
To appear in “Church’s Thesis after 70 Years” ed. A. Olszewski, Logos Verlag, Berlin, 2006. 1

Church’s Thesis

and

Functional Programming

David Turner
Middlesex University, UK

The earliest statement of Church’s Thesis, from Church (1936) p356 is

We now define the notion, already discussed, of an effectively cal-
culable function of positive integers by identifying it with the
notion of a recursive function of positive integers (or of a lambda-
definable function of positive integers).

The phrase in parentheses refers to the apparatus which Church had developed
to investigate this and other problems in the foundations of mathematics: the
calculus of lambda conversion. Both the Thesis and the lambda calculus have
been of seminal influence on the development of Computing Science. The main
subject of this article is the lambda calculus but I will begin with a brief sketch
of the emergence of the Thesis.

The epistemological status of Church’s Thesis is not immediately clear from
the above quotation and remains a matter of debate, as is explored in other
papers of this volume. My own view, which I will state but not elaborate
here, is that the thesis is empirical because it relies for its significance on a
claim about what can be calculated by mechanisms. This becomes clearer in
Church’s restatement of the thesis the following year, after he had seen Turing’s
paper, see below. For a fuller discussion see Hodges (this volume).

Three definitions of the effectively computable functions of the natural num-
bers (non-negative integers, hereafter N), developed nearly contemporaneously
in the early to mid 1930’s, turned out to be equivalent. Church (1936, quoted
above) showed that his own theory of lambda definable functions yielded the
same functions on Nk → N as the recursive functions of Herbrand and Gödel
[Herbrand 1932, Gödel 1934]. This was proved independently by Kleene (1936).

A few months later Turing (1936) introduced his concept of logical computing
machine (LCM) - a finite automaton with an unbounded tape divided into
squares, on which it could move left or right and read or write symbols from a
finite alphabet, in accordance with a specified state transition table. A central

result of the paper is the existence of a universal LCM, which can emulate the
behaviour of any LCM whose description is written on its tape. In an appendix
Turing shows that the numeric functions computable by his machines coincide
with the lambda-definable ones.

In his review of Turing’s paper, Church (1937) writes

there is involved here the equivalence of three different notions: com-
putability by a Turing machine, general recursiveness . . . and lambda-
definability . . .The first has the advantage of making the identifi-
cation with effectiveness in the ordinary sense evident immediately
. . .The second and third have the advantage of suitability for embod-
iment in a system of symbolic logic.

The Turing machine led, about a decade later, to the Turing/von-Neumann
computer - a realization in electronics of Turing’s universal machine, with the
important optimization that (an initial portion of) the tape is replaced by a
random access store. The concept of a programming language didn’t yet exist
in 1936, but the second and third notions were eventually to provide the basis
of what we now know as functional programming.

2 The Halting Theorem

All three notions of computability involve partiality in an essential way. General
recursion schemas yield the partial recursive functions, which may for some
values of their arguments fail to produce a result. We will write their type as
Nk → N . We have N = N ∪ {⊥} where the undefined value ⊥ represents
non-termination1. The recursive functions are the subset that are everywhere
defined. That this subset is not recursively enumerable is shown by a use of
Cantor’s diagonalization argument2. Since the partial recursive functions are
recursively enumerable it follows that the property of being total (for a partial
recursive function) is not recursively decidable.

By a separate argument it can be shown that the property for a partial
recursive function of being defined at a specified value of its input vector is
also not in general recursively decidable. Similarly, Turing machines may not
halt and lambda-terms may have no normal form; and these properties are not,
respectively, Turing-computable or lambda-definable, as is shown in each case
by a simple argument involving self-application.

Thus of perhaps equal importance with Church’s Thesis and which emerges
from it is the Halting Theorem: given an arbitrary computation whose result is
of type N we cannot in general decide if it is ⊥. What is actually proven, e.g.
of the halts predicate on Turing machines, is that it is not Turing-computable

1The idea of treating non-termination as a peculiar kind of value, ⊥, is more recent and
was not current at the time of Church and Turing’s foundational work.

2The proof is purely constructive and doesn’t depend on Church’s Thesis: any effective
enumeration, h, of computable functions in N → N is incomplete - it lacks f(n) = h(n)(n)+1.

2

(equiv not lambda-definable etc). It is by an appeal to Church’s Thesis that we
pass from this to the assertion that halting is not effectively decidable.

The three convergent notions (to which others have since been added) iden-
tify an apparently unique, effectively enumerable, class of functions of type
Nk → N corresponding to what is computable by finite but unbounded means.
Church’s identification of this class with effective calculability amounts to the
conjecture that this is the best we can do.

In the case of the Turing machine the unbounded element is the tape (it
is initially blank, save for a finite segment but provides an unlimited working
store). In the case of the lambda calculus it is the fact that there is no limit
to the intermediate size to which a term may grow during the course of its
attempted reduction to normal form. In the case of recursive functions it is
the minimalization operation, which searches for the smallest nεN on which a
specified recursive function takes the value 0.

The Halting Theorem tells us that unboundedness of the kind needed for
computational completeness is effectively inseparable from the possibility of non-
termination.

3 The Lambda Calculus

Of the various convergent notions of computability Church’s lambda calculus is
distinguished by its combination of simplicity with remarkable expressive power.

The lambda calculus was conceived as part of a larger theory, including log-
ical operators such as implication, intended as an alternative foundation for
mathematics based on functions rather than sets. This gave rise to paradoxes,
including a version of the Russell paradox. What remained with the proposi-
tional part stripped out is a consistent theory of pure functions, of which the
first systematic exposition is Church (1941)3.

In the sketch given here we use for variables lower case letters: a, b, c · · ·x, y, z
and as metavariables denoting terms upper case letters: A,B, C · · ·. The ab-
stract syntax of the lambda calculus has three productions. A term is one of

variable e.g. x

application AB

abstraction λx.A

In the last case λx. is a binder and free occurrences of x in A become bound .
A term in which all variables are bound is said to be closed otherwise it is open.
The motivating idea is that closed term represent functions. The intended
meaning of AB is the application of function A to argument B while λx.A is
the function which for input x returns A. Terms which are the same except for
renaming of bound variables are not distinguished, thus λx.x and λy.y are the
same, identity function.

3In his monograph Church defines two slightly differing calculi called λI and λK, of these
λK is now regarded as canonical and is what we sketch here.

3

In writing terms we freely use parentheses to remove ambiguity. We further
adopt the conventions that application is left-associative and that the scope of
a binder extends as far to the right as possible. For example f g h means (f g)h
and λx.λy.Ba means λx.(λy.(Ba)).

The calculus has only one essential rule, which shows how to substitute an
argument into the body of a function:

(β) (λx.A)B →β [B/x]A

Here [B/x]A means substitute B for free occurrences of x in A. The smallest
reflexive, symmetric, transitive, substitutive relation on terms including →β ,
written ⇔, is Church’s notion of λ−conversion. If we omit symmetry from the
definition we get an oriented relation, written ⇒, called reduction.

An instance of the left hand side of rule β is called a redex . A term containing
no redex is said to be in normal form. A term which is convertible to one in
normal form is said to be normalizing . There are non-normalizing terms, of
which perhaps the simplest is (λx.xx)(λx.xx). We have the cyclic

(λx.xx)(λx.xx) →β (λx.xx)(λx.xx)

as the only available step.
The two most important technical results are

Church-Rosser Theorem If A ⇔ B there is a term C such that A ⇒ C and
B ⇒ C. An immediate consequence of this is that the normal form of a
normalizing term is unique4.

Normal Order Theorem Stated informally: the normal form of a normaliz-
ing term can be found by repeatedly reducing its leftmost redex5.

To see the significance of the normal order theorem consider the term

(λy.z)((λx.xx)(λx.xx))

We have
(λy.z)((λx.xx)(λx.xx)) →β z

which is the normal form. But if we try to reduce the argument ((λx.xx)(λx.xx))
to normal form first, we get stuck in an endless loop.

In general there are many ways of reducing a term, since it or one of its
reducts may contain multiple redexes. The normal order theorem gives a se-
quential procedure, normal order reduction , which is guaranteed to reach
the normal form if there is one. Note that normal order reduction substitutes
arguments into function bodies without first reducing any redexes inside the
argument, which amounts to lazy evaluation.

4This means unique up to changes of bound variable, of course.
5In case of nested redexes, leftmost is usually defined as leftmost-outermost, although the

theorem will still hold if we take leftmost-innermost.

4

A closed term of pure6 λ-calculus is called a combinator . Note that any
normalizing closed term of pure λ-calculus must reduce to an abstraction. Some
combinators with their conventional names are:

S = λx.λy.λz.xz(yz)

K = λx.λy.x

I = λx.x

B = λx.λy.λz.x(yz)

C = λx.λy.λz.xzy

It is evident that λ-calculus has a rich collection of functions, including
functions of higher type, that is whose arguments and/or results are functions,
but since (at least closed) terms can denote only functions and never ground
objects it remains to show how to represent data such as the natural numbers.
Here are the Church numerals

0 = λa.λb.b

1 = λa.λb.ab

2 = λa.λb.a(ab)

3 = λa.λb.a(a(ab))

etc. · · ·

To understand this representation for numbers note the effect of applying a
Church numeral to function f and object a:

0fa ⇔ a

1fa ⇔ fa

2fa ⇔ f(fa)
3fa ⇔ f(f(fa))

The numbers are thus represented as iterators. It is now straightforward to
define the arithmetic operations, for example

+ = λm.λn.λa.λb.ma(nab)

× = λm.λn.λa.λb.m(na)b

predecessor and subtraction are a little trickier, see Church (1941). We also
need a way to branch on 0:

zero = λa.λb.λn.n(Kb)a

6Pure means using only variables and no proper constants, as λ-calculus is presented here.

5

We have

zero A B N ⇔ A, N ⇔ 0
⇔ B, N ⇔ n + 1

The master-stroke, which shows every recursive function to be λ-definable
is to find a universal fixpoint operator, that is a term Y with the property that
for any term F ,

Y F ⇔ F (Y F)

There are many such terms, of which the simplest is due to H.B.Curry.

Y = λf.(λx.f(xx))(λx.f(xx))

The reader may satisfy himself that we have Y F ⇔ F (Y F) as required.
The beauty of λ-definability as a theory of computation is that it gives not

only — assuming Church’s Thesis — all computable functions of type N → N
but also those of higher type of any finite degree, such as (N → N) → N ,
(N → N) → (N → N) and so on.

Moreover we are not limited to arithmetic. The idea behind the Church
numerals is very general and allows any data type — pairs, lists, trees and so
on — to be represented in a purely functional way. Each datum is encoded
as a function that captures its elimination operation, that is the way in which
information is extracted from it during computation. It is also possible to
represent codata, such as infinite lists, infinitary trees and so on.

Part of the simplicity of the calculus lies in its considering only functions of a
single argument. This is no real restriction since it is a basic result of set theory
that for any sets A, B, the function spaces (A × B) → C and A → (B → C)
are isomorphic. Replacing the first by the second is called Currying7. We have
made implicit use of this idea all along, e.g. + is curried addition.

Solvability and non-strictness

A non-normalizing term is by no means necessarily useless. An example is Y ,
which has no normal form but can produce one when applied to another term.
On the other hand (λx.xx)(λx.xx) is irredeemable — there is no term and no
sequence of terms to which it can be applied and yield a normal form.

Definition: a term T is SOLVABLE if there are terms A1, · · · , Ak for some
k ≥ 0 such that TA1 · · ·Ak is normalizing. Thus Y is solvable because we have
for example

Y (λx.λy.y) ⇔ (λy.y)

whereas (λx.xx)(λx.xx) is unsolvable.
An important result, due to Corrado Böhm, is that a term is solvable if and

only if it can be reduced to head normal form:

λx1 · · ·λxn.xkA1 · · ·Am

7After H.B.Curry, although the idea was first used in Schönfinkel (1924).

6

the variable xk is called the head and if the term is closed must be one of the
x1 · · ·xn. If a term is solvable normal order reduction will reduce it to HNF in
a finite number of steps. See Barendregt (1984).

All unsolvable terms are equally useless, so we can think of them as being
equivalent and introduce a special term ⊥ to represent them. This gives us an
extension of ⇔ for which we will use ≡. The two fundamental properties of ⊥,
which follow from the definitions of unsolvability and head normal form, are:

⊥ A ≡ ⊥ (1)
λx.⊥ ≡ ⊥ (2)

Introducing ⊥ allows an ordering relation to be defined on terms with ⊥ as
least element and a stronger equivalence relation using limits which is studied
in domain theory (see later). We make one further remark here.

Definition: a term A is STRICT if

A ⊥ ≡ ⊥

and non-strict otherwise. A strict function thus has ⊥ for a fixpoint and apply-
ing Y to it will produce ⊥. So non-strict functions play an essential role in the
theory of λ-definability – without them we could not use Y to encode recursion.

Combinatory Logic

Closely related to λ-calculus is combinatory logic, originally due to Schönfinkel
(1924) and subsequently explored by H.B.Curry. This has meagre apparatus
indeed — just application and a small collection of named combinators. These
are defined by stating their reduction rule. In the minimal version we have two
combinators, defined as follows

S x y z ⇒ x z(y z)

K x y ⇒ x

here x, y, z are metavariables standing for arbitrary terms and are used to state
the reduction rules. Combinatory logic terms have no variables and are built
using only constants and application:, e.g. K(SKK).

A central result, perhaps one of the strangest in all of logic, is that every
λ-definable function can be written using only S and K. Here is a start

I = SKK

The proof is by considering application to an arbitrary term. We have

SKKx ⇒ Kx(Kx) ⇒ x

as required.
The definitive study of combinatory logic and its relationship to lambda

calculus is Curry & Feys (1958). There are several algorithms for transcribing

7

λ-terms to combinators and for convenience most of these use besides S, K,
additional combinators such as B, C, I etc.

It would seem that only a dedicated cryptologist would choose to write
other than very small programs directly in combinatory logic. However, Turner
(1979a) describes compilation to combinators as an implementation method for
a high-level functional programming language. This required finding a transla-
tion algorithm, described in Turner (1979b), that produces compact combinator
code when translating expressions containing many nested λ-abstractions. The
attraction of the method is that combinator reduction rules are much simpler
than β-reduction, each requiring only a few machine instructions, allowing a
fast interpreter to be constructed which carries out normal order reduction.

The paradox

It is easy to see why the original versions of λ-calculus and combinatory logic,
which included properly logical notions, led to paradoxes. (Curry calls these
theories illative.) The untyped theory is too powerful, because of the fixpoint
combinator, Y . Suppose N is a term denoting logical negation. We have

Y N ⇔ N(Y N)

which is the Russell paradox. Even minimal logic, which lacks negation, becomes
inconsistent in the presence of Y — implication is sufficient to generate the
paradox, see Barendregt (1984) p575. Because of this Y is sometimes called
Curry’s paradoxical combinator .

Typed λ-calculi

The λ-calculus of Church (1941) is untyped : it allows the promiscuous applica-
tion of any term to any other, so types arise only in the interpretation of terms.
In a typed λ-calculus the rules of term formation embody some theory of types.
Only terms which are well-typed according to the theory are permitted. The
rules for β reduction remain unchanged, as does the Church-Rosser Theorem.
Most type systems disallow self-application, as in (λx.xx), preventing the for-
mation of a fixpoint combinator like Curry’s Y . Typed λ-calculi fall into two
main groups depending on what is done about this

(i) Add an explicit fixpoint construction to the calculus - for example a poly-
morphic constant Y of type schema (α → α) → α, with reduction rule
Y H ⇒ H(Y H). This allows general recursion at every type and thus
retains the computational completeness of untyped λ.

(ii) In the other kind of typed λ-calculus there is no fixpoint construct and ev-
ery term is normalizing . This brings into play a fundamental isomorphism
between programming and logic: the Propositions-as-Types principle.

This gives two apparently very different models of functional programming,
which we discuss in the next two sections.

8

4 Lazy Functional Programming

Imperative programming languages, from the earliest such as FORTRAN and
COBOL which emerged in the 1950’s to current ”object-oriented” ones such
as C++ and Java have certain features in common. Their basic action is the
assignment command, which changes the content of a location in memory and
they have an explicit flow of control by which these state changes are ordered.
This reflects more or less directly the structure of the Turing/von Neumann
computer, as a central processing unit operating on a passive store. Backus
(1978) calls them ”von Neumann languages”.

Functional8 programming languages offer a radical alternative — they are
descriptive rather than imperative, have no assignment command and no ex-
plicit flow of control — sub-computations are ordered only partially, by data
dependency.

The claimed merits of functional programming — in conciseness, mathemat-
ical tractability, potential for parallel execution — have been argued in many
places so we will not dwell on them here. Nor will we go into the history of
the concept, other than to say that the basic ideas go back over four decades,
see in particular the important early papers of McCarthy (1960), Landin (1966)
— and that for a long period functional programming was mainly practised in
imperative languages with functional subsets (LISP, Scheme, Standard ML).

The disadvantages of functional programming within a language that in-
cludes imperative features are two. First, you are not forced to explore the
limits of the functional style, since you can escape at will into an imperative id-
iom. Second, the presence of side effects, exceptions etc., even if they are rarely
used , invalidate important theorems on which the benefits of the style rest.

The λ-calculus is the most natural candidate for functional programming: it
is computationally complete in the sense of Church’s Thesis, it includes func-
tions of higher type and it comes with a theory of λ-conversion that provides
a basis for reasoning about program transformation, correctness of evaluation
mechanisms and so on. The notation is a little spartan for most tastes but it
was shown long ago by Peter Landin that the dish can be sweetened by adding
a sprinkling of syntactic sugar9.

Efficient Normal Order Reduction

The Normal Order Theorem tells us that an implementation of λ-calculus on a
sequential machine should use normal order reduction10, otherwise it may fail
to find the normal form of a normalizing term. This requires that arguments be
substituted unevaluated into function bodies as we noted earlier. In general this

8We here use functional to mean what some call purely functional, an older term for this
is applicative, yet another term which includes other mathematically based models, such as
logic programming, is declarative.

9The phrase syntactic sugar is due to Strachey, as are other evocative terms and concepts
in programming language theory.

10Except where prior analysis of the program shows it can be avoided, a process known as
strictness analysis.

9

will produce multiple copies of the argument, requiring any redexes it contains
to be reduced multiple times. For λ-calculus-based functional programming to
be a viable technology it is necessary to have an efficient way of handling this.

A key step was the invention of normal graph reduction, by Wadsworth
(1971). In this scheme the term is held as a directed acyclic graph, and the
result of β-reduction is that a single copy of the argument is retained, with the
function body containing multiple pointers to it. As a consequence any redexes
in the argument are reduced at most once.

Turner adapted this idea to graph reduction on S, K, I, etc. combinators,
allowing a much simpler abstract machine. In Turner’s scheme the graph may
be cyclic, permitting a more compact representation of recursion. The reduction
rule for the Y combinator, Y H ⇒ H (Y H), creates a loop in the graph,
increasing the amount of sharing. The combinators are a target code for a
compiler for compilation from a high level functional language. Initially this
was SASL (Turner 1976) and in later incarnations of the system, Miranda.

While using a set of combinators fixed in advance is a good solution if graph
reduction is to be carried out by an interpreter, if the final target of compilation
is to be native code on conventional hardware it is advantageous to use the λ-
abstractions present (explicitly or implicitly) in the program source as the com-
binators whose reduction rules are to be implemented. This requires a source-
to-source transformation called λ-lifting , Hughes (1983), Johnsson (1985). This
method was first used in the compiler of LML, a lazy version of the functional
subset of ML, written by Lennart Augustsson & Thomas Johnsson at Chalmers
University in Sweden, around 1984. Their model for mapping graph reduc-
tion onto conventional hardware, the G machine, has since been further refined,
leading to the optimized model of Simon Peyton Jones (1992).

Thus over a period of two decades normal order functional languages have
been implemented with increasing efficiency.

Miranda

Miranda is a functional language designed by David Turner in 1983-6 and is
a sugaring of a typed λ-calculus with a universal fixpoint operator. There are
no explicit λ’s — instead we have function definition by equations and local
definitions with where. The insight that one can have λ-calculus without λ
goes back to Peter Landin (1966) and his ISWIM notation. Neither is the user
required to mark recursive definitions as such - the compiler analyses the call
graph and inserts Y where it is required.

The use of normal order reduction (aka lazy evaluation) and non-strict func-
tions has a very pervasive effect. It supports a more mathematical style of
programming, in which infinite data structures can be described and used and,
which is most important, permits communicating processes and input/output
to be programmed in a purely functional manner.

Miranda is based on the earlier lazy functional language SASL (Turner, 1976)
with the addition of the system of polymorphic strong typing of Milner (1978).
For an overview of Miranda see Turner (1986).

10

Miranda doesn’t use Church numerals for its arithmetic — modern comput-
ers have fast fixed and floating point arithmetic units and it would be perverse
not to take advantage of them. Arithmetic operations on unbounded size inte-
gers and 64bit floating point numbers are provided as primitives.

In place of the second order representation of data used within the pure
untyped lambda calculus we have algebraic type definitions. For example

bool ::= False | True
nat ::= Zero | Suc nat
tree ::= Leaf nat | Fork tree tree

Introducing new data types in this way is in fact better than using second order
impredicative definitions for two reasons: you get clearer and more specific type
error messages if you misuse them — and each algebraic type comes with a
principle of induction which can be read off from the definition. The analysis of
data is by pattern matching, for example

flatten :: tree -> [nat]
flatten (Leaf n) = [n]
flatten (Fork x y) = flatten x ++ flatten y

The type specification of flatten is optional as the compiler is able to deduce
this; ++ is list concatenation.

There is a rich vocabulary of standard functions for list processing, map, fil-
ter, foldl, foldr, etc. and a notation, called list comprehension that gives concise
expression to a useful class of iterations.

Miranda was widely used for teaching and for about a decade following its
initial release by Research Software Ltd in 1985-6 provided a de facto standard
for pure functional programming, being taken up by over 200 universities. The
fact that it was interpreted rather than compiled limited its use outside edu-
cation, but several significant industrial projects were successfully undertaken
using Miranda, see for example Major et. al. (1991) and Page & Moe (1993).

Haskell, a successor language designed by a committee, includes many exten-
sions, of which the most important are type classes and monadic input-output.
The language remains purely functional, however. For a detailed description
see S. L. Peyton Jones (2003). Available implementations of Haskell include,
besides an interpreter suitable for educational use, native code compilers. This
makes Haskell a viable choice for production use in a range of areas.

The fact that people are able to write large programs for serious applications
in a language, like Miranda or Haskell, that is essentially a sugaring of λ-calculus
is in itself a vindication of Church’s Thesis.

Domain Theory

The mathematical theory which explains programming languages with general
recursion is Scott’s domain theory.

The typed λ-calculus looks as though it ought to have a set-theoretic model,
in which types denote sets and λ-abstractions denote functions. But the fixpoint

11

operator Y is problematic. It is not the case in set theory that every function
fεA → A has a fixpoint in A.

There is second kind of fixpoint to be explained, at the level of types. We can
define recursive algebraic data types, like (we are here using Miranda notation):

big ::= Leaf nat | Node (big -> big)

This appears to require a set with the property

Big ∼= N + (Big → Big)

which is impossible on cardinality grounds.
Dana Scott’s domain theory solves both these problems. A domain is a com-

plete partial order: a set with a least element, ⊥, representing non-termination,
and limits of ascending chains (or more generally of directed sets). The func-
tion space A → B for domains A, B, is defined to contain just the continuous
functions from A to B and this is itself a domain. Continuous means preserving
limits. The continuous functions are also monotonic (= order preserving). For a
complete partial order, D, each monotonic function fεD → D has a least fixed
point,

⊔∞
n=0 fn⊥.

A plain set, like N can be turned into a domain by adding ⊥, to get N .
Further, domain equations, like D ∼= N + (D ×D), D ∼= N + (D → D) and so
on, all have solutions. The details can be found in Scott (1976) or Abramsky &
Jung (1994). This includes that there is a non-trivial11 domain D∞ with

D∞ ∼= D∞ → D∞

providing a semantic model for Church’s untyped λ-calculus.
Domain theory was originally developed to underpin denotational semantics,

Christopher Strachey’s project to formalize semantic descriptions of real pro-
gramming languages using a typed λ-calculus as the metalanguage (see Strachey,
1967, Strachey & Scott, 1971). Strachey’s semantic equations made frequent use
of Y to explain control structures such as loops and also required recursive type
equations to account for the domains of the various semantic functions. It was
during Scott’s collaboration with Strachey in the period around 1970 that do-
main theory emerged.

Functional programming in non-strict languages like Miranda and Haskell is
essentially programming directly in the metalanguage of denotational semantics.

Computability at higher types, revisited

Dana Scott once remarked that λ-calculus is only an algebra, not a calculus.
With domain theory and proofs using limits we get a genuine calculus, allowing
many new results.

Studying a typed functional language with arithmetic, Plotkin (1977) showed
that if we consider functions of higher type where we allow inputs as well as

11The one-point domain, with ⊥ for its only element, if allowed, would be a trivial solution.

12

outputs to be ⊥, there are computable functions which are not λ-definable. Using
domain B where B = {True, False}, two examples are:

Or ε B → B → B where Or x y is True if either x or y is True

Exists ε (N → B) → B where Exists f is True when ∃iεN.f i = True

This complete or parallel Or must interleave two computations, since either of
its inputs may be ⊥. Exists is a multi-way generalization.

What we get from untyped λ-calculus, or a typed calculus with N and general
recursion, are the sequential functions. To get all computable partial functions
at every type we must add primitives expressing interleaving or concurrency. In
fact just the two above are sufficient.

This becomes important for programming with exact real numbers, an active
area of research. Martin Escardo (1996) shows that a λ-calculus with a small
number of primitives including Exists can express every computable function
of analysis, including those of higher type, e.g. differentiation and integration.

5 Strong Functional Programming

There is an extended family of typed λ-calculi, all without Y or any other
method of expressing general recursion, in which every term is normalizing.
The family includes

simply typed λ-calculus — this is a family in itself

Girard’s system F (1971), also known as the second order λ-calculus (we
consider here the Church-style or explicitly typed version)

Coquand & Huet’s calculus of constructions (1988)

Martin-Löf’s intuitionist theory of types (1973)

In a change of convention we will use upper case letters A,B, C · · · for types and
lower case letters a, b, c · · · for terms, reserving x, y, z, for λ-calculus variables
(this somewhat makeshift convention will be adequate for a short discussion).

In addition to the usual conversion and reduction relations, ⇔,⇒, these
theories have a judgement of well-typing , written a : A which says that term a
has type A (which may or may not be unique).

All the theories share the following properties:

Church-Rosser If a ⇔ b there is a term c such that a ⇒ c and b ⇒ c.

Decidability of well-typing This what is meant by saying that a pro-
gramming language or formalism is strongly typed (aka staticly typed).

Strongly normalizing Every well-typed term is normalizing and every re-
duction sequence terminates in a normal form.

Uniqueness of normal forms Immediate from Church-Rosser.

13

Decidability of ⇔ on well-typed terms From the two previous proper-
ties — reduce both sides to normal form and see if they are equal.

Note that decidability of the well typing judgment, a : A, is not the same as
type inference. The latter means that given an a we can find an A with a : A, or
determine that there isn’t one. The simply typed λ-calculus has type inference
(in fact with most general types) but none of the stronger theories do.

The first two properties in the list are shared with other well-behaved typed
functional calculi, including those with general recursion. So the distinguishing
property here is strong normalization. Programming in a language of this kind
has important differences from the more familiar kind of functional program-
ming. For want of any hitherto agreed name, we can call it strong functional
programming12.

An obvious difference is that all evaluations terminate13, so we do not have
to worry about ⊥. It is clear that such a language cannot be computationally
complete — there will be always-terminating computable functions it cannot
express (and one of these will be the interpreter for the language itself). It
should not be inferred that a strongly normalizing language must therefore be
computationally weak. Even simple typed lambda calculus, equipped with N
as a base type and primitive recursion, can express every recursive function of
arithmetic whose totality is provable in first order number theory (a result due
to Gödel, 1958). A proposed elementary functional programming system along
these lines, but including codata as well as data, is discussed in Turner (2004).

A less obvious but most striking consequence of strongly normalization is a
new and unexpected interface between λ-calculus and logic. We show how this
works by considering the simplest calculus of this class.

Propositions-as-Types

The simply typed λ-calculus (STLC) has for its types the closure under → of a
set of base types, which we will leave unspecified. As before we use A,B, C · · ·
as variables ranging over types. We can associate with each closed term a type
schema, for example

λx.x : A → A

The function λx.x has many types but they are all instances of A → A, which
is its most general type.

A congruence first noticed by Curry in the 1950’s is that the types of closed
terms in STLC correspond to tautologies of intuitionist propositional logic, if
we read → as implication, e.g. A → A is a tautology. The correspondence is
exact, for example A → B is not a tautology and neither can we make any

12Another possible term is “total functional programming”, although this has the disad-
vantage of encouraging the unfortunate term “total function” (redundant because it is part
of the definition function that it is everywhere defined on its domain).

13This seems to rule out indefinitely proceeding processes, such as an operating system, but
we can include these by allowing codata and corecursion, see eg Turner (2004).

14

closed term of this type. Further, the most general types of the combinators
s = λx.λy.λz.xz(yz) and k = λx.λy.x are

s : ((A → (B → C)) → ((A → B) → (A → C))

k : A → (B → A)

and these formulae are the two standard axioms for the intuitionist theory of
implication: every other tautology in → can be derived from them by modus
ponens. What is going on here?

Let us look at the rules for forming well-typed terms of simply typed λ.

(x : A) c : A → B

b : B a : A

λx.b : A → B c a : B

On the left14 we have the rule for abstraction, on the right that for application.
If we look only at the types and ignore the terms, these are the introduction and
elimination rules for implication in a natural deduction system. So naturally,
the formulae we can derive using these rules are all and only the tautologies of
the intuitionist theory of implication15.

In the logical reading, the terms on the left of the colons provide witness-
ing information – they record how the formula on the right was proved. The
judgement a : A thus has two readings — that term a has type A, but also that
proof-object or witness a proves proposition A.

The correspondence readily extends to the other connectives of propositional
logic by adding some more type constructors to SLTC besides →. The type of
pairs, cartesian product, A × B, corresponds to the conjunction A ∧ B. The
disjoint union type, A ⊕ B, corresponds to the disjunction A ∨ B. The empty
type corresponds to the absurd (or False) proposition, which has no proof.

This Curry-Howard isomorphism between types and propositions is jointly
attributed to Curry (1958) and to W. Howard (1969), who showed how it ex-
tended to all the connectives of intuitionist logic including the quantifiers. It is
at the same time an isomorphism between terminating programs and construc-
tive (or intuitionistic) proofs.

The Constructive Theory of Types

Per Martin-Löf (1973) formalizes a proposed foundational language for construc-
tive mathematics based on the isomorphism. The Intuitionist (or Constructive)
Theory of Types is at one and the same time a higher order logic and a theory
of types, providing for constructive mathematics what for classical mathematics

14The left hand rule says that if from assumption x : A we can derive b : B then we can
derive what is under the line.

15The classical theory of implication includes additional tautologies dependant on the law
of the excluded middle — the leading example is ((A→ B)→ A)→ A, Pierce’s law.

15

is done by set theory. It provides a unified notation in which to write functions,
types, propositions and proofs.

Unlike the constructive set theory of Myhill (1975), Martin-Löf type theory
includes a principle of choice (not as an axiom, it is provable within the theory).
It seems that the source of the non-constructivities of set theory is not the
choice principle, which for Martin-Löf is constructively valid, but the axiom of
separation, a principle which is noticeably absent from type theory16 17.

Constructive type theory is both a theory of constructive mathematics and
a strongly typed functional programming language. Verifying the validity of
proofs is the same process as type checking. Martin-Lof (1982) writes

I do not think that the search for high level programming languages
that are more and more satisfactory from a logical point of view can
stop short of anything but a language in which all of constructive
mathematics can be expressed.

There exist by now a number of different versions of the theory, including
several computer-based implementations, of which perhaps the longest estab-
lished is NuPRL (Constable et al. 1986).

An alternative impredicative theory, also based on the Curry-Howard isomor-
phism, is Coquand and Huet’s Calculus of Constructions (1988) which provides
the basis for the COQ proof system developed at INRIA.

6 Type Theory with Partial Types

Being strongly normalizing, constructive type theory cannot be computationally
complete. Moreover we might like to reason about partial functions and general
recursion using this powerful logic. Is it possible to somehow unify type theory
with a constructive version of Dana Scott’s domain theory?

In his PhD thesis Scott F. Smith (1989) investigated adding partial types to
the type theory of NuPRL. The idea can be sketched briefly as follows. For each
ordinary type T there is a partial type T of T -computations, whose elements
include those of T and a divergent element, ⊥. For partial types (only) there is
a fixpoint operator, fix : (T → T) → T . This allows the definition of general
recursive functions.

The constructive account of partial types is significantly different from the
classical account given by domain theory. For example we cannot assert

∀x : T . x ε T ∨ x = ⊥

because constructively this implies an effective solution to the halting problem
for T . A number of intriguing theorems emerge. Certain non-computability

16Note that Goodman & Myhill’s (1978) proof that Choice implies Excluded Middle makes
use of an instance of the Axiom of Separation. The title should be Choice + Separation
implies Excluded Middle.

17The frequent proposals to “improve” CTT by adding a subtyping constructor should
therefore be viewed with suspicion.

16

results can be established absolutely , that is independently of Church’s Thesis,
see Constable & Smith (1988)18. Further, the logic of the host type theory is
altered so that it is no longer compatible with classical logic — some instances
of the law of the excluded middle, of the form ∀x.P (x)∨¬P (x) can be disproved.

To recapture domain theory requires something more than T and fix, namely
a second order fixpoint operator, FIX, that solves recursive equations in par-
tial types. As far as the present author is aware, noone has yet shown how to
do this within the logic of type theory. This would unify the two theories of
functional programming. Among other benefits it would allow us to give within
type theory a constructive account of the denotational semantics of recursive
programming languages.

Almost certainly relevant here is Paul Taylor’s Abstract Stone Duality (2002),
a computational approach to topology. The simplest partial type is Sierpinski
space, Σ, which has only one point other than ⊥. This plays a special role in
Taylor’s theory: the open sets of a space X are the functions in X → Σ and can
be written as λ-terms. ASD embraces both traditional spaces like the reals and
Scott domains (topologically these are non-Hausdorff spaces).

CONCLUSION

Church’s Thesis played a founding role in computing theory by providing a
single notion of effective computability. Without this foundation we might have
been stuck with a plethora of notions of computability depending on computer
architecture, programming language etc.: we might have Motorola-computable
versus Intel-computable, Java-computable versus C-computable and so on.

The λ-calculus, which Church developed during the period of convergence
from which the Thesis emerged, has influenced almost every aspect of the de-
velopment of programming and programming languages. It is the basis of func-
tional programming, which after a long infancy is entering adulthood as a practi-
cal alternative to traditional ad-hoc imperative programming languages. Many
important ideas in mainstream programming languages — recursion, procedures
as parameters, linked lists and trees, garbage collectors — came by cross fer-
tilization from functional programming. Moreover the main schools of both
operational and denotational semantics are λ-calculus based and amount to
using functional programming to explain other programming systems.

The original project from whose wreckage by paradox λ-calculus survived,
to unify logic with an account of computable functions, appears to have been
reborn in unexpected form, via the propositions-as-types paradigm. Further
exciting developments undoubtedly lie ahead and ideas from Church’s λ-calculus
will continue to be central to them.

18The paper misleadingly claims that among these is the Halting Theorem, which would
be remarkable. What is in fact proved is the extensional halting theorem, which is already
provable in domain theory, trivially from monotonicity. The real Halting Theorem is inten-
sional , in that the halting function whose existence is to be disproved is allowed access to the
internal structure of the term, by being given its Gödel number.

17

REFERENCES

S. Abramsky, A. Jung “Domain theory”, in S. Abramsky, D. M. Gabbay, T. Maibaum
(eds) Handbook of Logic in Computer Science, vol. III , OUP 1994.

H. P. Barendregt The Lambda Calculus: Its Syntax and Semantics, North-
Holland, 1984.

A. Church “An Unsolvable Problem of Elementary Number Theory”, American
Journal of Mathematics, 58:345–363, 1936.

A. Church: Review of A M Turing (1936) “On computable numbers . . . ”, Jour-
nal of Symbolic Logic, 2(1):42–43, March 1937.

A. Church The calculi of lambda conversion, Princeton University Press, 1941.

R. L. Constable et al. Implementing Mathematics with the Nuprl Proof Devel-
opment System, Prentice Hall, 1986.

Robert L. Constable, Scott F. Smith “Computational Foundations of Basic Re-
cursive Function Theory”, Proceedings 3rd IEEE Symposium on Logic in Com-
puter Science, pp 360–371, (also Cornell Dept CS, TR 88–904), March 1988.
This and other papers of the NuPRL group can be found at http://www.nuprl.org .

T. Coquand, G. Huet “The Calculus of Constructions”, Information and Com-
putation, 76:95–120 (1988).

H. B. Curry, R. Feys Combinatory Logic, Vol I , North-Holland, Amsterdam
1958.

M. H. Escardo “Real PCF extended with existential is universal”, eds. A.
Edalat, S. Jourdan, G. McCusker, Proceedings 3rd Workshop on Theory and
Formal Methods, IC Press, pp 13–24, April 1996. This and other papers of
Escardo can be found at http://www.cs.bham.ac.uk/∼mhe/papers/ .

J.-Y. Girard “Une extension de l’interpretation fonctionnelle de Gödel a l’analyse
et son application a l’elimination des coupures dans l’analyse et la theorie des
types”, Proceedings 2nd Scandinavian Logic Symposium, ed. J. F. Fenstad, pp
63–92, North-Holland 1971. A modern treatment of System F can be found in
— Jean-Yves Girard, Yves Lafont, Paul Taylor Proofs and Types, Cambridge
University Press, 1989.

K. Gödel “On Undecidable Propositions of Formal Mathematical Systems”,
1934 Lecture notes taken by Kleene and Rosser at the Institute for Advanced
Study. Reprinted in M. Davis (ed.) The Undecidable, Raven, New York 1965.

18

K. Gödel “On a hitherto unutilized extension of the finitary standpoint”, Di-
alectica, 12:280–287 (1958).

N. D. Goodman, J. Myhill “Choice Implies Excluded Middle”, Zeit. Logik und
Grundlagen der Math, 24:461, 1978.

J. Herbrand “Sur la non-contradiction de l’arithmetique”, Journal fur die reine
und angewandte Mathematik , 166:1–8, 1932.

Andrew Hodges “Did Church and Turing have a thesis about machines?”, this
collection.

J. Hughes “The Design and Implementation of Programming Languages”, D.
Phil. Thesis, University of Oxford, 1983 (Published by Oxford University
Computing Laboratory Programming Research Group, as Technical Monograph
PRG-40, September 1984).

W. Howard (1969) “The Formulae as Types Notion of Construction”, privately
circulated letter, published in To H. B. Curry, Essays on Combinatory Logic,
Lambda Calculus and Formalism, eds Seldin and Hindley, Academic Press 1980.

Thomas Johnsson “Lambda Lifting: Transforming Programs to Recursive Equa-
tions”, Proceedings IFIP Conference on Functional Programming Languages and
Computer Architecture, Nancy, France, Sept. 1985 (Springer LNCS 201).

S. C. Kleene “Lambda-Definability and Recursiveness”, Duke Mathematical
Journal , 2:340–353, 1936.

P. J. Landin “The Next 700 Programming Languages”, CACM , 9(3):157–165,
March 1966.

John McCarthy“Recursive Functions of Symbolic Expressions and their Com-
putation by Machine”, CACM , 3(4):184–195, 1960.

F. Major, M. Turcotte, et al. “The Combination of Symbolic and Numerical
Computation for Three-Dimensional Modelling of RNA”, SCIENCE , 253:1255–
1260, September 1991.

P. Martin-Löf “An Intuitionist Theory of Types - Predicative Part”, in Logic
Colloquium 1973 , eds Rose and Shepherdson, North Holland 1975.

P. Martin-Löf “Constructive Mathematics and Computer Programming”, in
Proceedings of the Sixth International Congress for Logic, Methodology and Phi-
losophy of Science, pp 153–175, eds Cohen, Los, Pfeiffer & Podewski) North
Holland 1982. (Also in Mathematical Logic and Programming Languages, eds

19

Hoare & Shepherdson, Prentice Hall 1985, pp 167–184.)

R. Milner “A Theory of Type Polymorphism in Programming”, Journal of Com-
puter and System Sciences, 17(3):348–375, 1978.

J Myhill “Constructive set theory”, Journal of Symbolic Logic, 40(3):347–382,
Sep 1975.

Rex L. Page, Brian D. Moe “Experience with a large scientific application in a
functional language” in proceedings ACM Conference on Functional Program-
ming Languages and Computer Architecture, Copenhangen, June 1993.

S. L. Peyton Jones “Implementing lazy functional languages on stock hard-
ware: the Spineless Tagless G-machine”, Journal of Functional Programming ,
2(2):127–202, April 1992.

S. L. Peyton Jones Haskell 98 language and libraries: the Revised Report , Cam-
bridge University Press, 2003, also published in Journal of Functional Program-
ming , 13(1), January 2003. This and other information about Haskell can be
found at http://haskell.org .

G. Plotkin “LCF considered as a programming language”, Theoretical Computer
Science, 5(1):233–255, 1977.

Moses Schönfinkel (1924) “Über die Bausteine der mathematischen Logik” trans-
lated as “On the Building Blocks of mathematical logic”, in van Heijenoort From
Frege to Gödel — a source book in mathematical logic 1879–1931 , Harvard 1967.

Dana Scott “Data Types as Lattices”, SIAM Journal on Computing , 5(3):522–
587 (1976).

Scott F. Smith “Partial Objects in Type Theory”, Cornell University Ph.D.
Thesis, 1989.

Christopher Strachey “Fundamental Concepts in Programming Languages”,
originally notes for an International Summer School on computer programming,
Copenhagen, August 1967, published in Higher-Order and Symbolic Computa-
tion, Vol 13, Issue 1/2, April 2000 — this entire issue is dedicated in memory
of Strachey.

Dana Scott, Christopher Strachey “Toward a mathematical semantics for com-
puter languages”, Oxford University Programming Research Group Technical
Monograph PRG-6 , April 1971.

Paul Taylor “Abstract Stone Duality”, privately circulated, 2002 — this and
published papers about ASD can be found at http://www.cs.man.ac.uk/∼pt/ASD/ .

20

A. M. Turing “On computable numbers with an application to the Entschei-
dungsproblem”, Proceedings London Mathematical Society, series 2 , 42:230–265
(1936), correction 43:544–546 (1937).

D. A. Turner “SASL Language Manual”, St. Andrews University, Department
of Computational Science Technical Report , 43 pages, December 1976.

D. A. Turner (1979a) “A New Implementation Technique for Applicative Lan-
guages”, Software-Practice and Experience, 9(1):31–49, January 1979.

D. A. Turner (1979b) “Another Algorithm for Bracket Abstraction”, Journal of
Symbolic Logic, 44(2):267–270, June 1979.

D. A. Turner “An Overview of Miranda”, SIGPLAN Notices, 21(12):158–166,
December 1986. This and other information about Miranda† can be found at
http://miranda.org.uk .

D.A.Turner “Total Functional Programming”, Journal of Universal Computer
Science, 10(7):751–768, July 2004.

C. P. Wadsworth “The Semantics and Pragmatics of the Lambda Calculus”,
D.Phil. Thesis, Oxford University Programming Research Group, 1971.

† Miranda is a trademark of Research Software Limited.

21

