2 0.9


# Subset of nums1, where value is exactly 8:
nums1[nums1 == 8]


## [1] 8 8


# Subset nums1 where number is NOT equal to 100
nums1[nums1 != 100]


## [1] 1 4 2 8 11 8


# Subset of nums1, where value is one of 1,4 or 11:
nums1[nums1 %in% c(1,4,11)]


## [1] 1 4 11


# Subset of nums1, where value is NOT 1,4 or 11:
nums1[!(nums1 %in% c(1,4,11))]


## [1] 2 8 100 8


These examples showed you several new logical operators. These operators are summarized in Ta-


ble 2.1. See the help page ?Logic for more details on logical operators. If any are unclear, don’t worry.
We will return to logical data in Section 3.3.


Table 2.1: Logical operators.


Operator Meaning


> greater than


< less than


& AND


== equal to


| OR


%in% is an element of


! NOT


Assigning new values to subsets


All of this becomes very useful if we realize that new values can be easily assigned to subsets. This


works for any of the examples above. For instance,


# Where nums1 was 100, make it -100
nums1[nums1 == 100] <- -100


# Where nums2 was less than 5, make it zero
nums2[nums2 < 5] <- 0
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Try this yourself Using the first set of examples in this section, practice assigning new values


to subsets of vectors.


2.3.2 Subsetting dataframes


There are two ways to take a subset of a dataframe: using the square bracket notation ([]) as in the
above examples, or using the subset function. We will learn both, as they are both useful from time to
time.


Dataframes can be indexed with row and column numbers, like this:


mydataframe[row,column]


Here, row refers to the row number (which can be a vector of any length), and column to the column
number (which can also be a vector). You can also refer to the column by its name rather than its
number, which can be very useful. All this will become clearer after some examples.


Let’s look at a few examples using the Allometry dataset (see Section A.1 for a description of the


dataset).


# Read data
allom <- read.csv("allometry.csv")


# Recall the names of the variables, the number of columns, and number of rows:
names(allom)


## [1] "species" "diameter" "height" "leafarea" "branchmass"


nrow(allom)


## [1] 63


ncol(allom)


## [1] 5


# Extract tree diameters: take the 4th observation of the 2nd variable:
allom[4,2]


## [1] 28.7


# We can also index the dataframe by its variable name:
allom[4,"diameter"]


## [1] 28.7


# Extract the first 3 rows of 'height':
allom[1:3, "height"]


## [1] 27.04 27.42 21.23


# Extract the first 5 rows, of ALL variables
# Note the use of the comma followed by nothing
# This means 'every column' and is very useful!
allom[1:5,]


## species diameter height leafarea branchmass
## 1 PSME 54.61 27.04 338.485622 410.24638
## 2 PSME 34.80 27.42 122.157864 83.65030
## 3 PSME 24.89 21.23 3.958274 3.51270
## 4 PSME 28.70 24.96 86.350653 73.13027


47







Chapter 2 Reading and subsetting data 2.3 Extracting data from vectors and dataframes


## 5 PSME 34.80 29.99 63.350906 62.39044


# Extract the fourth column
# Here we use nothing, followed by a comma,
# to indicate 'every row'
allom[,4]


## [1] 338.485622 122.157864 3.958274 86.350653 63.350906 61.372765
## [7] 32.077794 147.270523 141.787332 45.020041 145.809802 349.057010
## [13] 176.029213 319.507115 234.368784 4.851567 7.595163 11.502851
## [19] 25.380647 65.698749 160.839174 31.780702 189.733007 253.308265
## [25] 91.538428 90.453658 99.736790 34.464685 68.150309 46.326060
## [31] 160.993131 9.806496 20.743280 21.649603 66.633675 54.267994
## [37] 19.844680 131.727303 22.365837 2.636336 411.160376 15.476022
## [43] 14.493428 169.053644 139.651156 376.308256 417.209436 103.672633
## [49] 33.713580 116.154916 44.934469 18.855867 154.078625 70.602797
## [55] 169.163842 7.650902 93.072006 277.494360 131.856837 121.428976
## [61] 212.443589 82.093031 6.551044


# Select only 'height' and 'diameter', store in new dataframe:
allomhd <- allom[,c("height", "diameter")]


As we saw when working with vectors (see Section 2.3.1), we can use expressions to extract data. Be-


cause each column in a dataframe is a vector, we can apply the same techniques to dataframes, as in


the following examples.


We can also use one vector in a dataframe to find subsets of another. For example, what if we want to


find the value of one vector, if another vector has a particular value?


# Extract diameters larger than 60
allom$diameter[allom$diameter > 60]


## [1] 69.85 69.60 60.20 70.61 60.20 60.71 70.61 73.66 61.47


# Extract all rows of allom where diameter is larger than 60.
# Make sure you understand the difference with the above example!
allom[allom$diameter > 60,]


## species diameter height leafarea branchmass
## 12 PSME 69.85 31.35 349.0570 543.9731
## 23 PIPO 69.60 39.37 189.7330 452.4246
## 38 PIPO 60.20 31.73 131.7273 408.3383
## 41 PIPO 70.61 31.93 411.1604 1182.4222
## 44 PIPO 60.20 35.14 169.0536 658.2397
## 45 PIMO 60.71 39.84 139.6512 139.2559
## 46 PIMO 70.61 40.66 376.3083 541.3062
## 58 PIMO 73.66 44.64 277.4944 275.7165
....


# We can use one vector to index another. For example, find the height of the tree
# that has the largest diameter, we can do:
allom$height[which.max(allom$diameter)]


## [1] 44.64


# Recalling the previous section, this is identical to:
allom[which.max(allom$diameter), "height"]


## [1] 44.64
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# Get 10 random observations of 'leafarea'. Here, we make a new vector
# on the fly with sample(), which we use to index the dataframe.
allom[sample(1:nrow(allom),10),"leafarea"]


## [1] 14.49343 116.15492 169.05364 54.26799 86.35065 32.07779 169.16384
## [8] 45.02004 139.65116 31.78070


# As we did with vectors, we can also use %in% to select a subset.
# This example selects only two species in the dataframe.
allom[allom$species %in% c("PIMO","PIPO"),]


## species diameter height leafarea branchmass
## 23 PIPO 69.60 39.369999 189.733007 452.42455
## 24 PIPO 58.42 35.810000 253.308265 595.64015
## 25 PIPO 33.27 20.800001 91.538428 160.44416
## 26 PIPO 44.20 29.110001 90.453658 149.72883
## 27 PIPO 30.48 22.399999 99.736790 44.13532
## 28 PIPO 27.43 27.690001 34.464685 22.98360
## 29 PIPO 43.18 35.580000 68.150309 106.40410
## 30 PIPO 38.86 33.120001 46.326060 58.24071
....


# Extract tree diameters for the PIMO species, as long as diameter > 50
allom$diameter[allom$species == "PIMO" & allom$diameter > 50]


## [1] 60.71 70.61 57.66 73.66 61.47 51.56


# (not all output shown)


Try this yourself As with vectors, we can quickly assign new values to subsets of data using


the <- operator. Try this on some of the examples above.


Using subset()


While the above method to index dataframes is very flexible and concise, sometimes it leads to code


that is difficult to understand. It is also easy to make mistakes when you subset dataframes by the col-


umn or row number (imagine the situation where the dataset has changed and you redo the analysis).


Consider the subset function as a convenient and safe alternative.


With the subset function, you can select rows that meet a certain criterion, and columns as well. This
example uses the pupae data, see Section A.6.


# Read data
pupae <- read.csv("pupae.csv")


# Take subset of pupae, ambient temperature treatment and CO2 is 280.
subset(pupae, T_treatment == "ambient" & CO2_treatment == 280)


## T_treatment CO2_treatment Gender PupalWeight Frass
## 1 ambient 280 0 0.244 1.900
## 2 ambient 280 1 0.319 2.770
## 3 ambient 280 0 0.221 NA
## 4 ambient 280 0 0.280 1.996
## 5 ambient 280 0 0.257 1.069
....
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# (not all output shown)


# Take subset where Frass is larger than 2.9.
# Also, keep only variables 'PupalWeight' and 'Frass'.
# Note that you don't quote the column names when using 'subset'.
subset(pupae, Frass > 2.6, select=c(PupalWeight,Frass))


## PupalWeight Frass
## 2 0.319 2.770
## 18 0.384 2.672
## 20 0.385 2.603
## 25 0.405 3.117
## 29 0.473 2.631
....


Let’s look at another example, using the cereal data (see Section A.7). Here, we use %in%, which we
already saw in Section 2.3.1.


# Read data
cereal <- read.csv("cereals.csv")


# What are the Manufacturers in this dataset?
levels(cereal$Manufacturer)


## [1] "A" "G" "K" "N" "P" "Q" "R"


# Take a subset of the data with only 'A', 'N' and 'Q' manufacturers,
# keep only 'Cereal.name' and 'calories'.
cerealsubs <- subset(cereal, Manufacturer %in% c("A","N","Q"), select=c(Cereal.name,calories))
cerealsubs


## Cereal.name calories
## 1 100%_Bran 70
## 2 100%_Natural_Bran 120
## 11 Cap'n'Crunch 120
## 21 Cream_of_Wheat_(Quick) 100
## 36 Honey_Graham_Ohs 120
## 42 Life 100
## 44 Maypo 100
## 55 Puffed_Rice 50
## 56 Puffed_Wheat 50
## 57 Quaker_Oat_Squares 100
## 58 Quaker_Oatmeal 100
## 64 Shredded_Wheat 80
## 65 Shredded_Wheat_'n'Bran 90
## 66 Shredded_Wheat_spoon_size 90
## 69 Strawberry_Fruit_Wheats 90


Another example using subset is provided in Section 3.2.


Try this yourself You can also delete a single variable from a dataframe using the select
argument in the subset function. Look at the second in ?subset to see how, and try this out with
the cereal data we used in the above examples.
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2.3.3 Difference between [] and subset()


We have seen two methods for indexing dataframes. Usually, both the square brackets and subset
behave in the same way, except when only one variable is selected.


In that case, indexing with [] returns a vector, and subset returns a dataframe with one column. Like
this,


# A short dataframe
dfr <- data.frame(a=-5:0, b=10:15)


# Select one column, with subscripting or subset.
dfr[,"a"]


## [1] -5 -4 -3 -2 -1 0


subset(dfr, select=a)


## a
## 1 -5
## 2 -4
## 3 -3
## 4 -2
## 5 -1
## 6 0


In some cases, a vector might be preferred. In other cases, a dataframe. The behaviour of the two


methods also differs when there are missing values in the vector. We will return to this point in Sec-


tion 3.4.3.


2.3.4 Deleting columns from a dataframe


It is rarely necessary to delete columns from a dataframe, unless you want to save a copy of the


dataframe to disk (see Section ). Instead of deleting columns, you can take a subset and make a new


dataframe to continue with. Also, it should not be necessary to delete columns from the dataframe


that you have accidentally created in a reproducible script: when things go wrong, simply clear the


workspace and run the entire script again.


That aside, you have the following options to delete a column from a dataframe.


# A simple example dataframe
dfr <- data.frame(a=-5:0, b=10:15)


# Delete the second column (make a new dataframe 'dfr2' that does not include that column)
dfr2 <- dfr[,-2]


# Use subset to remove a column
# Note: this does not work using square-bracket notation!
dfr2 <- subset(dfr, select = -b)


# Finally, this strange command deletes a column as well.
# In this case, we really delete the column from the existing dataframe,
# whereas the two examples above create a new subset *without* that column.
dfr$b <- NULL
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2.4 Exporting data


To write a dataframe to a comma-separated values (CSV) file, use the write.csv function. For example,


# Some data
dfr <- data.frame(x=1:3, y=2:4)


# Write to disk (row names are generally not wanted in the CSV file).
write.csv(dfr,"somedata.csv", row.names=FALSE)


If you want more options, or a different delimiter (such as TAB), look at the write.table function.
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2.5 Functions used in this chapter


For functions not listed here, please refer to the index at the end of this book.


Function What it does Example use


! A logical operator meaning NOT. NOT returns the op-posite of other functions it is used with. Compare to
other examples in this table. Returns TRUE or FALSE.


1 != 2
"a" !%in% LETTERS


== A logical operator meaning equal to. Returns TRUE


or FALSE.


1 == 2
letters[1] == "a"


$ An operator that allows you to extract or change a


single variables from a dataframe. The result can be


treated like a vector.


mtcars$wt
mtcars$kg <- mtcars$wt*454


%in% A logical operator that asks whether its first argu-


ments is an element of its second argument. Re-


turns TRUE or FALSE.


"a" %in% letters
"a" %in% LETTERS


& A logical operator meaning AND. Returns TRUE or


FALSE.


TRUE & TRUE
(100 > 10) & (10 > 100)


| A logical operator meaning OR. Returns TRUE or


FALSE.


FALSE | FALSE
(100 > 10) | (10 > 100)


> A logical operator meaning greater than. Returns


TRUE or FALSE.


10 > 100
100 > 10


< A logical operator meaning less than. Returns TRUE


or FALSE.


10 < 100
100 < 10


any Given a vector of logical values, returns a single log-


ical value. TRUE if there is at least one TRUE value,
FALSE if there is not.


any(c(TRUE, FALSE,
FALSE, FALSE)


any(letters == "?")


data.frame Creates dataframes, one of the most convenient


ways to store data in R. Data frames have columns,
each of which represents a different variable, and


rows, each of which represents a different observa-


tion of that variable. While each colummnmust con-


tain only a single data type, different columns can


contain different data types.


dfr <- data.frame(
a=-5:0, b=10:15)


duplicated Given a vector, returns a vector of logical values in-


dicating which elements appear more than once.


duplicated(c(1,1,2,3,4,4))


head Shows the first rows of a dataframe. By default,


shows the first six rows.


head(mtcars)
head(mtcars, n=10)


LETTERS,
letters


Not really functions, but vectors of the uppercase


and lowercase English alphabet, always loaded and


ready to use.


LETTERS
letters
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Function What it does Example use


ls Gives the names of all the objects currently in work-


ing memory.


ls()


names Allows you to view or change the names of columns


in a dataframe.


names(BOD)
names(BOD) <- c("T","D")


ncol Gives the number of columns in a dataframe. ncol(mtcars)


nrow Gives the number of rows in a dataframe. nrow(mtcars)


order Can be used to find the sort order for a single col-


umn of a dataframe. By default, sorts in increasing


order, but can be set to sort in decreasing order.


order(mtcars$wt)
order(mtcars$wt,


decreasing = TRUE)


read.csv Reads data from comma-separated variable (CSV)


files. Important arguments include the file name (or


complete file path) and whether or not the file has a


header. For more details, see Section 2.1.1.


read.csv("Allometry.csv")
read.csv("Allometry.csv",


header=TRUE)


read.table A flexible function for reading data with different


separating characters. To use read.table, you need
to the character used to separate the data (sep) and
whether or not the file has a header row (header).
There are also many other options you can set to


customize this function; for more see ?read.table.


read.table("tab.txt",
header=TRUE)


read.table("semi.txt",
sep=";",header=TRUE)


rm Can be used to remove objects from the current


workspace. To remove all objects, give ls() as the
first argument.


rm(x)
rm(list=ls())


str Gives the structure of an object. Very useful for find-


ing out what data types an object contains.


str(warpbreaks)


subset Allows the selection of part of a dataframe, using


logical operators to define which rows or columns


should be included.


subset(mtcars, wt > 3)
subset(mtcars, wt > 3


& hp < 100)


summary Provides a simple summary of the variables in a


dataframe. Statistical information is given for nu-


merical variables, and a list of counts is given for fac-


tor variables.


summary(warpbreaks)


which.max For a single variable from a dataframe, gives the po-


sition of the largest value.


which.max(mtcars$wt)


which.min For a single variable from a dataframe, gives the po-


sition of the smallest value.


which.min(mtcars$wt)


with Can be used to extract certain variables from a


dataframe. A useful alternative to $, particularly


when doing math involving multiple variables.


with(mtcars, mpg/wt)


write.csv Can be used to output a dataframe as a CSV file. This


is a file in which values are separated by commas,


and which can be read by Excel and other programs.


You must provide a dataframe and a file name. Out-


put will be written to your working directory.


write.csv(mtcars,
file="Motor_cars.csv")
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Function What it does Example use


write.table Similar to write.csv, but can be used to write files
with other separating characters, such as tabs or


semicolons. You must provide a dataframe and a file


name. Output will be written to your working direc-


tory.


write.table(mtcars,
file="Motor_cars.txt",
sep=";")
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2.6 Exercises


In these exercises, we use the following colour codes:


∎ Easy: make sure you complete some of these before moving on. These exercises will follow
examples in the text very closely.


⧫ Intermediate: a bit harder. You will often have to combine functions to solve the exercise in
two steps.


▲ Hard: difficult exercises! These exercises will require multiple steps, and significant departure
from examples in the text.


We suggest you complete these exercises in an R markdown file. This will allow you to combine code
chunks, graphical output, and written answers in a single, easy-to-read file.


2.6.1 Working with a single vector 2


Recall Exercise 1.15.3 on p. 35. Read in the rainfall data once more. We now practice subsetting a
vector (see Section 2.3.1, p. 44).


1. ∎ Take a subset of the rainfall data where rain is larger than 20.


2. ∎What is the mean rainfall for days where the rainfall was at least 4?


3. ∎ Subset the vector where it is either exactly zero, or exactly 0.6.


2.6.2 Alphabet aerobics 2


The 26 letters of the Roman alphabet are conveniently accessible in R via letters and LETTERS. These
are not functions, but vectors that are always loaded.


1. ∎What is the 18th letter of the alphabet?


2. ∎What is the last letter of the alphabet (don’t guess, write code)?


3. ⧫Use ?sample to figure out how to sample with replacement. Generate a random subset of fifteen
letters. Are any letters in the subset duplicated? Hint: use the any and duplicated functions.
Which letters?


2.6.3 Basic operations with the Cereal data


For this exercise, we will use the Cereal data, see Section A.7 (p. 249) for a description of the dataset.


1. ∎ Read in the dataset, look at the first few rows with head and inspect the data types of the
variables in the dataframe with str.


2. ∎ Add a new variable to the dataset called ’totalcarb’, which is the sum of ’carbo’ and ’sugars’.


Recall Section 2.2 (p. 42).


3. ∎ How many cereals in the dataframe are ’hot’ cereals? Hint: take an appropriate subset of the
data, and then count the number of observations in the subset.


4. ⧫ How many unique manufacturers are included in the dataset? Hint: use length and unique.
5. ∎ Take a subset of the dataframe with only the Manufacturer ’K’ (Kellogg’s).
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6. ∎ Take a subset of the dataframe of all cereals that have less than 80 calories, AND have more


than 20 units of vitamins.


7. ∎ Take a subset of the dataframe containing cereals that contain at least 1 unit of sugar, and keep


only the variables ’Cereal.name’, ’calories’ and ’vitamins’. Then inspect the first few rows of the


dataframe with head.


8. ∎ For one of the above subsets, write a new CSV file to disk using write.csv (see Section 2.4 on
p. 52).


9. ∎ Rename the column ’Manufacturer’ to ’Producer’ (see Section 2.2.2, p. 44).


2.6.4 A short dataset


1. ∎ Read the following data into R (number of honeyeaters seen at the EucFACE site seen in a week).
Give the resulting dataframe a reasonable name. Hint:To read this dataset, look at Section 2.1.2
(p. 40) (there are at least two ways to read this dataset, or you can type it into Excel and save as a


CSV file if you prefer).


Day nrbirds
sunday 3
monday 2
tuesday 5
wednesday 0
thursday 8
friday 1
saturday 2


2. ∎ Add a day number to the dataset you read in above (sunday=1, saturday=7). Recall the seq
function (Section 1.6.1, p. 22).


3. ∎ Delete the ’Day’ variable (to only keep the daynumber that you added above).


4. ⧫ On which daynumber did you observe the most honeyeaters? Hint: use which.max, in combina-
tion with indexing.


5. ⧫ Sort the dataset by number of birds seen. Hint: use the order function to find the order of the
number of birds, then use this vector to index the dataframe.


2.6.5 Titanic


1. ∎ Read the data described in Section A.12 (p. 251)


2. ∎Make two new dataframes : a subset of male survivors, and a subset of female survivors. Recall


Section 2.3.2 (p. 47) (you can use either the square brackets, or subset to make the subsets).


3. ⧫ Based on the previous question, what was the name of the oldest surviving male? In what


class was the youngest surviving female? Hint: use which.max, which.min on the subsets you just
created.


4. ▲ Take 15 random names of passengers from the Titanic, and sort them alphabetically. Hint: use
sort.


2.6.6 Managing your workspace


Before you start this exercise, first make sure you have a reproducible script.
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1. ∎ You should now have a cluttered workspace. Generate a vector that contains the names of all


objects in the workspace.


2. ⧫ Generate a vector that contains the names of all objects in the workspace, with the exception


of titanic. Hint: use the ls function.
3. ⧫ Look at the help page for rm. Use the list argument to delete all objects from the workspace
except for titanic. Use the ls function to confirm that your code worked.
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Special data types


3.1 Types of data


For the purpose of this tutorial, a dataframe can contain six types of data. These are summarized in


the table below:


Data type Description Example Section


numeric Any number c(1, 12.3491, 10/2, 10*6)
character Character strings c("E. saligna", "HFE", "a b c") 3.5


factor Categorical variable factor(c("Control","Fertilized","Irrigated")) 3.2


logical Either TRUE or FALSE 10 == 100/10 3.3


Date Special Date class as.Date("2010-6-21") 3.6.1


POSIXct Special Date-time class Sys.time() 3.6.2


Also, R has a very useful built-in data type to represent missing values. This is represented by NA (Not
Available) (see Section 3.4).


We will show how to convert between data types at the end of this chapter (Section 3.7).


3.2 Working with factors


The factor data type is used to represent qualitative, categorical data.
When reading data from file, for example with read.csv, R will automatically convert any variable to a
factor if it is unable to convert it to a numeric variable. If a variable is actually numeric, but you want


to treat it as a factor, you can use as.factor to convert it, as in the following example.


# Read pupae data
pupae <- read.csv("pupae.csv")


# This dataset contains a temperature (T_treatment) and CO2 treatment (CO2_treatment).
# Both should logically be factors, however, CO2_treatment is read as numeric:
str(pupae)


## 'data.frame': 84 obs. of 5 variables:
## $ T_treatment : Factor w/ 2 levels "ambient","elevated": 1 1 1 1 1 1 1 1 1 1 ...
## $ CO2_treatment: int 280 280 280 280 280 280 280 280 280 280 ...
## $ Gender : int 0 1 0 0 0 1 0 1 0 1 ...
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## $ PupalWeight : num 0.244 0.319 0.221 0.28 0.257 0.333 0.275 0.312 0.254 0.356 ...
## $ Frass : num 1.9 2.77 NA 2 1.07 ...


# To convert it to a factor, we use:
pupae$CO2_treatment <- as.factor(pupae$CO2_treatment)


# Compare with the above,
str(pupae)


## 'data.frame': 84 obs. of 5 variables:
## $ T_treatment : Factor w/ 2 levels "ambient","elevated": 1 1 1 1 1 1 1 1 1 1 ...
## $ CO2_treatment: Factor w/ 2 levels "280","400": 1 1 1 1 1 1 1 1 1 1 ...
## $ Gender : int 0 1 0 0 0 1 0 1 0 1 ...
## $ PupalWeight : num 0.244 0.319 0.221 0.28 0.257 0.333 0.275 0.312 0.254 0.356 ...
## $ Frass : num 1.9 2.77 NA 2 1.07 ...


In the allom example dataset, the species variable is a good example of a factor. A factor variable has
a number of ’levels’, which are the text values that the variable has in the dataset. Factors can also


represent treatments of an experimental study. For example,


levels(allom$species)


## [1] "PIMO" "PIPO" "PSME"


Shows the three species in this dataset. We can also count the number of rows in the dataframe for


each species, like this:


table(allom$species)


##
## PIMO PIPO PSME
## 19 22 22


Note that the three species are always shown in the order of the levels of the factor: when the
dataframe was read, these levels were assigned based on alphabetical order. Often, this is not a very


logical order, and you may want to rearrange the levels to get more meaningful results.


In our example, let’s shuffle the levels around, using factor.


allom$species <- factor(allom$species, levels=c("PSME","PIMO","PIPO"))


Now revisit the commands above, and note that the results are the same, but the order of the levels
of the factor is different. You can also reorder the levels of a factor by the values of another variable,
see the example in Section 6.2.5.


We can also generate new factors, and add them to the dataframe. This is a common application:


# Add a new variable to allom: 'small' when diameter is less than 10, 'large' otherwise.
allom$treeSizeClass <- factor(ifelse(allom$diameter < 10, "small", "large"))


# Now, look how many trees fall in each class.
# Note that somewhat confusingly, 'large' is printed before 'small'.
# Once again, this is because the order of the factor levels is alphabetical by default.
table(allom$treeSizeClass)


##
## large small
## 56 7


What if we want to add a new factor based on a numeric variable with more than two levels? In that


case, we cannot use ifelse. We must find a different method. Look at this example using cut.
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# The cut function takes a numeric vectors and cuts it into a categorical variable.
# Continuing the example above, let's make 'small','medium' and 'large' tree size classes:
allom$treeSizeClass <- cut(allom$diameter, breaks=c(0,25,50,75),


labels=c("small","medium","large"))


# And the results,
table(allom$treeSizeClass)


##
## small medium large
## 22 24 17


Empty factor levels


It is important to understand how factors are used in R: they are not simply text variables, or ’char-
acter strings’. Each unique value of a factor variable is assigned a level, which is used every time you
summarize your data by the factor variable.


Crucially, even when you delete data, the original factor level is still present. Although this behaviour
might seem strange, it makes a lot of sense in many cases (zero observations for a particular factor


level can be quite informative, for example species presence/absence data).


Sometimes it is more convenient to drop empty factor levels with the droplevels function. Consider
this example:


# Read the Pupae data:
pupae <- read.csv("pupae.csv")


# Note that 'T_treatment' (temperature treatment) is a factor with two levels,
# with 37 and 47 observations in total:
table(pupae$T_treatment)


##
## ambient elevated
## 37 47


# Suppose we decide to keep only the ambient treatment:
pupae_amb <- subset(pupae, T_treatment == "ambient")


# Now, the level is still present, although empty:
table(pupae_amb$T_treatment)


##
## ambient elevated
## 37 0


# In this case, we don't want to keep the empty factor level.
# Use droplevels to get rid of any empty levels:
pupae_amb2 <- droplevels(pupae_amb)


Try this yourself Compare the summary of pupae_amb and pupae_amb2, and note the differ-
ences.
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3.2.1 Changing the levels of a factor


Sometimes you may want to change the levels of a factor, for example to replace abbreviations with


more readable labels. To do this, we can assign new values with the levels function, as in the following
example using the pupae data:


# Change the levels of T_treatment by assigning a character vector to the levels.
levels(pupae$T_treatment) <- c("Ambient","Ambient + 3C")


# Or only change the first level, using subscripting.
levels(pupae$T_treatment)[1] <- "Control"


Try this yourself Using the method above, you can also merge levels of a factor, simply by


assigning the same new level to both old levels. Try this on a dataset of your choice (for example, in


the allom data, you can assign new species levels, ’Douglas-fir’ for PSME, and ’Pine’ for both PIMO
and PIPO). Then check the results with levels().


3.3 Working with logical data


Some data can only take two values: true, or false. For data like these, R has the logical data type.
Logical data are coded by integer numbers (0 = FALSE, 1 = TRUE), but normally you don’t see this, sinceR will only print TRUE and FALSE ’labels’. However, once you know this, some analyses become even
easier. Let’s look at some examples,


# Answers to (in)equalities are always logical:
10 > 5


## [1] TRUE


101 == 100 + 1


## [1] TRUE


# ... or use objects for comparison:
apple <- 2
pear <- 3
apple == pear


## [1] FALSE


# NOT equal to.
apple != pear


## [1] TRUE


# Logical comparisons like these also work for vectors, for example:
nums <- c(10,21,5,6,0,1,12)
nums > 5


## [1] TRUE TRUE FALSE TRUE FALSE FALSE TRUE


# Find which of the numbers are larger than 5:
which(nums > 5)


## [1] 1 2 4 7


# Other useful functions are 'any' and 'all':
# Are any numbers larger than 25?


62







Chapter 3 Special data types 3.4 Working with missing values


any(nums > 25)


## [1] FALSE


# Are all numbers less than or equal to 10?
all(nums <= 10)


## [1] FALSE


# Use & for AND, for example to take subsets where two conditions are met:
subset(pupae, PupalWeight > 0.4 & Frass > 3)


## T_treatment CO2_treatment Gender PupalWeight Frass
## 25 ambient 400 1 0.405 3.117


# Use | for OR
nums[nums < 2 | nums > 20]


## [1] 21 0 1


# How many numbers are larger than 5?
#- Short solution
sum(nums > 5)


## [1] 4


#- Long solution
length(nums[nums > 5])


## [1] 4


We saw a number of ’logical operators’, like == (is equal to), and > (is greater than) when we indexed
vectors (see Section 2.3.1 and Table 2.1). The help page ?Syntax has a comprehensive list of operators
in R (including the logical operators).


3.4 Working with missing values


3.4.1 Basics


In R, missing values are represented with NA, a special data type that indicates the data is simply NotAvailable.
Warning: Because NA represents a missing value, make sure you never use ’NA’ as an abbreviation for
anything (like North America).


Many functions can handle missing data, usually in different ways. For example, suppose we have the


following vector:


myvec1 <- c(11,13,5,6,NA,9)


In order to calculate the mean, we might want to either exclude the missing value (and calculate the


mean of the remaining five numbers), or we might want mean(myvec1) to fail (produce an error). This
last case is useful if we don’t expect missing values, and want R to only calculate the mean when there
are no NA’s in the dataset.


These two options are shown in this example:


# Calculate mean: this fails if there are missing values
mean(myvec1)
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## [1] NA


# Calculate mean after removing the missing values
mean(myvec1, na.rm=TRUE)


## [1] 8.8


Many functions have an argument na.rm, or similar. Refer to the help page of the function to learn
about the various options (if any) for dealing with missing values. For example, see the help pages ?lm
and ?sd.


The function is.na returns TRUE when a value is missing, which can be useful to see which values are
missing, or how many,


# Is a value missing? (TRUE or FALSE)
is.na(myvec1)


## [1] FALSE FALSE FALSE FALSE TRUE FALSE


# Which of the elements of a vector is missing?
which(is.na(myvec1))


## [1] 5


# How many values in a vector are NA?
sum(is.na(myvec1))


## [1] 1


Making missing values


In many cases it is useful to change some bad data values to NA. We can use our indexing skills to do
so,


# Some vector that contains bad values coded as -9999
datavec <- c(2,-9999,100,3,-9999,5)


# Assign NA to the values that were -9999
datavec[datavec == -9999] <- NA


In many cases, missing values may arise when certain operations did not produce the desired result.


Consider this example,


# A character vector, some of these look like numbers:
myvec <- c("101","289","12.3","abc","99")


# Convert the vector to numeric:
as.numeric(myvec)


## Warning: NAs introduced by coercion


## [1] 101.0 289.0 12.3 NA 99.0


Thewarningmessage NAs introduced by coercionmeans thatmissing values were produced bywhen
we tried to turn one data type (character) to another (numeric).


Not A Number


Another type of missing value is the result of calculations that went wrong, for example:
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# Attempt to take the logarithm of a negative number:
log(-1)


## Warning in log(-1): NaNs produced


## [1] NaN


The result is NaN, short for Not A Number.
Dividing by zero is not usually meaningful, but R does not produce a missing value:
1000/0


## [1] Inf


It produces ’Infinity’ instead.


3.4.2 Missing values in dataframes


Whenworking with dataframes, you often want to removemissing values for a particular analysis. We’ll


use the pupae dataset for the following examples. See Section A.6 for a description of this dataset.


# Read the data
pupae <- read.csv("pupae.csv")


# Look at a summary to see if there are missing values:
summary(pupae)


## T_treatment CO2_treatment Gender PupalWeight
## ambient :37 Min. :280.0 Min. :0.0000 Min. :0.1720
## elevated:47 1st Qu.:280.0 1st Qu.:0.0000 1st Qu.:0.2562
## Median :400.0 Median :0.0000 Median :0.2975
## Mean :344.3 Mean :0.4487 Mean :0.3110
## 3rd Qu.:400.0 3rd Qu.:1.0000 3rd Qu.:0.3560
## Max. :400.0 Max. :1.0000 Max. :0.4730
## NA's :6
## Frass
## Min. :0.986
## 1st Qu.:1.515
## Median :1.818
## Mean :1.846
## 3rd Qu.:2.095
## Max. :3.117
## NA's :1


# Notice there are 6 NA's (missing values) for Gender, and 1 for Frass.


# Option 1: take subset of data where Gender is not missing:
pupae_subs1 <- subset(pupae, !is.na(Gender))


# Option 2: take subset of data where Frass AND Gender are not missing
pupae_subs2 <- subset(pupae, !is.na(Frass) & !is.na(Gender))


# A more rigorous subset: remove all rows from a dataset where ANY variable
# has a missing value:
pupae_nona <- pupae[complete.cases(pupae),]
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3.4.3 Subsetting when there are missing values


When there are missing values in a vector, and you take a subset (for example all data larger than


some value), should the missing values be included or dropped? There is no one answer to this, but


it is important to know that subset drops them, but the square bracket method ([]) keeps them. See
also Section 2.3.3, where we showed that these two methods to subset data differ in their behaviour.


Consider this example, and especially the use of which to drop missing values when subsetting.


# A small dataframe
dfr <- data.frame(a=1:4, b=c(4,NA,6,NA))


# subset drops all missing values
subset(dfr, b > 4, select=b)


## b
## 3 6


# square bracket notation keeps them
dfr[dfr$b > 4,"b"]


## [1] NA 6 NA


# ... but drops them when we use 'which'
dfr[which(dfr$b > 4),"b"]


## [1] 6


3.5 Working with text


3.5.1 Basics


Many datasets include variables that are text only (think of comments, species names, locations, sam-


ple codes, and so on), it is useful to learn how to modify, extract, and analyse text-based (’character’)


variables.


Consider the following simple examples when working with a single character string:


# Count number of characters in a bit of text:
sentence <- "Not a very long sentence."
nchar(sentence)


## [1] 25


# Extract the first 3 characters:
substr(sentence, 1, 3)


## [1] "Not"


It gets more interesting when we have character vectors, for example,


# Substring all elements of a vector
substr(c("good","good riddance","good on ya"),1,4)


## [1] "good" "good" "good"


# Number of characters of all elements of a vector
nchar(c("hey","hi","how","ya","doin"))
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## [1] 3 2 3 2 4


To glue bits of text together, use the paste function, like so:


# Add a suffix to each text element of a vector:
txt <- c("apple","pear","banana")
paste(txt, "-fruit")


## [1] "apple -fruit" "pear -fruit" "banana -fruit"


# Glue them all together into a single string using the collapse argument
paste(txt, collapse="-")


## [1] "apple-pear-banana"


# Combine numbers and text:
paste("Question", 1:3)


## [1] "Question 1" "Question 2" "Question 3"


# This can be of use to make new variables in a dataframe,
# as in this example where we combine two factors to create a new one:
pupae$T_CO2 <- with(pupae, paste(T_treatment, CO2_treatment, sep="-"))
head(pupae$T_CO2)


## [1] "ambient-280" "ambient-280" "ambient-280" "ambient-280" "ambient-280"
## [6] "ambient-280"


Try this yourself Run the final example above, and inspect the variable T_CO2 (with str) that
we added to the dataframe. Make it into a factor variable using as.factor, and inspect the variable
again.


3.5.2 Column names


Vectors, dataframes and list can all have names that can be used to find rows or columns in your data.
We already saw how you can use column names to index a dataframe in Section 2.3.2. Also consider


the following examples:


# Change the names of a dataframe:
hydro <- read.csv("hydro.csv")
names(hydro) # first print the old names


## [1] "Date" "storage"


names(hydro) <- c("Date","Dam_Storage") # then change the names


# Change only the first name (you can index names() just like you can a vector!)
names(hydro)[1] <- "Datum"


Sometimes it is useful to find out which columns have particular names. We can use the match function
to do this:


match(c("diameter","leafarea"), names(allom))


## [1] 2 4


Shows that the 2nd and 4th column have those names.
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3.5.3 Text in dataframes and grep


When you read in a dataset (with read.csv, read.table or similar), any variable that R cannot convert
to numeric is automatically converted to a factor. This means that if a column has even just one value
that is text (or some garble that does not represent a number), the column cannot be numeric.


While we know that factors are very useful, sometimes we want a variable to be treated like text. For


example, if we plan to analyse text directly, or extract numbers or other information from bits of text.


Let’s look at a few examples using the cereal dataset, described in Section A.7.


# Read data, tell R to treat the first variable ('Cereal.name') as character, not factor
cereal <- read.csv("cereals.csv", stringsAsFactors=FALSE)


# Make sure that the Cereal name is really a character vector:
is.character(cereal$Cereal.name)


## [1] TRUE


# The above example avoids converting any variable to a factor,
# what if we want to just convert one variable to character?
cereal <- read.csv("cereals.csv")
cereal$Cereal.name <- as.character(cereal$Cereal.name)


Here, the argument stringsAsFactors=FALSE avoided the automatic conversion of character variables
to factors.


The following example uses grep, a very powerful function. This function can make use of regularexpressions, a flexible tool for text processing.
# Extract cereal names (for convenience).
cerealnames <- cereal$Cereal.name


# Find the cereals that have 'Raisin' in them.
# grep() returns the index of values that contain Raisin
grep("Raisin",cerealnames)


## [1] 23 45 46 50 52 53 59 60 61 71


# grepl() returns TRUE or FALSE
grepl("Raisin",cerealnames)


## [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [12] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [23] TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [34] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [45] TRUE TRUE FALSE FALSE FALSE TRUE FALSE TRUE TRUE FALSE FALSE
## [56] FALSE FALSE FALSE TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE
## [67] FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE


# That result just gives you the indices of the vector that have 'Raisin' in them.
# these are the corresponding names:
cerealnames[grep("Raisin",cerealnames)]


## [1] "Crispy_Wheat_&_Raisins"
## [2] "Muesli_Raisins,_Dates,_&_Almonds"
## [3] "Muesli_Raisins,_Peaches,_&_Pecans"
## [4] "Nutri-Grain_Almond-Raisin"
## [5] "Oatmeal_Raisin_Crisp"
## [6] "Post_Nat._Raisin_Bran"
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## [7] "Raisin_Bran"
## [8] "Raisin_Nut_Bran"
## [9] "Raisin_Squares"
## [10] "Total_Raisin_Bran"


# Now find the cereals whose name starts with Raisin.
# The ^ symbol is part of a 'regular expression', it indicates 'starts with':
grep("^Raisin",cerealnames)


## [1] 59 60 61


# Or end with 'Bran'
# The $ symbol is part of a 'regular expression', and indicates 'ends with':
grep("Bran$", cerealnames)


## [1] 1 2 3 20 29 53 59 60 65 71


As mentioned, grep can do a lot of different things, so don’t be alarmed if you find the help page a bitoverwhelming. However, there are a few options worth knowing about. One very useful option is to
turn off the case-sensitivity, for example:


grep("bran",cerealnames,ignore.case=TRUE)


## [1] 1 2 3 4 9 10 20 29 53 59 60 65 71


finds Bran and bran and BRAN.


Finally, using the above tools, let’s add a new variable to the cereal dataset that is TRUEwhen the name
of the cereal ends in ’Bran’, otherwise it is FALSE. For this example, the grepl function is more useful
(because it returns TRUE and FALSE).


# grepl will return FALSE when Bran is not found, TRUE otherwise
cereal$BranOrNot <- grepl("Bran$", cerealnames)


# Quick summary:
summary(cereal$BranOrNot)


## Mode FALSE TRUE
## logical 67 10


Regular expressions are very useful, and with the right knowledge, you can specify almost any possible


text string. Below we’ve included a quick cheat sheet that shows some of the ways they can be used.


For more examples and explanation, please see the Further Reading at the end of this section.
Table 3.1: A regular expression cheat sheet.


Symbol What it means Example Matches Doesn’t match


ˆabc Matches any string that starts


with abc ˆeco economics,
ecology


evo-eco


abc$ Matches any string that ends


with abc ology$ biology, ecology ologies


. Matches any character ex-


cept newline.


b.t bat, bet, bit beet


a|b Matches string a or string b. green|blue green, blue red
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Table 3.1: A regular expression cheat sheet.


Symbol What it means Example Matches Doesn’t match


* Matches a given string 0 or


more times.


ab*a aa, abba,
abbba, abbbba


ba, ab


? Matches a given string 0


times or 1 time – no more.


ab?a aa, aba abba, abbbba


(abc) Groups a string to be


matched as part of an


expression.


(4570) 4570 1125,
4570 1617


9772 6585,
9772 6100


[abc] Matches any of the charac-


ters inside the brackets.


gr[ae]y gray, grey greey, graey


[ˆabc] Matches any characters not
inside the brackets.


b[ˆe] bid, ban bees, bed


- Within brackets, gives a range


of characters to be matched.


[a-c]t at, bt, ct dt, et


{n} Used to give the number of


times to match the preceding


group.


ab{2}a abba aba, abbba


\\ Used to "escape" a spe-


cial character so it can be


matched as part of an ex-


pression. Note than in R, you
must use a double \\.


why\\? why?,
why ask why?


why not


\\s Matches any whitespace


character.


day:\\s[A-z] day: monday,
day: Fri


day:Fri


\\w Matches any whole word. my \\w my hobby,
my name


his program


\\d Matches any digit. \\d years old 5 years old,
101.6 years old


six years old


Further reading "Some people, when confronted with a problem, think ‘I know, I’ll use regular


expressions.’ Now they have two problems." – Jamie Zawinski, comp.emacs.xemacs, 1997


If you would like to know more about how regular expressions work, you can start with the
Wikipedia page http://en.wikipedia.org/wiki/Regular_expressions. Jan Goyvaerts (who seems
to have dedicated his life to explaining regular expressions) has a helpful quick start guide


at http://www.regular-expressions.info/quickstart.html. The same page also has a tuto-
rial. Also worth a look is Robin Lovelace’s introduction specifically for R and RStudio at https:
//www.r-bloggers.com/regular-expressions-in-r-vs-rstudio/. Finally, a very useful and more
detailed cheat sheet can be found at http://regexlib.com/CheatSheet.aspx.
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3.6 Working with dates and times


Admittedly, working with dates and times in R is somewhat annoying at first. The built-in help files on
this subject describe all aspects of this special data type, but do not offer much for the beginning R
user. This section covers basic operations that you may need when analysing and formatting datasets.


For working with dates, we use the lubridate package, which simplifies it tremendously.


3.6.1 Reading dates


The built-in Date class in R is encoded as an integer number representing the number of days since
1-1-1970 (but this actual origin does not matter for the user). Converting a character string to a date


with as.Date is straightforward if you use the standard order of dates: YYYY-MM-DD. So, for example,


as.Date("2008-5-22")


## [1] "2008-05-22"


The output here is not interesting, R simply prints the date. Because dates are represented as numbers
in R, we can do basic arithmetic:
# First load lubridate when working with dates or date-time combinations.
# (although as.Date is part of the base package)
library(lubridate)


##
## Attaching package: ’lubridate’


## The following object is masked from ’package:base’:
##
## date


# A date, 7 days later:
as.Date("2011-5-12") + 7


## [1] "2011-05-19"


# Difference between dates.
as.Date("2009-7-1") - as.Date("2008-12-1")


## Time difference of 212 days


# With difftime, you can specify the units:
difftime(as.Date("2009-7-1"), as.Date("2008-12-1"), units = "weeks")


## Time difference of 30.28571 weeks


# To add other timespans, use functions months(), years() or weeks() to
# avoid problems with leap years
as.Date("2013-8-18") + years(10) + months(1)


## [1] "2023-09-18"


Try this yourself The previous example showed a very useful trick for adding numbers to a


Date to get a new Date a few days later. Confirm for yourself that this method accounts for leap
years. That is, the day before 2011-3-1 should be 2011-2-28 (2011 is not a leap year). But what
about 2012-3-1?


Often, text strings representing the date are not in the standard format. Fortunately, it is possible to
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convert any reasonable sequence to a Date object in R. All we have to do is provide a character string
to as.Date and tell the function the order of the fields.


To convert any format to a Date, we can use the lubridate package, which contains the functions ymd,
mdy, and all other combinations of y, m, and d. These functions are pretty smart, as can be seen in
these examples:


# Load lubridate
library(lubridate)


# Day / month / year
as.Date(dmy("31/12/1991"))


## [1] "1991-12-31"


# Month - day - year (note, only two digits for the year)
as.Date(mdy("4-17-92"))


## [1] "1992-04-17"


# Year month day
as.Date(ymd("1976-5-22"))


## [1] "1976-05-22"


#-- Unusual formatting can be read in with the 'format' argument
# in as.Date. See ?strptime for a list of codes.
# For example, Year and day of year ("%j" stands for 'Julian date')
as.Date("2011 121", format="%Y %j")


## [1] "2011-05-01"


Another method to construct date objects is when you do not have a character string as in the above


example, but separate numeric variables for year, month and day. In this case, use the ISOdate func-
tion:


as.Date(ISOdate(2008,12,2))


## [1] "2008-12-02"


Finally, here is a simple way to find the number of days since you were born, using today from the
lubridate package.


# Today's date (and time) can be with the today() function
today()


## [1] "2018-09-05"


# We can now simply subtract your birthday from today's date.
today() - as.Date("1976-5-22")


## Time difference of 15446 days


Example: using dates in a dataframe


The as.Date function that wemet in the previous section also works with vectors of dates, and the Date
class can also be part of a dataframe. Let’s take a look at the Hydro data (see description in Section A.3),


to practice working with dates.


# Read dataset
hydro <- read.csv("Hydro.csv")
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# Now convert this to a Date variable.
# If you first inspect head(hydro$Date), you will see the format is DD/MM/YYYY
hydro$Date <- as.Date(dmy(hydro$Date))


If any of the date conversions go wrong, the dmy function (or its equivalents) should print a message
letting you know. You can double check if any of the converted dates is NA like this:


any(is.na(hydro$Date))


## [1] FALSE


We now have successfully read in the date variable. The min and max functions are useful to check the
range of dates in the dataset:


# Minimum and maximum date (that is, oldest and most recent),
min(hydro$Date)


## [1] "2005-08-08"


max(hydro$Date)


## [1] "2011-08-08"


#... and length of measurement period:
max(hydro$Date) - min(hydro$Date)


## Time difference of 2191 days


Finally, the Date class is very handy when plotting. Let’s make a simple graph of the Hydro dataset. The
following code produces Fig. 3.1. Note how the X axis is automatically formatted to display the date in
a (fairly) pretty way.


with(hydro, plot(Date, storage, type='l')) # note plot type is letter 'l', not number '1'


3.6.2 Date-Time combinations


For dates that include the time, R has a special class called POSIXct. The lubridate package makes it
easy to work with this class.


Internally, a date-time is represented as the number of seconds since the 1st of January, 1970. Time


zones are also supported, but we will not use this functionality in this book (as it can be quite confus-


ing).


From the lubridate package, we can use any combination of (y)ear,(m)onth,(d)ay, (h)our, (m)inutes,


(s)econds. For example ymd_hms converts a character string in that order.


Let’s look at some examples,


# Load lubridate
library(lubridate)


# The standard format is YYYY-MM-DD HH:MM:SS
ymd_hms("2012-9-16 13:05:00")


## [1] "2012-09-16 13:05:00 UTC"


# Read two times (note the first has no seconds, so we can use ymd_hm)
time1 <- ymd_hm("2008-5-21 9:05")
time2 <- ymd_hms("2012-9-16 13:05:00")


73







Chapter 3 Special data types 3.6 Working with dates and times


2006 2007 2008 2009 2010 2011


20
0


30
0


40
0


50
0


60
0


70
0


80
0


Date


st
or


ag
e


Figure 3.1: A simple plot of the hydro data.


# Time difference:
time2 - time1


## Time difference of 1579.167 days


# And an example with a different format, DD/M/YY H:MM
dmy_hm("23-1-89 4:30")


## [1] "1989-01-23 04:30:00 UTC"


# To convert a date-time to a Date, you can also use the as.Date function,
# which will simply drop the time.
as.Date(time1)


## [1] "2008-05-21"


As with Date objects, we can calculate timespans using a few handy functions.


# What time is it 3 hours and 15 minutes from now?
now() + hours(3) + minutes(15)


## [1] "2018-09-05 19:45:52 AEST"


Try this yourself The 2012 Sydney marathon started at 7:20AM on September 16th. The


winner completed the race in 2 hours, 11 minutes and 50 seconds. What was the time when the


racer crossed the finish line? Using the weekdays function, which day was the race held?
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Example: date-times in a dataframe


Now let’s use a real dataset to practice the use of date-times. We also introduce the functions month,
yday, hour and minute to conveniently extract components of date-time objects.


The last command produces Fig. 3.2.


# Read the 2008 met dataset from the HFE.
hfemet <- read.csv("HFEmet2008.csv")


# Convert 'DateTime' to POSIXct class.
# The order of the original data is MM/DD/YYYY HH:MM
hfemet$DateTime <- mdy_hm(hfemet$DateTime)


# It is often useful to add the Date as a separate variable
hfemet$Date <- as.Date(hfemet$DateTime)


# Make sure they all converted OK (if not, NAs would be produced)
any(is.na(hfemet$DateTime))


## [1] FALSE


# FALSE is good here!


# Add day of year
hfemet$DOY <- yday(hfemet$DateTime)


# Add the hour, minute and month to the dataframe:
hfemet$hour <- hour(hfemet$DateTime)
hfemet$minute <- minute(hfemet$DateTime)


# Add the month. See ?month to adjust the formatting of the month
# (it can be the full month name, for example)
hfemet$month <- month(hfemet$DateTime)


# Now produce a plot of air temperature for the month of June.
with(subset(hfemet, month==6), plot(DateTime, Tair, type='l'))


# We can also take a subset of just one day, using the Date variable we added:
hfemet_oneday <- subset(hfemet, Date == as.Date("2008-11-1"))


3.6.2.1 Sequences of dates and times


It is often useful to generate sequences of dates. We can use seq as we do for numeric variables (as
we already saw in Section 1.6.1).


# A series of dates, by day:
seq(from=as.Date("2011-1-1"), to=as.Date("2011-1-10"), by="day")


## [1] "2011-01-01" "2011-01-02" "2011-01-03" "2011-01-04" "2011-01-05"
## [6] "2011-01-06" "2011-01-07" "2011-01-08" "2011-01-09" "2011-01-10"


# Two-weekly dates:
seq(from=as.Date("2011-1-1"), length=10, by="2 weeks")


## [1] "2011-01-01" "2011-01-15" "2011-01-29" "2011-02-12" "2011-02-26"
## [6] "2011-03-12" "2011-03-26" "2011-04-09" "2011-04-23" "2011-05-07"
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Figure 3.2: Air temperature for June at the HFE


# Monthly:
seq(from=as.Date("2011-12-13"), length=5, by="months")


## [1] "2011-12-13" "2012-01-13" "2012-02-13" "2012-03-13" "2012-04-13"


Similarly, you can generate sequences of date-times.


# Generate a sequence with 30 min timestep:
# (Note that if we don't specify the time, it assumes midnight!)
# Here, the 'by' field specifies the timestep in seconds.
fromtime <- ymd("2012-6-1")
halfhours <- seq(from=fromtime, length=12, by=30*60)


3.7 Converting between data types


It is often useful, or even necessary, to convert from one data type to another. For example, when you


read in data with read.csv or read.table, any column that contains some non-numeric values (that is,
values that cannot be converted to a number) will be converted to a factor variable. Sometimes you


actually want to convert it to numeric, which will result in some missing values (NA) when the value
could not be converted to a number.


Another common example is when one of your variables should be read in as a factor variable (for


example, a column with treatment codes), but because all the values are numeric, Rwill simply assume
it is a numeric column.


Before we learn how to convert, it is useful to make sure you know what type of data you have to begin


with. To find out what type of data a particular vector is, we use str (this is also useful for any other
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object in R).
# Numeric
y <- c(1,100,10)
str(y)


## num [1:3] 1 100 10


# This example also shows the dimension of the vector ([1:3]).


# Character
x <- "sometext"
str(x)


## chr "sometext"


# Factor
p <- factor(c("apple","banana"))
str(p)


## Factor w/ 2 levels "apple","banana": 1 2


# Logical
z <- c(TRUE,FALSE)
str(z)


## logi [1:2] TRUE FALSE


# Date
sometime <- as.Date("1979-9-16")
str(sometime)


## Date[1:1], format: "1979-09-16"


# Date-Time
library(lubridate)
onceupon <- ymd_hm("1969-8-18 09:00")
str(onceupon)


## POSIXct[1:1], format: "1969-08-18 09:00:00"


Try this yourself Confirm that str gives more information than simply printing the object.
Try printing some of the objects above (simply by typing the name of the object), and compare the


output to str.


To test for a particular type of data, use the is. functions, which give TRUE if the object is of that type,
for example:


# Test for numeric data type:
is.numeric(c(10,189))


## [1] TRUE


# Test for character:
is.character("HIE")


## [1] TRUE


Try this yourself Try the functions is.factor and is.logical yourself, on one the previous
examples. Also try is.Date on a Date variable (note that you must first load the lubridate package
for this to work).
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We can convert between types with the as.something class of functions.


# First we make six example values that we will use to convert
mynum <- 1001
mychar <- c("1001","100 apples")
myfac <- factor(c("280","400","650"))
mylog <- c(TRUE,FALSE,FALSE,TRUE)
mydate <- as.Date("2015-03-18")
mydatetime <- ymd_hm("2011-8-11 16:00")


# A few examples:


# Convert to character
as.character(mynum)


## [1] "1001"


as.character(myfac)


## [1] "280" "400" "650"


# Convert to numeric
# Note that one missing value is created
as.numeric(mychar)


## Warning: NAs introduced by coercion


## [1] 1001 NA


# Warning!!!
# When converting from a factor to numeric, first convert to character
# !!!
as.numeric(as.character(myfac))


## [1] 280 400 650


# Convert to Date
as.Date(mydatetime)


## [1] "2011-08-11"


# Convert to factor
as.factor(mylog)


## [1] TRUE FALSE FALSE TRUE
## Levels: FALSE TRUE


Try this yourself Try somemore conversions using the above examples, and check the results
with str and the is.something functions (e.g. is.character). In particular, see what happens
when you convert a logical value to numeric, and a factor variable to numeric (without converting


to character first).


When you want to change the type of a variable in a dataframe, simply store the converted variable in


the dataframe, using the same name. For example, here we make the CO2_treatment variable in the
pupae dataset a factor:


pupae <- read.csv("pupae.csv")
pupae$CO2_treatment <- as.factor(pupae$CO2_treatment)
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3.8 Functions used in this chapter


For functions not listed here, please refer to the index at the end of this book.


Function What it does Example use


all Given a vector of logical values, returns


TRUE if they are all true, FALSE if at least one
is false.


all(c(TRUE, TRUE, FALSE)
all(letters == "a")


any Given a vector of logical values, returns a


single logical value. TRUE if there is at least
one TRUE value, FALSE if there is not.


any(c(TRUE, FALSE, FALSE)
any(letters == "a")


as.character Converts a variable to the character data
type. This data type can hold either single


characters (letters and symbols) or strings


of characters (words and text). Particular


useful for converting between factor and
numeric data types.


as.character(c(0,0,0,1))
as.character(esoph$alcgp)


as.Date Used to convert a character string to the


Date data type. Default order is YYYY-MM-
DD. You can also specify a custom format.


as.Date("2014-02-07")
as.Date("07/02/14",


format="%d/%m/%y")


as.factor Converts a variable to the factor data
type. Factors are categorical variables


(for example, "Treatment" and "Control".)


For converting numeric variables, see Sec-


tion 3.2.


as.factor(rep(c("F","M"),
each=5))


as.logical Converts a variable to the logical data
type. Logical values can hold only TRUE and
FALSE values, represented by underlying 0s
and 1s.


as.logical(c(0,0,0,1))


as.numeric Used to convert a variable to the numeric
data type. Can hold whole or decimal


numbers. Use caution when converting


a factor. The result will be the under-
lying numeric representation, and may


not match numerical values in the level


names.


as.numeric(c("1.5","2.6"))
as.numeric(factor(


c("25","30","35")))


cat Glues together bits of text and outputs


them as a file. You need to specify the


file name (file) and a character to sepa-
rate the bits of text (sep.) Use sep=" " for
spaces, and sep="\n" for newline.


cat("Roses are red",
"violets are blue",
"you love R",
"R loves you too!",
file="poem.txt",
sep="\n")


79







Chapter 3 Special data types 3.8 Functions used in this chapter


Function What it does Example use


complete.cases Finds all complete cases in a dataframe,


returning TRUE for complete rows and


FALSE for rows with an NA. Can be used


to remove all rows with NAs by subsetting


the dataset for complete.cases.


airquality[
complete.cases(


airquality),]


cut Can be used to divide a numerical variable


into bins, in order to turn it into a factor


variable. You must provide data to be bro-


ken and a number of breaks. Optionally,
you can also provide labels.


grades <- cut(50:100, 4,
labels=c("P","C",


"D","HD"))


day From the lubridate package. When given
a Date, returns the day of the month.


day(as.Date("2016 121",
format="%Y %j")


days From the lubridate package. Easily cre-
ates time periods of a given number of


days, which can be used for Date arith-
metic.


as.Date("2012-2-28")
+ days(2)


describe From the Hmisc package. Gives a statistical
summary of a data set.


describe(mtcars)
describe(airquality)


diff Calculates the sequential difference be-


tween a series of numbers. The result is


returned as a vector.


diff(airquality$Wind)


difftime Given two times, calculates the difference


between them. You can specify which


units you would like the result returned in
(secs, mins, hours, days, weeks).


difftime(now(),
dmy("19011980"),
units="weeks")


dmy From the lubridate package. Searches for
a day, month and year (in that order) in a


text string or a vector of strings. Can han-


dle oddly formatted input, as long as the


order is correct. Functions mdy, ymd and all
other variations also exist.


dmy("Born 12 July 1970")
dmy("170914")


droplevels Drops unused factor levels. droplevels(subset(
esoph, tobgp != "30+"))


factor Can be used to create a new factor vari-


able. When creating a new factor, levels
specifies possible values for your factor


levels, while labels specifies what the
levels should be called. It is also possi-


ble to specify whether your factor ordered
or not. Factors are ordered by the order


given in levels.


factor(quakes$stations)
factor(rep(1:3, each=5),


levels=c(1,2,3))
factor(rep(1:3, each=5),


labels=c("B","A","C"),
ordered=TRUE)
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Function What it does Example use


grep Used to search for text strings using reg-


ular expressions. For a case-insensitive


search, use ignore.case=TRUE. By default,
returns the position of matches, but can


also be set to return matching strings us-


ing value=TRUE. For more on regular ex-
pressions, see Section 3.5.3 and Table 3.1.


grep("r", letters)
grep("R", letters)
grep("R", letters,


ignore.case=TRUE)
grep("ˆMerc",


row.names(mtcars),
value=TRUE)


grepl The same as grep, but returns a vector
of logical values (matches are TRUE, non-


matches are FALSE). For more on regu-


lar expressions, see Section 3.5.3 and Ta-


ble 3.1.


grepl("a", c("a","b","a"))
grepl("[H-P]", letters,


ignore.case=TRUE)
grepl("ˆMerc",


row.names(mtcars))


gsub Uses regular expressions to search for


matching strings, then replace them. Re-


places all matches found. Case sensitivity


can be set using ignore.case. For more on
regular expressions, see Section 3.5.3 and


Table 3.1.


gsub("b[ˆe]", "be",
c("bid", "ban", "bun"))


gsub("gray", "grey",
ignore.case=TRUE,
"Gray clouds reflected
in gray puddles")


hour From the lubridate package. When given
a date-time object, returns the hour. Uses


a 24 hour clock.


hour(now())


hours From the lubridate package. Easily cre-
ates time periods of a given number of


hours, which can be used for Date arith-
metic.


now() + hours(2)


ifelse Takes a logical test, a value to return if


TRUE (yes), and a value to return if FALSE
(no).


ifelse(mtcars$wt <= 3,
yes="light", no="heavy")


is.character Tests whether a given variable is the


character data type. Returns TRUE or
FALSE.


is.character("?")


is.Date Tests whether a given variable is the Date
data type. Returns TRUE or FALSE.


is.Date(today())


is.factor Tests whether a given variable is the


factor data type. Returns TRUE or FALSE.
is.factor(esoph$agegp)


is.logical Tests whether a given variable is the


logical data type. Returns TRUE or FALSE.
is.logical(c(TRUE,FALSE))


is.na When given a list of values, returns TRUE if
any are NA. Note that this is the only way
to get logical values for an NA; NA == NA re-
turns NA.


is.na(c(1,1,2,NA))


is.numeric Tests whether a given variable is the


numeric data type. Returns TRUE or FALSE.
is.numeric(mtcars$wt)
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Function What it does Example use


ISOdate Given a numerical year, month, and day, re-
turns a date-time object. There is also an


ISOdatetime function, which adds hours,
min and sec.


ISOdate(2017, 1, 30)
ISOdatetime(2014, 2, 7,


13, 31, 0)


levels Used to get or set levels of a factor vari-


able.


levels(esoph$tobgp)
levels(esoph$tobgp) <-


c("little","light",
"medium","heavy")


match Looks for matches in a list of values. Re-


turns the position of the first match found,


in order.


match(c("t","o","p"), letters)
match(c("p","o","t"), letters)


max Returns the largest value in its input. Can


also be used with dates.


max(ymd(010119),


mdy(010119))


mdy From the lubridate package. Searches for
a month, day and year in a text string or


a vector of strings. Can handle oddly for-


matted input, as long as the order is cor-


rect. Functions dmy, ymd and all other vari-
ations also exist.


mdy("Created June 1 2015")
mdy("122516")


min Returns the smallest value in its input. Can


also be used with dates.


min(ymd(010119),


mdy(010119))


minute From the lubridate package. When given
a date-time, returns the minute of the


hour.


minute(ymd_hm(
"2012-09-16 7:20"))


minutes From the lubridate package. Easily cre-
ates time periods of a given number of


minutes, which can be used for date-time


arithmetic.


ymd_hm("2012-09-16 7:20")
+ minutes(20)


month From the lubridate package. When given
a Date, returns the month of the year.


month(dmy("24 Dec 2016"))


months From the lubridate package. Easily cre-
ates time periods of a given number of


months, which can be used for Date arith-
metic.


mdy("060708") + months(5)


names Used to get or set the name or names of a


variable.


names(iris)
names(iris) <- c("slen",


"swid","plen",
"pwid","spp")


nchar Used to find the number of characters in


each element of a character vector.


nchar(names(mtcars))
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Function What it does Example use


nlevels Used to find the number of levels for a fac-


tor variable.


nlevels(iris$Species)


now From the lubridate package. Returns the
current time and date as a date-time ob-


ject.


now() + minutes(45)


paste Used to glue bits of text together, turning


them into a single string. Can be used on


vectors. You must specify a character to


separate the bits of text (sep). Use sep=""
for no separation. Can also turn a vector of


strings into a single string using collapse.
Set collapse equal to the characters to be


used to glue the elements together.


paste("t","o","p", sep="")
paste("Iris",


levels(iris$Species),
sep=" ")


paste("Iris",
levels(iris$Species),


collapse=", ")


read.csv Reads in data from comma-separated vari-


able (CSV) files. Important arguments in-


clude the file name (or complete file path)


and whether or not the file has a header.
For more details, see Section 2.1.1.


read.csv("Allometry.csv")
read.csv("Allometry.csv",


header=TRUE)


read.table A flexible function for reading data with


different separating characters. To use


read.table, you need to specify the char-
acter used to separate the data (sep) and
whether the file has a header row (header).
There are alsomany other options you can


set to customize this function; for more


see ?read.table.


read.table("tab.txt",
header=TRUE)


read.table("semi.txt",
sep=";", header=TRUE)


readLines Reads each line of a text file as a separate


string and creates a character vector. (The


first part of this example makes a new text


file; the second part shows how readLines
is used to read it in.)


cat("Roses are red",
"violets are blue",
"you love R",
"R loves you too!",
file="poem.txt",
sep="\n")


readLines("poem.txt")


rownames Used to get or set the names of rows in a


dataframe.


rownames(mtcars)
rownames(mtcars) <-


gsub(" ", ".",
rownames(mtcars))


sample Takes a given number of samples from a


vector or a matrix. Can be set to sample


with or without replacement. Default is


without replacement.


sample(1:6, size=6)
sample(1:6, 6,


replace=TRUE)


seq Generates a sequence from a given value


to another value. Can be used on num-


bers, dates, or date-times.


seq(1, 10, by=2.5)
seq(from=ymd("170130"),


length=6, by="months")
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Function What it does Example use


sort Sorts a variable in ascending or descend-


ing order. Returns the reordered variable.


sort(10:1, decreasing=FALSE)
sort(LETTERS, decreasing=TRUE)


str Gives information about the structure of


an object. Can be used to find out which


types of data a dataframe contains.


str(iris)
str(esoph)


strsplit Splits a text string into multiple smaller


strings. The first argument, a string, is split


by searching for the second argument, a


regular expression. For more on regu-


lar expressions, see Section 3.5.3 and Ta-


ble 3.1.


strsplit(
"Roses are red", " ")


subset Allows the selection of part of a dataframe,


using logical operators to define which


rows or columns should be included.


subset(mtcars, wt > 3)


substr Can be used to extract or replace part of


a string. Takes a string, which character to


start on, and which the character to stop


on.


substr("Roses are red",11,13)
r.txt <- c("Roses","are","red")
substr(r.txt,1,2) <- c("")
r.txt


summary Provides a summary of the variables in a


dataframe. Statistics are given for numeri-


cal variables, and counts are given for fac-


tor variables.


summary(warpbreaks)


table Given a factor variable, can create a table


of counts.


table(esoph$agegp)


today Returns today’s date (as a Date). Can be
used for Date arithmetic


today() + days(10)


unique Returns only the unique values in a vector. unique(c(1,2,1,5,5,2))


weekdays Can be used to get the day of the week


from a Date object.
weekdays(today())


which Given a vector of logical values, returns


the positions of any that are TRUE. Can be


combined with other logical tests.


which(c(FALSE, TRUE, TRUE))
which(letters == "s")
which(is.na(c(1,2,NA,2,NA)))


yday From the lubridate package. Gets the day
of the year from a date object.


yday(today())


year From the lubridate package. When given
a Date object, returns the year.


year(now())


years From the lubridate package. Easily cre-
ates time periods of a given number of


years, which can be used for Date arith-
metic.


today()
+ years(2)
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Function What it does Example use


ymd From the lubridate package. Searches for
a year, month and day (in that order) in a


text string or a vector of strings. Can han-


dle oddly formatted input, as long as the


order is correct. Functions mdy, dmy and all
other variations also exist.


ymd("Copyright 2000 June 20")
ymd("17890714")
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3.9 Exercises


In these exercises, we use the following colour codes:


∎ Easy: make sure you complete some of these before moving on. These exercises will follow
examples in the text very closely.


⧫ Intermediate: a bit harder. You will often have to combine functions to solve the exercise in
two steps.


▲ Hard: difficult exercises! These exercises will require multiple steps, and significant departure
from examples in the text.


We suggest you complete these exercises in an R markdown file. This will allow you to combine code
chunks, graphical output, and written answers in a single, easy-to-read file.


3.9.1 Titanic


For this section, read the data described in Section A.12 (p. 251). Note: the data are TAB-delimited, use
read.table as shown on p. 251.


1. ∎ Convert the ’Name’ (passenger name) variable to a ’character’ variable, and store it in the


dataframe. See Section 3.5.3 (p. 68).


2. ∎ How many observations of ’Age’ are missing from the dataframe? See examples in Section 3.4


(p. 63).


3. ∎ Make a new variable called ’Status’, based on the ’Survived’ variable already in the dataset.


For passengers that did not survive, Status should be ’dead’, for those who did, Status should


be ’alive’. Make sure this new variable is a factor. See the example with the ifelse function in
Section 3.2.


4. ∎ Count the number of passengers in each class (1st, 2nd, 3rd). Hint: use table as shown in
Section 3.2 (p. 59).


5. ⧫ Using grep, find the six passengers with the last name ’Fortune’. Make this subset into a new
dataframe. Did they all survive? Hint: to do this, make sure you recall how to use one vector to
index a dataframe (see Section 2.3.2). Also, the all function might be useful here (see Section 3.3,
p. 62).


6. ⧫ As in 2., for what proportion of the passengers is the age unknown? Was this proportion higher
for 3rd class than 1st and 2nd? Hint: First make a subset of the dataframe where age is missing
(see Section 3.4.2 on p. 65), and then use table, as well as nrow.


3.9.2 Hydro dam


Use the hydro dam data as described in Section A.3.


1. ∎ Start by reading in the data. Change the first variable to a Date class (see Section 3.6.1, p. 71).


2. ⧫ Are the successivemeasurements in the dataset always exactly one week apart? Hint: use diff).
3. ⧫ Assume that a dangerously low level of the dam is 235 Gwh. How many weeks was the dam
level equal to or lower than this value?


4. ▲ For question 2., how many times did storage decrease below 235 (regardless of how long it


remained below 235)? Hint: use diff and subset).
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3.9.3 HFE tree measurements


Use the data for the HFE irrigation x fertilisation experiment (see Section A.15, p. 252).


1. ∎ Read the data and look at various summaries of the dataset. Use summary, str and describe
(the latter is in the Hmisc package).


2. ∎ From these summaries, find out how many missing values there are for height and diameter.
Also count the number of missing values as shown in Section 3.4 (p. 63).


3. ∎ Inspect the levels of the treatment (treat), with the levels function. Also count the number of
levels with the nlevels function. Now assign new levels to the factor, replacing the abbreviations
with a more informative label. Follow the example in Section 3.2.1 (p. 62).


4. ∎ Using table, count the number of observations by treat, to check if the dataset is balanced.
Be aware that table simply counts the number of rows, regardless of missing values. Now take a
subset of the dataset where height is not missing, and check the number of observations again.


5. ⧫ For which dates do missing values occur in height in this dataset? Hint: use a combination of
is.na and unique.


3.9.4 Flux data


In this exercise, you will practice useful skills with the flux tower dataset. See Section A.8 (p. 249) for a


description of the dataset.


1. ∎ Read the dataframe. Rename the first column to ’DateTime’ (recall Section 3.5.2 on p. 67).


2. ∎ Convert DateTime to a POSIXct class. Beware of the formatting (recall Section 3.6.2 on p. 73).


3. ⧫ Did the above action produce any missing values? Were these already missing in the original


dataset?


4. ∎ Add a variable to the dataset called ’Quality’. This variable should be ’bad’ when the variable


’ustar’ is less than 0.15, and ’good’ otherwise. Recall the example in Section 3.2 (p. 59).


5. ∎ Add a ’month’ column to the dataset, as well as ’year’.


6. ⧫ Look at the ’Rain’ column. There are some problems; re-read the data or find another way to


display NA whenever the data have an invalid value. Hint: look at the argument na.strings in
read.table.


3.9.5 Alphabet Aerobics 3


In this exercise you will practice a bit more working with text, using the lyrics of the song ’Alphabet


Aerobics’ by Blackalicious. The lyrics are provided as a text file, which we can most conveniently read


into a vector with readLines, like this,


lyric <- readLines("alphabet.txt")


1. ∎ Read the text file into a character vector like above. Count the number of characters in each


line (Hint : use nchar).
2. ⧫ Extract the first character of each line (recall examples in Section 3.5 on p. 66), and store it in a


vector. Now sort this vector alphabetically and compare it to the unsorted vector. Are they the


same? (Hint : use the == operator to compare the two vectors). How many are the same, that is,
how many of the first letters are actually in alphabetical order already?
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3. ▲ Find the most frequent word used in the lyrics. To do this, first paste all lyrics together into


one string, then split the string into words, remove commas, then count the words. You will need


to use a new function that we will see again in Section 8.2.2. Hint : use a combination of paste,
strsplit, gsub, table and sort.


3.9.6 DNA Aerobics


DNA sequences can also be represented using text strings. In this exercise, you will make an artificial


DNA sequence.


1. ▲Make a random DNA sequence, consisting of a 100 random selections of the letters C,A,G,T, and
paste the result together into one character string (Hint : use sample as in Section 1.6.2, p. 23 with
replacement, and use paste as shown in Section 3.5, p. 66). Write it in one line of R code.
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Chapter 4


Visualizing data


4.1 The R graphics system


The graphics system in R is very flexible: just about every aspect of your plot can be precisely controlled.
However, this brings with it a serious learning curve - especially when you want to produce high quality


polished figures for publication. In this chapter, you will learn to make simple plots, and also to control


different aspects of formatting plots. The following focus on the basic built-in graphics system in R,
known as the base graphics system.


4.2 Plotting in RStudio


By default, when you generate plots in RStudio, they are displayed in the built-in plotting window


(normally, the bottom-right). This window has a few useful options.


Figure 4.1: The plotting window in RStudio. 1 : cycle through plotting history, 2 : displays the plot in


a large window, 3 : Export the plot to an image or PDF, 4 : delete the current plot from the plotting


history, 5 : clear all plotting history


4.3 Choosing a plot type


The following table summarizes a few important plot types. More specialized plot types, as well as very


brief introductions to alternative plotting packages, are given in Section 4.6.
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Function Graph type


plot Scatter plots and various others (Section 4.3.1)


barplot Bar plot (including stacked and grouped bar plots) (Section 4.3.2)


hist Histograms and (relative) frequency diagrams (Section 4.3.3)


curve Curves of mathematical expressions (Section 4.3.3)


pie Pie charts (for less scientific uses) (Section 4.3.4)


boxplot Box-and-whisker plots (Section 4.3.5)


symbols Like scatter plot, but symbols are sized by another variable (Section 4.6.1)


4.3.1 Using the plot function


There are two alternative ways tomake a plot of two variables X and Y that are contained in a dataframe
called dfr (both are used interchangeably):


# Option 1: plot of X and Y
with(dfr, plot(X,Y))


# Option 2: formula interface (Y 'as a function of' X)
plot(Y ~ X, data=dfr)


The type of plot produced by this basic command, using the generic plot function, depends on the
variable type of X and Y. If both are numeric, a simple scatter plot is produced (see Section 4.4). If Y is
numeric but X is a factor, a boxplot is produced (see Section 4.3.5). If only one argument is provided
and it is a data frame with only numeric columns, all possible scatter plots are produced (not further


described but see ?plot.data.frame). And finally, if both X and Y are factor variables, a mosaic plot is
produced (not further described in detail but see Section 7.5.1 and plot.factor).


Each of these four options is shown in Fig. 4.2 (code not included).


4.3.2 Bar plots


While simple barplots are easy in R, advanced ones (multiple panels, groups of bars, error bars) are
more difficult. For those of you who are skilled at making complex barplots in some other software


package, youmay not want to switch to R immediately. Ultimately, though, R has greater flexibility, and
it is easier to make sure plots are consistent.


The following code makes a simple bar plot, using the default settings (Fig. 4.3):


nums <- c(2.1,3.4,3.8,3.9,2.9,5)
barplot(nums)


Very often, we like standard errors on our bar plots. Unfortunately, this is slightly awkward in basic R.
The easiest option is to use barplot2 in the gplots package, but it provides limited customization of
the error bars. Another, more flexible, solution is given in the example below. Here, we use barplot
for the bars, and plotCI for the error bars (from the plotrix package). This example also introduces
the tapply function to make simple tables, we will return to this in Section 6.2.1.


If you want the means and error bars to be computed by the function itself, rather than provide them


as in the example below, refer to Section 4.6.2.


The following code produces Fig. 4.4.


# Read data, if you haven't already
cereal <- read.csv("Cereals.csv")
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Figure 4.2: Four possible outcomes of a basic call to plot, depending on whether the Y and X variables
are numeric or factor variables. The term ’numeric dataframe’ means a dataframe where all columns


are numeric.
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Figure 4.3: Simple bar plot with default settings


# Gets means and standard deviation of rating by cereal manufacturer:
ratingManufacturer <- with(cereal, tapply(rating, Manufacturer, FUN=mean))
ratingManufacturerSD <- with(cereal, tapply(rating, Manufacturer, FUN=sd))


# Make bar plot with error bars. Note that we show means +/- one standard deviation.
# Read the help function ?plotCI to see what the additional arguments mean (pch, add).
library(plotrix)
b <- barplot(ratingManufacturer, col="white", width=0.5, space=0.5, ylim=c(0,80))
plotCI(b, ratingManufacturer, uiw=ratingManufacturerSD, add=TRUE, pch=NA)


Finally, to make ’stacked’ bar plots, see the example in Section 4.3.4.


4.3.3 Histograms and curves


The hist function by default plots a frequency diagram, and computes the breaks automatically. It
is also possible to plot a density function, so that the total area under the bars sums to unity, as in


a probability distribution. The latter is useful if you want to add a curve representing a univariate


distribution.


Consider the following example, which plots both a frequency diagram and a density plot for a sample


of random numbers from a normal distribution. (See chapter 5 for background on the functions dnorm
and rnorm.)


This example uses the par function to change the layout of the plot. We’ll return to this in Section 4.4.8.


This code produces Fig. 4.5.
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Figure 4.4: Simple bar plot with error bars (shown are means +/- one standard deviation).


# Some random numbers:
rannorm <- rnorm(500)


# Sets up two plots side-by-side.
# The mfrow argument makes one row of plots, and two columns, see ?par.
par(mfrow=c(1,2))


# A frequency diagram
hist(rannorm, freq=TRUE, main="")


# A density plot with a normal curve
hist(rannorm, freq=FALSE, main="", ylim=c(0,0.4))
curve(dnorm(x), add=TRUE, col="blue")


Try this yourself We also introduced the curve function here. It can plot a curve that repre-
sents a function of x. For example, try this code yourself :
curve(sin(x), from=0, to=2*pi)


4.3.4 Pie charts


The final two basic plotting types are pie charts and box plots. It is recommended you don’t use pie


charts for scientific publications, because the human eye is bad at judging relative area, but much


better at judging relative lengths. So, barplots are preferred in just about any situation. Take the


following example, showing the polls for 12 political parties in the Netherlands (see Section A.17).
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Figure 4.5: Two histogram examples for some normally distributed data.


Most people will say that the fraction of voters for the smaller parties is exaggerated in the pie chart.


This code produces Fig. 4.6.


# Election poll data
election <- read.csv("dutchelection.csv")


# A subset for one date only (Note: unlist makes this into a vector)
percentages <- unlist(election[6, 2:ncol(election)])


# Set up two plots side-by-side
par(mfrow=c(1,2))


# A 'stacked' bar plot.
# the matrix() bit is necessary here (see ?barplot)
# Beside=FALSE makes this a stacked barplot.
barplot(matrix(percentages), beside=FALSE, col=rainbow(12), ylim=c(0,100))


# And a pie chart
pie(percentages, col=rainbow(12))


Try this yourself Run the code above to generate a stacked barplot. Now, set beside=TRUE
and compare the result.


Now what if we want to compare different timepoints to see whether the support for each political


party is changing? To producemultiple stacked barplots using the barplot function, we need to convert
the way that the data are stored from a dataframe to a matrix. Then, because the barplot function
creates each stack in the barplot from the columns of the matrix, we need to transpose the matrix


so that the data for different dates are in separate columns and the data for different parties are in


separate rows.


# A subset for the first and last dates
percentages2 <- election[c(1, nrow(election)), -1]
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Figure 4.6: A stacked bar and pie chart for the election poll data.


# Convert the resulting dataframe to a matrix
percentages2 <- as.matrix(percentages2)


# change the rownames to represent the dates at those two timepoints
rownames(percentages2) <- election[c(1, nrow(election)), 'Date']


# A 'stacked' bar plot for two timepoints.
# the t() bit transposes the party data from columns to rows
# beside=FALSE makes this a stacked barplot.
# the xlim argument creates extra space on the right of the plot for the legend
barplot(t(percentages2), beside=FALSE, col=rainbow(12), ylim=c(0,100),


xlim=c(0, 4), legend=colnames(percentages2))


4.3.5 Box plots


Box plots are convenient for a quick inspection of your data. Consider this example, where we use


formula notation to quickly plot means and ranges for the sodium content of cereals by manufacturer.


This code produces Fig. 4.8.


cereal <- read.csv("Cereals.csv")


boxplot(sodium ~ Manufacturer, data=cereal, ylab="Sodium content", xlab="Manufacturer")
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Figure 4.8: A simple box plot for the cereal data.
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Figure 4.9: Simple scatter plot with default settings


4.4 Fine-tuning the formatting of plots


4.4.1 A quick example


We’ll start with an example using the allom data. First, we use the default formatting, and then we
change a few aspects of the plot, one at a time. We will explain the settings introduced here in more


detail as we go along. This code produces Fig. 4.9, a simple scatter plot:


# Read data
allom <- read.csv("allometry.csv")


# Default scatter plot
with(allom, plot(diameter, height, col=species))


Now let’s make sure the axis ranges start at zero, use a more friendly set of colours, and a different


plotting symbol.


This code produces Fig. 4.10. Here, we introduce palette, a handy way of storing colours to be used in
a plot. We return to this in the next section.


palette(c("blue","red","forestgreen"))
with(allom, plot(diameter, height, col=species,


pch=15, xlim=c(0,80), ylim=c(0,50)))


Notice that we use species (a factor variable) to code the colour of the plotting symbols. More about
this later in this section.


For this figure it is useful to have the zero start exactly in the corner (compare the origin to previous
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Figure 4.10: Simple scatter plot : changed plotting symbol and X and Y axis ranges.


figure.) To do this we use xaxs and yaxs. Let’s also make the X-axis and Y-axis labels larger (with
cex.lab) and print nicer labels (with xlab and ylab).


Finally, we also add a legend (with the legend function.)


This code produces Fig. 4.11.


par(xaxs="i", yaxs="i", cex.lab=1.4)
palette(c("blue","red","forestgreen"))
plot(height ~ diameter, col=species, data=allom,


pch=15, xlim=c(0,80), ylim=c(0,50),
xlab="Diameter (cm)",
ylab="Height (m)")


# Add a legend
legend("topleft", levels(allom$species), pch=15, col=palette(), title="Species")


4.4.2 Customizing and choosing colours


You can change the colour of any part of your figure, including the symbols, axes, labels, and back-


ground. R has many built-in colours, as well as a number of ways to generate your own set of colours.
As we saw in the example above, it is quite handy to store a set of nice colours in the palette function.
Once you have stored these colours they are automatically used when you colour a plot by a factor. As


the default set of colours in R is very ugly, do choose your own set of colours before plotting. You can
also choose specific colors from your palette. The following example would plot symbols using the 3rd


colour in your palette (resulting graph not shown).


98







Chapter 4 Visualizing data 4.4 Fine-tuning the formatting of plots


0 20 40 60 80


0
10


20
30


40
50


Diameter (cm)


H
ei


gh
t (


m
)


Species


PIMO
PIPO
PSME


Figure 4.11: Simple scatter plot : many settings customized.


plot(x,y, col=3)


To pick one or more of the 657 built-in colours in R, this website is very useful : http://research.
stowers-institute.org/efg/R/colour/Chart/, especially the link to a PDF at the top, which lists the
colours by name. You can also use the built-in demo function to show the colours,


# Follow instructions in the console when running this command.
demo(colors)


The following is an example palette, with some hand-picked colours. It also shows one way to plot
your current palette.


palette(c("blue2","goldenrod1","firebrick2","chartreuse4",
"deepskyblue1","darkorange1","darkorchid3","darkgrey",
"mediumpurple1","orangered2","chocolate","burlywood3",
"goldenrod4","darkolivegreen2","palevioletred3",
"darkseagreen3","sandybrown","tan",
"gold","violetred4","darkgreen"))


# A simple graph showing the colours.
par(cex.axis=0.8, las=3)
n <- length(palette())
barplot(rep(1,n),


col=1:n,
names.arg=1:n,axes=FALSE)
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21


Ranges of colours


R also has a few built-in options to set a range of colours, for example from light-grey to dark-grey, or
colours of the rainbow.


A very useful function is colorRampPalette, see its help page and the following examples:


# Generate a palette function, with colours in between red and blue:
redbluefun <- colorRampPalette(c("red","blue"))


# The result is a function that returns any number of colours interpolated
# between red and blue.
# For example, set the palette to 10 colouts ranging from red to blue:
palette(redbluefun(10))


Other functions that are useful are rainbow, heat.colors, grey, and so on (see help page for rainbow
for a few more). The RColorBrewer package also contains the brewer.pal function, which helps to
generate palettes that are suitable for different types of graphics requiring scales of light and dark


colours or highly contrasting colours. It even has functionality for selecting colour schemes that are


’colour-blind friendly’, for example:
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BrBG


PiYG


PRGn


PuOr


RdBu


RdYlBu


Try this yourself Look at ?grey and figure out how to generate a palette of 50 shades of grey.


Here is an example where it might be handy to use a range of colours. Take a look at the HFE weather


data (Section A.10). What is the relationship between air temperature (Tair), vapour pressure deficit
(VPD) and relative humidity? Here is a nice way to visualize it.


This code produces Fig. 4.12. Here we use also the cut function, which was introduced in Section 3.2.


# Read data.
hfemet <- read.csv("hfemet2008.csv")


# Make a factor variable with 10 levels of relative humidity.
hfemet$RHbin <- cut(hfemet$RH, breaks=10)


# Look at the levels: they are from low RH to high RH
levels(hfemet$RHbin)


## [1] "(14.8,23.1]" "(23.1,31.4]" "(31.4,39.7]" "(39.7,48]" "(48,56.2]"
## [6] "(56.2,64.5]" "(64.5,72.8]" "(72.8,81]" "(81,89.3]" "(89.3,97.7]"


# Set colours correspondingly, from red to blue.
blueredfun <- colorRampPalette(c("red","blue"))
palette(blueredfun(10))


# Plot VPD and Tair, with the colour of the symbol varying by RH.
# Also set small plotting symbols.
par(cex.lab=1.3)
with(hfemet, plot(Tair, VPD, pch=19, cex=0.5, col=RHbin))


# Finally, add a legend:
legend("topleft", levels(hfemet$RHbin), fill=palette(), title="RH")
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Figure 4.12: Relationship between air temperature, vapour pressure deficit and relative humidity at the


HFE.


Semi-transparent colours


If your plot contains a lot of data points, a semi-transparent colour can be useful, so you can see points


that would otherwise be obscured.


This example makes Fig. 4.13, using the scales package.


# Load the scales package for the 'alpha' function.
library(scales)


# Make a large dataset with random numbers
x <- rnorm(1000)
y1 <- x + rnorm(1000, sd=0.5)
y2 <- -x + rnorm(1000, sd=0.6)


# Use alpha() like this to make a colour transparent,
# the numeric value indicates how transparent the result should be
# (lower values = more transparent)
plot(x,y1,pch=19,col=alpha("blue",0.3))
points(x,y2, pch=19, col=alpha("red",0.3))


4.4.3 Customizing symbols and lines


Using the plot function, you can make both scatter plots and line plots, and combinations of both.
Line types (solid, dashed, thickness, etc.) and symbols (circles, squares, etc.) can be customized.
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Figure 4.13: A plot of some random numbers, using a semi-transparent colour.


Consider these options when plotting a vector of observations (makes Fig. 4.14).


X <- 1:8
Y <- c(4,5.5,6.1,5.2,3.1,4,2.1,0)
par(mfrow=c(3,2))
plot(X,Y, type='p', main="type='p'")
plot(X,Y, type='o', main="type='o'")
plot(X,Y, type='b', main="type='b'")
plot(X,Y, type='l', main="type='l'")
plot(X,Y, type='h', main="type='h'")
plot(X,Y, type='s', main="type='s'")


For symbols, use the pch argument in plot. These are most quickly set with a number, see the table
on the help page ?points.


A few examples with the pch argument are shown here. This code produces Fig. 4.15.


par(mfrow=c(2,2))


# Open triangles:
with(allom, plot(diameter, height, pch=2, col="red"))


# Red solid squares:
with(allom, plot(diameter, height, pch=15, col="red"))


# Filled circles, with a black edge, and a grey fill colour:
with(allom, plot(diameter, height, pch=21, bg="grey", col="black"))


# Custom plotting symbol (any text works - but only one character)
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Figure 4.14: Four options for the plotting type (with type=).
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Figure 4.15: Four options for the plotting symbols (with pch).


with(allom, plot(diameter, height, pch="W"))


Setting symbol type by a factor level


Finally, it gets more interesting if we vary the plotting symbol by a factor, like we did with colours in the


previous section. Look at this simple example that extends Fig. 4.10.


This code produces Figure 4.16. Note how we set up a vector of plotting symbols (1,2 and 15), and use


the factor species to index it. To recall indexing, read Section 2.3.1.


palette(c("blue","red","forestgreen"))
with(allom, plot(diameter, height,


col=species,
pch=c(1,2,15)[species],
xlim=c(0,80), ylim=c(0,50)))


Try this yourself Modify the code above so that the three species are plotted in three different
shades of grey, with filled circles. Also add a legend, and increase the size of the axis labels.
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Figure 4.16: Scatter plot : vary colour and symbol by species


4.4.4 Formatting units, equations and special symbols


In scientific publications we frequently need sub- and superscripts in our axis labels (as in m−2
). Luckily,R has a flexible way of specifying all sorts of expressions in axis labels, titles, and legend texts. We have


included a few examples here, and a full reference is given in the help page ?plotmath. It is especially
helpful to run demo(plotmath). Recall that in RStudio, you can look at all your previous plots using the
arrows near the top-left of the figures.


expression(Infected~area~(cm^2))


Infected area (cm2)


expression(Photosynthesis~ ~(mu*mol~m^-2~s^-1))


Photosynthesis  (µmol m−2 s−1)


expression(Temperature~ ~(degree*C))


Temperature  (°C)
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Try this yourself The above examples of expressions can be directly used in plots. Try


making a scatter plot, and using two of the above expressions for the X and Y axis labels, by using


this template:


plot(x,y, xlab=expression(...))
You may find that the margins of the plot need to be larger. To increase them use this command


(before plotting):


par(mar=c(5,5,2,2))


Try this yourself As shown on the help page ?plotmath, you can make subscripts in labels
(using expression) with square brackets ([]). Try making a label with a subscript.


Special text symbols


If you need a very special character – one that is not a Greek letter or a subscript, or is otherwise


covered by plotmath – anything can be plotted if you know the Unicode number (http://en.wikipedia.
org/wiki/Unicode_symbols). You can plot those with this short example (results not shown):


expression(Permille~"\u2030")


The four digit (or letter) Unicode follows ’u’.


4.4.5 Resetting the graphical parameters


Every time you use par to set some graphical parameter, it keeps this setting for all subsequent plots.
In RStudio, the following command can be used to reset par to the default values. Warning: this will
delete all the plots you have saved in the plot history.


dev.off()


4.4.6 Changing the font


There are (only) three basic built-in fonts inR, but you can loadmanymorewith the help of windowsFonts
(on Windows only). The fonts can be accessed with the family argument. You can set this argument in
plot (for axis titles), text (for adding text to plots), as well as par (to change the font permanently for
all text).


Note that in ?par, the font argument refers to "italic", "bold", and so on (see below).


# A font with a serif (looks a bit like Times New Roman)
plot(x,y, xlab="some label", family="serif")


Using windowsFonts, you can use any font that is loaded in Windows (that is, all the fonts you can see
in MS Word). Note: this does not work when making a PDF. For more flexibility, consider using the
showtext package.


# Define font(s)
windowsFonts(courier=windowsFont("Courier New"),


verdana=windowsFont("Verdana"))


# Then you can use,
plot(x,y, xlab="some label", family="courier")
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Try this yourself Run one of the examples in Section 4.4, and change the font of the axis


labels to one of your favourite MS Word fonts.


Further reading If you are interested in using a wider range of fonts, the showtext pack-
age can help you out. There is a description of what showtext does from its creator, Yixuan


Qiu, at https://www.r-project.org/nosvn/pandoc/showtext.html. Yixuan has also posted a help-
ful guide to using showtext in markdown documents on his blog: http://statr.me/2014/07/
showtext-with-knitr/.


Italic and bold


The font argument can be used to set text to normal face (1), bold (2), italic (3) or bold italic (4). Simply
use the following code, changing the number as appropriate:


# A plot with a title in italics
plot(x,y, main="Italic text", font=3)


4.4.7 Adding to a current plot


Suppose you have made a plot, and want to add points or lines to the current plot, without opening a


new window. For this, we can use the points function (Note: this can also be used to add lines, using
the type=’l’ setting).


Consider the following example. Instead of plotting all the data at once, we plot the data for one group,


and then add the data for each following group using points.


The following code produces Fig. 4.17.


# Read the Dutch election poll data
election <- read.csv("dutchelection.csv")
election$Date <- as.Date(election$Date)


# Plot the first variable (make sure to set the Y axis range
# wide enough for all the other data!)
plot(VVD ~ Date, data=election, type='l', col="blue", ylim=c(0,40),


ylab="Poll result (%)")


# Then add the rest of the results, one at a time.
points(PvdA ~ Date, data=election, type='l', col="red")
points(SP ~ Date, data=election, type='l', col="red", lty=5)
points(GL ~ Date, data=election, type='l', col="forestgreen")


Straight lines and text


To place straight lines on a plot, use the following examples (results not shown). For the abline func-
tion, you may use settings like lwd for the thickness of the line, lty for line type (dashed, etc.), and col
for colour.


Using abline, it is also straightforward to add regression lines to a plot, as we will see in Section 5.5.
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Figure 4.17: Adding lines to an existing plot.


# Add a vertical line at x=0
abline(v=0)


# Add a horizontal line at y=50
abline(h=50)


# Add a line with an intercept of 0 and a slope of 1
# (known as a 1:1 line)
abline(0,1)


Adding text to a plot is achieved with the text function. Text can also be added to the margin of a plot
with mtext. You may also use expression as the text to be added (see Section 4.4.4). The drawback of
using text is that you need to specify the X,Y coordinates manually. What if you just want a quick label
on the top left of your figure?


Try this:


# Add a bold label 'A' to an existing plot:
legend("topleft", expression(bold(A)), bty='n', inset=0.01)


Try this yourself Test the above code with any of the examples in this chapter.


4.4.8 Changing the layout


We have already seen several examples that combine multiple figures in one plot, using par(mfrow =
c(rows, columns )). Here is another example, which generates the plot in Fig. 4.18. See ?par for more
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Figure 4.18: Multiple plots within a single plot window.


details.


# Set up 2 rows of plots, and 2 columns using 'mfrow':
par(mfrow=c(2,2),mar=c(4.1,4.1,0.1,0.1))
plot(leafarea~height,data=allom,col=species,xlab='', pch=15)
plot(leafarea~diameter,data=allom,col=species,xlab='',ylab='',pch=15)
plot(branchmass~height,data=allom,col=species,pch=15)
plot(branchmass~diameter,data=allom,col=species,ylab='',pch=15)


This is a relatively simple way to change the layout of plots. We can generate more complex layouts


using the layout function. The main argument is a matrix indicating the locations of individual plots
in space. Using the code below (resulting plot not shown), the first plot will fill the the left side of the


plot window, while the next three calls to plot will fill each section on the right side of the window in


the order that they are labelled. Further arguments allow for varying the heights and widths of boxes


within the layout.


l<-layout(matrix(c(1,1,1,2,3,4),nrow=3,ncol=2,byrow=F))
layout.show(l)
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Try this yourself Run the code from the above example. Then, run only the first bit to set up


a fresh layout. Then make a series of plots, and see how they fill the layout (Hint: you can just run
plot(1) several times in a row to see what happens).


4.4.9 Finding out about more options


To get the most out of plotting in R, you need a working knowledge of par options, which are used to
set graphical parameters. We’ve used some of these already. Here is a summary of a few of the most


useful settings, including a few new ones:


Table 4.1: Setting graphical parameters using par


Graphical parameter Description


pch Sets the type of symbols used in the plot; see points() for a list of
options.


type Sets whether to plot points, lines, both, or something else (see


?plot.)
col Sets the colour of plotting symbols and lines.


lty Sets the line type (1=solid, 2=dashed, etc.)


lwd Sets the line width


cex Controls the size of text and points in the plot area. Short for ’char-


acter expansion’, it acts as a multiplier of the default value.


cex.axis, cex.lab Character expansion of axes and the labels.


cex.main Character expansion of the title of the plot.


family Sets the font for labels and titles. Varies by system, but ’serif ’,’sans’


and ’mono’ should always work.


bty Sets the type of box, if any, to be drawn around the plot. Use bty=’n’
for none.


las Sets the orientation of the text labels relative to the axis


mar Sets the number of lines in each margin, in the order bottom, left,


top, right.


xaxs, yaxs Preset functions for calculating axis intervals.


xaxp, yaxp Sets the coordinates for tick marks on each axis.


xaxt, yaxt Sets axis type, but can also suppress plotting axes by specifying ’n’.


You can choose to set an option with the par function, which will apply that setting to any new plots
(until you change it again). Alternatively, you can use any of these settings when calling plot or points
to change only the current plot. See this example (output not shown try this yourself).


# Two ways of setting the size of the X and Y axis labels:
# 1.
plot(1:10, 1:10, cex.lab=1.2)


# 2.
par(cex.lab=2)
plot(1:10,1:10)


# For the latter, the setting is maintained for the next plot as well.
plot(1:3, 1:3)
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Further reading Keeping on top of all the options associated with par can be diffi-
cult. The ?par help page has been dramatically improved in recent years, but can still be a
bit too much information. It’s very helpful to have some quick references at your fingertips.


Take a look http://www.statmethods.net/advgraphs/parameters.html from the Quick-R website,
and Gaston Sanchez’s handy cheat sheet at http://gastonsanchez.com/resources/2015/09/22/
R-cheat-sheet-graphical-parameters/.


4.5 Formatting examples


4.5.1 Vessel data


This example will use a lot of what we learned in this section to fine-tune the formatting of a plot.


We will use the vessel data (see Section A.13). In this dataset, the expectation was that xylem vessel
diameters are smaller in the top of the tree than at the bottom. Rather than going straight to statistical


analyses (ANOVAs and so on) it is wise to visualize the data first.


The normal workflow for optimizing your plots is to first use the default settings to make sure you are


plotting the correct data, and then fine-tuning one aspect of the plot at a time. This can take a while,


but the end result should be worth it. Here we show a default histogram, and the fine-tuned version


after some work.


The following code produces Fig. 4.19.


# Read vessel data, and make two datasets (one for 'base' data, one for 'apex' data).
vessel <- read.csv("vessel.csv")
vesselBase <- subset(vessel, position=="base")
vesselApex <- subset(vessel, position=="apex")


# Set up two figures next to each other:
par(mfrow=c(1,2))


# Simple histograms, default settings.
hist(vesselBase$vesseldiam)
hist(vesselApex$vesseldiam)


Next, we make the two histograms again, but customize the settings to produce a high quality plot. Try


to figure out yourself what the options mean by inspecting the help files ?hist, and ?par.


This code produces Fig. 4.20. (To run this code, make sure to read the vessel data first, as shown in the


previous example).


# Fine tune formatting with par()
par(mfrow=c(1,2), mar=c(5,5,4,1), cex.lab=1.3, xaxs="i", yaxs="i")


# First panel
hist(vesselBase$vesseldiam,


main="Base",
col="darkgrey",
xlim=c(0,160), breaks=seq(0,160,by=10),
xlab=expression(Vessel~diameter~ ~(mu*m)),
ylab="Number of vessels")


# Second panel
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Figure 4.19: Two simple default histograms


hist(vesselApex$vesseldiam,
main="Apex",
col="lightgrey",
xlim=c(0,160), breaks=seq(0,160,by=10),
xlab=expression(Vessel~diameter~ ~(mu*m)),
ylab="Number of vessels")


4.5.2 Weather data


Suppose you want to plot more than one variable in a plot, but the units (or ranges) are very different.


So, you decide to use two axes. Let’s look at an example. For more information on how to deal with


the date-time class, see Section 3.6.2.


This code produces Fig. 4.21.


# Read the hfemet data. Avoid conversion to factors.
hfemet <- read.csv("HFEmet2008.csv", stringsAsFactors=FALSE)


# Convert to a proper DateTime class:
library(lubridate)
hfemet$DateTime <- mdy_hm(hfemet$DateTime)


# Add the Date :
hfemet$Date <- as.Date(hfemet$DateTime)


# Select one day (a cloudy day in June).
hfemetsubs <- subset(hfemet, Date==as.Date("2008-6-1"))


# Plot Air temperature and PAR (radiation) in one plot.
# First we make a 'vanilla' plot with the default formatting.
with(hfemetsubs, plot(DateTime, Tair, type='l'))
par(new=TRUE)
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Figure 4.20: Two customized histograms


with(hfemetsubs, plot(DateTime, PAR, type='l', col="red",
axes=FALSE, ann=FALSE))


# The key here is to use par(new=TRUE), it produces the next
# plot right on top of the old one.


Next, wemake the same plot again but with better formatting. Try to figure out what everything means


by inspecting the help pages ?par, ?legend, and ?mtext, or by changing the parameters yourself, one
at a time.


This code produces Fig. 4.22.


par(mar=c(5,5,2,5), cex.lab=1.2, cex.axis=0.9)
with(hfemetsubs, plot(DateTime, Tair, type='l',


ylim=c(0,20), lwd=2, col="blue",
xlab="Time",
ylab=expression(T[air]~ ~(""^"o"*C))))


par(new=TRUE)
with(hfemetsubs, plot(DateTime, PAR, type='l', col="red",


lwd=2,
ylim=c(0,1000),
axes=FALSE, ann=FALSE))


axis(4)
mtext(expression(PAR~ ~(mu*mol~m^-2~s^-1)), side=4, line=3, cex=1.2)
legend("topleft", c(expression(T[air]),"PAR"), lwd=2, col=c("blue","red"),


bty='n')


4.6 Special plots


In this section, we show some examples of special plots that might be useful. There are also a large


number of packages that specialize in special plot types, take a look at the plotrix and gplots pack-
ages, for example.
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Figure 4.21: A default plot with two axes
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Figure 4.22: A prettified plot with two axes
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Very advanced plots can be constructed with the ggplot2 package. This package has its own steep
learning curve (and its own book and website). For some complex graphs, though, it might be the


easiest solution.


Further reading The ggplot2 package offers an alternative way to produce elegant graphics
in R, one that has been embraced by many R users (including those who developed RStudio.)
It uses a totally different approach from the one presented here, however, so if you decide to


investigate it, be prepared to spend some time learning new material. There are several good


introductions available online: Edwin Chen’s "Quick Introduction to ggplot2" at http://blog.echen.
me/2012/01/17/quick-introduction-to-ggplot2/ and "Introduction to R Graphics with ggplot2,"
provided by the Harvard Institute for Quantitative Social Science at http://tutorials.iq.harvard.
edu/R/Rgraphics/Rgraphics.html#orgheadline19. More detail is available in a book by Hadley
Wickham, the author of ggplot2. The title is "ggplot2 : Elegant graphics for data analysis," and it is
available online from the WSU Library. Finally, the creators of RStudio offer a handy cheat sheet at


https://www.rstudio.com/wp-content/uploads/2015/12/ggplot2-cheatsheet-2.0.pdf.


4.6.1 Scatter plot with varying symbol sizes


The symbols function is an easy way to pack more information in to a scatter plot, by providing a way
to scale the size of the plotting symbols to another variable in the dataframe. Consider the following


example:


This code produces Fig. 4.23.


# Read data
cereal <- read.csv("Cereals.csv")


# Choose colours
# Find the order of factor levels, so that we can assign colours in the same order
levels(cereal$Cold.or.Hot)


## [1] "C" "H"


# We choose blue for cold, red for hot
palette(c("blue","red"))


# Make the plot
with(cereal, symbols(fiber, potass, circles=fat, inches=0.2, bg=as.factor(Cold.or.Hot),


xlab="Fiber content", ylab="Potassium content"))


4.6.2 Bar plots of means with confidence intervals


A very common figure in publications is to show group means with confidence intervals, an ideal com-


panion to the output of an ANOVA analysis. Unfortunately, it is somewhat of a pain to produce these


in R, but the sciplot package has made this very easy to do, with the bargraph.CI function.
Let’s look at an example using the pupae data.


This code produces Fig. 4.24.


# Make sure to first install the sciplot package.
library(sciplot)


# Read the data, if you haven't already
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Figure 4.23: Cereal data with symbols size as a function of fat content and colour as function of whether


the cereal is served hot (red) or cold (blue).


pupae <- read.csv("pupae.csv")


# A fairly standard plot. See ?bargraph.CI to customize many settings.
with(pupae,


bargraph.CI(T_treatment, Frass, CO2_treatment, legend=TRUE, ylim=c(0,2.5)))


4.6.3 Log-log axes


When you make a plot on a logarithmic scale, R does not produce nice axis labels. One option is to use
the magicaxis package, which magically makes pretty axes for log-log plots. Consider this example,
which makes Fig. 4.25.


# Allometry data
allom <- read.csv("allometry.csv")


# Magic axis package
library(magicaxis)


# Set up some graphical parameters, like axis label size.
par(cex.lab=1.2)


# Log-log plot of branch mass versus diameter
# Here, we set axes=FALSE to suppress the axes
with(allom, plot(log10(diameter), log10(branchmass),
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Figure 4.24: Mean frass by temperature and CO2 treatment made with bargraph.CI()


xlim=log10(c(1,100)),
ylim=log10(c(1,1100)),
pch=21, bg="lightgrey",
xlab="Diameter (cm)", ylab="Branch mass (kg)",
axes=FALSE))


# And then we add axes.
# unlog='xy' will make sure the labels are shown in the original scale,
# and we want axes on sides 1 (X) and 2 (Y)
magaxis(unlog='xy', side=c(1,2))


# To be complete, we will add a regression line,
# but only to cover the range of the data.
library(plotrix)
ablineclip(lm(log10(branchmass) ~ log10(diameter), data=allom),


x1=min(log10(allom$diameter)),
x2=max(log10(allom$diameter)))


# And add a box
box()


4.6.4 Trellis graphics


Trellis graphics are very useful for visualisation of hierarchically structured data. These include multi-


factorial experimental designs and studies with multiple observations on the same experimental unit
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Figure 4.25: Branch mass versus tree diameter on a log-log scale. The axes were produced with the


magicaxis package.


(multivariate data). Trellis graphics utilise the structure of a statistical model to easily generate a visual


representation of the response according to this structure.


Let’s use the data in pupae to generate plots of frass production by temperature, nested within CO2
treatment (Fig. 4.26), using bwplot from the lattice package.


# Make sure to first install the 'lattice' package.
library(lattice)


# bwplot() works best with factors; running the function with numeric or
# integer variables produces odd plots.
CO2trt<-factor(pupae[['CO2_treatment']])


# Use the standard formula notation for specifying variables, using the '|' symbol
# to delineate the factor to split among subplots.
bwplot(Frass~T_treatment|CO2trt,data=pupae)


The dot represents themedian value for the treatment, the box represents the 25%and 75%quantiles,


and the hinges represent an estimated confidence interval. Outliers are plotted as circles outside of


this range.


For comparisons of two numeric variables within levels of one or more factors, we use xyplot. The
relationship between pupal weight and frass production can be seen using the following code, with the


result in Fig. 4.27.


xyplot(Frass ~ PupalWeight|T_treatment:CO2trt, data=pupae)


The par settings will not help you here; trellis graphics use their own list of parameters. These can
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Figure 4.26: Box and whiskers plot of frass by temperature and CO2 treatment.
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Figure 4.27: Relationship between pupal weight and frass production within each temperature and CO2


treatment combination.
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Figure 4.28: A bwplot with a main title added.


be found using trellis.par.get and changed using trellis.par.set. Plotting with lattice functions
is different from generic plotting functions in that the call results in an object that contains all of the


instructions for generating the plots. This way it is possible to make changes to the object without


running the function again. First we run the function, saving it as an object.


frass.bwplot <- bwplot(Frass~T_treatment|CO2trt, data=pupae)


Typing frass.bwplot will results in Fig. 4.26. If you want to view or change any of the values stored in
the object frass.bwplot, use the command: str(frass.bwplot). For example, we could add a title to
the plot (see Fig. 4.28) using the following:


frass.bwplot[['main']]<-'Temperature and CO2 effects on frass production'
frass.bwplot


The help page ?Lattice has plenty of information on the options available for the different plot types.


Further reading The lattice package offers a comprehensive graphical environment. If you
are interested in graphing multivariate data, it is an alternative to ggplot2. To find out more, start
with the Quick-R website: http://www.statmethods.net/advgraphs/trellis.html. For a more de-
tailed introduction see a lab written by Deepayan Sarkar, the package author, for his students:


http://www.isid.ac.in/~deepayan/R-tutorials/labs/04_lattice_lab.pdf. Paul Murrell, the au-
thor of "R Graphics, Second Edition" (2011, Chapman Hall/CRC) has made his chapter on lattice
graphics available online at https://www.stat.auckland.ac.nz/~paul/RGraphics/chapter4.pdf.
Chapter 8, "An Introduction to the Lattice Package" from "A Beginner’s Guide to R" by Zuur, Ieno


and Meesters (2009, Springer) is available online through the WSU library.
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4.7 Exporting figures


There is a confusing number of ways to export figures to other formats, to include them in Word


documents, print them, or finalize formatting for submission to a journal. Unfortunately, there is no


one perfect format for every application. One convenient workflow is to use R markdown, as discussed


in Section 1.3.3. This allows you to embed figures directly into Word documents or PDF files. It also


allows you to re-create the figures as needed when you update your analysis or data.


Saving figures


You can save figures using the ’Export’ button (as pointed out in Section 4.2). A better way, though, is


to make exporting your figures part of your script. For this purpose, you can use the dev.copy2 type
functions.


In this example, we make both a PDF and EPS of a figure. Here, we open up a plotting window (of a


specified size, in this case 4 by 4 inches), make the plot, and save the output to an EPS and a PDF file.


windows(4,4)
par(mar=c(5,5,2,2))
plot(x,y)
dev.copy2pdf(file="Figure1.pdf")
dev.copy2eps(file="Figure1.eps")


Inserting figures in Word or Powerpoint


Copy and pasting figures into Word tends to result in a loss of quality. A better approach is to save files


as PDFs and submit those with your manuscript. (And better yet, use markdown to incorporate your


text, code and figures into a single PDF!)


If you do need to insert figures into Powerpoint, the easiest and safest way to do this is to copy-paste


the figure straight into Powerpoint. In RStudio, follow these steps:


1. In the plotting window in RStudio, click ’Export’


2. Select ’Copy plot to clipboard...’


3. Select ’Metafile’ just below the figure


4. Then click ’Copy plot’.


Then, in Powerpoint, paste (Ctrl-V).


4.7.1 Sharing figures


When sharing a figure with someone by email or another electronic method, PDF format is always


preferred, because the quality of the figure in PDF is optimal. This is the case for viewing the plot on


screen, as well as printed. See the previous section on how to generate a PDF of a figure.


4.7.2 Plots with many points or lines


When the above two options give you excessively large file sizes (for example, maps, or figures with


tens of thousands of symbols or line pieces), consider converting the figure to a ’bitmap’ type, such as


122







Chapter 4 Visualizing data 4.7 Exporting figures


jpeg, png or tiff. Care must be taken that you use a high enough resolution to allow a decent print
quality.


To make a fairly large .png, do:


# First make a plot..
plot(1)


# Example from ?dev.print
# Make a large PNG file of the current plot.
dev.print(png, file = "myplot.png", width = 1024, height = 768)


The main drawback of this type of plot is that the character sizes, symbol sizes and so on do not


necessarily look like those on your screen. You will have to experiment, usually by making the figure a


few different times, to find the right par settings for each type of output.


In practice, it may be quicker and safer to make a PDF first, and then convert the PDF to a tiff file with


another software package (for instance, Adobe Illustrator).
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4.8 Functions used in this chapter


For functions not listed here, please refer to the index at the end of this book.


Function What it does Example use


abline Adds a straight line to an existing plot. For


a vertical line, use v and an x value. For a
horizontal line, use h and a y value. To add a
sloped line, give slope (a) and intercept (b).
Can also be passed a linear model object,


see Section 5.5.


abline(v=5)
abline(a=0, b=1)


ablineclip From the plotrix package. Like abline,
but adds the ability to specify coordinates


where the line should start and stop.


ablineclip(a=0, b=1,
x1=1, y1=1,
x2=3, y2=3)


bargraph.CI From the sciplot package. Makes a bar-
graph of means and confidence intervals


(+/- one standard error.) Arguments in-


clude x.factor (for the x axis) and response
(a numeric variable for which means will be


calculated). For multifactorial experiments,


use group for a second factor. Other statis-
tics can be used instead of the mean and


standard error; see ?bargraph.CI.


barplot Used to create a bar plot. Takes a vec-


tor of y values. Names for groups can be


supplied using names.arg. For bars beside
one another, use beside=TRUE; for stacked
bars use beside=FALSE. For a horizontal bar
chart, use horiz=TRUE.


barplot2 From the gplots package. Similar to


barplot, but adds the ability to use differ-
ent colours for the plot area, logarithmic


axes, a background grid, and confidence in-


tervals.


boxplot Creates quick box-and-whisker plots. Takes


a formula: y ~ factor. Midline shows


the median; lower and upper box edges


show 1st and 3rd quartiles respectively. The


range of the whiskers is a multiple of the
difference between the 1st and 3rd quan-


tiles. The default is 1.5; to extend to the fur-


thest outlier use range=0.


boxplot(ncases ~ agegp,
data=esoph)


bwplot From the lattice package. Makes


pretty box-and-whisker plots. Takes


a formula: response ~ factor. For


two grouping factors use response ~
first_group|second_group.
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Function What it does Example use


colorRampPalette Can be a bit confusing, but very useful.


When given two or more colours, it outputs


a new, custom function. This new function


can then be used to generate colour pal-


lets with any number of steps from those


colours. See Section 4.4.2 for more expla-


nation.


greypal <-
colorRampPalette(gray(0:1))


greypal(20)


curve Can be used to plot curves, or to add curves


to an existing plot. The first argument can


be either a function or an expression that


evaluates to a curve. To specify the range of


the curve, use the arguments from and to.
Use add=TRUE to add a curve to an existing
plot.


curve(cos(x),
from=0, to=2*pi)


cut Can be used to divide a numerical variable


into bins and turn it into a factor variable.


You must provide data to be broken and a


number of breaks. Optionally, you can also
provide labels.


grades <- cut(50:100, 4,
labels=c("P","C",


"D","HD"))


demo A function which runs demos of different


things R can do. In this chapter we looked
at demo(colors). For other available de-
mos, type demo().


demo(colors)
demo()


dev.copy2eps Copies a graphic you have constructed in R
to an EPS file. Supply a file name.


plot(mtcars)
dev.copy2eps(


file="Cars.eps")


dev.copy2pdf Copies a graphic you have constructed in R
to a PDF file. Supply a file name.


plot(iris)
dev.copy2pdf(


file="Iris.pdf")


dev.off Closes the current graphical device. Useful


when you want to reset graphical parame-


ters (par).


dev.off()


dnorm Gives a density function for the normal dis-


tribution. Can be used to add a normal


curve to a density histogram. You can sup-


ply a mean.


dnorm(x, mean=5)


expression Used to add mathematical expressions to


plot axes and annotations. These in-


clude subscripts, superscripts, Greek let-


ters, other symbols, and Unicode charac-


ters. See ?plotmath and Section 4.4.4 for


examples.


expression(Area~(m^2))
expression(CO[2])
expression(


Delta*degree*C)


gray, grey Returns codes for levels of grey from 0


(black) to 1 (white). Can be given either a


single number or a vector. Both spellings


work.


grey(0.5)
grey(seq(0.1,0.9,


by=0.1))
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Function What it does Example use


heat.colors Creates a vector of continuous shades from


red to yellow. Supply the number of inter-


mediate shades.


heat.colors(5)
plot(1:10,


col=heat.colors(10)


hist Plots a histogram. Supply a vector of data.


You can set how to determine breaks in
the data; see ?hist for details. The ar-
gument freq specifies whether to plot fre-
quency (freq=TRUE) or probability density
(freq=FALSE).


layout Allows the design of complex layouts for


graphics with multiple plots. The underly-


ing idea is to divide the plot area into a grid


(represented by a matrix) and use numbers


to indicate which cells should be filled with


1...n plots. When more than one cell is filled
with the same number, that plot will take


up all of those cells. Once the layout has


been designed, it will be filled, in order, withn plots.


l<-layout(
matrix(c(1,1,2,3),


nrow=2, ncol=2))
layout.show(l)


legend Takes care of most of the hard work


involved in adding legends to plots. As


a result, there are many, many pos-


sible arguments (see ?legend). The


simplest possible use is to give a loca-


tion for the legend (possibilities include


"topright","topleft","bottomright",
"bottomleft" and "center" as well as xy
coordinates), text for the labels (legend)
and corresponding colours (fill).


legend("topright",
legend=c(1,2),
fill=rainbow(2))


magaxis From the magicaxis package. Adds nicely
arranged log-scale axes with appropriately-


spaced major and minor tick marks.


magaxis(unlog="xy",
side=c(1,2))


mtext Adds text to the margins of a plot. Specify


which side the text should appear on using
1=bottom, 2=left, 3=top, 4=right. To control


how far out text should be, use line, start-
ing from 0 (right next to the axis) and count-


ing up as you move away.


mtext("Extra text",
side=2, line=2)


palette A way of storing colours in R. Once you
add colours to a new palette, they become
available for use in future plots. See Sec-


tion 4.4.2 for ways to take advantage of this.


To create a new palette, supply a vector
of colours. See also rainbow, heat.colors,
grey, and colorRampPalette.


palette(rainbow(7))
palette(c("maroon1",


"olivedrab4",
"royalblue1"))
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Function What it does Example use


pie Used to plot pie charts. Takes a vector of


numbers. You may also supply labels and
colors (using col).


pie(c(49,51),labels=
c("Half empty",
"Half full"))


plot Used to produce scatterplots and line plots.


Most of this chapter focuses on explaining


ways to use this function. To change the


appearance of a single plot, rather than all


future plots, most graphical parameters for


par can be used directly in the plot function.


plot(1)


plotCI From the plotrix package. Give x and y co-
ordinates for the plots, and an upper inter-


val width (uiw). For non-symmetrical con-
fidence intervals, provide a lower interval


width (liw).


See Section 4.3.2


points Adds points to an existing graph. See Section 4.4.7.


rainbow Produces a vector of colors from red


through orange, yellow, green, blue, purple,


and magenta back to red. Supply the num-


ber of colors to be returned.


plot(1:20,
col=rainbow(20),
pch=15)


symbols Creates plots using different types of sym-


bols for each data point. Can be set to add
to an existing plot.


with(trees,
symbols(Height, Volume,


circles = Girth/24,
inches = FALSE))


tapply Used to summarize data in dataframes.


Will be discussed further in Chapter 6.


See Section 6.2.1


text Adds text to a plot. Takes x and y coordi-
nates as locations for the text; text is sup-


plied to labels. The pos parameter offsets
the text. Values 1, 2, 3 and 4 place text be-


low, left, above, and right.


plot(1)
text(1,1,"A point",


pos=4)


trellis.par.get Used to get the current graphical parame-


ters for trellis plots. These are indepen-
dent of the par parameters.


trellis.par.set Used to set the current graphical parame-


ters for trellis plots. These are indepen-
dent of the par parameters.


windowsFonts For Windows devices only. Allows you to


define and use system fonts in R plots. See Section 4.4.6


xyplot From the trellis package. Can be used to
produce multivariate scatterplots or time


series plots.


See Section 4.6.4
and Fig. 4.27.
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4.9 Exercises


In these exercises, we use the following colour codes:


∎ Easy: make sure you complete some of these before moving on. These exercises will follow
examples in the text very closely.


⧫ Intermediate: a bit harder. You will often have to combine functions to solve the exercise in
two steps.


▲ Hard: difficult exercises! These exercises will require multiple steps, and significant departure
from examples in the text.


We suggest you complete these exercises in an R markdown file. This will allow you to combine code
chunks, graphical output, and written answers in a single, easy-to-read file.


4.9.1 Scatter plot with the pupae data


1. ∎ Read the pupae data (see Section A.6, p. 248). Convert ’CO2_treatment’ to a factor. Inspect the


levels of this factor variable.


2. ∎ Make a scatter plot of Frass vs. PupalWeight, with blue solid circles for a CO2 concentration of
280ppm and red for 400ppm. Also add a legend.


3. ∎ The problem with the above figure is that data for both temperature treatments is combined.


Make two plots (either in a PDF, or two plots side by side), one with the ’ambient’ temperature


treatment, one with ’elevated’.


4. In the above plot, make sure that the X and Y axis ranges are the same for both plots. Hint: use
xlim and ylim.


5. ∎ Instead of making two separate plots, make one plot that uses different colors for the CO(2)


treatments and different symbols for the ’ambient’ and ’elevated’ temperature treatments. Choose


some nice symbols from the help page of the points function.


6. ⧫ Add two legends to the above plot, one for the temperature treatment (showing different plot-


ting symbols), and one for the CO2 treatments (showing different colours).


7. ▲ Generate the same plot as above but this time add a single legend that contains symbols and


colours for each treatment combination (CO2 : T).


8. ⧫ In Fig. 4.4, figure out why no error bar was plotted for the first bar.


4.9.2 Flux data


Use the Eddy flux data for this exercise (Section A.8, p. 249).


1. ⧫ Produce a line plot for FCO2 for one day out of the dataset (recall Section 3.6.2, p. 73).
2. ⧫ Adjust the X and Y axis ranges, add pretty labels on the axes, increase the thickness of the line


(see lwd in ?par).


3. ⧫ Now add points to the figure (using points, see Section 4.4.7 on p. 108), with different colours
for when the variable ustar is less than 0.15 (’bad data’ in red). Hint: recall Section 3.2 on p. 59 on
how to split a numeric vector into a factor.
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4.9.3 Hydro dam


Use the hydro dam data as described in Section A.3.


1. ∎ Read the hydro data, make sure to first convert the Date column to a proper Date class.


2. ∎Make a line plot of storage versus Date


3. ∎Make the line thicker, and a dot-dashed style (see ?par). Use the search box in the RStudio help
pane to find this option (top-right of help pane).


4. ▲ Next, make the same plot with points (not lines), and change the colour of the points in the


following way: forestgreen if storage is over 500, orange if storage is between 235 and 500, and
red if storage is below 235. (Hint: use cut, as described in Section 3.2, p. 59).


4.9.4 Coloured scatter plot


Use the Coweeta tree data (see Section A.2, p. 247).


1. ∎ Read the data, count the number of observations per species.


2. ▲ Take a subset of the data including only those species with at least 10 observations. Hint: simply
look at table(coweeta$species), make a note of which species have more than 10 observations,
and take a subset of the dataset with those species (recall the examples in Section 2.3.2, p. 47).


3. ⧫ Make a scatter plot of biomass versus height, with the symbol colour varying by species.
Choose some nice colours, and use filled squares for the symbols. Also add a title to the plot,


in italics.


4. ∎ Log-transform biomass, and redraw the plot.


4.9.5 Superimposed histograms


First inspect the example for the vessel data in Section 4.5.1 (p. 112).


1. ▲ Use a function from the epade package to produce a single plot with both histograms (so that
they are superimposed). You need to figure out this function yourself, it is not described in this


book


4.9.6 Trellis graphics


1. ⧫ Change the labels in the box and whisker plot (Fig. 4.26) to indicate the units of CO2 concentra-


tion (ppm) and add a label to the x-axis indicating the factor (temperature).
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Basic statistics


This book is not an Introduction to statistics. There are many manuals (either printed or on the web)
that document the vast array of statistical analyses that can be done with R. To get you started, though,
we will show a few very common analyses that are easy to do in R.
In all of the following, we assume you have a basic understanding of linear regression, Student’s t-tests,
ANOVA, and confidence intervals for the mean.


5.1 Probability Distributions


As we assume you have completed an Introduction to statistics course, you have already come across
several probability distributions. For example, the Binomial distribution is a model for the distribution
of the number of successes in a sequence of independent trials, for example, the number of heads in a
coin tossing experiment. Another commonly used discrete distribution is the Poisson, which is a useful
model for many kinds of count data. Of course, the most important distribution of all is the Normal or
Gaussian distribution.


R provides sets of functions to find densities, cumulative probabilities, quantiles, and to draw random
numbers frommany important distributions. The names of the functions all consist of a one letter pre-


fix that specifies the type of function and a stem which specifies the distribution. Look at the examples


in the table below.


prefix function


d density


p cumulative probabilities


q quantiles


r simulate


stem distribution


binom Binomial


pois Poisson


norm Normal


t Student’s t


chisq χ2


f F


So for example,


# Calculate the probability of 3 heads out of 10 tosses of a fair coin.
# This is a (d)ensity of a (binom)ial distribution.
dbinom(3, 10, 0.5)


## [1] 0.1171875


# Calculate the probability that a normal random variable (with
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# mean of 3 and standard deviation of 2) is less than or equal to 4.
# This is a cumulative (p)robability of a (norm)al variable.
pnorm(4, 3, 2)


## [1] 0.6914625


# Find the t-value that corresponds to a 2.5% right-hand tail probability
# with 5 degrees of freedom.
# This is a (q)uantile of a (t)distribution.
qt(0.975, 5)


## [1] 2.570582


# Simulate 5 Poisson random variables with a mean of 3.
# This is a set of (r)andom numbers from a (pois)son distribution.
rpois(5, 3)


## [1] 1 3 3 3 5


See the help page ?Distributions for more details.


To make a quick plot of a distribution, we already saw the use of the density function in combination


with curve in Section 4.3.3. Here is another example (this makes Fig. 5.1).


# A standard normal distribution
curve(dnorm(x, sd=1, mean=0), from=-3, to=3,


ylab="Density", col="blue")


# Add a t-distribution with 3 degrees of freedom.
curve(dt(x, df=3), from =-3, to=3, add=TRUE, col="red")


# Add a legend (with a few options, see ?legend)
legend("topleft", c("Standard normal","t-distribution, df=3"), lty=1, col=c("blue","red"),


bty='n', cex=0.8)


Try this yourself Make a histogram (recall Section 4.3.3) of a sample of random numbers


from a distribution of your choice.


5.2 Descriptive Statistics


Descriptive statistics summarise some of the properties of a given data set. Generally, we are inter-


ested in measures of location (central tendency, such as mean and median) and scale (variance or


standard deviation). Other descriptions can include the sample size, the range, and so on. We already


encountered a number of functions that can be used to summarize a vector.


Let’s look at some examples for the Pupae dataset (described in Section A.6).


# Read data
pupae <- read.csv("pupae.csv")


# Extract the weights (for convenience)
weight <- pupae$PupalWeight


# Find the number of observations
length(weight)
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Figure 5.1: Two univariate distributions plotted with curve()


## [1] 84


# Find the average (mean) weight
mean(weight)


## [1] 0.3110238


# Find the Variance
var(weight)


## [1] 0.004113951


Note that R will compute the sample variance (not the population variance). The standard deviation
can be calculated as the square root of the variance, or use the sd function directly.


# Standard Deviation
var.wgt <- var(weight)
sqrt(var.wgt)


## [1] 0.06414009


# Standard Deviation
sd(weight)


## [1] 0.06414009


Robust measures of the location and scale are the median and inter-quartile range; R has functions for
these.


# median and inter-quartile range
median(weight)
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## [1] 0.2975


IQR(weight)


## [1] 0.09975


The median is the 50th percentile or the second quartile. The quantile function can compute quartiles
as well as arbitrary percentiles/quantiles.


quantile(weight)


## 0% 25% 50% 75% 100%
## 0.17200 0.25625 0.29750 0.35600 0.47300


quantile(weight, probs=seq(0,1,0.1))


## 0% 10% 20% 30% 40% 50% 60% 70% 80% 90%
## 0.1720 0.2398 0.2490 0.2674 0.2892 0.2975 0.3230 0.3493 0.3710 0.3910
## 100%
## 0.4730


Missing Values: All of the above functions will return NA if the data contains any missing values. How-
ever, they also provide an option to remove missing values (NAs) before their computations (see also
Section 3.4).


weightNA <- weight
weightNA[40] <- NA
mean(weightNA)


## [1] NA


mean(weightNA, na.rm=TRUE)


## [1] 0.3113373


The summary function provides a lot of the above information in a single command:


summary(weight)


## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.1720 0.2562 0.2975 0.3110 0.3560 0.4730


The moments package provides ’higher moments’ if required, for example, the skewness and kurtosis.


# load the moments package
library(moments)
skewness(weight)


## [1] 0.3851656


kurtosis(weight)


## [1] 2.579144


The pastecs package includes a useful function that calculates many descriptive statistics for numeric
vectors, including the standard error for the mean (for which R has no built-in function).
library(pastecs)


# see ?stat.desc for description of the abbreviations
stat.desc(weight)


## nbr.val nbr.null nbr.na min max
## 84.000000000 0.000000000 0.000000000 0.172000000 0.473000000
## range sum median mean SE.mean
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## 0.301000000 26.126000000 0.297500000 0.311023810 0.006998258
## CI.mean.0.95 var std.dev coef.var
## 0.013919253 0.004113951 0.064140091 0.206222446


# conveniently, the output is a character vector which we can index by name,
# for example extracting the standard error for the mean
stat.desc(weight)["SE.mean"]


## SE.mean
## 0.006998258


Sometimes you may wish to calculate descriptive statistics for subgroups in the data. We will come


back to this extensively in Section 6.2, but here is a quick introduction.


The function tapply allows you to apply any function to subgroups defined by a second (grouping)
variable, as we will see in Chapter 6.


# tapply
with(pupae, tapply(PupalWeight, Gender, mean))


## 0 1
## 0.2724884 0.3512857


5.3 Inference for a single population


Inference is answering questions about population parameters based on a sample. The mean of a
random sample from a population is an estimate of the population mean. Since it is a single number


it is called a point estimate. It is often desirable to estimate a range within which the population


parameter lies with high probability. This is called a confidence interval.


One way to get confidence intervals in R is to use the quantile functions for the relevant distribution.
Remember from your introductory statistics course that a 100(1− α)% confidence interval for the mean
on normal population is given by,


x̄ ± tα/2,n−1
s
√


n


where x̄ is the sample mean, s the sample standard deviation and n is the sample size. tα/2,n−1 is the


α/2 tail point of a t-distribution on n − 1 degrees of freedom. That is, if T has a t-distribution on n − 1
degrees of freedom.


P(T ≤ tα/2,n−1) = 1− α/2


The R code for this confidence interval can be written as,
alpha <- 0.05 # 95% confidence interval
xbar <- mean(weight)
s <- sd(weight)
n <- length(weight)
half.width <- qt(1-alpha/2, n-1)*s/sqrt(n)


# Confidence Interval
c(xbar - half.width, xbar + half.width)


## [1] 0.2971046 0.3249431
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Here, we assumed a normal distribution for the population. You may have been taught that if n islarge, say n > 30, then you can use a normal approximation. That is, replace qt(1-alpha/2, n-1) with
qnorm(1-alpha/2), but there is no need, R can use the t-distribution for any n (and the results will be
the same, as the t-distribution converges to a normal distribution when the df is large).


Try this yourself Confirm that the t-distribution converges to a normal distribution when n
is large (using qt and qnorm).


Hypothesis testing


There may be a reason to ask whether a dataset is consistent with a certain mean. For example, are


the pupae weights consistent with a population mean of 0.29? For normal populations, we can use


Student’s t-test, available in R as the t.test function. Let’s test the null hypothesis that the population
mean is 0.29:


t.test(weight, mu=0.29)


##
## One Sample t-test
##
## data: weight
## t = 3.0041, df = 83, p-value = 0.00352
## alternative hypothesis: true mean is not equal to 0.29
## 95 percent confidence interval:
## 0.2971046 0.3249431
## sample estimates:
## mean of x
## 0.3110238


Note that we get the t-statistic, degrees of freedom (n − 1) and a p-value for the test, with the specified
alternative hypothesis (not equal, i.e. two-sided). In addition, t.test gives us a 95% confidence interval
(compare to the above), and the estimated mean, x̄.


We can use t.test to get any confidence interval, and/or to do one-sided tests,


t.test(weight, mu=0.29, conf.level=0.90)


##
## One Sample t-test
##
## data: weight
## t = 3.0041, df = 83, p-value = 0.00352
## alternative hypothesis: true mean is not equal to 0.29
## 90 percent confidence interval:
## 0.2993828 0.3226649
## sample estimates:
## mean of x
## 0.3110238


t.test(weight, mu=0.29, alternative="greater", conf.level=0.90)


##
## One Sample t-test
##
## data: weight
## t = 3.0041, df = 83, p-value = 0.00176


135







Chapter 5 Basic statistics 5.3 Inference for a single population


## alternative hypothesis: true mean is greater than 0.29
## 90 percent confidence interval:
## 0.3019832 Inf
## sample estimates:
## mean of x
## 0.3110238


Note that the confidence interval is one-sided when the test is one-sided.


The t.test is appropriate for data that is approximately normally distributed. You can check this using
a histogram or a QQ-plot (see Sections 4.3.3 and ??). If the data is not very close to a normal distribution
then the t.test is often still appropriate, as long as the sample is large.


If the data is not normal and the sample size is small, there are a couple of alternatives: transform the


data (often a log transform is enough) or use a nonparametric test, in this case theWilcoxon signed rank
test. We can use the wilcox.test function for the latter, its interface is similar to t.test and it tests
the hypothesis that the data is symmetric about the hypothesized population mean. For example,


wilcox.test(weight, mu=0.29)


##
## Wilcoxon signed rank test with continuity correction
##
## data: weight
## V = 2316.5, p-value = 0.009279
## alternative hypothesis: true location is not equal to 0.29


wilcox.test(weight, mu=0.29, alternative="greater")


##
## Wilcoxon signed rank test with continuity correction
##
## data: weight
## V = 2316.5, p-value = 0.004639
## alternative hypothesis: true location is greater than 0.29


Test for proportions


Sometimes you want to test whether observed proportions are consistent with a hypothesized popula-


tion proportion. For example, consider a coin tossing experiment where you want to test the hypothe-


sis that you have a fair coin (one with an equal probability of landing heads or tails). In your experiment,


you get 60 heads out of 100 coin tosses. Do you have a fair coin? We can use the prop.test function:


# 60 'successes' out of a 100 trials, the hypothesized probability is 0.5.
prop.test(x=60, n=100, p=0.5)


##
## 1-sample proportions test with continuity correction
##
## data: 60 out of 100, null probability 0.5
## X-squared = 3.61, df = 1, p-value = 0.05743
## alternative hypothesis: true p is not equal to 0.5
## 95 percent confidence interval:
## 0.4970036 0.6952199
## sample estimates:
## p
## 0.6
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# Same as above, but for a one-sided test.
prop.test(60, 100, p=0.5, alternative="greater")


##
## 1-sample proportions test with continuity correction
##
## data: 60 out of 100, null probability 0.5
## X-squared = 3.61, df = 1, p-value = 0.02872
## alternative hypothesis: true p is greater than 0.5
## 95 percent confidence interval:
## 0.5127842 1.0000000
## sample estimates:
## p
## 0.6


Note: Youmight think that I chose to do a one-sided test greater because 60 is greater than the expected
number of 50 for a fair coin – I didn’t! Don’t use your data to decide on the null or alternative hypothesis


– it renders the p-values meaningless.


5.4 Inference for two populations


Commonly, we wish to compare two (or more) populations. For example, the pupae dataset has pupal
weights for female and male pupae. We may wish to compare the weights of males (gender=0) and


females (gender=1).


There are two ways to use t.test to compare the pupal weights of males and females. In the first
method, we make two vectors,


pupae <- read.csv("pupae.csv")
weight <- pupae$PupalWeight
gender <- pupae$Gender
weight.male <- weight[gender==0]
weight.female <- weight[gender==1]


# We will assume equal variance for male and female pupae (see Unequal variances, below):
t.test(weight.male, weight.female, var.equal=TRUE)


##
## Two Sample t-test
##
## data: weight.male and weight.female
## t = -7.3571, df = 76, p-value = 1.854e-10
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.10012896 -0.05746573
## sample estimates:
## mean of x mean of y
## 0.2724884 0.3512857


Try this yourself Confirm that there are missing data in both variables in the example above.


The default action is to omit all missing values (see description under na.action in the help file
?t.test).


There is also a formula interface for t.test. The formula interface is important because we will use
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it in many other functions, like linear regression and linear modelling. For the t.test we can use the
formula interface on the extracted variables, or without extracting the variables.


# Using the vectors we constructed in the previous example
t.test(weight ~ gender, var.equal=TRUE)


##
## Two Sample t-test
##
## data: weight by gender
## t = -7.3571, df = 76, p-value = 1.854e-10
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.10012896 -0.05746573
## sample estimates:
## mean in group 0 mean in group 1
## 0.2724884 0.3512857


# Or by specifying the data= argument.
t.test(PupalWeight~Gender, data=pupae, var.equal=TRUE)


##
## Two Sample t-test
##
## data: PupalWeight by Gender
## t = -7.3571, df = 76, p-value = 1.854e-10
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.10012896 -0.05746573
## sample estimates:
## mean in group 0 mean in group 1
## 0.2724884 0.3512857


Paired data


The t.test can also be used when the data are paired, for example, measurements taken before and
after some treatment on the same subjects. The pulse dataset is an example of paired data (see


Section A.9). We will compare pulse rates before and after exercise, including only those subjects that


exercised (Ran=1),


pulse <- read.table("ms212.txt", header=TRUE)
pulse.before <- with(pulse, Pulse1[Ran==1])
pulse.after <- with(pulse, Pulse2[Ran==1])
t.test(pulse.after, pulse.before, paired=TRUE)


##
## Paired t-test
##
## data: pulse.after and pulse.before
## t = 16.527, df = 45, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 45.12843 57.65418
## sample estimates:
## mean of the differences
## 51.3913
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Unequal variances


The default for the two-sample t.test is actually to not assume equal variances. The theory for this
kind of test is quite complex, and the resulting t-test is now only approximate, with an adjustment
called the ’Satterthwaite’ or ’Welch’ approximation made to the degrees of freedom.


t.test(PupalWeight ~ Gender, data=pupae)


##
## Welch Two Sample t-test
##
## data: PupalWeight by Gender
## t = -7.4133, df = 74.628, p-value = 1.587e-10
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.09997364 -0.05762104
## sample estimates:
## mean in group 0 mean in group 1
## 0.2724884 0.3512857


Since this modified t-test makes fewer assumptions, you could ask why we ever use the equal variances
form. If the assumption is reasonable, then this (equal variances) form will have more power, i.e. will


reject the null hypothesis more often when it is actually false.


Assumed normality


The two-sample t-test assumes normality of the data (which you can check using a histogram or a
QQ-plot) or that the sample sizes are large enough that the central limit theorem applies. Note that the
paired t-test assumes only that the differences are normal. The wilcox.test can be used when any
of these assumptions are suspect. In the case of two samples (unpaired), this test used is called the


Wilcoxon rank sum test (also known as the Mann-Whitney test).


wilcox.test(pulse.after, pulse.before, paired=TRUE, exact=FALSE)


##
## Wilcoxon signed rank test with continuity correction
##
## data: pulse.after and pulse.before
## V = 1081, p-value = 3.624e-09
## alternative hypothesis: true location shift is not equal to 0


wilcox.test(PupalWeight ~ Gender, data=pupae, exact=FALSE)


##
## Wilcoxon rank sum test with continuity correction
##
## data: PupalWeight by Gender
## W = 152.5, p-value = 1.704e-09
## alternative hypothesis: true location shift is not equal to 0


5.4.1 Power


When testing a hypothesis, remember that there are two types of possible errors, due to the random


nature of sampling data. These are the "Type 1 error" (rejecting the null hypothesis when it is actually
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true), and the "Type 2 error" (failing to reject the null when it is actually false). The probability of a Type


1 error is controlled by α, the threshold on the p-value. The p-value is the probability of observing the
test statistic, if the null hypothesis is actually true. So by keeping α small (for some reason, 0.05 is most
commonly used), we control the chance of a Type 1 error.


Statistical power is defined as 1 - the probability of a Type 2 error. Or in other words, the probability that


we reject the null hypothesis when it is actually false. Consider the situation where we compare the


means of two samples. It is easy to see that our power depends not only on α, but also on the actual
difference in means of the populations that the samples were drawn from. If they are very different, it


will be easier to find a significant difference. So, to calculate the power we must specify how different


the means are under the alternative hypothesis.


For a t-test, we can use the power.t.test function to calculate the power. To approximate the power
for the pupal weight t-test (as we saw in the previous section), we can use the following,


power.t.test(n=35, delta=0.08, sd=0.05, sig.level=0.05)


##
## Two-sample t test power calculation
##
## n = 35
## delta = 0.08
## sd = 0.05
## sig.level = 0.05
## power = 0.9999982
## alternative = two.sided
##
## NOTE: n is number in *each* group


Here we have assumed equal groups of size 35 for each gender (although this is not exactly correct),


a true difference in mean weights of 0.08, and a standard deviation of 0.05. The power is over 99%,


meaning that, with these conditions, we will be able to reject the null hypothesis 99% of the time.


We can also calculate the required sample size, if we wish to attain a certain power. For example,


suppose we want to detect a difference of 0.02 with 75% power. What sample size do we need?


power.t.test(delta=0.02, sd=0.05, sig.level=0.05, power=0.75)


##
## Two-sample t test power calculation
##
## n = 87.7248
## delta = 0.02
## sd = 0.05
## sig.level = 0.05
## power = 0.75
## alternative = two.sided
##
## NOTE: n is number in *each* group


We would need 88 observations for each gender.


Try this yourself Using power.t.test as in the examples above, see what happens when you
set α (sig.level) to 0.01 or 0.1. Decide for yourself if the result makes sense.
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Figure 5.2: Quick inspection of the allometry data, before we perform a linear regression.


5.5 Simple linear regression


To fit linear models of varying complexity, we can use the lm function. The simplest model is a straight-
line relationship between an x and a y variable. In this situation, the assumption is that the y-variable
(the response) is a linear function of the x-variable (the independent variable), plus some random noise
or measurement error. For the simplest case, both x and y are assumed to be continuous variables. In
statistical notation we write this as,


y = α + βx + ε (5.1)


Here α and β are (population) parameters that need to be estimated from the data. The error (ε) is
assumed to follow a normal distribution with a mean of zero, and a standard deviation of σ. It is also
assumed that σ is constant and does not depend on x.


Let’s look at an example using the allometry data (see Fig. 5.2),


# Read data
allom <- read.csv("Allometry.csv")
plot(leafarea~diameter, data=allom)


We can see from this plot that leaf area generally increases with tree diameter. So we can use lm to
estimate the parameters in equation 5.1, or in other words to ’fit the model’.


# Fit linear regression of 'leafarea' on 'diameter',
# Results are stored in an object called model
model <- lm(leafarea~diameter, data=allom)


# Print a summary of the regression:
summary(model)
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##
## Call:
## lm(formula = leafarea ~ diameter, data = allom)
##
## Residuals:
## Min 1Q Median 3Q Max
## -112.057 -40.519 4.699 30.344 201.377
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -51.3245 15.9746 -3.213 0.0021 **
## diameter 4.6333 0.3955 11.716 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 60.16 on 61 degrees of freedom
## Multiple R-squared: 0.6923,Adjusted R-squared: 0.6873
## F-statistic: 137.3 on 1 and 61 DF, p-value: < 2.2e-16


# Or just the coefficients (intercept and slope):
coef(model)


## (Intercept) diameter
## -51.324479 4.633321


As you can see, lm uses the formula interface that we discussed earlier (it always has the form y ∼ x).


The summary function prints a lot of information about the fit. In this case, it shows that the intercept is
-51.324, which is the predicted leaf area for a tree with diameter of zero (not very useful in this case).


It also shows a standard error and a t-statistic for this intercept, along with a p-value which shows that
the intercept is significantly different from zero. The second line in the coefficients table shows the


slope is 4.633, and that this is highly significantly different from zero.


In addition, we have a Residual standard error of 60.16, which is an estimate of σ, and an R-squared
of 0.69 (which is the squared correlation coefficient). Finally, the F-statistic says whether the overall
fit is significant, which in this case, is the same as the test for β (because in this situation, the F-statistic
is simply the square of the t-statistic).


It is straightforward to add the regression line to an existing plot (Fig. 5.3). Simply use abline and the
model object we created previously:


plot(leafarea~diameter, data=allom)
abline(model)


5.5.1 Diagnostic plots


There are many ways to examine how well a model fits the data, and this step is important in deciding


whether themodel is appropriate. Most diagnostics are based on the residuals, the difference between


the ŷ = α̂ + β̂x fitted values and the actual data points.


If needed, the fitted values and residuals can be extracted using fitted(model) and residuals(model)
respectively.


The two simplest and most useful diagnostic plots are the scale-location plot and a QQ-plot of the


residuals. These can be produced with plot, but we much prefer two functions from the car package,
as shown by the following example (Fig. 5.4):
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Figure 5.3: The allometry data, with an added regression line.


model <- lm(leafarea ~ diameter, data=allom)


library(car)


## Loading required package: carData


residualPlot(model)
qqPlot(model)


## [1] 41 47


The scale-location plot shows the square root of the standardized residuals against the fitted values.
In an ideal situation, there should be no structure in this plot. Any curvature indicates that the model


is under- or over-fitting, and a general spread-out (or contracting) from left to right indicates non-


constant variance (’heteroscedasticity’). The QQ-plot enables us to check for departures from normal-


ity. Ideally, the standardized residuals should lie on a straight line.


Some departure from the straight line is to be expected though, even when the underlying distribu-


tion is really normal. The qqPlot function from the car package enhances the standard QQ-plot, by
including a confidence interval (Fig 5.5). In this case, there is some evidence of heteroscedasticity, and


possibly curvature.


The following code makes the QQ-plot and a plot of the data on a log-log scale (Fig. 5.5).


library(car)
qqPlot(model)


## [1] 41 47


plot(leafarea ~ diameter, data=allom, log="xy")
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Figure 5.4: Two standard diagnostic plots for a fitted lm object.
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Figure 5.5: A plot of the Allometry data on a log-log scale.
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On a log-log scale, it looks like the variance is much more constant, and the relationship is more linear.


So, we go ahead and refit the model to log-transformed variables.


As we can see in Fig. 5.5, the diagnostic plots look much better, except for a couple of points at the


lower left corner of the QQ-plot. Notice that these outliers have been marked with their row number


from the dataframe.


The following code produces Fig. 5.6, including diagnostic plots and a plot of the data with a regression


line added. Note that the abline function will only work as intended (shown before) on the log-log plot
if we use log to the base 10 (log10), in the model fit.


model_log <- lm(log10(leafarea)~log10(diameter), data=allom)
summary(model_log)


##
## Call:
## lm(formula = log10(leafarea) ~ log10(diameter), data = allom)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.10384 -0.14155 0.02161 0.15434 0.52455
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.4468 0.1600 -2.793 0.00697 **
## log10(diameter) 1.5387 0.1070 14.385 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.2611 on 61 degrees of freedom
## Multiple R-squared: 0.7723,Adjusted R-squared: 0.7686
## F-statistic: 206.9 on 1 and 61 DF, p-value: < 2.2e-16


residualPlot(model_log)
qqPlot(model_log)


## [1] 3 32


plot(leafarea~diameter, data=allom, log="xy")
abline(model_log)


Try this yourself The residuals of a linear model fit can be extracted with the residuals
function. For one of the linear models from the above examples, extract the residuals, and make a


histogram to help inspect normality of the residuals.
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Figure 5.6: Diagnostic plots for the allometry data, refitted on a log-log scale (left panels). The allometry


data fitted on a log-log scale, with the regression line (right panel).
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5.6 Functions used in this chapter


For functions not listed here, please refer to the index at the end of this book.


Function What it does Example use


abline Adds a straight line to an existing plot. For a vertical line,


use v and an x value. For a horizontal line, use h and a
y value. To add a sloped line, give a slope (a), and an
intercept (b). Can also be passed a linear model object,
see Section 5.5.


abline(v=5)


curve Can be used to plot curves, or to add a curve to an ex-


isting plot. The first argument can be either a function


or an expression that evaluates to a curve. To specify


the range of the curve, use from and to. Use add=TRUE
to add a curve to an existing plot.


curve(cos(x),
from=0, to=2*pi)


kurtosis From the moments package. Computes Pearson’s mea-
sure of kurtosis.


length Returns the total number of elements in its input. length(LETTERS)


lm Fits linear models to data. Requires a formula in the


form y ∼ x. Also possible to specify data to be used and
an na.action. Returns a linear model object, which can
be used for further analysis.


See Section 5.5


log Computes natural logarithms (base e) of its input. For
common (base 10) logarithms, use log10.


log(3)


mean Returns the arithmetic average of its input. mean(c(1,2,3,10))


power.t.test Computes the probability that a given t-test will accept
the null hypothesis even though it is false. See Sec-


tion 5.4.1.


power.t.test(n=35,
delta=0.08,
sd=0.05,
sig.level=0.05)


prop.test Tests whether an experimental proportion is equal to


a hypothesized proportion. Takes x (number of suc-
cesses), n (total number of trials) and p (the hypoth-
esized proportion.) Specify what kind of test to use


("two.sided", "less", "greater") using alternative.


prop.test(x=60,
n=100,
p=0.5)


qqPlot From the car package. Given a linear model object, cre-
ates a prettified quantile-quantile plot.


See Section 5.5.1


quantile Computes the quantiles of given data. Defaults are


quartiles, but other sequences can be supplied using


probs.


See Section 5.2


residuals Extracts residuals from a linear model object.


sd Returns the standard deviation of its input. sd(c(99,85,50,87,89))


skewness From the moments package. Computes the skewness of
a sample.
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Function What it does Example use


summary Provides a summary of the variables in a dataframe.


Statistics are given for numerical variables, and counts


are given for factor variables.


summary(warpbreaks)


t.test Computes Student’s t-test for a given sample of data. It
is possible to compare two samples, or a single sample


to a hypothesized mean (mu).


See Section 5.3


tapply Used to summarize data in dataframes. Will be dis-


cussed further in Chapter 6.


See Section 6.2.1


var Returns the variance of its input. var(c(99,85,50,87,89))


wilcox.test Computes the Wilcoxon test, a nonparametric alterna-


tive to t-tests for small or non-normal samples. Can be
used to compare two samples, or a single sample to a


hypothesized mean (mu).


See Section 5.3


148







Chapter 5 Basic statistics 5.7 Exercises


5.7 Exercises


In these exercises, we use the following colour codes:


∎ Easy: make sure you complete some of these before moving on. These exercises will follow
examples in the text very closely.


⧫ Intermediate: a bit harder. You will often have to combine functions to solve the exercise in
two steps.


▲ Hard: difficult exercises! These exercises will require multiple steps, and significant departure
from examples in the text.


We suggest you complete these exercises in an R markdown file. This will allow you to combine code
chunks, graphical output, and written answers in a single, easy-to-read file.


5.7.1 Probabilities


For this exercise, refer to the tables and examples in Section 5.1 (p. 130).


1. ∎ For a normal random variable X with mean 5.0, and standard deviation 2.0, find the probability
that X is less than 3.0.


2. ∎ Find the probability that X is greater than 4.5.
3. ∎ Find the value K so that P(X > K) = 0.05.


4. ∎When tossing a fair coin 10 times, find the probability of seeing no heads (Hint: this is a binomial
distribution.)


5. ∎ Find the probability of seeing exactly 5 heads.


6. ∎ Find the probability of seeing more than 7 heads.


5.7.2 Univariate distributions


1. ∎ Simulate a sample of 100 random data points from a normal distribution with mean 100 and


standard deviation 5, and store the result in a vector.


2. ∎ Plot a histogram and a boxplot of the vector you just created (see Section 4.3.3 on p. 92 and


Section 4.3.5 on p. 95).


3. ∎ Calculate the sample mean and standard deviation.


4. ∎ Calculate the median and interquartile range.


5. ∎ Using the data above, test the hypothesis that the mean equals 100 (using t.test).


6. ∎ Test the hypothesis that mean equals 90.


7. ∎ Repeat the above two tests using a Wilcoxon signed rank test. Compare the p-values with those


from the t-tests you just did.


5.7.3 More t-tests


For this question, use the pupae data (see Section A.6 on p. 248).
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1. ∎ Use the t.test function to compare PupalWeight by T_treatment.


2. ∎ Repeat above using a Wilcoxon rank sum test.


3. ∎ Run the following code to generate some data:


base <- rnorm(20, 20, 5)
x <- base + rnorm(20,0,0.5)
y <- base + rnorm(20,1,0.5)


4. ∎ Using a two-sample t-test compare the means of x and y, assume that the variance is equal for
the two samples.


5. ∎ Repeat the above using a paired t-test. How has the p-value changed?


6. ⧫Which test is most appropriate?


5.7.4 Simple linear regression


For this question, use the pupae data (see Section A.6, p. 248). Perform a simple linear regression of
Frass on PupalWeight. Produce and inspect the following:


1. ∎ Plots of the data.


2. ∎ Summary of the model.


3. ∎ Diagnostic plots.


4. ⧫ All of the above for a subset of the data, where Gender is 0, and CO2_treatment is 400.


5.7.5 Quantile Quest


You have already used quantile-quantile (QQ) plots many times, but in this exercise you will get to the


bottom of the idea of comparing quantiles of distributions.


As in the previous exercises, we will use the pupae data.


1. ∎ From the pupae data, extract the PupalWeight and store it as a vector called ’pupweight’. Make


a histogram of this vector, noticing that the distribution seems perhaps quite like the normal


distribution.


2. ⧫When we say ’quite like the normal distribution’, we mean that the overall shape seems similar.


Now simulate a histogram like the one above, using rnorm with the mean and standard deviation
of the pupal weights (i.e. pupweight), and the same sample size as well. Plot it repeatedly to get
an idea of whether the simulated histogram looks similar often enough.


3. ⧫ Of course a visual comparison like that is not good enough, but it is a useful place to start.


We can also compare the quantiles as follows. If we calculate the 25% and 75% quantiles of


pupweight, we are looking for the values below which 25% or 75% of all observations occur.


Clearly if two distributions have the same shape, their quantiles should be roughly similar. Calcu-
late the 25, 50 and 75% quantiles for pupweight, and also calculate them for the normal distribu-
tion using qnorm. Are they similar?


4. ▲ Now repeat the above exercise, but calculate many quantiles (e.g. from 2.5% to 97.5% with


steps of 2.5% or whatever you choose) for both the measured data, and the standard normal


distribution. Compare the two with a simple scatter plot, and add a 1:1 line. If you are able to


do this, you just made your own QQ-plot (and if not, I suggest you inspect the solutions to this


Exercise). Hint: use seq to make the vector of quantiles, and use it both in quantile and qnorm.
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Save the results of both those as vectors, and plot. As a comparison, use qqPlot(pupweight,
distribution="norm") (car package), make sure to plot the normal quantiles on the X-axis.
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Chapter 6


Summarizing, tabulating and
merging data


6.1 Summarizing dataframes


There are a few useful functions to print general summaries of a dataframe, to see which variables are


included, what types of data they contain, and so on. We already looked at some of these in Section 2.2.


The most basic function is summary, which works on many types of objects.


Let’s look at the output for the allom dataset.


summary(allom)


## species diameter height leafarea
## PIMO:19 Min. : 4.83 Min. : 3.57 Min. : 2.636
## PIPO:22 1st Qu.:21.59 1st Qu.:21.26 1st Qu.: 28.581
## PSME:22 Median :34.80 Median :28.40 Median : 86.351
## Mean :35.56 Mean :26.01 Mean :113.425
## 3rd Qu.:51.44 3rd Qu.:33.93 3rd Qu.:157.459
## Max. :73.66 Max. :44.99 Max. :417.209
## branchmass
## Min. : 1.778
## 1st Qu.: 16.878
## Median : 72.029
## Mean : 145.011
## 3rd Qu.: 162.750
## Max. :1182.422


For each factor variable, the levels are printed (the species variable, levels PIMO, PIPO and PSME. For
all numeric variables, the minimum, first quantile, median, mean, third quantile, and the maximum


values are shown.


To simply see what types of variables your dataframe contains (or, for objects other than dataframes,


to summarize sort of object you have), use the str function (short for ’structure’).


str(allom)


## 'data.frame': 63 obs. of 5 variables:
## $ species : Factor w/ 3 levels "PIMO","PIPO",..: 3 3 3 3 3 3 3 3 3 3 ...
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## $ diameter : num 54.6 34.8 24.9 28.7 34.8 ...
## $ height : num 27 27.4 21.2 25 30 ...
## $ leafarea : num 338.49 122.16 3.96 86.35 63.35 ...
## $ branchmass: num 410.25 83.65 3.51 73.13 62.39 ...


Finally, there are two very useful functions in the Hmisc package (recall how to install and load packages
from Section 1.10). The first, describe, is much like summary, but offers slightly more sophisticated
statistics.


The second, contents, is similar to str, but does a very nice job of summarizing the factor variables in
your dataframe, prints the number of missing variables, the number of rows, and so on.


# read data
pupae <- read.csv("pupae.csv")


# Make sure CO2_treatment is a factor (it will be read as a number)
pupae$CO2_treatment <- as.factor(pupae$CO2_treatment)


# Show contents:
library(Hmisc)
contents(pupae)


##
## Data frame:pupae 84 observations and 5 variables Maximum # NAs:6
##
##
## Levels Storage NAs
## T_treatment 2 integer 0
## CO2_treatment 2 integer 0
## Gender integer 6
## PupalWeight double 0
## Frass double 1
##
## +-------------+----------------+
## |Variable |Levels |
## +-------------+----------------+
## |T_treatment |ambient,elevated|
## +-------------+----------------+
## |CO2_treatment|280,400 |
## +-------------+----------------+


Here, storage refers to the internal storage type of the variable: note that the factor variables are
stored as ’integer’, and other numbers as ’double’ (this refers to the precision of the number).


Try this yourself Use the describe function from the Hmisc package on the allometry data,
and compare the output to summary.
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6.2 Making summary tables


6.2.1 Summarizing vectors with tapply()


If we have the following dataset called plantdat,


and execute the command


with(plantdat, tapply(Plantbiomass, Treatment, mean))


we get the result


Note that the result is a vector (elements of a vector can have names, like columns of a dataframe).


If we have the following dataset called plantdat2,


and execute the command


with(plantdat2, tapply(Plantbiomass, list(Species, Treatment), mean))


we get the result


Note that the result here is a matrix, where A and B, the species codes, are the rownames of this
matrix.


Often, you want to summarize a variable by the levels of another variable. For example, in the rain
data (see Section A.4), the Rain variable gives daily values, but wemight want to calculate annual sums,


# Read data
rain <- read.csv("Rain.csv")
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# Annual rain totals.
with(rain, tapply(Rain, Year, FUN=sum))


## 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005
## 717.2 640.4 905.4 1021.3 693.5 791.5 645.9 691.8 709.5 678.2


The tapply function applies a function (sum) to a vector (Rain), that is split into chunks depending on
another variable (Year).


We can also use the tapply function on more than one variable at a time. Consider these examples on
the pupae data.


# Read data
pupae <- read.csv("pupae.csv")


# Average pupal weight by CO2 and T treatment:
with(pupae, tapply(PupalWeight, list(CO2_treatment, T_treatment), FUN=mean))


## ambient elevated
## 280 0.2900000 0.30492
## 400 0.3419565 0.29900


# Further split the averages, by gender of the pupae.
with(pupae, tapply(PupalWeight, list(CO2_treatment, T_treatment, Gender), FUN=mean))


## , , 0
##
## ambient elevated
## 280 0.251625 0.2700000
## 400 0.304000 0.2687143
##
## , , 1
##
## ambient elevated
## 280 0.3406000 0.3386364
## 400 0.3568333 0.3692857


As the examples show, the tapply function produces summary tables by one or more factors. The
resulting object is either a vector (when using one factor), or a matrix (as in the examples using the


pupae data).


The limitations of tapply are that you can only summarize one variable at a time, and that the result is
not a dataframe.


The main advantage of tapply is that we can use it as input to barplot, as the following example
demonstrates (Fig. 6.1)


# Pupal weight by CO2 and Gender. Result is a matrix.
pupm <- with(pupae, tapply(PupalWeight, list(CO2_treatment,Gender),


mean, na.rm=TRUE))


# When barplot is provided a matrix, it makes a grouped barplot.
# We specify xlim to make some room for the legend.
barplot(pupm, beside=TRUE, legend.text=TRUE, xlim=c(0,8),


xlab="Gender", ylab="Pupal weight")
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Figure 6.1: A grouped barplot of average pupal weight by CO2 and Gender for the pupae dataset. This


is easily achieved via the use of tapply.


6.2.2 Summarizing dataframes with summaryBy


If we have the following dataset called plantdat,


and execute the command


library(doBy)
summaryBy(Plantbiomass ~ treatment, FUN=mean, data=plantdat)


we get the result


Note that the result here is a dataframe.


156







Chapter 6 Summarizing, tabulating and merging data 6.2 Making summary tables


If we have the following dataset called plantdat2,


and execute the command


summaryBy(Plantbiomass ~ Species + Treatment, FUN=mean, data=dfr)


we get the result


Note that the result here is a dataframe.


In practice, it is often useful to make summary tables of multiple variables at once, and to end up with


a dataframe. In this book we use summaryBy, from the doBy package, to achieve this. (We ignore the
aggregate function in base R, because summaryBy is much easier to use).
With summaryBy, we can generate multiple summaries (mean, standard deviation, etc.) on more than
one variable in a dataframe at once. We can use a convenient formula interface for this. It is of the


form,


summaryBy(Yvar1 + Yvar2 ~ Groupvar1 + Groupvar2, FUN=c(mean,sd), data=mydata)


where we summarize the (numeric) variables Yvar1 and Yvar2 by all combinations of the (factor) vari-
ables Groupvar1 and Groupvar2.


# Load the doBy package
library(doBy)


# read pupae data if you have not already
pupae <- read.csv("pupae.csv")


# Get mean and standard deviation of Frass by CO2 and T treatments
summaryBy(Frass ~ CO2_treatment + T_treatment,


data=pupae, FUN=c(mean,sd))


## CO2_treatment T_treatment Frass.mean Frass.sd
## 1 280 ambient NA NA
## 2 280 elevated 1.479520 0.2387150
## 3 400 ambient 2.121783 0.4145402
## 4 400 elevated 1.912045 0.3597471
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# Note that there is a missing value. We can specify na.rm=TRUE,
# which will be passed to both mean() and sd(). It works because those
# functions recognize that argument (i.e. na.rm is NOT an argument of
# summaryBy itself!)
summaryBy(Frass ~ CO2_treatment + T_treatment,


data=pupae, FUN=c(mean,sd), na.rm=TRUE)


## CO2_treatment T_treatment Frass.mean Frass.sd
## 1 280 ambient 1.953923 0.4015635
## 2 280 elevated 1.479520 0.2387150
## 3 400 ambient 2.121783 0.4145402
## 4 400 elevated 1.912045 0.3597471


# However, if we use a function that does not recognize it, we first have to
# exclude all missing values before making a summary table, like this:
pupae_nona <- pupae[complete.cases(pupae),]


# Get mean and standard deviation for
# the pupae data (Pupal weight and Frass), by CO2 and T treatment.
# Note that length() does not recognize na.rm (see ?length), which is
# why we have excluded any NA from pupae first.
summaryBy(PupalWeight+Frass ~ CO2_treatment + T_treatment,


data=pupae_nona,
FUN=c(mean,sd,length))


## CO2_treatment T_treatment PupalWeight.mean Frass.mean PupalWeight.sd
## 1 280 ambient 0.2912500 1.957333 0.04895847
## 2 280 elevated 0.3014583 1.473167 0.05921000
## 3 400 ambient 0.3357000 2.103250 0.05886479
## 4 400 elevated 0.3022381 1.931000 0.06602189
## Frass.sd PupalWeight.length Frass.length
## 1 0.4192227 12 12
## 2 0.2416805 24 24
## 3 0.4186310 20 20
## 4 0.3571969 21 21


You can also use any function that returns a vector of results. In the following example we calculate


the 5% and 95% quantiles of all numeric variables in the allometry dataset. To do this, use . for the
left-hand side of the formula.


# . ~ species means 'all numeric variables by species'.
# Extra arguments to the function used (in this case quantile) can be set here as well,
# they will be passed to that function (see ?quantile).
summaryBy(. ~ species, data=allom, FUN=quantile, probs=c(0.05, 0.95))


## species diameter.5% diameter.95% height.5% height.95% leafarea.5%
## 1 PIMO 8.1900 70.9150 5.373000 44.675 7.540916
## 2 PIPO 11.4555 69.1300 5.903499 39.192 10.040843
## 3 PSME 6.1635 56.5385 5.276000 32.602 4.988747
## leafarea.95% branchmass.5% branchmass.95%
## 1 380.3984 4.283342 333.6408
## 2 250.1295 7.591966 655.1097
## 3 337.5367 3.515638 403.7902
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Working example : Calculate daily means and totals


Let’s look at a more advanced example using weather data collected at the Hawkesbury Forest Experi-


ment in 2008 (see Section A.10). The data given are in half-hourly time steps. It is a reasonable request


to provide data as daily averages (for temperature) and daily sums (for precipitation).


The following code produces a daily weather dataset, and Fig. 6.2.


# Read data
hfemet <- read.csv("HFEmet2008.csv")


# This is a fairly large dataset:
nrow(hfemet)


## [1] 17568


# So let's only look at the first few rows:
head(hfemet)


## DateTime Tair AirPress RH VPD PAR Rain wind winddirection
## 1 1/1/2008 0:00 16.54 101.7967 93.3 0.12656434 0 0 0 152.6
## 2 1/1/2008 0:30 16.45 101.7700 93.9 0.11457229 0 0 0 166.7
## 3 1/1/2008 1:00 16.44 101.7300 94.2 0.10886828 0 0 0 180.2
## 4 1/1/2008 1:30 16.41 101.7000 94.5 0.10304019 0 0 0 180.2
## 5 1/1/2008 2:00 16.38 101.7000 94.7 0.09910379 0 0 0 180.2
## 6 1/1/2008 2:30 16.23 101.7000 94.7 0.09816111 0 0 0 180.2


# Read the date-time
library(lubridate)
hfemet$DateTime <- mdy_hm(hfemet$DateTime)


# Add a new variable 'Date', a daily date variable
hfemet$Date <- as.Date(hfemet$DateTime)


# First aggregate some of the variables into daily means:
library(doBy)
hfemetAgg <- summaryBy(PAR + VPD + Tair ~ Date, data=hfemet, FUN=mean)
# (look at head(hfemetAgg) to check this went OK!)


#--- Now get daily total Rainfall:
hfemetSums <- summaryBy(Rain ~ Date, data=hfemet, FUN=sum)


# To finish things off, let's make a plot of daily total rainfall:
# (type='h' makes a sort of narrow bar plot)
plot(Rain.sum ~ Date, data=hfemetSums, type='h', ylab=expression(Rain~(mm~day^-1)))


6.2.3 Tables of counts


It is often useful to count the number of observations by one or more multiple factors. One option is


to use tapply or summaryBy in combination with the length function. A much better alternative is to
use the xtabs and ftable functions, in addition to the simple use of table.


Consider these examples using the Titanic data (see Section A.12).


# Read titanic data
titanic <- read.table("titanic.txt", header=TRUE)
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Figure 6.2: Daily rainfall at the HFE in 2008


# Count observations by passenger class
table(titanic$PClass)


##
## 1st 2nd 3rd
## 322 280 711


# With more grouping variables, it is more convenient to use xtabs.
# Count observations by combinations of passenger class, sex, and whether they survived:
xtabs( ~ PClass + Sex + Survived, data=titanic)


## , , Survived = 0
##
## Sex
## PClass female male
## 1st 9 120
## 2nd 13 148
## 3rd 132 441
##
## , , Survived = 1
##
## Sex
## PClass female male
## 1st 134 59
## 2nd 94 25
## 3rd 80 58


# The previous output is hard to read, consider using ftable on the result:
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ftable(xtabs( ~ PClass + Sex + Survived, data=titanic))


## Survived 0 1
## PClass Sex
## 1st female 9 134
## male 120 59
## 2nd female 13 94
## male 148 25
## 3rd female 132 80
## male 441 58


6.2.4 Adding simple summary variables to dataframes


We saw how tapply can make simple tables of averages (or totals, or other functions) of some variable
by the levels of one or more factor variables. The result of tapply is typically a vector with a length
equal to the number of levels of the factor you summarized by (see examples in Section 6.2.1).


What if you want the result of a summary that is the length of the original vector? One option is to


aggregate the dataframe with summaryBy, and merge it back to the original dataframe (see Section 6.3.1).
But we can use a shortcut.


Consider the allometry dataset, which includes tree height for three species. Suppose you want to add
a new variable ’MaxHeight’, that is the maximum tree height observed per species. We can use ave to
achieve this:


# Read data
allom <- read.csv("Allometry.csv")


# Maximum tree height by species:
allom$MaxHeight <- ave(allom$height, allom$species, FUN=max)


# Look at first few rows (or just type allom to see whole dataset)
head(allom)


## species diameter height leafarea branchmass MaxHeight
## 1 PSME 54.61 27.04 338.485622 410.24638 33.3
## 2 PSME 34.80 27.42 122.157864 83.65030 33.3
## 3 PSME 24.89 21.23 3.958274 3.51270 33.3
## 4 PSME 28.70 24.96 86.350653 73.13027 33.3
## 5 PSME 34.80 29.99 63.350906 62.39044 33.3
## 6 PSME 37.85 28.07 61.372765 53.86594 33.3


Note that you can use any function in place of max, as long as that function can take a vector as an
argument, and returns a single number.


Try this yourself If you want results similar to ave, you can use summaryBy with the argument
full.dimension=TRUE. Try summaryBy on the pupae dataset with that argument set, and compare
the result to full.dimension=FALSE, which is the default.


6.2.5 Reordering factor levels based on a summary variable


It is often useful to tabulate your data in a meaningful order. We saw that, when using summaryBy,
tapply or similar functions, that the results are always in the order of your factor levels. Recall that the
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default order is alphabetical. This is rarely what you want.


You can reorder the factor levels by some summary variable. For example,


# Reorder factor levels for 'Manufacturer' in the cereal data
# by the mean amount of sodium.


# Read data, show default (alphabetical) levels:
cereal <- read.csv("cereals.csv")
levels(cereal$Manufacturer)


## [1] "A" "G" "K" "N" "P" "Q" "R"


# Now reorder:
cereal$Manufacturer <- with(cereal, reorder(Manufacturer, sodium, median, na.rm=TRUE))
levels(cereal$Manufacturer)


## [1] "A" "N" "Q" "P" "K" "G" "R"


# And tables are now printed in order:
with(cereal, tapply(sodium, Manufacturer, median))


## A N Q P K G R
## 0.0 7.5 75.0 160.0 170.0 200.0 200.0


This trick comes in handy when making barplots; it is customary to plot them in ascending order if


there is no specific order to the factor levels, as in this example.


The following code produces Fig. 6.3.


coweeta <- read.csv("coweeta.csv")
coweeta$species <- with(coweeta, reorder(species, height, mean, na.rm=TRUE))


library(doBy)
coweeta_agg <- summaryBy(height ~ species, data=coweeta, FUN=c(mean,sd))


library(gplots)


# This par setting makes the x-axis labels vertical, so they don't overlap.
par(las=2)
with(coweeta_agg, barplot2(height.mean, names.arg=species,


space=0.3, col="red",plot.grid=TRUE,
ylab="Height (m)",
plot.ci=TRUE,
ci.l=height.mean - height.sd,
ci.u=height.mean + height.sd))


Try this yourself The above example orders the factor levels by increasing median sodium


levels. Try reversing the factor levels, using the following code after reorder.
coweeta$species <- factor(coweeta$species, levels=rev(levels(coweeta$species)))
Here we used rev to reverse the levels.
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Figure 6.3: An ordered barplot for the coweeta tree data (error bars are 1 SD).
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6.3 Combining dataframes


6.3.1 Merging dataframes


If we have the following dataset called plantdat,


and we have another dataset, that includes the same PlantID variable (but is not necessarily ordered,
nor does it have to include values for every plant):


and execute the command


merge(plantdat, leafnitrogendata, by="PlantID")


we get the result


Note the missing value (NA) for the plant for which no leaf nitrogen data was available.


In many problems, you do not have a single dataset that contains all the measurements you are inter-


ested in – unlike most of the example datasets in this tutorial. Suppose you have two datasets that you


would like to combine, or merge. This is straightforward in R, but there are some pitfalls.
Let’s start with a common situation when you need to combine two datasets that have a different


number of rows.


# Two dataframes
data1 <- data.frame(unit=c("x","x","x","y","z","z"),Time=c(1,2,3,1,1,2))
data2 <- data.frame(unit=c("y","z","x"), height=c(3.4,5.6,1.2))


# Look at the dataframes
data1


## unit Time
## 1 x 1
## 2 x 2
## 3 x 3
## 4 y 1
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## 5 z 1
## 6 z 2


data2


## unit height
## 1 y 3.4
## 2 z 5.6
## 3 x 1.2


# Merge dataframes:
combdata <- merge(data1, data2, by="unit")


# Combined data
combdata


## unit Time height
## 1 x 1 1.2
## 2 x 2 1.2
## 3 x 3 1.2
## 4 y 1 3.4
## 5 z 1 5.6
## 6 z 2 5.6


Sometimes, the variable you are merging with has a different name in either dataframe. In that case,


you can either rename the variable before merging, or use the following option:


merge(data1, data2, by.x="unit", by.y="item")


Where data1 has a variable called ’unit’, and data2 has a variable called ’item’.


Other times you need to merge two dataframes with multiple key variables. Consider this example,


where two dataframes have measurements on the same units at some of the the same times, but on


different variables:


# Two dataframes
data1 <- data.frame(unit=c("x","x","x","y","y","y","z","z","z"),
Time=c(1,2,3,1,2,3,1,2,3),
Weight=c(3.1,5.2,6.9,2.2,5.1,7.5,3.5,6.1,8.0))
data2 <- data.frame(unit=c("x","x","y","y","z","z"),
Time=c(1,2,2,3,1,3),
Height=c(12.1,24.4,18.0,30.8,10.4,32.9))


# Look at the dataframes
data1


## unit Time Weight
## 1 x 1 3.1
## 2 x 2 5.2
## 3 x 3 6.9
## 4 y 1 2.2
## 5 y 2 5.1
## 6 y 3 7.5
## 7 z 1 3.5
## 8 z 2 6.1
## 9 z 3 8.0


data2


## unit Time Height
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## 1 x 1 12.1
## 2 x 2 24.4
## 3 y 2 18.0
## 4 y 3 30.8
## 5 z 1 10.4
## 6 z 3 32.9


# Merge dataframes:
combdata <- merge(data1, data2, by=c("unit","Time"))


# By default, only those times appear in the dataset that have measurements
# for both Weight (data1) and Height (data2)
combdata


## unit Time Weight Height
## 1 x 1 3.1 12.1
## 2 x 2 5.2 24.4
## 3 y 2 5.1 18.0
## 4 y 3 7.5 30.8
## 5 z 1 3.5 10.4
## 6 z 3 8.0 32.9


# To include all data, use this command. This produces missing values for some times:
merge(data1, data2, by=c("unit","Time"), all=TRUE)


## unit Time Weight Height
## 1 x 1 3.1 12.1
## 2 x 2 5.2 24.4
## 3 x 3 6.9 NA
## 4 y 1 2.2 NA
## 5 y 2 5.1 18.0
## 6 y 3 7.5 30.8
## 7 z 1 3.5 10.4
## 8 z 2 6.1 NA
## 9 z 3 8.0 32.9


# Compare this result with 'combdata' above!


Merging multiple datasets


Consider the cereal dataset (Section A.7), which gives measurements of all sorts of contents of cereals.


Suppose the measurements for ’protein’, ’vitamins’ and ’sugars’ were all produced by different labs,


and each lab sends you a separate dataset. To make things worse, some measurements for sugars


and vitamins are missing, because samples were lost in those labs.


How to put things together?


# Read the three datasets given to you from the three different labs:
cereal1 <- read.csv("cereal1.csv")
cereal2 <- read.csv("cereal2.csv")
cereal3 <- read.csv("cereal3.csv")


# Look at the datasets:
cereal1


## Cereal.name protein
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## 1 Frosted_Flakes 1
## 2 Product_19 3
## 3 Count_Chocula 1
## 4 Wheat_Chex 3
## 5 Honey-comb 1
## 6 Shredded_Wheat_spoon_size 3
## 7 Mueslix_Crispy_Blend 3
## 8 Grape_Nuts_Flakes 3
## 9 Strawberry_Fruit_Wheats 2
## 10 Cheerios 6


cereal2


## cerealbrand vitamins
## 1 Product_19 100
## 2 Count_Chocula 25
## 3 Wheat_Chex 25
## 4 Honey-comb 25
## 5 Shredded_Wheat_spoon_size 0
## 6 Mueslix_Crispy_Blend 25
## 7 Grape_Nuts_Flakes 25
## 8 Cheerios 25


cereal3


## cerealname sugars
## 1 Frosted_Flakes 11
## 2 Product_19 3
## 3 Mueslix_Crispy_Blend 13
## 4 Grape_Nuts_Flakes 5
## 5 Strawberry_Fruit_Wheats 5
## 6 Cheerios 1


# Note that the number of rows is different between the datasets,
# and even the index name ('Cereal.name') differs between the datasets.


# To merge them all together, use merge() twice, like this.
cerealdata <- merge(cereal1, cereal2,


by.x="Cereal.name",
by.y="cerealbrand", all.x=TRUE)


# NOTE: all.x=TRUE specifies to keep all rows in cereal1 that do not exist in cereal2.


# Then merge again:
cerealdata <- merge(cerealdata, cereal3,


by.x="Cereal.name",
by.y="cerealname", all.x=TRUE)


# And double check the final result
cerealdata


## Cereal.name protein vitamins sugars
## 1 Cheerios 6 25 1
## 2 Count_Chocula 1 25 NA
## 3 Frosted_Flakes 1 NA 11
## 4 Grape_Nuts_Flakes 3 25 5
## 5 Honey-comb 1 25 NA
## 6 Mueslix_Crispy_Blend 3 25 13
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## 7 Product_19 3 100 3
## 8 Shredded_Wheat_spoon_size 3 0 NA
## 9 Strawberry_Fruit_Wheats 2 NA 5
## 10 Wheat_Chex 3 25 NA


# Note that missing values (NA) have been inserted where some data was not available.


6.3.2 Row-binding dataframes


If we have the following dataset called plantdat,


and we have another dataset (plantdatmore), with exactly the same columns (including the names and
order of the columns),


and execute the command


rbind(plantdat, plantdatmore)


we get the result


Using merge, we are able to glue dataframes together side-by-side based on one or more ’index’ vari-
ables. Sometimes you have multiple datasets that can be glued together top-to-bottom, for example


when you have multiple very similar dataframes. We can use the rbind function, like so:


# Some fake data
mydata1 <- data.frame(var1=1:3, var2=5:7)
mydata2 <- data.frame(var1=4:6, var2=8:10)


# The dataframes have the same column names, in the same order:
mydata1


## var1 var2
## 1 1 5
## 2 2 6
## 3 3 7


mydata2


## var1 var2
## 1 4 8
## 2 5 9
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## 3 6 10


# So we can use rbind to row-bind them together:
rbind(mydata1, mydata2)


## var1 var2
## 1 1 5
## 2 2 6
## 3 3 7
## 4 4 8
## 5 5 9
## 6 6 10


Let’s look at the above rbind example again but with a modification where some observations are
duplicated between dataframes. This might happen, for example, when working with files containing


time-series data and where there is some overlap between the two datasets. The union function from
the dplyr package only returns unique observations:


# Some fake data
mydata1 <- data.frame(var1=1:3, var2=5:7)
mydata2 <- data.frame(var1=2:4, var2=6:8)


# The dataframes have the same column names, in the same order:
mydata1


## var1 var2
## 1 1 5
## 2 2 6
## 3 3 7


mydata2


## var1 var2
## 1 2 6
## 2 3 7
## 3 4 8


# 'rbind' leads to duplicate observations, 'union' removes these:
library(dplyr)
union(mydata1, mydata2)


## var1 var2
## 1 4 8
## 2 3 7
## 3 2 6
## 4 1 5


rbind(mydata1, mydata2)


## var1 var2
## 1 1 5
## 2 2 6
## 3 3 7
## 4 2 6
## 5 3 7
## 6 4 8


Sometimes, you want to rbind dataframes together but the column names do not exactly match. One
option is to first process the dataframes so that they do match (using subscripting). Or, just use the


bind_rows function from the dplyr package. Look at this example where we have two dataframes
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that have only one column in common, but we want to keep all the columns (and fill with NA where


necessary),


# Some fake data
mydata1 <- data.frame(index=c("A","B","C"), var1=5:7)
mydata2 <- data.frame(var1=8:10, species=c("one","two","three"))


# smartbind the dataframes together
bind_rows(mydata1, mydata2)


## index var1 species
## 1 A 5 <NA>
## 2 B 6 <NA>
## 3 C 7 <NA>
## 4 <NA> 8 one
## 5 <NA> 9 two
## 6 <NA> 10 three


Note: an equivalent function to bind dataframes side-by-side is cbind, which can be used instead of
merge when no index variables are present. However, in this book, the use of cbind is discouraged for
dataframes (and we don’t discuss matrices), as it can lead to problems that are difficult to fix.


Try this yourself The dplyr package contains a number of functions for merging dataframes
that may be more intuitive to you than merge. For example, left_join(mydata1, mydata2)
keeps all rows from mydata1 after merging the two dataframes, while right_join(mydata1,
mydata2) keeps all rows from mydata2. Read more about the dplyr functions for joining tables
at ?dplyr::join, and try to recreate the examples above using these functions instead of merge.


6.4 Exporting summary tables


To export summary tables generatedwith aggregate, tapply or table to text files, you can use write.csv
or write.table just like you do for exporting dataframes (see Section 2.4).


For example,


cereals <- read.csv("cereals.csv")


# Save a table as an object
mytable <- with(cereals, table(Manufacturer, Cold.or.Hot))


# Write to file
write.csv(mytable, "cerealtable.csv")


6.4.1 Inserting tables into documents using R markdown


How do we insert tables from R into Microsoft Word (for example, results from tapply or aggregate)?
The best way is, of course, to use R markdown. There are now several packages that make it easy to


produce tables in markdown, and from there, markdown easily converts them into Word. First, we’ll


need some suitable data. We’ll start by making a summary table of the pupae dataset we loaded earlier


in the chapter.
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# Load the doBy package
library(doBy)


# read pupae data if you have not already
pupae <- read.csv("pupae.csv")


# Make a table of means and SD of the pupae data
puptab <- summaryBy(Frass + PupalWeight ~ CO2_treatment + T_treatment,


FUN=c(mean,sd), data=pupae, na.rm=TRUE)


# It is more convenient to reorder the dataframe to have sd and mean
# together.
puptab <- puptab[,c("CO2_treatment","T_treatment",


"Frass.mean","Frass.sd",
"PupalWeight.mean","PupalWeight.sd")]


# Give the columns short, easy to type names
names(puptab) <- c("CO2","T","Frass","SD.1","PupalWeight","SD.2")


# Convert temperature, which is a factor, to a character variable
# (Factors don't work well with the data-reshaping that takes place in pixiedust)
puptab$T <- as.character(puptab$T)


To insert any of the following code into a markdown document, use the following around each code


chunk:


```{r echo=TRUE, results="asis"}
```


Tables with kable


We’ll start with the kable function from the knitr package. The knitr package provides the function-
ality behind RStudio’s markdown interface, so, if you have been using markdown, you don’t need to


install anything extra to use kable. This function is simple, robust and offers the ability to easily add
captions in Word.


library(knitr)
kable(puptab, caption="Table 1. Summary stats for the pupae data.")


If you run this in the console, you’ll see a markdown table. Knitting your markdown document as


"Word" will result in a Word document with a table and a nice caption. You can rename the table


columns using the col.names argument (just be sure to get them in the same order!)


As you’ll see in the next example, you can also use markdown formatting within the table – note the


addition of a subscript to CO2.


kable(puptab, caption="Table 1. Summary stats for the pupae data.",
col.names=c("CO~ 2~ Treatment","Temperature","Frass","SD","Pupal Weight", "SD"))


Other things that are easily controlled using kable are the number of digits shown in numeric columns
(digits), row names (row.names), and the alignment of each column (align).


kable(puptab, caption="Table 1. Summary stats for the pupae data.",
col.names=c("CO~ 2~ Treatment","Temperature","Frass","SD","Pupal Weight", "SD"),
digits=1,
align=c('l','c','r')) # Values will be recycled to match number of columns
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Tables with pander


Other options for creating tables in markdown include the function pander from the pander package.
This function is designed to translate a wide range of input into markdown format. When you give


it input it can recognize as a table, it will output a markdown table. Like kable, it can take a caption
argument.


library(pander)
pander(puptab, caption = "Table 1. Summary stats for the pupae data")


One of the advantages of pander is that it can accept a broader range of input than kable. For instance,
it can make tables out of the results produced by linear models (something we’ll discuss in Chapter 7.)


Formatting options available in pander include options for rounding, cell alignment (including dynamic
alignments based on cell values), and adding emphasis, such as italic or bold formatting (which can


also be set dynamically).


library(pander)


# Cell and row emphasis are set before calling pander,
# using functions that start with 'emphasize.':
# emphasize.strong.rows, emphasize.strong.cols, emphasize.strong.cells,
# emphasize.italics.rows, emphasize.italics.cols, emphasize.italics.cells
emphasize.strong.cols(1)
emphasize.italics.cells(which(puptab == "elevated", arr.ind = TRUE))
pander(puptab,


caption = "Table 1. Summary stats for the pupae data, with cell formatting",
# for <justify>, length must match number of columns
justify = c('left', 'center', 'right','right','right','right'),
round=3)


There are also options to set what type of table you would like (e.g., grid, simple, or multiline), cell
width, line breaking within cells, hyphenation, what kind of decimal markers to use, and how replace


missing values. For more details on these, see the pander vignettes, or ?pandoc.table.return.


Tables with pixiedust


A third option for formatting tables is the imaginatively-named pixiedust package. The syntax used by
pixiedust is a bit different the other packages we’ve discussed so far. It starts with the function dust,
then sends the results of addition options (called ’sprinkles’) to dust using the symbols %>%, which are
known as the pipe operator. To make a markdown table, use the ’markdown’ sprinkle:


# pixiedust requires broom for table formatting
library(broom)
library(pixiedust)


dust(puptab) %>%
sprinkle_print_method("markdown")


There are a range of formatting options similar to those available in pander, including bold, italic, a
missing data string, and rounding. Each of these is added as a new sprinkle. Cells are specified by row


and column:


dust(puptab) %>%
sprinkle_print_method("markdown") %>%
sprinkle(rows = c(2, 4), bold = TRUE) %>%
sprinkle(rows = c(3, 4), cols=c(1, 1), italic = TRUE) %>%
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sprinkle(round = 1)


It is also possible to add captions, change column names, and replace the contents of a given cell


during formatting.


# Captions are added to the dust() function
dust(puptab, caption="Table 1. Summary stats for the pupae data,


formatted with pixiedust") %>%
# Note that identical column names are not allowed
sprinkle_colnames("CO2 Treatment","Temperature","Frass","Frass SD",


"Pupal Weight", "Weight SD") %>%
# Replacement must have the same length as what it replaces
sprinkle(cols = 1, replace =


c("ambient", "ambient", "elevated", "elevated")) %>%
sprinkle_print_method("markdown")


If you use latex or html, you will want to look into this package further, as it has a number of special


’sprinkles’ for these formats.


Further reading If you want to know more about kable, the help page has a thorough expla-
nation. Type ?kable at the command line. There is a good introduction to pander called "Render-
ing tables with pandoc.table" at https://cran.r-project.org/web/packages/pander/vignettes/
pandoc_table.html. (Don’t be confused by the name; pandoc.table is the table function hidden
under the hood of pander.) Likewise, pixiedust has a good introductory vignette called "Creat-
ing magic with pixiedust" at https://cran.r-project.org/web/packages/pixiedust/vignettes/
pixiedust.html. For a list of all of the pixiedust ’sprinkles’ available, see https://cran.r-project.
org/web/packages/pixiedust/vignettes/sprinkles.html.
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6.5 Exercises


In these exercises, we use the following colour codes:


∎ Easy: make sure you complete some of these before moving on. These exercises will follow
examples in the text very closely.


⧫ Intermediate: a bit harder. You will often have to combine functions to solve the exercise in
two steps.


▲ Hard: difficult exercises! These exercises will require multiple steps, and significant departure
from examples in the text.


We suggest you complete these exercises in an R markdown file. This will allow you to combine code
chunks, graphical output, and written answers in a single, easy-to-read file.


6.5.1 Summarizing the cereal data


1. ∎ Read the cereal data, and produce quick summaries using str, summary, contents and describe
(recall that the last two are in the Hmisc package). Interpret the results.


2. ∎ Find the average sodium, fiber and carbohydrate contents by Manufacturer.


3. ∎ Add a new variable ’SodiumClass’, which is ’high’ when sodium >150 and ’low’ otherwise. Make


sure the new variable is a factor. Look at the examples in Section 3.2 to recall how to do this.


Now, find the average, minimum and maximum sugar content for ’low’ and ’high’ sodium. Hint:
make sure to use na.rm=TRUE, because the dataset contains missing values.


4. ⧫ Find the maximum sugar content by Manufacturer and sodiumClass, using tapply. Inspect the
result and notice there are missing values. Try to use na.rm=TRUE as an additional argument to
tapply, only to find out that the values are still missing. Finally, use xtabs (see Section 6.2.3, p. 159)
to count the number of observations by the two factors to find out we have missing values in the


tapply result.


5. ∎ Repeat the previous question with summaryBy. Compare the results.


6. ∎ Count the number of observations by Manufacturer and whether the cereal is ’hot’ or ’cold’,


using xtabs (see Section 6.2.3, p. 159).


6.5.2 Words and the weather


1. ∎ Using the ’Age and memory’ dataset (first read Section A.11 on p. 251 how to read this dataset),


find the mean and maximum number of words recalled by ’Older’ and ’Younger’ age classes.


2. ⧫ Using the HFE weather dataset (see Section A.10, p. 251), find the mean air temperature by


month. To do this, first add the month variable as shown in Section 3.6.2 (p. 73).


6.5.3 Merge new data onto the pupae data


1. ∎ First read the pupae data (see Section A.6, p. 248). Also read this short dataset, which gives a


label ’roomnumber’ for each CO2 treatment.


|CO2_treatment |Roomnumber |
|-------------:|-----------:|
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|280 |1 |
|400 |2 |


To read this dataset, consider the data.frame function described in Section 2.1.2 (p. 40).


2. ∎Merge the short dataset onto the pupae data. Check the result.


6.5.4 Merging multiple datasets


Read Section 6.3.1 (p. 166) before trying this exercise.


First, run the following code to construct three dataframes that we will attempt to merge together.


dataset1 <- data.frame(unit=letters[1:9], treatment=rep(LETTERS[1:3],each=3),
Damage=runif(9,50,100))


unitweight <- data.frame(unit=letters[c(1,2,4,6,8,9)], Weight = rnorm(6,100,0.3))
treatlocation <- data.frame(treatment=LETTERS[1:3], Glasshouse=c("G1","G2","G3"))


1. ⧫ Merge the three datasets together, to end up with one dataframe that has the columns ’unit’,


’treatment’, ’Glasshouse’, ’Damage’ and ’Weight’. Some units do not havemeasurements of Weight.
Merge the datasets in two ways to either include or exclude the units without Weight measure-
ments.


6.5.5 Ordered boxplot


1. First recall Section 4.3.5 (p. 95), and produce Fig. 4.8 (p. 96).


2. ⧫ Now, redraw the plot with Manufacturer in order of increasing mean sodium content (use


reorder, see Section 6.2.5 on p. 161).


3. ⧫ Inspect the help page ?boxplot, and change the boxplots so that the width varies with the
number of observations per manufacturer (Hint: find the varwidth argument).


6.5.6 Variances in the I x F


Here, we use the tree inventory data from the irrigation by fertilization (I x F) experiment in the Hawkes-


bury Forest Experiment (HFE) (see Section A.15, p. 252).


1. ⧫ Use only data from 2012 for this exercise. You can use the file ‘HFEIFplotmeans2012.csv’ if you


want to skip this step.


2. ⧫ There are four treatments in the dataframe. Calculate the variance of diameter for each of the


treatments (this should give four values). These are the within-treatment variances. Also calculate
the variance of tree diameter across all plots (this is one number). This is the plot-to-plot variance.


3. ⧫ In 2, also calculate the mean within-treatment variance. Compare the value to the plot-to-plot


variance. What can you tentatively conclude about the treatment effect?


6.5.7 Weight loss


This exercise brings together many of the skills from the previous chapters.


Consider a dataset of sequential measurements of a person’s weight while on a diet (the ’weightloss’


dataset, see Section A.5 on p. 248).
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1. ∎ Read the dataset (‘weightloss.csv’), and convert the ’Date’ variable to the Date class. See Sec-
tion 3.6.1 for converting the date, and note the example in Section 3.6.2.1 (p. 75).


2. ∎ Add a new variable to the dataset, with the subjects’s weight in kilograms (kg) (1 kg = 2.204


pounds).


3. ∎ Produce a line plot that shows weight (in kg) versus time.


4. ▲ The problem with the plot you just produced is that all measurements are connected by a line,


although we would like to have line breaks for the days where the weight was not measured. To


do this, construct a dataframe based on the weightloss dataset that has daily values. Hints:


• Make an entirely new dataframe, with a Date variable, ranging from the first to last days in


the weightloss dataset, with a step of one day (see Section 3.6.2.1, p. 75).


• Using merge, paste the Weight data onto this new dataframe. Check for missing values. Use
the new dataframe to make the plot.


5. ▲ Based on the new dataframe you just produced, graph the daily change in weight versus time.


Also add a dashed horizontal line at y=0.
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Linear modelling


7.1 One-way ANOVA


Remember that in Chapter 5 we learned how to compare two means using a two sample t-test. In the
simplest case, we assumed that the samples came from populations with the same variance. One-way


ANOVA (ANalysis Of VAriance) can be used to compare means across more than two populations. We


will not go into the theory here, but the foundation of ANOVA is comparing the variation between the
group means to the variation within the groups (using an F-statistic).


We can use either the aov function or lm to perform ANOVAs. We will focus exclusively on the latter as
it can be generalized more easily to other models. The use of aov is only appropriate when you have a
balanced design (i.e., the same sample sizes in each of your groups).


To use lm for an ANOVA, we need a dataframe containing a (continuous) response variable and a factor
variable that defines the groups. For example, in the Coweeta dataset, the species variable is a factor


that defines groups by species. We can compute (for example) the mean height by species. Let’s look


at an example using the Coweeta data, but with only four species to simplify the output.


coweeta <- read.csv("coweeta.csv")


# Take a subset and drop empty levels with droplevels.
cowsub <- droplevels(subset(coweeta, species %in% c("cofl","bele","oxar","quru")))


# Quick summary table
with(cowsub, tapply(height, species, mean))


## bele cofl oxar quru
## 21.86700 6.79750 16.50500 21.10556


We might want to ask, does the mean height vary by species? Before you do any test for significance,


a graphical summary of the data is always useful. For this type of data, box plots are preferred since


they visualize not just the means but also the spread of the data (see also Section 4.3.5) (Fig. 7.1).


boxplot(height~species, data=cowsub)


It seems like some of the species differences are quite large. We can fit a one-way ANOVA with lm, like
so:


fit1 <- lm(height ~ species, data=cowsub)
fit1


177







Chapter 7 Linear modelling 7.1 One-way ANOVA
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Figure 7.1: Simple box plot for the Coweeta data.


##
## Call:
## lm(formula = height ~ species, data = cowsub)
##
## Coefficients:
## (Intercept) speciescofl speciesoxar speciesquru
## 21.8670 -15.0695 -5.3620 -0.7614


Notice the four estimated Coefficients, these represent the so-called contrasts. In this case, Intercept
represents the mean of the first species, bele. The next three coefficients are the differences between
each species and the first (e.g., species cofl has a mean that is -15.07 lower than bele).


We can get more details of the fit using summary.


summary(fit1)


##
## Call:
## lm(formula = height ~ species, data = cowsub)
##
## Residuals:
## Min 1Q Median 3Q Max
## -11.405 -2.062 0.695 3.299 8.194
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 21.8670 1.5645 13.977 7.02e-14 ***
## speciescofl -15.0695 2.9268 -5.149 2.04e-05 ***
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## speciesoxar -5.3620 2.3467 -2.285 0.0304 *
## speciesquru -0.7614 2.2731 -0.335 0.7402
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4.947 on 27 degrees of freedom
## Multiple R-squared: 0.5326,Adjusted R-squared: 0.4807
## F-statistic: 10.26 on 3 and 27 DF, p-value: 0.0001111


This gives us a t-statistic (and p-value) for each coefficient, for a test where the value is compared to
zero. Not surprisingly the Intercept (i.e., the mean for the first species) is significantly different from
zero (as indicated by the very small p-value). Two of the next three coefficients are also significantly


different from zero.


At the end of the summary, the F-statistic and corresponding p-value are shown. This p-value tells us
whether the whole model is significant. In this case, it is comparing a model with four coefficients (one


for each species) to a model that just has the samemean for all groups. In this case, the model is highly


significant – i.e. there is evidence of different means for each group. In other words, a model where the


mean varies between the four species performs much better than a model with a single grand mean.


7.1.1 Multiple comparisons


The ANOVA, as used in the previous section, gives us a single p-value for the overall ’species effect’. The


summary statement further shows whether individual species are different from the first level in the


model, which is not always useful. If we want to know whether the four species were all different from


each other, we can use a multiple comparison test.


Warning: Multiple comparisons on linear models where you have more than one factor variable are
tricky! Read the help page ?glht for more information.


We will use the glht function from the multcomp package (as a side note, base R includes the TukeyHSD
function, but that does not work with lm, only with aov).


# First fit the linear model again (a one-way ANOVA,
# because species is a factor)
lmSpec <- lm(height ~ species, data=cowsub)


# Load package
library(multcomp)


# Make a 'general linear hypothesis' object, Tukey style.
# (Note many other options in ?glht)
tukey_Spec <- glht(lmSpec, linfct=mcp(species="Tukey"))


# Print a summary. This shows p-values for the null hypotheses
# that species A is no different from species B, and so on.
summary(tukey_Spec)


##
## Simultaneous Tests for General Linear Hypotheses
##
## Multiple Comparisons of Means: Tukey Contrasts
##
##
## Fit: lm(formula = height ~ species, data = cowsub)
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##
## Linear Hypotheses:
## Estimate Std. Error t value Pr(>|t|)
## cofl - bele == 0 -15.0695 2.9268 -5.149 <0.001 ***
## oxar - bele == 0 -5.3620 2.3467 -2.285 0.1247
## quru - bele == 0 -0.7614 2.2731 -0.335 0.9866
## oxar - cofl == 0 9.7075 3.0295 3.204 0.0167 *
## quru - cofl == 0 14.3081 2.9729 4.813 <0.001 ***
## quru - oxar == 0 4.6006 2.4039 1.914 0.2433
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)


# Some of the species are different from each other, but not all.


Try this yourself In the above summary of the multiple comparison (summary(tukey_Spec)),
the p-values are adjusted for multiple comparisons with the so-called ’single-step method’. To use


a different method for the correction (there are many), try the following example:


summary(tukey_Spec, test=adjusted("Shaffer"))
Also look at the other options in the help pages for ?adjusted and ?p.adjust.


We can also produce a quick plot of the multiple comparison, which shows the pair-wise differences


between the species with confidence intervals.


This code produces Fig. 7.2.


# A plot of a fitted 'glht' object (multiple comparison)
plot(tukey_Spec)


7.2 Two-way ANOVA


Sometimes there are two (or more) treatment factors. The ’age and memory’ dataset (see Section A.11)
includes the number of words remembered from a list for two age groups and fivememory techniques.


This dataset is balanced, as shown below. in a table of counts for each of the combinations. First we fit


a linear model of themain effects.
# Read tab-delimited data
memory <- read.table("eysenck.txt", header=TRUE)


# To make the later results easier to interpret, reorder the Process
# factor by the average number of words remembered.
memory$Process <- with(memory, reorder(Process, Words, mean))


# Count nr of observations
xtabs( ~ Age + Process, data=memory)


## Process
## Age Counting Rhyming Adjective Imagery Intentional
## Older 10 10 10 10 10
## Younger 10 10 10 10 10


# Fit linear model
fit2 <- lm(Words ~ Age + Process, data=memory)
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Figure 7.2: A standard plot of a multiple comparison.


summary(fit2)


##
## Call:
## lm(formula = Words ~ Age + Process, data = memory)
##
## Residuals:
## Min 1Q Median 3Q Max
## -9.100 -2.225 -0.250 1.800 9.050
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.2000 0.7632 6.813 8.99e-10 ***
## AgeYounger 3.1000 0.6232 4.975 2.94e-06 ***
## ProcessRhyming 0.5000 0.9853 0.507 0.613
## ProcessAdjective 6.1500 0.9853 6.242 1.24e-08 ***
## ProcessImagery 8.7500 0.9853 8.880 4.41e-14 ***
## ProcessIntentional 8.9000 0.9853 9.033 2.10e-14 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.116 on 94 degrees of freedom
## Multiple R-squared: 0.6579,Adjusted R-squared: 0.6397
## F-statistic: 36.16 on 5 and 94 DF, p-value: < 2.2e-16


The summary of the fitted model displays the individual t-statistics for each estimated coefficient. As
with the one-way ANOVA, the significance tests for each coefficient are performed relative to the base
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level (by default, the first level of the factor). In this case, for the Age factor, the Older is the first level,
and for the Process factor, Adjective is the first level. Thus all other coefficients are tested relative
to the "Older/Adjective" group. The F-statistic at the end is for the overall model, it tests whether the
model is significantly better than a model that includes only a mean count.


If we want to see whether Age and/or Process have an effect, we need F-statistics for these terms.
Throughout this book, to compute p-values for terms in linear models, we use the Anova function from
the car package.


# Perform an ANOVA on a fitted model, giving F-statistics
library(car)
Anova(fit2)


## Anova Table (Type II tests)
##
## Response: Words
## Sum Sq Df F value Pr(>F)
## Age 240.25 1 24.746 2.943e-06 ***
## Process 1514.94 4 39.011 < 2.2e-16 ***
## Residuals 912.60 94
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1


In this form, the F-statistic is formed by comparing models that do not include the term, but include all
others. For example, Age is tested by comparing the full model against a model that includes all other
terms (in this case, just Process).


7.2.1 Interactions


An important question when we have more than one factor in an experiment is whether there are any


interactions. For example, do Process effects differ for the two Age groups, or are they simply additive?
We can add interactions to a model by modifying the formula. An interaction is indicated using a ":".
We can also include allmain effects and interactions using the * operator.
# Two equivalent ways of specifying a linear model that includes all main effects
# and interactions:
fit3 <- lm(Words ~ Age + Process + Age:Process, data=memory)


# Is the same as:
fit3.2 <- lm(Words ~ Age * Process, data=memory)
Anova(fit3.2)


## Anova Table (Type II tests)
##
## Response: Words
## Sum Sq Df F value Pr(>F)
## Age 240.25 1 29.9356 3.981e-07 ***
## Process 1514.94 4 47.1911 < 2.2e-16 ***
## Age:Process 190.30 4 5.9279 0.0002793 ***
## Residuals 722.30 90
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1


The Anova table shows that the interaction is significant. When an interaction is significant, this tells
you nothing about the direction or magnitude of the interaction term. You can inspect the estimated


coefficients in the summary output, but we recommend to first visualize the interaction with simple
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Figure 7.3: An interaction plot for the memory data, indicating a strong interaction (because the lines


are not parallel).


plots, as the coefficients can be easily misinterpreted. One way to visualize the interaction is to use the


interaction.plot function, as in the following example.


This code produces Fig. 7.3. If there were no interaction between the two factor variables, you would


expect to see a series of parallel lines (because the effects of Process and Agewould simply be additive).


# Plot the number of words rememberd by Age and Process
# This standard plot can be customized in various ways, see ?interaction.plot
with(memory, interaction.plot(Age, Process, Words))


7.2.1.1 More multiple comparisons


In section 7.1.1, we introduced the glht package for conducting multiple comparisons testing the sig-
nificance of differences between levels within a factor. When there is a signficant interaction term, we


might want to know under what levels of one factor is the effect of another factor signficant. This can


be done easily using functions in the emmeans package.


# Load package
library(emmeans)


# Estimate marginal means associated with 'Age' for each level of 'Process'
fit3.emm <- emmeans(fit3, ~ Age | Process)


# Calculate p-values for each pairwise contrast
pairs(fit3.emm)


## Process = Counting:
## contrast estimate SE df t.ratio p.value
## Older - Younger 0.5 1.26693 90 0.395 0.6940
##
## Process = Rhyming:
## contrast estimate SE df t.ratio p.value
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## Older - Younger -0.7 1.26693 90 -0.553 0.5820
##
## Process = Adjective:
## contrast estimate SE df t.ratio p.value
## Older - Younger -3.8 1.26693 90 -2.999 0.0035
##
## Process = Imagery:
## contrast estimate SE df t.ratio p.value
## Older - Younger -4.2 1.26693 90 -3.315 0.0013
##
## Process = Intentional:
## contrast estimate SE df t.ratio p.value
## Older - Younger -7.3 1.26693 90 -5.762 <.0001


Using the pairs function on an emmGrid object returns effect sizes and significance tests for each pair-
wise contrast. In this example, we can see that older subjects remember signficantly fewer words than


younger ones when using the Adjective, Imagery and Intentional processes but not the Counting or


Rhyming processes. Alternatively, we may want to contrast different processes within each level of


Age. Here it is helpful to use the cld function to identify groups of levels that are not significantly
different.


# Estimate marginal means associated with 'Process' for each level of 'Age'
fit3.emm.2 <- emmeans(fit3, ~ Process | Age)


# Identify groups of processes for which the processes are similar
cld(fit3.emm.2)


## Age = Older:
## Process emmean SE df lower.CL upper.CL .group
## Rhyming 6.9 0.8958547 90 5.120228 8.679772 1
## Counting 7.0 0.8958547 90 5.220228 8.779772 1
## Adjective 11.0 0.8958547 90 9.220228 12.779772 2
## Intentional 12.0 0.8958547 90 10.220228 13.779772 2
## Imagery 13.4 0.8958547 90 11.620228 15.179772 2
##
## Age = Younger:
## Process emmean SE df lower.CL upper.CL .group
## Counting 6.5 0.8958547 90 4.720228 8.279772 1
## Rhyming 7.6 0.8958547 90 5.820228 9.379772 1
## Adjective 14.8 0.8958547 90 13.020228 16.579772 2
## Imagery 17.6 0.8958547 90 15.820228 19.379772 23
## Intentional 19.3 0.8958547 90 17.520228 21.079772 3
##
## Confidence level used: 0.95
## P value adjustment: tukey method for comparing a family of 5 estimates
## significance level used: alpha = 0.05


The resulting groups can then be used, for example, to determine which letter(s) should be placed


above each treatment in a barplot.


7.2.2 Comparing models


In the above example, we fitted two models for the Memory dataset: one without, and one with the


interaction between Process and Age. We assessed the significance of the interaction by inspecting the
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p-value for the Age:Process term in the Anova statement. Another possibility is to perform a likelihood
ratio test on two ’nested’ models, the model that includes the term, and a model that excludes it. We


can perform a likelihood ratio test with the anova function, not to be confused with Anova from the car
package!


1


# We can perform an anova on two models to compare the fit.
# Note that one model must be a subset of the other model.
# In this case, the second model has the same predictors as the first plus
# the interaction, and the likelihood ratio test thus tests the interaction.
anova(fit2,fit3)


## Analysis of Variance Table
##
## Model 1: Words ~ Age + Process
## Model 2: Words ~ Age + Process + Age:Process
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 94 912.6
## 2 90 722.3 4 190.3 5.9279 0.0002793 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1


A second common way to compare different models is by the AIC (Akaike’s Information Criterion), which
is calculated based on the likelihood (a sort of goodness of fit), and penalized for the number of param-


eters (i.e. number of predictors in the model). The model with the lowest AIC is the preferred model.


Calculating the AIC is simple,


AIC(fit2, fit3)


## df AIC
## fit2 7 518.9005
## fit3 11 503.5147


We once again conclude that the interaction improved the model fit substantially.


7.2.3 Diagnostics


The standard ANOVA assumes normality of the residuals, and we should always check this assumption


with some diagnostic plots (Fig. 7.4). Although R has built-in diagnostic plots, we prefer the use of
qqPlot and residualPlot, both from the car package.


par(mfrow=c(1,2))


library(car)


# Residuals vs. fitted
residualPlot(fit3)


# QQ-plot of the residuals
qqPlot(fit3)


## [1] 26 86


The QQ-plot shows some slight non-normality in the upper right. The non-normality probably stems


from the fact that the Words variable is a ’count’ variable. We will return to this in Section 7.5.
1
Youmay have seen the use of anova on a singlemodel, which also gives an ANOVA table but is confusing because a sequential


(Type-I) test is performed, which we strongly advise against as it is never the most intuitive test of effects.
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Figure 7.4: Simple diagnostic plots for the Memory ANOVA.


Try this yourself Check whether a log-transformation of Wordsmakes the residuals closer to
normally distributed.


7.3 Multiple linear regression


In Chapter 5, we introduced simple linear regression. We use this method to study the relationship


between two continuous variables: a response (’y variable’) and a predictor (or independent variable)
(’x variable’). We can use multiple regression to study the relationship between a response and more


than one predictor. For example, in the Allometry dataset (see Section A.1), we might expect that leaf


area depends on both tree diameter and height. We test this idea in the following example.


The first step should always be to inspect the data visually. In this case, let’s make two simple scatter


plots (Fig. 7.5).


# Read the data, if you haven't already
allom <- read.csv("allometry.csv")


# Two simple scatter plots on a log-log scale
par(mfrow=c(1,2))
plot(leafarea~diameter, data=allom, log="xy")
plot(leafarea~height, data=allom, log="xy")


These plots are shown on a log-log scale, and it certainly looks like there is a relationship between leaf


area and diameter as well as height. However, since diameter and height are probably correlated we


need to take a close look at a linear model to understand what is going on.


We are going to fit a model that looks like, using statistical notation,


y = α + β1x1 + β2x2 + ε (7.1)


where α is the intercept, x1 and x2 are the two predictors (height and diameter), andthe two slopes are
β1 and β2. We are particularly interested in testing for significant effect of both predictors, which is
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Figure 7.5: Leaf area as a function of height and diameter (note the log-log scale).


akin to saying that we are testing the values of the two slopes against zero. We will first use the original


scale (i.e. not log-transformed) and perform some diagnostic plots (shown in Fig. 7.6).


# Fit a multiple regression without interactions, and inspect the summary
fit4 <- lm(leafarea~diameter+height, data=allom)
summary(fit4)


##
## Call:
## lm(formula = leafarea ~ diameter + height, data = allom)
##
## Residuals:
## Min 1Q Median 3Q Max
## -126.892 -24.429 1.775 27.676 207.676
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -17.8759 17.6390 -1.013 0.31492
## diameter 6.9137 0.7562 9.143 5.68e-13 ***
## height -4.4030 1.2794 -3.441 0.00106 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 55.43 on 60 degrees of freedom
## Multiple R-squared: 0.743,Adjusted R-squared: 0.7345
## F-statistic: 86.75 on 2 and 60 DF, p-value: < 2.2e-16


# Basic diagnostic plots.
par(mfrow=c(1,2))
residualPlot(fit4)
qqPlot(fit4)


## [1] 38 47


The summary shows that both coefficients (βs) are significantly different from zero, and the p-value for
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Figure 7.6: Diagnostic plots for the multiple regression of the Allometry data.


diameter is much smaller. However, the diagnostic plots indicate some problems. The scale-location
plot shows a somewhat increasing trend – i.e. the variance is not constant, and the QQ-plot shows


some departures from normality.


Let’s refit the model using log-transformed variables, and check the diagnostic plots (Fig. 7.7).


# For convenience, add log-transformed variables to the dataframe:
allom$logLA <- log10(allom$leafarea)
allom$logD <- log10(allom$diameter)
allom$logH <- log10(allom$height)


# Refit model, using log-transformed variables.
fit5 <- lm(logLA ~ logD + logH, data=allom)
summary(fit5)


##
## Call:
## lm(formula = logLA ~ logD + logH, data = allom)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.07231 -0.17010 0.01759 0.17347 0.45205
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.4133 0.1554 -2.659 0.0100 *
## logD 2.1901 0.3040 7.205 1.12e-09 ***
## logH -0.7343 0.3222 -2.279 0.0262 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.2525 on 60 degrees of freedom
## Multiple R-squared: 0.7905,Adjusted R-squared: 0.7835
## F-statistic: 113.2 on 2 and 60 DF, p-value: < 2.2e-16


188







Chapter 7 Linear modelling 7.3 Multiple linear regression


1.0 1.5 2.0 2.5


−
1.


0
−


0.
5


0.
0


0.
5


Fitted values


P
ea


rs
on


 r
es


id
ua


ls


●●


●


●


●


●


●


●
●


●


●


●


● ●


●
●


● ●


●
●


●


●


●


●


●


●


●


●
●


●


●


●


●●
●


●


●
●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


−2 −1 0 1 2


−
5


−
4


−
3


−
2


−
1


0
1


2


t Quantiles


S
tu


de
nt


iz
ed


 R
es


id
ua


ls
(f


it5
)


●


●


● ●●●●●●●●
●●●


●●●●
●●
●●●


●●
●●●●●●●


●●●●
●●●●●


●●●
●●●●●●


●●●●
●
●●●


●●
● ●


●


3


32


Figure 7.7: Diagnostic plots for the multiple regression of the Allometry data, using log-transformed


variables.


# And diagnostic plots.
par(mfrow=c(1,2))
residualPlot(fit5)
qqPlot(fit5)


## [1] 3 32


The coefficients (βs) are still significant (as shown by small p-values) and the diagnostic plots are better,
although the QQ-plot is affected by some outliers.


Of course, we are not restricted to just two predictors, and we can include interactions as well. For


example,


# A multiple regression that includes all main effects as wel as interactions
fit6 <- lm(logLA ~ logD * logH, data=allom)
summary(fit6)


##
## Call:
## lm(formula = logLA ~ logD * logH, data = allom)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.07242 -0.17007 0.01782 0.17350 0.45190
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.41519 0.64371 -0.645 0.52143
## logD 2.19222 0.75013 2.922 0.00492 **
## logH -0.73309 0.51042 -1.436 0.15621
## logD:logH -0.00135 0.44214 -0.003 0.99757
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
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## Residual standard error: 0.2547 on 59 degrees of freedom
## Multiple R-squared: 0.7905,Adjusted R-squared: 0.7798
## F-statistic: 74.19 on 3 and 59 DF, p-value: < 2.2e-16


In this case, the interaction is not significant.


7.4 Linear models with factors and continuous variables


So far we have looked at ANOVA, including two-way ANOVA, where a response variable is modelled


as dependent on two treatments or factors, and regression including multiple linear regression where
a response variable is modelled as dependent on two continuous variables. These are just special


cases of the linear model, and we can extend these simple models by including a mix of factors and
continuous predictors. The situation where we have one continuous variable and one factor variable


is also known as ANCOVA (analysis of covariance), but using the lm function we can specify any model
with a combination of predictors.


Returning to the allometry data set oncemore, wemight expect that leaf area depends also on species,
which is a factor with three levels:


# A linear model combining factors and continuous variables
fit7 <- lm(logLA ~ species + logD + logH, data=allom)
summary(fit7)


##
## Call:
## lm(formula = logLA ~ species + logD + logH, data = allom)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.10273 -0.09629 -0.00009 0.13811 0.38500
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.28002 0.14949 -1.873 0.06609 .
## speciesPIPO -0.29221 0.07299 -4.003 0.00018 ***
## speciesPSME -0.09095 0.07254 -1.254 0.21496
## logD 2.44336 0.27986 8.731 3.7e-12 ***
## logH -1.00967 0.29870 -3.380 0.00130 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.2252 on 58 degrees of freedom
## Multiple R-squared: 0.839,Adjusted R-squared: 0.8279
## F-statistic: 75.54 on 4 and 58 DF, p-value: < 2.2e-16


The summary of this fit shows that PIPO differs markedly from the base level species, in this case PIMO.
However, PSME does not differ from PIMO. The linear effects in log diameter and log height remain
significant.


An ANOVA table will tell us whether adding species improves the model overall (as a reminder, you


need the car package loaded for this function).


Anova(fit7)


## Anova Table (Type II tests)
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##
## Response: logLA
## Sum Sq Df F value Pr(>F)
## species 0.8855 2 8.731 0.0004845 ***
## logD 3.8652 1 76.222 3.701e-12 ***
## logH 0.5794 1 11.426 0.0013009 **
## Residuals 2.9412 58
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1


We see that adding species to the model did improve the model.


Perhaps the slopes on log diameter (and other measures) vary by species. This is an example of an


interaction between a factor and a continuous variable. We can fit this as:


# A linear model that includes an interaction between a factor and
# a continuous variable
fit8 <- lm(logLA ~ species * logD + species * logH, data=allom)
summary(fit8)


##
## Call:
## lm(formula = logLA ~ species * logD + species * logH, data = allom)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.05543 -0.08806 -0.00750 0.11481 0.34124
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.3703 0.2534 -1.461 0.1498
## speciesPIPO -0.4074 0.3483 -1.169 0.2473
## speciesPSME 0.2249 0.3309 0.680 0.4997
## logD 1.3977 0.4956 2.820 0.0067 **
## logH 0.1610 0.5255 0.306 0.7606
## speciesPIPO:logD 1.5029 0.6499 2.313 0.0246 *
## speciesPSME:logD 1.7231 0.7185 2.398 0.0200 *
## speciesPIPO:logH -1.5238 0.6741 -2.261 0.0278 *
## speciesPSME:logH -2.0890 0.7898 -2.645 0.0107 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.2155 on 54 degrees of freedom
## Multiple R-squared: 0.8626,Adjusted R-squared: 0.8423
## F-statistic: 42.39 on 8 and 54 DF, p-value: < 2.2e-16


Note that the species effect is still fitted, because we used the * operator (where species*logD is
equivalent to species + logD + species:logD).


From the summary, the logD (log diameter) coefficient appears to be significant. In this example, this
coefficient represents the slope for the base species, PIMO. Other terms, including speciesPIPO:logD,
are also significant. This means that their slopes differ from that of the base species (PIMO).


We can also look at the Anova to decide whether adding these slope terms improved the model.


Anova(fit8)


## Anova Table (Type II tests)
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##
## Response: logLA
## Sum Sq Df F value Pr(>F)
## species 0.8855 2 9.5294 0.0002854 ***
## logD 3.9165 1 84.2945 1.286e-12 ***
## logH 0.6102 1 13.1325 0.0006425 ***
## species:logD 0.3382 2 3.6394 0.0329039 *
## species:logH 0.3752 2 4.0378 0.0232150 *
## Residuals 2.5089 54
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1


7.4.1 Predicted effects


The coefficients in a linear model are usually contrasts (i.e. differences between factor levels), slopes


or intercepts. While this is useful for comparisons of treatments, it is often more instructive to visualize


the predictions at various combinations of factor levels.


For balanced designs where the model contains all interactions, the predicted means from a linear


model will be the same as the group means calculated from the data.


However, if the data is not balanced and/or some of the interactions are left out the group mean and


the predicted mean will be different. The package effects contains a very useful function to calculate
and visualise these effects.


For example, consider this example using the memory data (Fig. 7.8) with main effects only.


# Load the effects package
library(effects)


# Fit linear model, main effects only
fit9 <- lm(Words ~ Age + Process, data=memory)
plot(allEffects(fit9))


And compare the output when we add all interactions (Fig. 7.9),


fit10 <- lm(Words ~ Age * Process, data=memory)
plot(allEffects(fit10))


Try this yourself Use the command plot(allEffects(...)) on the two model fits from
Section 7.4, and compare the results. Also, use these plots to double check your interpretation of


the model coefficients, as shown in the output of summary.


Another option is to use the visreg package, which can be used to make attractive plots of the predic-
tions of a linear model. In the following example we redo Fig. 7.9 using the visreg package.


The following example makes Fig. 7.10.


library(visreg)


# Read tab-delimited data
memory <- read.table("eysenck.txt", header=TRUE)


# To make the plots easier to interpret, reorder the Process
# factor by the average number of words remembered (we did this earlier in
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Figure 7.8: Effects plot of a linear model using the Memory data, including main effects only. Effects of


Age (left panel) and Process (right panel) are assumed to be additive.
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Figure 7.9: Effects plot a linear model of the Memory data, including main effects and interactions. The


effects of Age and Process are not simply additive.
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Figure 7.10: Visualization of a fitted linear model with the visreg package.


# the chapter already for this dataset, it is repeated here).
memory$Process <- with(memory, reorder(Process, Words, mean))


# Refit the linear model as above.
fit10 <- lm(Words ~ Age*Process, data=memory)


# Here we specify which variable should be on the X axis (Process),
# and which variable should be added with different colours (Age).
visreg(fit10, "Process", by="Age", overlay=TRUE)


Here is another example. This time, we include a continuous and a factor variable in the model


(Fig. 7.11).


# Read data and make sure CO2 treatment is a factor!
pupae <- read.csv("pupae.csv")
pupae$CO2_treatment <- as.factor(pupae$CO2_treatment)


# A linear model with a factor and a numeric variable
fit_b <- lm(Frass ~ PupalWeight * CO2_treatment, data=pupae)


# When plotting a model that has interactions, make sure to specify the variable
# that should appear on the X axis (the first argument), and the factor
# variable (the 2nd argument).
visreg(fit_b, "PupalWeight", by="CO2_treatment", overlay=TRUE)
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Figure 7.11: Visualization of a fitted linear model with a continuous and factor variable using the visreg
package.
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7.4.2 Using predicted effects to make sense of model output


Next we show an example of amodel where using predicted effects as introduced in Section 7.4.1 is very


helpful in understanding model output. For this example, we use measurements of photosynthesis


and transpiration of tree leaves in the EucFACE experiment (see Section A.23 for a description of the


data). We are interested in the relationship between photosynthesis and transpiration (the ratio of


which is known as the water-use efficiency), and whether this relationship differs with CO2 treatment.


The data are shown in Fig. 7.12.


eucgas <- read.csv("eucface_gasexchange.csv")


palette(c("blue","red"))
with(eucgas, plot(Trmmol, Photo, pch=19, col=CO2))
legend("topleft", levels(eucgas$CO2), pch=19, col=palette())


boxplot(Photo ~ CO2, data=eucgas, col=palette(), ylab="Photo")


It seems quite clear from Fig. 7.12 that, at a given Trmmol, Photo is higher in the elevated (Ele) CO2
treatment. From the boxplot on the right, it also seems more than reasonable to expect that overall,


Photo is higher in Ele (when not accounting for the Trmmol covariate).


Let’s fit a linear model to confirm this effect.


# A linear model with a continuous and a factor predictor, including the interaction.
lmfit <- lm(Photo ~ CO2*Trmmol, data=eucgas)


# Significance of overall model terms (sequential anova)
anova(lmfit)


## Analysis of Variance Table
##
## Response: Photo
## Df Sum Sq Mean Sq F value Pr(>F)
## CO2 1 322.96 322.96 31.1659 3.142e-07 ***
## Trmmol 1 668.13 668.13 64.4758 7.074e-12 ***
## CO2:Trmmol 1 0.49 0.49 0.0471 0.8288
## Residuals 80 829.00 10.36
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1


And the coefficients table from summary:


## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 9.1590768 1.9364911 4.7297284 1e-05 ***
## CO2Ele 5.0146388 2.6955506 1.8603393 0.06651 .
## Trmmol 2.9221253 0.4973512 5.8753756 0e+00 ***
## CO2Ele:Trmmol -0.1538359 0.7090711 -0.2169542 0.82880


# Significance of the individual coefficients:
summary(lmfit)


Look at the ’coefficients’ table in the summary statement. Four parameters are shown, they can be
interpreted as, 1) the intercept for ’Amb’, 2) the slope for ’Amb’, 3) the difference in the intercept for ’Ele’,
compared to ’Amb’, 4) the difference in the slope for ’Ele’, compared to ’Amb’.
It seems that neither the intercept or slope effect of CO2 is significant here, which is surprising. Also
confusing is the fact that the anova statement showed a clear significant effect of CO2, so what is going
on here?
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Figure 7.12: Photosynthesis and leaf transpiration rate (Trmmol) for leaves in elevated (red) and ambi-


ent (blue) CO2 concentration.
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First recall that the sequential anova tests each term against a model that includes only the termspreceding it. So, since we added CO2 as the first predictor, its test in the anova is tested against a model
that has no predictors. This is similar in approach to simply performing a t-test on Photo vs. CO2 (which
also shows a significant effect), in other words testing for separation in the right-hand panel of Fig. 7.12.


It is clearly a different test from those shown in the summary statement.


To understand the tests of the coefficients, we will plot predictions of the model, together with confi-


dence intervals. The following code makes Fig. 7.13, and we introduce the use of the predict function
to estimate fitted values, and confidence intervals, from a fitted model.


# Set up a regular sequence of numbers, for which 'Photo' is to be predicted from
xval <- seq(0, max(eucgas$Trmmol), length=101)


# Two separate dataframes, one for each treatment/
amb_dfr <- data.frame(Trmmol=xval, CO2="Amb")
ele_dfr <- data.frame(Trmmol=xval, CO2="Ele")


# Predictions of the model using 'predict.lm'
# The first argument is the fitted model, the second argument a dataframe
# containing values for the predictor variables.
predamb <- as.data.frame(predict(lmfit, amb_dfr, interval="confidence"))
predele <- as.data.frame(predict(lmfit, ele_dfr, interval="confidence"))


# Plot. Set up the axis limits so that they start at 0, and go to the maximum.
palette(c("blue","red"))
with(eucgas, plot(Trmmol, Photo, pch=19, col=CO2,


xlim=c(0, max(Trmmol)),
ylim=c(0, max(Photo))))


# Add the lines; the fit and lower and upper confidence intervals.
with(predamb, {
lines(xval, fit, col="blue", lwd=2)
lines(xval, lwr, col="blue", lwd=1, lty=2)
lines(xval, upr, col="blue", lwd=1, lty=2)


})


with(predele, {
lines(xval, fit, col="red", lwd=2)
lines(xval, lwr, col="red", lwd=1, lty=2)
lines(xval, upr, col="red", lwd=1, lty=2)


})


Try this yourself The above plot can also be easily made with the visreg package, as we
have seen already. Use the code visreg(lmfit, "Trmmol", by="CO2", overlay=TRUE) to make a
similar plot. Set the x-axis limit with xlim to include the intercept.


The intercept in a linear model is of course the value of the Y variable where X is zero. As we can see


in Fig. 7.13, the confidence intervals for the regression lines overlap when Trmmol is zero - which is the
comparison made in the summary statement for the intercept. We now see why the intercept was not
significant, but it says very little about the treatment difference in the range of the data.
Perhaps it is more meaningful to test for treatment differences at a mean value of Trmmol. There are
four ways to do this.
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Figure 7.13: Predicted relationship between Photo and Trmmol for ambient and elevated CO2 con-


centrations in the EucFACE leaf gas exchange dataset. Dashed lines are confidence intervals for the


regression line.
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Centering the predictor


The first approach is to recenter the predictor so that the intercept can be interpreted as the value


where the predictor (in our case, Trmmol) is at its mean value.


# Rescaled transpiration rate
# This is equivalent to Trmmol - mean(Trmmol)
eucgas$Trmmol_center <- scale(eucgas$Trmmol, center=TRUE, scale=FALSE)


# Refit using centered predictor
lmfit2 <- lm(Photo ~ Trmmol_center*CO2, data=eucgas)


The coefficients table in the summary statement now shows a highly significant effect for CO2Ele, a
difference of about 4.22 units. It is also possible to compute confidence intervals on the coefficients


via confint(lmfit2), try this yourself.


# Summary of the fit:
summary(lmfit2)


## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 19.8846914 0.4988568 39.8605236 <2e-16 ***
## Trmmol_center 2.9221253 0.4973512 5.8753756 0 ***
## CO2Ele 4.4499864 0.7055393 6.3072129 0 ***
## Trmmol_center:CO2Ele -0.1538359 0.7090711 -0.2169542 0.8288


Using the effects package


Another way is to compute the CO2 effect at a mean value of Trmmol. This avoids having to refit the
model with centered data, and is more flexible.


# The effects package calculates effects for a variable by averaging over all other
# terms in the model
library(effects)
Effect("CO2", lmfit)


##
## CO2 effect
## CO2
## Amb Ele
## 19.88469 24.33468


# confidence intervals can be obtained via
summary(Effect("CO2", lmfit))


##
## CO2 effect
## CO2
## Amb Ele
## 19.88469 24.33468
##
## Lower 95 Percent Confidence Limits
## CO2
## Amb Ele
## 18.89193 23.34178
##
## Upper 95 Percent Confidence Limits
## CO2
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## Amb Ele
## 20.87745 25.32757


The effects package is quite flexible. For example, we can calculate the predicted effects at any speci-
fied value of the predictors, like so (output not shown):


# For example, what is the CO2 effect when Trmmol was 3?
summary(Effect("CO2", lmfit, given.values=c(Trmmol=3)))


Least-square means


The effect size while holding other predictors constant at their mean value is also known as the ’least-


square mean’ (or even ’estimated marginal means’), and is implemented as such in the emmeans pack-
age. It is a powerful package, also to make sense of models that are far more complex than the one in


this example, as seen in section 7.2.1.1.


library(emmeans)
summary(emmeans(lmfit, "CO2"))


## NOTE: Results may be misleading due to involvement in interactions


## CO2 emmean SE df lower.CL upper.CL
## Amb 19.88469 0.4988568 80 18.89193 20.87745
## Ele 24.33468 0.4989265 80 23.34178 25.32757
##
## Confidence level used: 0.95


# emmeans warns that perhaps the results are misleading - this is true for more
# complex models but not a simple one as shown here.


Using the predict function


Finally, we show that the effects can also be obtained via the use of predict, as we already saw in the
code to produce Fig. 7.13.


# Predict fitted Photo at the mean of Trmmol, for both CO2 treatments
predict(lmfit, data.frame(Trmmol=mean(eucgas$Trmmol),


CO2=levels(eucgas$CO2)),
interval="confidence")


## fit lwr upr
## 1 19.88469 18.89193 20.87745
## 2 24.33468 23.34178 25.32757


Further reading This example shows that interpretation of main effects (in this case, CO2)
is not at all straightforward when the model also includes an interaction term (CO2:Trmmol). A
readable review of this problem is Engqvist 2005, Animal Behaviour 70(4):967-971. There, it is shown
that many studies misinterpret the main effects in cases like this.


7.4.3 Quadratic and polynomial terms


So far we have seen models with just linear terms, but it is straightforward and often necessary to add


quadratic (x2
) or higher-order terms (e.g. x3


) when the response variable is far from linear in the pre-
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dictors. You can add any transformation of the predictors in an lmmodel by nesting the transformation
inside the I() function, like so:


lmq1 <- lm(height ~ diameter + I(diameter^2), data=allom)


This model fits both the linear (diameter) and squared terms (I(diameter2̂)) of the predictor, as well
as the usual intercept term. If you want to fit all polynomial terms up to some order, you can use the


poly function like so,


lmq1 <- lm(height ~ poly(diameter, 2), data=allom)


This model specification is exactly equivalent to the above, and is more convenient when you have


multiple quadratic / polynomial terms and interactions with factor variables.


The following example quickly tests whether a quadratic term improves the model fit of height vs.
diameter for the species PIPO in the allometry dataset.


pipo <- subset(allom, species == "PIPO")


# Fit model with the quadratic term:
lmq2 <- lm(height ~ diameter + I(diameter^2), data=pipo)


# The very small p-value for the quadratic terms shows that the
# relationship is clearly not linear, but better described with a
# quadratic model.
Anova(lmq2)


## Anova Table (Type II tests)
##
## Response: height
## Sum Sq Df F value Pr(>F)
## diameter 821.25 1 53.838 5.905e-07 ***
## I(diameter^2) 365.78 1 23.980 0.0001001 ***
## Residuals 289.83 19
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1


When fitting a quadratic model, it is again very useful to use visreg to inspect the model that is esti-
mated, since it becomes even more difficult to make sense of the various linear, quadratic, and inter-


cept terms, especially when interactions with factor variables are added. Consider this example for the


allometry dataset, which makes Fig. ??.
# Fit a linear model with linear, quadratic terms, and all species interactions.
allomquadfit <- lm(height ~ poly(diameter, 2)*species, data=allom)


# Inspect summary(allomquadfit) to confirm you cannot possibly make sense of this
# many coefficients.


# But plotting the predictions is much easier to understand:
visreg(allomquadfit, "diameter", by="species", overlay=TRUE)
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7.5 Generalized Linear Models


So far we have looked at modelling a continuous response to one or more factor variables (ANOVA),


one or more continuous variables (multiple regression), and combinations of factors and continuous


variables. We have also assumed that the predictors are normally distributed, and that, as a result, the


response will be, too. We used a log-transformation in one of the examples to meet this assumption.


In some cases, there is no obvious way to transform the response or predictors, and in other cases it is


nearly impossible. Examples of difficult situations are when the response represents a count or when


it is binary (i.e., has only two possible outcomes).


Generalized linear models (GLMs)
2
extend linear models by allowing non-normally distributed errors.


The basic idea is as follows. Suppose you have a response variable y and one or more predictors
(independent variables) that can be transformed into a linear predictor in the same way as in linear


models, which we call η. Then y is modelled as some distribution with mean µ, which itself is related
to the predictors through the linear predictor and a link-function, g. Formally,


g(µ) = η (7.2)


In practice, the distribution for y and the link-function are chosen depending on the problem. Logistic
regression is an example of a GLM, with a binomial distribution and the link-function


log(
µ


1− µ
) = η


Another common GLM uses the Poisson distribution, in which case the most commonly used link-


function is log. This is also called Poisson regression, and it is often used when the response represents
counts of items. In the following, we will demonstrate two common GLMs: logistic regression and


Poisson regression.


7.5.1 Logistic Regression


The Titanic dataset (see Section A.12) contains information on the survival of passengers on the Titanic,


including ages, gender and passenger class. Many ages are missing, and for this example we will work


with only the non-missing data (but note that this is not always the best choice). Refer to Section 3.4


(p. 63) for working with and removing missing values.


# Read tab-delimited data
titanic <- read.table("titanic.txt", header=TRUE)


# Complete cases only (drops any row that has a missing value anywhere)
titanic <- titanic[complete.cases(titanic),]


# Construct a factor variable based on 'Survived'
titanic$Survived <- factor(ifelse(titanic$Survived==1, "yes", "no"))


# Look at a standard summary
summary(titanic)


2
The term General Linear Model, which you may see used sometimes, is not the same as a GLM, although some statistics


packages use GLM to mean general linear model, and use another term for generalized linear model.
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## Name PClass Age Sex
## Carlsson, Mr Frans Olof : 2 1st:226 Min. : 0.17 female:288
## Connolly, Miss Kate : 2 2nd:212 1st Qu.:21.00 male :468
## Kelly, Mr James : 2 3rd:318 Median :28.00
## Abbing, Mr Anthony : 1 Mean :30.40
## Abbott, Master Eugene Joseph: 1 3rd Qu.:39.00
## Abbott, Mr Rossmore Edward : 1 Max. :71.00
## (Other) :747
## Survived
## no :443
## yes:313
##
##
##
##
##


The idea here is to find out whether the probability of survival depends on the passenger’s Age, Sex and
PClass (passenger class). Before we proceed, it is always a good idea to start by visualizing the data to
find out what we are dealing with (and to make sure we will interpret the model output correctly). If we


plot two factor variables against each other, R produces quite a useful plot, as the following example
demonstrates (Fig. 7.14).


par(mfrow=c(1,2), mgp=c(2,1,0))
with(titanic, plot(Sex, Survived, ylab="Survived", xlab="Sex"))
with(titanic, plot(PClass, Survived, ylab="Survived", xlab="Passenger class"))


In logistic regression we model the probability of the "1" response (in this case the probability of sur-


vival). Since probabilities are between 0 and 1, we use a logistic transform of the linear predictor, where


the linear predictor is of the form we would like to use in the linear models above. If η is the linear
predictor and Y is the binary response, the logistic model takes the form,


P(Y = 1) =
1


1+ e−η
(7.3)


These models are easily fit with glm. It has a similar interface to lm with a couple of additional features.
To fit a logistic regression to the (modified) titanic data we use,


# Fit a logistic regression
fit11 <- glm(Survived~Age+Sex+PClass, data=titanic, family=binomial)
summary(fit11)


##
## Call:
## glm(formula = Survived ~ Age + Sex + PClass, family = binomial,
## data = titanic)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -2.7226 -0.7065 -0.3917 0.6495 2.5289
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 3.759662 0.397567 9.457 < 2e-16 ***
## Age -0.039177 0.007616 -5.144 2.69e-07 ***
## Sexmale -2.631357 0.201505 -13.058 < 2e-16 ***
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Figure 7.14: Probability of survival versus passenger class and sex for the titanic data.
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Figure 7.15: Fitted effects for the Titanic logistic regression example.


## PClass2nd -1.291962 0.260076 -4.968 6.78e-07 ***
## PClass3rd -2.521419 0.276657 -9.114 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 1025.57 on 755 degrees of freedom
## Residual deviance: 695.14 on 751 degrees of freedom
## AIC: 705.14
##
## Number of Fisher Scoring iterations: 5


The text family=binomial specifies that we wish to perform a logistic regression. The summary shows
that all terms are significant. Interpreting the coefficients has to be done with care. For binary factors


(such as Sex) they can be interpreted as a log-odds ratio, but this is beyond the scope of this text. The
signs of the coefficients tell us about how the factor variable affects the probability of survival. In this


example, all of them are negative so we can conclude: 1) an increase in age decreases the chance of


survival, 2) being male decreases survival, 3) being in 2nd or 3rd class decrease survival with 3rd being


worse than 2nd.


The function allEffects from the effects package can be used here to visualize the effects (Fig. 7.15).


# The 'type' argument is used to back-transform the probability
# (Try this plot without that argument for comparison)
plot(allEffects(fit11), type="response")


7.5.1.1 Tabulated data


Sometimes the available data are not at an individual level (as in the Titanic example above), but counts


have already been aggregated into various factors.


We will first aggregate the Titanic data into a table of counts, and then show how we can still fit a glm
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for a logistic regression.


Suppose instead of age we only know the adult status of passengers.


titanic$AgeGrp <- factor(ifelse(titanic$Age>18, "Adult", "Child"))


We can then count the numbers of survivors and non-survivors,


# Count the number of survivors and non-survivors by various factor combinations
titanic2 <- aggregate(cbind(Survived=="yes",Survived=="no") ~ AgeGrp+Sex+PClass,


data=titanic, sum)
titanic2


## AgeGrp Sex PClass V1 V2
## 1 Adult female 1st 87 4
## 2 Child female 1st 9 1
## 3 Adult male 1st 37 81
## 4 Child male 1st 6 1
## 5 Adult female 2nd 58 9
## 6 Child female 2nd 17 1
## 7 Adult male 2nd 10 99
## 8 Child male 2nd 11 7
## 9 Adult female 3rd 27 36
## 10 Child female 3rd 19 20
## 11 Adult male 3rd 25 157
## 12 Child male 3rd 7 27


# Tidy up the names
names(titanic2)[4:5] <- c("survivors", "nonsurvivors")


Use the following example to fit a logistic regression when your data looks like the above. We will again


plot the fitted effects (Fig. 7.16). As you can see, the conclusions are the same as before.


fit12 <- glm(cbind(survivors, nonsurvivors)~AgeGrp+Sex+PClass,
data=titanic2, family=binomial)


summary(fit12)


##
## Call:
## glm(formula = cbind(survivors, nonsurvivors) ~ AgeGrp + Sex +
## PClass, family = binomial, data = titanic2)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -3.1339 -1.2940 0.8257 2.0386 2.9973
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 2.0682 0.2196 9.419 < 2e-16 ***
## AgeGrpChild 0.8478 0.2519 3.365 0.000765 ***
## Sexmale -2.5658 0.1980 -12.960 < 2e-16 ***
## PClass2nd -0.8771 0.2353 -3.728 0.000193 ***
## PClass3rd -2.0428 0.2425 -8.423 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
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Figure 7.16: Fitted effects for the Titanic logistic regression example, when fitted using tabulated data.


## Null deviance: 361.947 on 11 degrees of freedom
## Residual deviance: 48.528 on 7 degrees of freedom
## AIC: 101.01
##
## Number of Fisher Scoring iterations: 5


# Effects plot
plot(allEffects(fit12))


7.5.2 Poisson regression


For this example we return to the Age and Memory dataset. In this dataset, the response variable is a


count of the number of words recalled by subjects using one of four different methods for memoriza-


tion. When the response variable represents a count, a Poisson regression is often appropriate.


The following code performs a Poisson regression of the Age and Memory data. See Fig. 7.17 for the


fitted effects.


# Fit a generalized linear model
fit13 <- glm(Words~Age*Process, data=memory, family=poisson)
summary(fit13)


##
## Call:
## glm(formula = Words ~ Age * Process, family = poisson, data = memory)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -2.2903 -0.4920 -0.1987 0.5623 2.3772
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.94591 0.11952 16.281 < 2e-16 ***
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## AgeYounger -0.07411 0.17225 -0.430 0.667026
## ProcessRhyming -0.01439 0.16964 -0.085 0.932406
## ProcessAdjective 0.45199 0.15289 2.956 0.003115 **
## ProcessImagery 0.64934 0.14747 4.403 1.07e-05 ***
## ProcessIntentional 0.53900 0.15040 3.584 0.000339 ***
## AgeYounger:ProcessRhyming 0.17073 0.23942 0.713 0.475769
## AgeYounger:ProcessAdjective 0.37084 0.21335 1.738 0.082179 .
## AgeYounger:ProcessImagery 0.34675 0.20692 1.676 0.093777 .
## AgeYounger:ProcessIntentional 0.54931 0.20781 2.643 0.008210 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 227.503 on 99 degrees of freedom
## Residual deviance: 60.994 on 90 degrees of freedom
## AIC: 501.32
##
## Number of Fisher Scoring iterations: 4


# Look at an ANOVA of the fitted model, and provide likelihood-ratio tests.
Anova(fit13)


## Analysis of Deviance Table (Type II tests)
##
## Response: Words
## LR Chisq Df Pr(>Chisq)
## Age 20.755 1 5.219e-06 ***
## Process 137.477 4 < 2.2e-16 ***
## Age:Process 8.277 4 0.08196 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1


# Plot fitted effects
plot(allEffects(fit13))


Remember that when we fit this as a linear model (using lm), we found that the interaction term was
highly significant. This time, when we used Poisson regression, the interaction is no longer significant.


However, the default link for Poisson regression is log. This means that themean µ in this case depends
on the factors Age and Process in a multiplicative fashion, whereas in the linear model (using lm) it was
additive without the interaction. In other words, we have now modelled the interaction implicitly by


using the log link function.


Note that in example above we use the anova function with the option test="LRT", which allows us to
perform a Likelihood Ratio Test (LRT). This is appropriate for GLMs because the usual F-tests may not
be inaccurate when the distribution is not normal.


There are diagnostic plots for GLMs just like linear models, but these are beyond the scope of this text.


Further reading An excellent book on linear modelling, including many tools that we did not


cover in this chapter is: Fox, John, and Sanford Weisberg. An R companion to applied regression.
Sage, 2010. This book describes the car package.
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Figure 7.17: Fitted effects for a Poisson regression of the Age and Memory data. Note the log scale of


the y-axis.


7.6 Functions used in this chapter


For functions not listed here, please refer to the index at the end of this book.


Function What it does Example use


lm Linear models, including regression mod-


els, ANOVAs, and ANCOVAs.


Throughout this chapter


glm Generalized linear models, similar to lm but
allows various non-normally distributed er-


rors.


Section 7.5, p. 204


glht From the multcomp package. General linear
hypothesis test, for example for Tukey mul-


tiple comparison tests.


Section 7.1.1, p. 179


emmeans From the emmeans package. Very useful


for multiple comparisons and easier to use


than the glht function. Interpret output


with the summary, pairs and cld functions.


Section 7.2.1.1, p. 183, p. 201


anova Using anova on two models performs a
likelihood-ratio test. We do not recom-
mend its use on a single model, use Anova
instead


Throughout this chapter
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Function What it does Example use


Anova From the car package. Analysis of variance
table for fitted models, showing marginal


tests for main effects and interactions (or-


der of variables does not matter.)


Anova(model1)


drop1 Tests of significance for main effects and in-


teractions in a fitted model, dropping one


term at a time. Equivalent to Anova with de-
fault settings.


drop1(model1, test="F")


AIC Akaike’s Information Criterion – lower is


better. Can also be used on many fitted


models at once for comparison.


AIC(model1, model2)


allEffects From the effects package. Convenient


function to estimate and plot ’effects’ from


a fitted model – highly recommended to


avoid misinterpretation of fitted models.


plot(allEffects(model1))


visreg From the visreg package. Similar to


allEffects, makes more attractive plots
but slightly less flexible overall.


visreg(model1, "xvar", by="facvar")
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7.7 Exercises


In these exercises, we use the following colour codes:


∎ Easy: make sure you complete some of these before moving on. These exercises will follow
examples in the text very closely.


⧫ Intermediate: a bit harder. You will often have to combine functions to solve the exercise in
two steps.


▲ Hard: difficult exercises! These exercises will require multiple steps, and significant departure
from examples in the text.


We suggest you complete these exercises in an R markdown file. This will allow you to combine code
chunks, graphical output, and written answers in a single, easy-to-read file.


7.7.1 One-way ANOVA


1. ∎ For the Titanic data (see Section A.12, p. 251), use a one-way ANOVA to compare the average


passenger age by passenger class. (Note: by default, lm will delete all observations where Age is
missing.)


2. ∎ For the Age and Memory data (Section A.11, p. 251), make a subset of the Older subjects, and
conduct a one-way ANOVA to compare words remembered by memory technique.


7.7.2 Two-way ANOVA


1. ∎Using the pupae dataset, fit a two-way ANOVA to compare PupalWeight to Gender and CO2_treatment.
Which main effects are significant? After reading in the pupae data, make sure to convert Gender
and CO2_treatment to a factor first (see Section 3.2, p. 59).


2. ∎ Is there an interaction between Gender and CO2_treatment?


3. ∎ Repeat the above using T_treatment instead of CO2_treatment.


4. ⧫ Recall Exercise 6.5.6 (p. 175). Perform a two-way ANOVA to test irrigation and fertilisation effects


on tree diameter. Compare the results. Hint: the treatments are not coded by ’irrigation’ or
’fertilization’, youmust first make two new variables based on the treat variable in the dataframe.


7.7.3 Multiple regression


1. ⧫ Using the Pulse data (see Section A.9, p. 250) fit a multiple linear regression of Pulse1 against
Age, Weight and Height (add the variables to the model in that order).


2. ∎ Are any terms significant at the 5% level?


3. ∎ Generate some diagnostic plots of the fitted models.


7.7.4 Linear Model with factor and numeric variables


1. ∎ Repeat exercise 7.7.3, and also include the factor Exercise. You will need to first convert
Exercise to a factor as it is stored numerically in the CSV file. Does adding Exercise improve
the model?
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2. ⧫ Using the same data, fit a model of Pulse2 as a function of Pulse1 and Ran as main effects only
(Note: convert Ran to a factor first). Use the effects package to inspect the model fit, and help
understand the estimated coefficients in the model.


3. ⧫ Now add the interaction between Pulse1 and Ran. Is it significant? Also look at the effects plot,
how is it different from the model without an interaction?


4. ∎ Add (factor versions of) Alcohol, Smokes and Exercise to this model, and inspect whether the
model improved.


7.7.5 Logistic regression


1. ∎Using the Pulse data oncemore, build a model to see if Pulse2 can predict whether people were
in the Ran group. Make sure that Ran is coded as a factor.


2. ∎ The visreg package is very helpful in visualizing the fitted model. For the logistic regression you
just fit , run the following code and make sure you understand the output. (This code assumes


you called the object fit6, if not change fit6 to the name you used.)


library(visreg)
visreg(fit6, scale="response")


7.7.6 Generalized linear model (GLM)


1. First run the following code to generate some data,


len <- 21
x <- seq(0,1,length=len)
y <- rpois(len,exp(x-0.5))


2. ∎ Fit a Poisson GLM to model y on x. Is x significant in the model?


3. ∎ Repeat above with a larger sample size (e.g., len <- 101). Compare the results.


4. ⧫ The memory data were analysed assuming a normal error distribution in Section 7.2 and using a
Poisson error distribution in Section 7.5, and each approach resulted in a different outcome for


the significance of the interaction term. The participants in the study were asked to remember up


to 27 words, not an unlimited number, and some of the participants were remembering close to


this upper limit. Therefore, it may make sense to think of the response as consisting of a number


of ’successes’ and a number of ’failures’, as we do in a logistic regression. Use glm to model the
response using a binomial error distribution. Refer to Section 7.5.1.1 (p. 207) for a similar example.
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Functions, lists and loops


8.1 Writing simple functions


We have already used many built-in functions throughout this tutorial, but you can become very effi-


cient at complex data tasks when you write your own simple functions. Writing your own functions can


help with tasks that are carried out many times, which would otherwise result in a lot of code.


For example, suppose you frequently convert units from pounds to kilograms. It would be useful to


have a function that does this, so you don’t have to type the conversion factor every time. This is also


good practice, as it reduces the probability of making typos.


# This function takes a 'weight' argument and multiplies it with some number
# to return kilograms.
poundsToKg <- function(weight){
weight * 0.453592


}


We can use this function just like any other in R, for example, let’s convert ’weight’ to kilograms in the
weightloss data (Section A.5).


# Read data
weightloss <- read.csv("weightloss.csv")


# Convert weight to kg.
weightloss$Weight <- poundsToKg(weightloss$Weight)


Let’s write a function for the standard error of the mean, a function that is not built-in in R.
# Compute the standard error of the mean for a vector
SEmean <- function(x){
se <- sd(x) / sqrt(length(x))
return(se)


}


Here, the function SEmean takes one ’argument’ called x (i.e., input), which is a numeric vector. The
standard error for the mean is calculated in the first line, and stored in an object called se, which is
then returned as output. We can now use the function on a numeric vector like this:


# A numeric vector
unifvec <- runif(10, 1,2)
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# The sample mean
mean(unifvec)


## [1] 1.496611


# Standard error for the mean
SEmean(unifvec)


## [1] 0.1228351


Try this yourself You can use functions that you defined yourself just like any other function,


for example in summaryBy. First read in the SEmean function defined in the example above, and then
use the cereal data to calculate the mean and SE of rating by Manufacturer (or use data of your
choosing).


Functions with multiple arguments


Functions can also have multiple arguments. The following very simple function takes two numbers,


and finds the absolute difference between them, using abs.


# Define function
absDiff <- function(num1,num2)abs(num1 - num2)


# Test it with two numbers:
absDiff(5,1)


## [1] 4


# As in many functions in R, you can also give multiple values
# as an argument.
# The following returns the absolute difference between
# 1 and 3, then 5 and 6, and 9 and 0 (in that order).
absDiff(c(1,5,9), c(3,6,0))


## [1] 2 1 9


Functions can return many results


What if a function should return not just one result, as in the examples above, but many results?


For example, this function computes the standard deviation and standard error of a vector, and returns


both stored in a vector. Note that we also use the SEmean function, which we defined above.


# An function that computes the SE and SD of a vector
seandsd <- function(x){


seresult <- SEmean(x)
sdresult <- sd(x)


# Store results in a vector with names
vec <- c(seresult, sdresult)
names(vec) <- c("SE","SD")


return(vec)
}
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# Test it:
x <- rnorm(100, mean=20, sd=4)
seandsd(x)


## SE SD
## 0.4162955 4.1629550


Functions without arguments


Sometimes, a function takes no arguments (input) at all. Consider this very helpful example.


sayhello <- function()message("Hello!")


sayhello()


## Hello!


Wewill return to defining our own functions when we look at applying functionsmany times to sections


of a dataframe (Section 8.2.2).


8.2 Working with lists


Sofar, we have worked a lot with vectors, with are basically strings of numbers or bits of text. In a


vector, each element has to be of the same data type. Lists are a more general and powerful type of


vector, where each element of the list can be anything at all. This way, lists are a very flexible type of
object to store a lot of information that may be in different formats.


Lists can be somewhat daunting for the beginning R user, which is why most introductory texts and
tutorials skip them altogether. However, with some practice, lists can be mastered from the start.


Mastering a few basic skills with lists can really help increase your efficiency in dealing with more


complex data analysis tasks.


To make a list from scratch, you simply use the list function. Here is a list that contains a numeric
vector, a character vector, and a dataframe:


mylist <- list(a=1:10, txt=c("hello","world"), dfr=data.frame(x=c(2,3,4),y=c(5,6,7)))


Indexing lists


To extract an element from this list, you may do this by its name (’a’,’txt’ or ’dfr’ in this case), or by


the element number (1,2,3). For lists, we use a double square bracket for indexing. Consider these


examples,


# Extract the dataframe:
mylist[["dfr"]]


## x y
## 1 2 5
## 2 3 6
## 3 4 7


# Is the same as:
mylist$dfr
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## x y
## 1 2 5
## 2 3 6
## 3 4 7


# Extract the first element:
mylist[[1]]


## [1] 1 2 3 4 5 6 7 8 9 10


Note that in these examples, the contents of the elements of the list are returned (for ’dfr’, a dataframe),


but the result itself is not a list anymore. If we select multiple elements, the result should still be a list.


To do this, use the single square bracket.


Look at these examples:


# Extract the 'a' vector, result is a vector:
mylist[['a']]


## [1] 1 2 3 4 5 6 7 8 9 10


# Extract the 'a' vector, result is a list:
mylist['a']


## $a
## [1] 1 2 3 4 5 6 7 8 9 10


# Extract multiple elements (result is still a list):
mylist[2:3]


## $txt
## [1] "hello" "world"
##
## $dfr
## x y
## 1 2 5
## 2 3 6
## 3 4 7


Converting lists to dataframes or vectors


Although lists are the most flexible way to store data and other objects in larger, more complex, analy-


ses, ultimately you would prefer to output as a dataframe or vector.


Let’s look at some examples using do.call(rbind,...) and unlist.


# A list of dataframes:
dfrlis <- list(data1=data.frame(a=1:3,b=2:4), data2=data.frame(a=9:11,b=15:17))
dfrlis


## $data1
## a b
## 1 1 2
## 2 2 3
## 3 3 4
##
## $data2
## a b
## 1 9 15
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## 2 10 16
## 3 11 17


# Since both dataframes in the list have the same number of columns and names,
# we can 'successively row-bind' the list like this:
do.call(rbind, dfrlis)


## a b
## data1.1 1 2
## data1.2 2 3
## data1.3 3 4
## data2.1 9 15
## data2.2 10 16
## data2.3 11 17


# A list of vectors:
veclis <- list(a=1:3, b=2:4, f=9:11)


# In this case, we can use the 'unlist' function, which will
# successively combine the three vectors into one:
unlist(veclis)


## a1 a2 a3 b1 b2 b3 f1 f2 f3
## 1 2 3 2 3 4 9 10 11


In real-world applications, some trial-and-error will be necessary to convert lists tomore pretty formats.


Combining lists


Combining two lists can be achieved using c(), like this:


veclis <- list(a=1:3, b=2:4, f=9:11)
qlis <- list(q=17:15)
c(veclis,qlis)


## $a
## [1] 1 2 3
##
## $b
## [1] 2 3 4
##
## $f
## [1] 9 10 11
##
## $q
## [1] 17 16 15


# But be careful when you like to quickly add a vector
# the 'veclis'. You must specify list() like this
veclis <- c(veclis, list(r=3:1))


Extracting output from built-in functions


One reason to gain a better understanding of lists is that many built-in functions return not just single


numbers, but a diverse collection of outputs, organized in lists. Think of the linear model function (lm),
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it returns a lot of things at the same time (not just the p-value).


Let’s take a closer look at the lm output to see if we can extract the adjusted R2
.


# Read data
allom <- read.csv("Allometry.csv")


# Fit a linear model
lmfit <- lm(height ~ diameter, data=allom)


# And save the summary statement of the model:
lmfit_summary <- summary(lmfit)


# We already know that simply typing 'summary(lmfit)' will give
# lots of text output. How to extract numbers from there?
# Let's look at the structure of lmfit:
str(lmfit_summary)


## List of 11
## $ call : language lm(formula = height ~ diameter, data = allom)
## $ terms :Classes 'terms', 'formula' language height ~ diameter
## .. ..- attr(*, "variables")= language list(height, diameter)
## .. ..- attr(*, "factors")= int [1:2, 1] 0 1
## .. .. ..- attr(*, "dimnames")=List of 2
## .. .. .. ..$ : chr [1:2] "height" "diameter"
## .. .. .. ..$ : chr "diameter"
## .. ..- attr(*, "term.labels")= chr "diameter"
## .. ..- attr(*, "order")= int 1
....


# The output of lm is a list, so we can look at the names of # that list as well:
names(lmfit_summary)


## [1] "call" "terms" "residuals" "coefficients"
## [5] "aliased" "sigma" "df" "r.squared"
## [9] "adj.r.squared" "fstatistic" "cov.unscaled"


So, now we can extract results from the summary of the fitted regression. Also look at the help file


?summary.lm, in the section ’Values’ for a description of the fields contained here.


To extract the adjusted R
2
, for example:


lmfit_summary[["adj.r.squared"]]


## [1] 0.7639735


# Is the same as:
lmfit_summary$adj.r.squared


## [1] 0.7639735


This sort of analysis will be very useful when we do many regressions, and want to summarize the


results in a table.


Try this yourself Run the code in the above examples, and practice extracting some other


elements from the linear regression. Compare the output to the summary of the lm fit (that is,
compare it to what summary(lmfit) shows on screen).
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8.2.1 Creating lists from dataframes


For more advanced analyses, it is often necessary to repeat a particular analysis many times, for ex-


ample for sections of a dataframe.


Using the allom data for example, we might want to split the dataframe into three dataframes (one for
each species), and repeat some analysis for each of the species. One option is to make three subsets


(using subset), and repeating the analysis for each of them. But what if we have hundreds of species?


A more efficient approach is to split the dataframe into a list, so that the first element of the list is
the dataframe for species 1, the 2nd element species 2, and so on. In case of the allom dataset, the


resulting list will have three components.


Let’s look at an example on how to construct a list of dataframes from the allom dataset, one per


species:


# Read allom data and make sure 'species' is a factor:
allom <- read.csv("Allometry.csv")
is.factor(allom$species)


## [1] TRUE


# The levels of the factor variable 'species'
levels(allom$species)


## [1] "PIMO" "PIPO" "PSME"


# Now use 'split' to construct a list:
allomsp <- split(allom, allom$species)


# The length of the list should be 3, with the names equal to the
# original factor levels:
length(allomsp)


## [1] 3


names(allomsp)


## [1] "PIMO" "PIPO" "PSME"


Try this yourself Run the code in the above example, and confirm that allomsp[[2]] is
identical to taking a subset of allom of the second species in the dataset (where ’second’ refers to
the second level of the factor variable species, which you can find out with levels).


Let’s look at an example using the hydro data. The data contains water levels of a hydrodam in Tasma-
nia, from 2005 to 2011 (see Section A.3).


# Read hydro data, and convert Date to a proper date class.
hydro <- read.csv("hydro.csv")


library(lubridate)
hydro$Date <- dmy(as.character(hydro$Date))
hydro$year <- year(hydro$Date)


# Look at the Date range:
range(hydro$Date)


## [1] "2005-08-08" "2011-08-08"


# Let's get rid of the first and last years (2005 and 2011) since they are incomplete
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hydro <- subset(hydro, !year %in% c(2005,2011))


# Now split the dataframe by year. This results in a list, where every
# element contains the data for one year:
hydrosp <- split(hydro, hydro$year)


# Properties of this list:
length(hydrosp)


## [1] 5


names(hydrosp)


## [1] "2006" "2007" "2008" "2009" "2010"


To extract one element of the two lists that we created (allomsp and hydrosp), recall the section on
indexing lists.


8.2.2 Applying functions to lists


We will introduce two basic tools that we use to apply functions to each element of a list: sapply and
lapply. The lapply function always returns a list, whereas sapply will attempt to simplify the result.
When the function returns a single value, or a vector, sapply can often be used. In practice, try both
and see what happens!


Using sapply


First let’s look at some simple examples:


# Let's make a simple list with only numeric vectors (of varying length)
numlis <- list(x=1000, y=c(2.1,0.1,-19), z=c(100,200,100,100))


# For the numeric list, let's get the mean for every element, and count
# the length of the three vectors.
# Here, sapply takes a list and a function as its two arguments,
# and applies that function to each element of the list.
sapply(numlis, mean)


## x y z
## 1000.0 -5.6 125.0


sapply(numlis, length)


## x y z
## 1 3 4


You can of course also define your own functions, and use them here. Let’s look at another simple


example using the numlis object defined above.


For example,


# Let's find out if any diameters are duplicated in the allom dataset.
# A function that does this would be the combination of 'any' and 'duplicated',
anydup <- function(vec)any(duplicated(vec))
# This function returns TRUE or FALSE


# Apply this function to numlis (see above):
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sapply(numlis, anydup)


## x y z
## FALSE FALSE TRUE


# You can also define the function on the fly like this:
sapply(numlis, function(x)any(duplicated(x)))


## x y z
## FALSE FALSE TRUE


Now, you can use any function in sapply as long as it returns a single number based on the element of
the list that you used it on. Consider this example with strsplit.


# Recall that the 'strsplit' (string split) function usually returns a list of values.
# Consider the following example, where the data provider has included the units in
# the measurements of fish lengths. How do we extract the number bits?
fishlength <- c("120 mm", "240 mm", "159 mm", "201 mm")


# Here is one solution, using strsplit
strsplit(fishlength," ")


## [[1]]
## [1] "120" "mm"
##
## [[2]]
## [1] "240" "mm"
##
## [[3]]
## [1] "159" "mm"
##
## [[4]]
## [1] "201" "mm"


# We see that strsplit returns a list, let's use sapply to extract only
# the first element (the number)
splitlen <- strsplit(fishlength," ")
sapply(splitlen, function(x)x[1])


## [1] "120" "240" "159" "201"


# Now all you need to do is use 'as.numeric' to convert these bits of text to numbers.


The main purpose of splitting dataframes into lists, as we have done above, is so that we can save


time with analyses that have to be repeated many times. In the following examples, you must have


already produced the objects hydrosp and allomsp (from examples in the previous section).Both those
objects are lists of dataframes, that is, each element of the list is a dataframe in itself. Let’s look at a few
examples with sapply first.


# How many observations per species in the allom dataset?
sapply(allomsp, nrow)


## PIMO PIPO PSME
## 19 22 22


# Here, we applied the 'nrow' function to each separate dataframe.
# (note that there are easier ways to find the number of observations per species!,
# this is just illustrating sapply.)


# Things get more interesting when you define your own functions on the fly:
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sapply(allomsp, function(x)range(x$diameter))


## PIMO PIPO PSME
## [1,] 6.48 4.83 5.33
## [2,] 73.66 70.61 69.85


# Here, we define a function that takes 'x' as an argument:
# sapply will apply this function to each element of the list,
# one at a time. In this case, we get a matrix with ranges of the diameter per species.


# How about the correlation of two variables, separate by species:
sapply(allomsp, function(x)cor(x$diameter, x$height))


## PIMO PIPO PSME
## 0.9140428 0.8594689 0.8782781


# For hydro, find the number of days that storage was below 235, for each year.
sapply(hydrosp, function(x)sum(x$storage < 235))


## 2006 2007 2008 2009 2010
## 0 18 6 0 0


Using lapply


The lapply function is much like sapply, except it always returns a list.


For example,


# Get a summary of the hydro dataset by year:
lapply(hydrosp, summary)


## $`2006`
## Date storage year
## Min. :2006-01-02 Min. :411.0 Min. :2006
## 1st Qu.:2006-04-01 1st Qu.:449.5 1st Qu.:2006
## Median :2006-06-29 Median :493.0 Median :2006
## Mean :2006-06-29 Mean :514.3 Mean :2006
## 3rd Qu.:2006-09-26 3rd Qu.:553.8 3rd Qu.:2006
## Max. :2006-12-25 Max. :744.0 Max. :2006
##
## $`2007`
....


Suppose you have multiple similar datasets in your working directory, and you want to read all of these


into one list, use lapply like this (run this example yourself and inspect the results).


# Names of your datasets:
filenames <- c("pupae.csv","pupae.csv","pupae.csv")
# (This toy example will read the same file three times).


# Read all files into one list,
alldata <- lapply(filenames, read.csv)


# Then, if you are sure the datasets have the same number of columns and names,
# use do.call to collapse the list:
dfrall <- do.call(rbind, alldata)
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Try this yourself Recall the use of dir to list files, and even to find files that match a specific
pattern (see Section 1.8). Read all CSV files in your working directory (or elsewhere) into a single


list, and count the number of rows for each dataframe.


Finally, we can use lapply to do all sorts of complex analyses that return any kind of object. The use of
lapply with lists ensures that we can organize even large amounts of data in this way.


Let’s do a simple linear regression of log(leafarea) on log(diameter) for the allom dataset, by species:


# Run the linear regression on each element of the list, store in a new object:
lmresults <- lapply(allomsp, function(x)lm(log10(leafarea) ~ log10(diameter), data=x))


# Now, lmresults is itself a list (where each element is an object as returned by lm)
# We can extract the coefficients like this:
sapply(lmresults, coef)


## PIMO PIPO PSME
## (Intercept) -0.3570268 -0.7368336 -0.3135996
## log10(diameter) 1.5408859 1.6427773 1.4841361


# This shows the intercept and slope by species.
# Also look at (results not shown):
# lapply(lmresults, summary)


# Get R2 for each model. First write a function that extracts it.
getR2 <- function(x)summary(x)$adj.r.squared
sapply(lmresults, getR2)


## PIMO PIPO PSME
## 0.8738252 0.8441844 0.6983126


Try this yourself Try to fully understand the difference between sapply and lapply by using
lapply in some of the examples where we used sapply (and vice versa).


Try this yourself The above example shows a general way in which you can analyze many


fitted models at once. A more convenient method to summarize many models is to us the broom
package, and in particular the glance function. Try this code (install the broom package first):
library(broom)
sapply(lmresults, glance)


8.3 Loops


Loops can be useful when we need to repeat certain analyses many times, and it is difficult to achieve


this with lapply or sapply. To understand how a for loop works, look at this example:


for(i in 1:5){
message(i)


}


## 1


## 2


## 3
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## 4


## 5


Here, the bit of code between is executed five times, and the object i has the values 1,2,3,4 and 5, in
that order. Instead of just printing i as we have done above, we can also index a vector with this object:


# make a vector
myvec <- round(runif(5),1)


for(i in 1:length(myvec)){
message("Element ", i, " of the vector is: ", myvec[i])


}


## Element 1 of the vector is: 0.6


## Element 2 of the vector is: 0.3


## Element 3 of the vector is: 0.1


## Element 4 of the vector is: 0.4


## Element 5 of the vector is: 0.2


Note that this is only a toy example: the same result can be achieved by simply typing myvec.


Now let’s look at a useful application of a for loop: producing multiple plots in a pdf, using the allomsp
object we created earlier.


This bit of code produces a pdf in your current working directory. If you can’t find it, recall that you can
use getwd() to get the current working directory.


# Open a pdf to send the plots to:
pdf("Allom plot by species.pdf", onefile=TRUE)
for(i in 1:3){
with(allomsp[[i]],


plot(diameter, leafarea, pch=15, xlim=c(0,80), ylim=c(0,450),
main=levels(allom$species)[i]))


}
# Close the pdf (important!)
dev.off()


Here, we create three plots (i goes from 1 to 3), every time using a different element of the list allomsp.
First, i will have the value 1, so that we end up using the dataframe allomsp[[1]], the first element of
the list. And so on. Take a look at the resulting PDF to understand how the code works.


Note: On windows (with Adobe reader) If the pdf (‘Allom plot by species.pdf’) is open, the above will
fail. If you try this anyway, close the pdf and try again. You may have to run the command dev.off()
another time to make sure the device is ready.


Another way to achieve the same result is to avoid splitting the dataframe into a list first, and sim-


ply take subsets on the fly. Consider this template (make your own working example based on any


dataset).


We assume here you have a dataframe called ’dataset’ with a factor ’species’, for which you want to


create separate plots of Y vs. X.


pdf("somefilename.pdf", onefile=TRUE)
for(lev in levels(dataset$species)){


with(subset(dataset, species==lev),
plot(X,Y,
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main=as.character(lev)))
}
dev.off()


Try this yourself Apply the above template to a dataset of your choice, to make a multi-page


pdf with a scatter plot on each page.


An example line plot


Another important use of for-loops in plotting is when you want to plot multiple lines in one figure,


based on levels of a factor. The default plot in R is not smart enough to do this correctly. In the


following example, we use the hydro data to see if the pattern in storage is similar between years


(producing Fig. 8.1).


# First make the hydrosp object from the example above.
# This is a list, where every element is a dataframe for a year of data.
# First we plot the first year, then add subsequent years with a for loop.
# We plot storage versus day of year
# (conveniently extracted with yday from the lubridate package)
# We also first setup a range of colours.
lineCols <- rainbow(5)
with(hydrosp[[1]], plot(yday(Date), storage, type='l', col=lineCols[1],


lwd=2, ylim=c(0,1000),
xlab="Day of year", ylab="Dam storage (kWh)"))


for(i in 2:5)with(hydrosp[[i]], lines(yday(Date), storage, col=lineCols[i], lwd=2))
legend("bottomleft", names(hydrosp), col=lineCols, lty=1, lwd=2, cex=0.6)


8.4 Advanced working example


In this example, we use lists, lapply, sapply as well as loops. We also introduce fitdistr from the MASS
package, and use curve to add curves to a histogram.


Let’s fit a weibull distribution to the vessel diameter data, separately for the base and apex positions


(see Section A.13). We will also visualize the results, and print the coefficients of the fit.


Note that in the following example, you could also simply make two subsets and repeat the analysis


for both. But this way of working also applied to datasets where you have hundreds of species.


# Read raw data
vessel <- read.csv("vessel.csv")


# Split the dataframe
vesselsp <- split(vessel,vessel$position)


# Load MASS package
library(MASS)


# Fit the weibull (results are stored in a list 'weibfits' containing all outputs).
weibfits <- lapply(vesselsp, function(x)fitdistr(x$vesseldiam, "weibull"))


# To look at the standard print output for the first one:
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Figure 8.1: A line plot for the hydro data.


weibfits[[1]]


## shape scale
## 4.7635885 35.3108997
## ( 0.2213243) ( 0.4674167)


# But if you look at str(weibfits), you will notice the output is a list with many
# components. We will extract 'estimate' which gives the two parameters of the weibull:
weibcoefs <- sapply(weibfits, function(x)x$estimate)


# And look at the results:
weibcoefs


## apex base
## shape 4.763588 4.593941
## scale 35.310900 111.179183


Next, we will plot the two distributions again (as we did in Section 4.5.1), together with a curve of the


fitted weibull.


This code produces Fig. 8.2.


# First define a plotting function that makes a histogram of 'vesseldiam',
# and adds a curve with a weibull distribution, given the shape and scale parameters:
plotHistWeib <- function(dfr, shape, scale){


hist(dfr$vesseldiam, freq=FALSE, main="", xlab="Vessel diameter")
curve(dweibull(x, shape, scale), add=TRUE)


}
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Figure 8.2: Two histograms of the vessel diameter data, with fitted Weibull curves


# Setup a plotting region with two plots:
par(mfrow=c(1,2))


# Loop through the vesselsp list, plot histogram and weibull curve for each:
for(i in 1:length(vesselsp)){
plotHistWeib(vesselsp[[i]], shape=weibcoefs[1,i], scale=weibcoefs[2,i])


}


Note: we index the weibcoefs object as if it were a dataframe, with the order ROWS, COLUMNS between
the square brackets. In fact, it is a matrix but it behaves as a dataframe.
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8.5 Functions used in this chapter


For functions not listed here, please refer to the index at the end of this book.


Function What it does Example use


function Define a function Section 8.1


return Inside a function definition, return an object


message Print a text message to the screen message("Hello!")


list Define a list list(a=1, b=rnorm(100))


unlist For a list of vectors, turn the list into a single long vector unlist(list(a=1:3, b=4:6))


do.call Apply a function given a list of arguments, most often


used to successively row-bind dataframes in a list


Section 8.2


split Turn a dataframe into a list, split by levels of a factor


variable


split(allom, allom$species)


sapply Apply a function to each element of a list, try to simplify


the result (into a vector or matrix)


lapply Apply a function to each element of a list, but do not


try to simplify the result – always return a list


strsplit Split a character vector into pieces separated by some


specified character


strsplit("a/b/c", "/")
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8.6 Exercises


In these exercises, we use the following colour codes:


∎ Easy: make sure you complete some of these before moving on. These exercises will follow
examples in the text very closely.


⧫ Intermediate: a bit harder. You will often have to combine functions to solve the exercise in
two steps.


▲ Hard: difficult exercises! These exercises will require multiple steps, and significant departure
from examples in the text.


We suggest you complete these exercises in an R markdown file. This will allow you to combine code
chunks, graphical output, and written answers in a single, easy-to-read file.


8.6.1 Writing functions


1. ∎Write a function that adds two numbers, and divides the result by 2.


2. ∎ You learned in Section 3.5 that you can take subset of a string using the substr function. First,
using that function to extract the first 2 characters of a bit of text. Then, write a function called


firstTwoChars that extracts the first two characters of any bit of text.


3. ∎ Write a function that checks if there are any missing values in a vector (using is.na and any).
The function should return TRUE if there are missing values, and FALSE if not.


4. ⧫ Improve the function so that it tells you which of the values are missing, if any (Hint:use the
which function).


5. ⧫ The function readline can be used to ask for data to be typed in. First, figure out how to use
readline by reading the corresponding help file. Then, construct a function called getAge that
asks the user to type his/her age. (Hint: check the examples in the readline help page).


6. ▲ Look at the calculations for a confidence interval of the mean in the example in Section 5.3


(p. 134). Write a function that returns the confidence interval for a vector. The function should


have two inputs: the vector, and the desired ’alpha’.


7. ▲ Recall the functions head and tail. Write a function called middle that shows a few rows around
(approx.) the ’middle’ of the dataset. Hint: use nrow, print, and possibly floor.


8.6.2 Working with lists


First read the following list:


veclist <- list(x=1:5, y=2:6, z=3:7)


1. ∎ Using sapply, check that all elements of the list are vectors of the same length. Also calculate
the sum of each element.


2. ⧫ Add an element to the list called ’norms’ that is a vector of 10 numbers drawn from the standard


normal distribution (recall Section 5, p. 130).


3. ⧫ Using the pupae data (Section A.6, p. 248), use a t-test to find if PupalWeight varies with temper-
ature treatment, separate for the two CO2 treatments (so, do two t-tests). Use split and lapply.
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4. ∎ / ⧫ Recall the exercise in Section 4.9.4 (p. 129). First read the data. Then, split the data by species,
to produce a list called coweeta_sp. Keep only those species that have at least 10 observations.
(Hint: first count the number of observations per species, save that as a vector, find which are at
least 10, and use that to subscript the list.) If you don’t know how to do this last step, skip it and


continue to the next item.


5. ∎ Using the split Coweeta data, perform a linear regression of log10(biomass) on log10(height),
separately by species. (Hint: recall section 8.2.2, p. 222).


6. ⧫ Run this code to get two vectors:


x <- rnorm(100)
y <- x + rnorm(100)


Run a linear regression y = f(x), save the resulting object. Look at the structure of this object, and


note the names of the elements. Extract the residuals and make a histogram.


7. ▲ From question 6, write a function that takes an lm object as an argument, and plots a histogram
of the residuals.


8.6.3 Using functions to make many plots


1. ⧫ Read the cereal data. Create a subset of data where the Manufacturer has at least two obser-
vations (use table to find out which you want to keep first). Don’t forget to drop the empty factor
level you may have created!


2. ⧫ Make a single PDF with six plots, with a scatter plot between potassium and fiber for each of


the six (or seven?) Manufacturers. (Hint: ook at the template for producing a PDF with multiple
pages at the bottom of Section 8.3, p. 225).


3. ▲ Recall that we can use points to add points or lines to a current plot. See Section 4.4.7 (p. 108)
for an example using the Dutch election data. Read the data (and convert the Date variable!).


4. ▲ Write a function that adds lines for each of the parties in the election data to a plot. First set


up an empty plot using,


with(election, plot(Date, VVD, type='n', ylim=c(0,40)))


Then carefully inspect the example in Section 4.4.7 (p. 108) to see how you can write a function


that adds a line for one party (e.g. ’SP’) to that plot.


5. ▲ Loop through all columns of the election data, add a line for each column to the plot.


8.6.4 Monthly weather plots


1. ⧫ For the HFE weather dataset (Section A.10, p. 251), write a function that makes a scatter plot


between PAR and VPD.


2. ⧫ Then, split the dataset by month (recall Section 8.2.1, p. 221), and make twelve such scatter plots.


Save the result in a single PDF, or on one page with 12 small figures.


8.6.5 The Central limit theorem


The ’central limit theorem’ (CLT) forms the backbone of inferential statistics. This theorem states (in-


formally) that if you draw samples (of n units) from a population, the mean of these samples follows a
normal distribution. This is true regardless of the underlying distribution you sample from.
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In this exercise, you will apply a simple simulation study to test the CLT, and to make histograms and


quantile-quantile plots.


1. ⧫ Draw 200 samples of size 10 from a uniform distribution. Use the runif function to sample from
the uniform distribution, and the replicate function to repeat this many times.


2. ⧫ Compute the sample mean for each of the 200 samples in 1. Use apply or colMeans to calculate
column-wise means of a matrix (note: replicate will return a matrix, if used correctly).


3. ⧫ Draw a histogram of the 200 sample means, using hist. Also draw a normal quantile-quantile
plot, using qqnorm.


4. ⧫ On the histogram, add a normal curve using the dnorm function. Note: to do this, plot the
histogram with the argument freq=FALSE, so that the histogram draws the probability density,
not the frequency.


5. ▲Write a function that does all of the above, and call it PlotCLT.
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Chapter 9


Project management and workflow


9.1 Tips on organizing your code


In this chapter, we present a few tips on how to improve your workflow and organization of scripts,


functions, raw data, and outputs (figures, processed data, etc.). The structure that we present below


is just an example, and will depend on the particular project, and your personal taste. We encourage


you to experiment with different workflows and organization of your script(s) and outputs, to declutter


your working directory and to be able to keep track of what you have accomplished in your analysis


sofar.


Although much of this is subject to personal preference, we believe that if you follow these rules,


management of your code will be much easier and more transparent:


1. Use ’projects’ in Rstudio to manage your files and workspace


2. Keep raw (original) data in a separate folder, and never modify raw data
3. Outputs (figures, processed datasets) are disposable, your scripts can always re-produce the out-


put


4. Keep functions separate from other code


5. Write functions as much as possible


Further reading Further reading is on this excellent blogpost, from which we borrowed some


ideas: http://nicercode.github.io/blog/2013-04-05-projects/


If you follow (something like) the structure we show here, you have the added benefit that your direc-


tory is fully portable. That is, you can zip it, email it to someone, they can unzip it and run the entire


analysis.


The most important tip is to use projects in Rstudio. Projects are an efficient method to keep your files
organized, and to keep all your different projects separated. There is a natural tendency for analyses


to grow over time, to the point where they become too large to manage properly. The way we usually


deal with this is to try to split projects into smaller ones, even if there is some overlap between them.
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9.2 Set up a project in Rstudio


In Rstudio, click on the menu item File/New Project.... If you already have a folder for the project,
take the 2nd option (Existing directory), otherwise create a folder as well by choosing the 1st option
(New project). We will not discuss "version control" in this chapter (the third option).


Browse for the directory you want to create a project in, and click Choose. This creates a file with
extension .Rproj. Whenever you open this project, Rstudio will set the working directory to the location
of the project file. If you use projects, you no longer need to set the working directory manually as we


showed in Section 1.8.


Rstudio has now switched to your new project. Notice in the top-right corner there is a button that


shows the current project. For the example project ’facesoil’, it looks like this:


By clicking on that button you can easily switch over to other projects. The working directory is au-


tomatically set to the right place, and all files you had open last time are remembered as well. As an


additional bonus, the workspace is also cleared. This ensures that if you switch projects, you do not


inadvertently load objects from another project.


9.3 Directory structure


For the ’facesoil’ project, we came up with the following directory structure. Each item is described


further below.
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rawdata


Most importantly, keep your raw data separate from everything else. Here we have placed our raw CSV
files in the rawdata directory.


In some projects it makes sense to further keep raw data files separate from each other, for example


you might have subfolders in the rawdata folder that contain different types of datasets (e.g. ’raw-


data/leafdata’, ’rawdata/isotopes’). Again, the actual solution will depend on your situation, but it is at


least very good practice to store your raw data files in a separate folder.


Rfunctions


If you do not frequently write functions already, you should force yourself to do so. Particularly for


tasks that you do more than once, functions can greatly improve the clarity of your scripts, helps you


avoid mistakes, and makes it easier to reuse code in another project.


It is good practice to keep functions in a separate folder, for example Rfunctions, with each function
in a separate file (with the extension .R). It may look like this,


We will use source() to load these functions, see further below.


output


It is a good idea to send all output from your R scripts to a separate folder. This way, it is very clear
what the outputs of the analysis are. It may also be useful to have subfolders specifying what type of
output it is. Here we decided to split it into figures, processeddata, and text :


9.4 The R scripts


A few example scripts are described in the following sections. Note that these are just examples, the


actual setup will depend on your situation, and your personal preferences. The main point to make


here is that it is tremendously useful to separate your code into a number of separate scripts. This


makes it easier to maintain your code, and for an outsider to follow the logic of your workflow.
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facesoil_analysis.R


This is our ’master’ script of the project. It calls (i.e., executes) a couple of scripts using source. First,
it ’sources’ the facesoil_load.R script, which loads packages and functions, and reads raw data. Next,
we do some analyses (here is a simple example where we calculate daily averages), and call a script


that makes the figures (facesoil_figures.R).


Note how we direct all output to the ‘output‘ folder, by specifying the relative path, that is, the path
relative to the current working directory.


# Calls the load script.
source("facesoil_load.R")


# Export processed data
write.csv(allTheta, "output/processeddata/facesoil_allTheta.csv",


row.names=FALSE)


## Aggregate by day


# Make daily data
allTheta$Date <- as.Date(allTheta$DateTime)
allTheta_agg <- summaryBy(. ~ Date + Ringnr, data=allTheta,


FUN=mean, keep.names=TRUE)


# Export daily data
write.csv(allTheta_agg, "output/processeddata/facesoil_alltheta_daily.csv",


row.names=FALSE)


## make figures
source("figures.R")


facesoil_figures.R


In this example we make the figures in a separate script. If your project is quite small, perhaps this


makes little sense. When projects grow in size, though, I have found that collecting the code that


makes the figures in a separate script really helps to avoid clutter.


Also, you could have a number of different ’figure’ scripts, one for each ’sub-analysis’ of your project.


These can then be sourced in the master script (here facesoil_analysis.R), for example, to maintain
a transparent workflow.


Here is an example script that makes figures only. Note the use of dev.copy2pdf, which will produce a
PDF and place it in the output/figures directory.


# Make a plot of soil water content over time
windows()
with(allTheta, plot(DateTime, R30.mean, pch=19, cex=0.2,


col=Ringnr))
dev.copy2pdf(file="./output/figures/facesoil_overtime.pdf")


# More figures go here!
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facesoil_load


This script contains all the bits of code that are


1. Cleaning the workspace


2. Loading packages


3. Loading homemade functions


4. Reading and pre-processing the raw data


Remember that it is important to start with a clean workspace (see Section 1.9), as it guarantees that


all your work is reproducible (and not dependent on objects that you created ages ago).


It is useful to load all packages in one location in your, which makes it easy to fix problems should they


arise (i.e., some packages are not installed, or not available).


# Clean workspace
rm(list=ls())


# Load packages
library(doBy)
library(lubridate)


# Source functions (this loads functions but does no actual work)
source("Rfunctions/rmDup.R")


# Make the processed data (this runs a script)
source("facesoil_readdata.R")


facesoil_readdata.R


This script produces a dataframe based on the raw CSV files in the ‘rawdata‘ folder. The example below


just reads a dataset and changes the DateTime variable to a POSIXct class. In this script, I normally also


do all the tedious things like deleting missing data, converting dates and times, merging, adding new


variables, and so on. The advantage of placing all of this in a separate script is that you keep the boring


bits separate from the code that generates results, such as figures, tables, and analyses.


# Read raw data from 'rawdata' subfolder
allTheta <- read.csv("rawdata/FACE_SOIL_theta_2013.csv")


# Convert DateTime
allTheta$DateTime <- ymd_hms(as.character(allTheta$DateTime))


# Add Date
allTheta$Date <- as.Date(allTheta$DateTime)


# Etc.


9.5 Archiving the output


In the example workflow we have set up in the previous sections, all items in the output folder will


be automatically overwritten every time we run the master script facesoil_analysis.R. One simple
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way to back up your previous results is to create a zipfile of the entire output directory, place it in the


archive folder, and rename it so it has the date as part of the filename.


After a while, that directory may look like this:


If your processData folder is very large, thismay not be the optimal solution. Perhaps the processedData
can be in a separate output folder, for example.


Adding a Date stamp to output files


Another option is to use a slightly different output filename every time, most usefully with the current


Date as part of the filename. The following example shows how you can achieve this with the today
from the lubridate package, and paste0 (which is the same as paste, with the argument sep="").


# For the following to work, load lubridate
# Recall that in your workflow, it is best to load all packages in one place.
library(lubridate)


# Make a filename with the current Date:
fn <- paste0("output/figures/FACE_soilfigure1_",today(),".pdf")
fn


## [1] "output/figures/FACE_soilfigure1_2018-09-05.pdf"


# Also add the current time, make sure to reformat as ':' is not allowed!
fn <- paste0("output/figures/FACE_soilfigure1_",format(now(),"%Y-%m-%d_%H-%M"),".pdf")
fn


## [1] "output/figures/FACE_soilfigure1_2018-09-05_16-31.pdf"


With the above filename, we can now make a PDF, like so:


windows(7,7)
# .... make plot here ....
dev.copy2pdf(file=fn)
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Chapter 10


Hints


10.1 Identifying and managing different types of objects


10.1.1 Vectors


Dimensions: n elements in one dimension, all of one mode


• length(vector) gives the number of elements of vector


Generating:


• use c() with data


• use vector(mode, length) without data, where mode = ’numeric’, ’integer’, ’character’, or ’logical’


Indexing:


• vector[i] takes the ith
element of vector


• vector[’name’] takes the element of vector that is named ’name’


# Example:
num1 <- c(1,3,5)
str(num1)


## num [1:3] 1 3 5


length(num1)


## [1] 3


num1


## [1] 1 3 5


num1[2]


## [1] 3


names(num1) <- c('a', 'b', 'c')
num1


## a b c
## 1 3 5
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num1['b']


## b
## 3


10.1.2 Matrices


Dimensions: n elements in two dimensions (i, j), all of one mode


• length(matrix) gives the number of elements in matrix


• dim(matrix) gives the number of rows and columns in matrix


• nrow(matrix) and ncol(matrix) give the number of rows and columns, respectively, in matrix


Generating:


• use matrix(c(), nrow, ncol) with data


• use matrix(NA, nrow, ncol) without data


Indexing:


• matrix[i, j] takes the element in the ith
row and jth


column of vector


• matrix[’rowname’, ’colname’] takes the element of vector with the row named ’rowname’ and
the column named ’colname’


# Example:
mat1 <- matrix(c(1,3,5,7,9,11), nrow=3, ncol=2, byrow=T)
str(mat1)


## num [1:3, 1:2] 1 5 9 3 7 11


length(mat1)


## [1] 6


dim(mat1)


## [1] 3 2


ncol(mat1); nrow(mat1)


## [1] 2
## [1] 3


mat1


## [,1] [,2]
## [1,] 1 3
## [2,] 5 7
## [3,] 9 11


mat1[2,2]


## [1] 7


rownames(mat1) <- c('a', 'b', 'c')
colnames(mat1) <- c('A', 'B')
mat1
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## A B
## a 1 3
## b 5 7
## c 9 11


mat1['b', 'B']


## [1] 7


10.1.3 Lists


Dimensions: variable – each element is an object, possibly of any type


• length(list[[i]]) gives the number of elements in the ith
element of list


• length(list) gives the number of elements at the highest level of list respectively


Generating:


• use list(x, y, etc.) with data, where each element could be any type of object


• use vector(mode = ’list’, length) without data, then add data to each element via indexing


Indexing:


• list[[i]] takes the object in the ith
element of list


• list[[c(i, j)]] returns the jth
element of the ith


element list


• list[[’name’]] takes the object within list that is named ’name’


• list[i] returns a list containing the ith
element of list


• list[’name’] or list$name returns a list containing the element of list that is named ’name’


# Example:
list1 <- list(1:10, c('a', 'to', 'z'), matrix(1:4, nrow=2, ncol=2))
str(list1)


## List of 3
## $ : int [1:10] 1 2 3 4 5 6 7 8 9 10
## $ : chr [1:3] "a" "to" "z"
## $ : int [1:2, 1:2] 1 2 3 4


list1


## [[1]]
## [1] 1 2 3 4 5 6 7 8 9 10
##
## [[2]]
## [1] "a" "to" "z"
##
## [[3]]
## [,1] [,2]
## [1,] 1 3
## [2,] 2 4


list1[[2]]


## [1] "a" "to" "z"


list1[[2]][2]
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## [1] "to"


list1[[c(2,2)]]


## [1] "to"


list1[2]


## [[1]]
## [1] "a" "to" "z"


list1[c(2,1)]


## [[1]]
## [1] "a" "to" "z"
##
## [[2]]
## [1] 1 2 3 4 5 6 7 8 9 10


names(list1) <- c('num', 'char', 'mat')
list1[['mat']]


## [,1] [,2]
## [1,] 1 3
## [2,] 2 4


list1$mat


## [,1] [,2]
## [1,] 1 3
## [2,] 2 4


10.1.4 Dataframes


Dimensions: elements in vectors, possibly of different modes, but each with n elements (a special type
of list)


• dim(df)


• length(dataframe) gives the number of columns in dataframe


• dim(dataframe) gives the number of rows and columns in matrix


• nrow(dataframe) and ncol(dataframe) give the number of rows and columns,


Generating:


• data.frame(vector1, vector2) creates a dataframe with two columns from two vectors


• data.frame(col1=vector1, col2=vector2) creates a dataframe with two columns named ’col1’
and ’col2’ from two vectors


Indexing:


• dataframe[i, j] takes the element in the ith row and jth column of dataframe


• dataframe[[’colname’]] or dataframe$colname takes the column of dataframe that is named ’col-
name’


df <- data.frame(vec1=11:20, vec2=rnorm(n=10))
str(df)
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## 'data.frame': 10 obs. of 2 variables:
## $ vec1: int 11 12 13 14 15 16 17 18 19 20
## $ vec2: num 0.245 1.239 1.169 -2.409 0.316 ...


dim(df)


## [1] 10 2


length(df)


## [1] 2


df


## vec1 vec2
## 1 11 0.2453283
## 2 12 1.2387281
## 3 13 1.1692241
## 4 14 -2.4086752
## 5 15 0.3162851
## 6 16 0.8542639
## 7 17 0.3415525
## 8 18 -0.3754586
## 9 19 -0.7658523
## 10 20 0.5869404


df[2, ]


## vec1 vec2
## 2 12 1.238728


df[, 2]


## [1] 0.2453283 1.2387281 1.1692241 -2.4086752 0.3162851 0.8542639
## [7] 0.3415525 -0.3754586 -0.7658523 0.5869404


df[2,2]


## [1] 1.238728


df[['vec2']]


## [1] 0.2453283 1.2387281 1.1692241 -2.4086752 0.3162851 0.8542639
## [7] 0.3415525 -0.3754586 -0.7658523 0.5869404


df$vec2


## [1] 0.2453283 1.2387281 1.1692241 -2.4086752 0.3162851 0.8542639
## [7] 0.3415525 -0.3754586 -0.7658523 0.5869404


names(df) <- c('var1', 'var2')
str(df)


## 'data.frame': 10 obs. of 2 variables:
## $ var1: int 11 12 13 14 15 16 17 18 19 20
## $ var2: num 0.245 1.239 1.169 -2.409 0.316 ...
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Chapter 11


Getting Help


11.1 Web


That’s right, Google should be your number one choice. Try typing a question in full, for example, "How


to read tab-delimited data in R".


www.google.com


Search engine for R-related topics (including packages, blogs, email lists, etc.):
www.rseek.org


Excellent resource for graphical parameters, like par() (and more resources on R):
http://www.statmethods.net/advgraphs/parameters.html


Archive (and search) of the R-help mailing list can be found on Nabble:


http://r.789695.n4.nabble.com/


Search engine for the R-help mailing list:


http://finzi.psych.upenn.edu/search.html


11.2 Free online books


You can find a large number of manuals on the CRAN website. There, find the link ’Contributed’ on the


left:


www.cran.r-project.org


If you are interested in the inner workings of R, the ’R inferno’ is not to be missed:
http://www.burns-stat.com/pages/Tutor/R_inferno.pdf


11.3 Blogs


A compendium of blogs about R can be found here. These blogs include many posts on frequently
asked questions, as well as advanced topics:


http://www.r-bloggers.com/
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Examples of various simple or complicated plots that have been produced using R, with code provided
can be found here:


http://rgraphgallery.blogspot.com.au/


11.4 Finding packages


With >10000 packages available on CRAN alone (http://cran.r-project.org/), it can be difficult to find
a package to perform a specific analysis. Often the easiest way to find a package is to use Google (for


example, ’r package circular statistics’). CRAN has also categorized many packages in their ’Task Views’:


http://cran.r-project.org/web/views/
For example, the ’Spatial’ page lists over 130 packages to do with various aspects of spatial analysis and


visualization.


11.5 Offline paper books


An exhaustive list of printed books can be found here:


http://www.r-project.org/doc/bib/R-books.html


Springer publishes many books about R, incluing a special series called "Use R!" If your library has a
subscription, many of these books can be read online. For example, the classic Introductory Statisticswith R by Peter Dalgaard:
http://link.springer.com/book/10.1007/978-0-387-79054-1/page/1
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Appendix A


Description of datasets


A.1 Tree allometry


File: ‘Allometry.csv’
This dataset contains measurements of tree dimensions and biomass. Data kindly provided by John


Marshall, University of Idaho.


Variables:
• species - The tree species (PSME = Douglas fir, PIMO = Western white pine, PIPO = Ponderosa
pine).


• diameter - Tree diameter at 1.3m above ground (cm).


• height - Tree height (m).


• leafarea - Total leaf area (m2
).


• branchmass - Total (oven-dry) mass of branches (kg).


A.2 Coweeta tree data


File: ‘coweeta.csv’
Treemeasurements in the Coweeta LTER (http://coweeta.uga.edu/). Data are fromMartin et al. (1998;
Can J For Res 28:1648-1659).


Variables:
• species One of 10 tree species


• site Site abbreviation


• elev Elevation (m asl)


• age Tree age (yr)


• DBH Diameter at breast height (cm)


• height Tree height (m)


• folmass Foliage mass (kg)
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• SLA Specific leaf area (cmg−1)


• biomass Total tree mass (kg)


A.3 Hydro dam


File: ‘hydro.csv’
This dataset describes the storage of the hydrodam on the Derwent river in Tasmania (Lake King


William & Lake St. Clair), in equivalent of energy stored. Data were downloaded from http://www.
hydro.com.au/water/energy-data.


Variables:
• Date - The date of the bi-weekly reading


• storage - Total water stored, in energy equivalent (GWh).


A.4 Rain


File: ‘Rain.csv’
This dataset contains ten years (1995-2006) of daily rainfall amounts as measured at the Richmond


RAAF base. Source : BOM (http://www.bom.gov.au/climate/data/).


Variables:
• Year


• DOY - Day of year (1-366)


• Rain - Daily rainfall (mm)


A.5 Weight loss


File: ‘Weightloss.csv’
This dataset contains measurements of a Jeremy Zawodny over a period of about 3 months while


he was trying to lose weight (data obtained from http://jeremy.zawodny.com/blog/archives/006851.
html). This is an example of an irregular timeseries dataset (intervals between measurements vary).


Variables:
• Date - The Date (format, dd/mm/yy)


• Weight - The person’s weight (lbs)


A.6 Pupae


File: ‘pupae.csv’
This dataset is from an experiment where larvae were left to feed on Eucalyptus leaves, in a glasshouse
that was controlled at two different levels of temperature and CO2 concentration. After the larvae
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pupated (that is, turned into pupae), the body weight was measured, as well as the cumulative ’frass’


(larvae excrement) over the entire time it took to pupate.


Data courtesy of Tara Murray, and simplified for the purpose of this book.


Variables:
• T_treatment - Temperature treatments (’ambient’ and ’elevated’)


• CO2_treatment - CO2 treatment (280 or 400 ppm).


• Gender - The gender of the pupae : 0 (male), 1 (female)


• PupalWeight - Weight of the pupae (g)


• Frass - Frass produced (g)


A.7 Cereals


File: ‘Cereals.csv’
This dataset summarizes 77 different brands of breakfast cereals, including calories, proteins, fats, and


so on, and gives a ’rating’ that indicates the overall nutritional value of the cereal.


This dataset was downloaded from Statlib at CMU, and is frequently used as an example dataset.


Variables:
• Cereal name - Name of the cereal (text)


• Manufacturer - One of: "A","G","K","N","P","Q","R" (A = American Home Food Products; G = General
Mills; K = Kelloggs; N = Nabisco; P = Post; Q = Quaker Oats; R = Ralston Purina)


• Cold or Hot - Either "C" (cold) or "H" (Hot).


• calories - number


• protein - g


• fat - g


• sodium - g


• fiber - g


• carbo - g


• sugars - g


• potass - g


• vitamins - 0,25 or 100


• rating - Nutritional rating (function of the above 8 variables).


NOTE: also included are the files ‘cereal1.csv’, ‘cereal2.csv’ and ‘cereal3.csv’, small subsets of the cereal
data used in Section 6.3.1.


A.8 Flux tower data


File: ‘Fluxtower.csv’
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This dataset contains measurements of CO2 and H2O fluxes (and related variables) over a pine forest


in Quintos de Mora, Spain. The site is a mixture of Pinus pinaster and Pinus pinea, and was planted in
the 1960’s.


Data courtesy of Victor Resco de Dios, and simplified for the purpose of this book.


Variables:
• TIMESTAMP - Character vector with date and time


• FCO2 - Canopy CO2 flux (µmol m−2
s
−1
)


• FH2O - Canopy H2O flux (mmol m−2
s
−1
)


• ustar - Roughness length (m s−1
)


• Tair - Air temperature (degrees C)


• RH - Relative humidity (%)


• Tsoil - Soil temperature (degrees C)


• Rain - Rainfall (mm half hour−1
)


A.9 Pulse rates before and after exercise


File: ‘ms212.txt’
This data is in a TAB separated file; to read it in use read.table("ms212.txt", header=TRUE).


A dataset on pulse rates before and after exercise. Taken from the OzDASL library (Smyth, GK (2011).


Australasian Data and Story Library (OzDASL). http://www.statsci.org/data.)


More information at http://www.statsci.org/data/oz/ms212.html.


Variables:
• Height - Height (cm)


• Weight - Weight (kg)


• Age - Age (years)


• Gender - Sex (1 = male, 2 = female)


• Smokes - Regular smoker? (1 = yes, 2 = no)


• Alcohol - Regular drinker? (1 = yes, 2 = no)


• Exercise - Frequency of exercise (1 = high, 2 = moderate, 3 = low)


• Ran - Whether the student ran or sat between the first and second pulse measurements (1 = ran,
2 = sat)


• Pulse1 - First pulse measurement (rate per minute)


• Pulse2 - Second pulse measurement (rate per minute)


• Year - Year of class (93 - 98)
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A.10 Weather data at the HFE


File: ‘HFEmet2008.csv’
Data for the weather station at the Hawkesbury Forest Experiment for the year 2008.


Data courtesy of Craig Barton.


Variables:
• DateTime - Date Time (half-hourly steps)


• Tair - Air temperature (degrees C)


• AirPress - Air pressure (kPa)


• RH - Relative humidity (%)


• VPD - Vapour pressure deficit (kPa)


• PAR - Photosynthetically active radiation (µmol m−2
s
−1
)


• Rain - Precipitation (mm)


• wind - Wind speed (m s−1
)


• winddirection - Wind direction (degrees)


A.11 Age and memory


File: ‘eysenck.txt’ This data is in a TAB separated file, so to read it in use read.table("eysenck.txt",
header=TRUE).


A dataset on the number of words remembered from list, for various learning techniques, and in two


age groups. Taken from the OzDASL library (Smyth, GK (2011). Australasian Data and Story Library


(OzDASL). http://www.statsci.org/data.)


More information at http://www.statsci.org/data/general/eysenck.html.


Variables:
• Age - Younger or Older


• Process - The level of processing: Counting, Rhyming, Adjective, Imagery or Intentional


• Words - Number of words recalled


A.12 Passengers on the Titanic


File: ‘titanic.txt’
This data is in a TAB separated file, so to read it in use read.table("titanic.txt", header=TRUE).


Survival status of passengers on the Titanic, together with their names, age, sex and passenger class.


Taken from the OzDASL library (Smyth, GK (2011). Australasian Data and Story Library (OzDASL). http:
//www.statsci.org/data.)


More information at http://www.statsci.org/data/general/titanic.html.


Variables:
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• Name Recorded name of passenger


• PClass Passenger class: 1st, 2nd or 3rd


• Age Age in years (many missing)


• Sexmale or female


• Survived 1 = Yes, 0 = No


A.13 Xylem vessel diameters


File: ‘vessel.csv’
Measurements of diameters of xylem (wood) vessels on a single Eucalyptus saligna tree grown at the
Hawkesbury Forest Experiment.


Data courtesy of Sebastian Pfautsch.


Variables:
• position - Either ’base’ or ’apex’ : the tree was sampled at stem base and near the top of the tree.


• imagenr - At the stem base, six images were analyzed (and all vessels measured in that image). At
apex, three images.


• vesselnr - Sequential number


• vesseldiam - Diameter of individual vessels (µm).


A.14 Eucalyptus leaf endophytes


File: ‘endophytes_env.csv’ and ‘endophytes.csv’
Community fingerprints from fungi colonising living leaves and litter from nine Eucalyptus spp. in the


HFE common garden and surrounding area. ‘endophytes.csv’ contains a ’species-sample’ matrix, with


98 samples in rows and 874 operational taxonomic units (OTUs) in columns.


The variables below refer to the data in ‘endophytes_env.csv’. The rows are matched across the two


tables.


Variables:
• species - Tree species


• type - Whether leaves came from canopy (fresh) or ground (litter)


• percentC - Leaf carbon content, per gram dry mass


• percentN - Leaf nitrogen content, per gram dry mass


• CNratio - Ratio of C to N in leaves


A.15 I x F at the HFE - plot averages


File: ‘HFEIFplotmeans.csv’
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Tree inventory data from the irrigation by fertilization (I x F) experiment in the Hawkesbury Forest Ex-


periment (HFE). This dataset includes the plot means, see I x F tree data for the tree-level observations.


Data courtesy of Craig Barton and Burhan Amiji.


Variables:
• plotnr - A total of sixteen plots (four treatments).


• Date - The date of measurement.


• totalvolume - Total estimated woody volume (m3
ha
−1
).


• meandiameter - Mean diameter for the sample trees (cm).


• meanheight - Mean height for the sample trees (m).


• treat - One of four treatments (I - irrigated, F - dry fertilized, IL - Liquid fertilizer plus irrigation, C
- control).


A.16 I x F at the HFE - tree observations


File: ‘HFEIFbytree.csv’
Tree inventory data from the irrigation by fertilization (I x F) experiment in the Hawkesbury Forest


Experiment (HFE). This dataset includes the tree-level observations.


Data courtesy of Craig Barton and Burhan Amiji.


Variables:
• ID A unique identifier for each tree.


• plotnr - A total of sixteen plots (four treatments).


• treat - One of four treatments (I - irrigated, F - dry fertilized, IL - Liquid fertilizer plus irrigation, C
- control)


• Date - The date of measurement (YYYY-MM-DD)


• height - Mean height for the sample trees (m).


• diameter - Mean diameter for the sample trees (cm).


A.17 Dutch election polls


File: ‘dutchelection.csv’
Polls for the 12 leading political parties in the Netherlands, leading up to the general election on 12 Sept.


2012. Data are in ’wide’ format, with a column for each party. Values are in percentages.


Data taken from http://en.wikipedia.org/wiki/Dutch_general_election,_2012, based on polls by
Ipsos NL.
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A.18 Tibetan Plateau plant community data


File: ‘tibplat.csv’
Plant community data collected from 0.5mby 0.5mplots in an alpine grassland in the Tibetan Plateau.


The experiment included two factors: fertilisation (none, 30 grams nitrogen per square metre) and


grazing (enclosed to prevent grazing, not enclosed). This dataset is a subset of the whole dataset,


including only the eight most abundant species of the 48 species measured withing the plots. The full


dataset was analysed in Yang et al., 2012, Ecology 93:2321 (doi:10.1890/11-2212.1).


Variables:
• fertilization - 1:yes, 0:no


• enclosure - 1:yes, 0:no


• columns 3:50 - aboveground biomass per plot; column heading indicates species identity


A.19 Genetically modified soybean
litter decomposition


File: ‘masslost.csv’
Soybean litter decomposition as a function of time (date), type of litter (variety), herbicides applied
(herbicide), and where in the soil profile it is placed (profile). masslost refers to the proportion of
the litter that was lost from the bag (decomposed) relative to the start of the experiment. Herbicide


treatments were applied at the level of whole plots, with both treatments represented within each of


four blocks. Both levels of variety and profile were each representedwithin each plot, with six replicates


of each treatment added to each plot.


Variables:
• plot - A total of eight plots.


• block - A total of four blocks.


• variety - Soybean variety is genetically modified (’gm’) or not (’nongm’); manipulated at the sub-
plot level.


• herbicide - Herbicide applied is glyphosate (’gly’) or conventional program (’conv’); manipulated
at plot level.


• profile - Whether litter was ’buried’ in the soil or placed at the soil ’surface’; manipulated at the
subplot level.


• date - Date at which litter bags were recovered.


• sample - Factor representing timing of sampling (’incrop1’, ’incrop2’, ’postharvest’).


• masslost - The proportion of the initial mass that was lost from each litter bag during field incu-
bation. Some values are lower than zero due to insufficient washing of dirt and biota from litter


prior to weighing.
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A.20 EucFACE ground cover data


File: ‘eucfaceGC.csv’
This file contains estimates of plant and litter cover within the rings of the EucFACE experiment, eval-


uating forest ecosystem responses to elevated CO2, on two dates. Within each ring are four plots and


within each plot are four 1m by 1m subplots. Values represent counts along a grid of 16 points within


each subplot.


Variables:
• Date - Date at which measurements took place.


• Ring - The identity of the EucFACE Ring, the level at which the experimental treatment is applied.


• Plot - A total of four plots, nested within each level of Ring.


• Sub - A total of four subplots, nested within each level of Plot.


• Forbes - Number of points where dicot plants are observed.


• Grass - Number of points where grass is observed.


• Litter - Number of points where leaf litter is observed.


• Trt - The experimental treatment: ctrl for ambient levels of atmospheric carbon dioxide, elev
for ambient plus 150ppm.


A.21 Tree canopy gradients in the Priest River Experi-
mental Forest (PREF)


File: ‘prefdata.csv’
The dataset contains measurements of leaf mass per area (LMA), and distance from the top of the tree


(dfromtop) on 35 trees of two species.


Data courtesy of John Marshall (Marshall, J.D., Monserud, R.A. 2003. Foliage height influences specific


leaf area of three conifer species. Can J For Res 33:164-170), and simplified for the purpose of this book.


Variables:
• ID - ID of the individual tree


• species - Pinus ponderosa or Pinus monticola


• dfromtop - Distance from top of tree (where leaf sample was taken) (m)


• totheight - Total height of the tree (m)


• height - Height from the ground (where sample was taken) (m)


• LMA - Leaf mass per area (g m−2
)


• narea - Nitrogen per area (gN m−2
)


A.22 Seed germination


File: ‘germination_fire.csv’ and ‘germination_water.csv’
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Two datasets on the germination success of seeds of four Melaleuca species, when subjected to tem-
perature, fire cue, and dehydration treatments. Seeds were collected from a number of sites and


subjected to 6 temperature treatments and fire cues (in the fire germination data), or two a range of


dehydration levels (in the water germination data).


Data are fromHewitt et al. 2015 (Austral Ecology 40(6):661-671), shared by Charles Morris, and simplified


for the purpose of this book.


Variables:
‘germination_fire.csv’ :


• species - One of four Melaleuca species


• temp - Temperature treatment (C)


• fire.cues - Fire cue treatment (yes or no)


• site - Coding for the site where the seed was collected


• cabinet - ID for the cabinet where seeds were treated


• germ - Number of germinated seeds


• n - Number of seeds tested (20 for all rows)


‘germination_water.csv’ :


• species - One of four Melaleuca species


• site - Coding for the site where the seed was collected


• water.potential - Water potential of the seed (Mpa) after incubation (low values is drier)


• germ - Number of germinated seeds


• n - Number of seeds tested (25 for all rows)


A.23 Leaf gas exchange at the EucFACE


File: ‘eucface_gasexchange.csv’
Measurements of leaf net photosynthesis at the EucFACE experiment, on leaves of different trees grow-


ing in ambient and elevated CO2 concentrations. Measurements were repeated four times during 2013


(labelled as Date=A,B,C,D).


Data are from Gimeno et al. 2015 (Functional Ecology, doi: 10.1111/1365-2435.12532), and simplified for


the purpose of this book.


Variables:
• Date - One of four campaigns (A,B,C,D)


• CO2 - CO2 treatment (either ambient - Amb, or elevated - Ele)


• Ring- One of six ’rings’ (plots) at the EucFACE


• Tree - Unique identifier for the tree number


• Photo - Net leaf photosynthesis (µmol m−2
s
−1
)


• Trmmol - Leaf transpiration rate (mmol m−2
s
−1
)


• VpdL - Vapour pressure deficit (kPa)
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A.24 Howell height, age and weight data


File: ‘howell.csv’
Downloaded from https://tspace.library.utoronto.ca/handle/1807/17996, subsetted for non-missing
data and one outlier removed. These data were also used by McElreath (2016, "Statistical Rethinking",


CRC Press). Data include measurements of height, age and weight on Khosan people.


Variables:
• sex - male or female


• age - Age (years)


• weight - Body weight )kg)


• height - Total height (cm)


A.25 Wild mouse metabolism


File: ‘wildmousemetabolism.csv’
Data courtesy of Chris Turbill.


rmr resting metabolic rate minimum of a running average over 12min (kC hour-1) each run is six days


bm body mass in grams food


Variables:
• id - Individual number.


• run - The experiment was repeated three times (run = 1,2,3)


• day - Day of experiment (1-6)


• temp - Temperature (deg C)


• food - Whether food was provided (’Yes’) or not (’No’)


• bm - Body mass (g)


• wheel - Whether the mouse could use an exercise wheel (’Yes’) or not (’No’)


• rmr - Resting metabolic rate (minimum rate of a running average over 12min) (kC hour-1)


• sex - Male or Female


A.26 Plant drought tolerance


File: ‘Choat_precipP50.csv’
Data are from Choat et al. 2012 (Nature 491: 752âĂŞ755), and were simplified for the purpose of this


book.


Data include a measure of plant drought tolerance (P50, more negative values indicate plant stems can


tolerate lower water contents), and mean annual precipitation of the location where the sample was


taken. Data are for 115 individual species (species name not included).


Variables:
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• annualprecip - Mean annual precipitation (mm)


• P50 - Measure of plant drought tolerance (the water potential at which 50% of plant hydraulic


conductivity is lost) (MPa)


A.27 Child anthropometry


File: ‘anthropometry.csv’
Data were downloaded from http://mreed.umtri.umich.edu/mreed/downloads.html. Data include
measurements of age, foot length, and height for 3898 children. These data are a small subset of


many dozens of measurements on the same children, described in detail by Snyder (1977) (see above


link for more information).


Variables:
• age - Age (years, converted from months in original dataset)


• gender - Female or male


• foot_length - Total foot length (mm)


• height - Total height (cm)


A.28 Alphabet


File: ‘alphabet.txt’
Lyrics for the song ’Alphabet Aerobics’ by Blackalicious (3-2-1 Records, 1999). The rendition by Daniel


Radcliffe is worth a watch (https://www.youtube.com/watch?v=aKdV5FvXLuI).
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Technical information


This book was compiled with the following R version and packages.


• R version 3.5.1 (2018-07-02), x86_64-apple-darwin15.6.0


• Locale: en_AU.UTF-8/en_AU.UTF-8/en_AU.UTF-8/C/en_AU.UTF-8/en_AU.UTF-8


• Running under: macOS Sierra 10.12.6


• Matrix products: default


• BLAS: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRblas.0.dylib


• LAPACK: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRlapack.dylib


• Base packages: base, datasets, graphics, grDevices, methods, stats, utils


• Other packages: car 3.0-0, carData 3.0-1, doBy 4.6-1, dplyr 0.7.6, effects 4.0-3, emmeans 1.2.2,


epade 0.3.8, Formula 1.2-3, ggplot2 3.0.0, gplots 3.0.1, Hmisc 4.1-1, knitr 1.20, lattice 0.20-35,


lubridate 1.7.4, magicaxis 2.0.3, mapproj 1.2.6, maps 3.3.0, MASS 7.3-50, moments 0.14,


multcomp 1.4-8, mvtnorm 1.0-8, pastecs 1.3.21, plotrix 3.7-2, RColorBrewer 1.1-2, scales 0.5.0,


sciplot 1.1-1, sm 2.2-5.4, survival 2.42-3, TH.data 1.0-8, visreg 2.5-0


• Loaded via a namespace (and not attached): abind 1.4-5, acepack 1.4.1, assertthat 0.2.0,


backports 1.1.2, base64enc 0.1-3, bindr 0.1.1, bindrcpp 0.2.2, bitops 1.0-6, boot 1.3-20, caTools 1.17.1,


celestial 1.4.1, cellranger 1.1.0, checkmate 1.8.5, cluster 2.0.7-1, codetools 0.2-15, colorspace 1.3-2,


compiler 3.5.1, curl 3.2, data.table 1.11.4, digest 0.6.15, estimability 1.3, evaluate 0.10.1,


forcats 0.3.0, foreign 0.8-70, formatR 1.5, gdata 2.18.0, glue 1.2.0, grid 3.5.1, gridExtra 2.3,


gtable 0.2.0, gtools 3.8.1, haven 1.1.2, highr 0.7, hms 0.4.2, htmlTable 1.12, htmltools 0.3.6,


htmlwidgets 1.2, KernSmooth 2.23-15, latticeExtra 0.6-28, lazyeval 0.2.1, lme4 1.1-17, magrittr 1.5,


Matrix 1.2-14, minqa 1.2.4, multcompView 0.1-7, munsell 0.5.0, NISTunits 1.0.1, nlme 3.1-137,


nloptr 1.0.4, nnet 7.3-12, openxlsx 4.1.0, pillar 1.2.3, pkgconfig 2.0.1, plyr 1.8.4, pracma 2.1.4,


purrr 0.2.5, R6 2.2.2, RANN 2.6, Rcpp 0.12.17, readxl 1.1.0, rio 0.5.10, rlang 0.2.1, rpart 4.1-13,


rstudioapi 0.7, sandwich 2.4-0, splines 3.5.1, stringi 1.2.3, stringr 1.3.1, survey 3.33-2, tibble 1.4.2,


tidyselect 0.2.4, tools 3.5.1, withr 2.1.2, xtable 1.8-2, zip 1.0.0, zoo 1.8-2


Code is available on www.bitbucket.org/remkoduursma/hiermanual.
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