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ABSTRACT
While marketing budget allocation has been studied for decades

in traditional business, nowadays online business brings much

more challenges due to the dynamic environment and complex

decision-making process. In this paper, we present a novel uni-

fied framework for marketing budget allocation. By leveraging

abundant data, the proposed data-driven approach can help us to

overcome the challenges and make more informed decisions. In

our approach, a semi-black-box model is built to forecast the dy-

namic market response and an efficient optimization method is

proposed to solve the complex allocation task. First, the response

in each market-segment is forecasted by exploring historical data

through a semi-black-box model, where the capability of logit de-

mand curve is enhanced by neural networks. The response model

reveals relationship between sales and marketing cost. Based on

the learned model, budget allocation is then formulated as an op-

timization problem, and we design efficient algorithms to solve it

in both continuous and discrete settings. Several kinds of business

constraints are supported in one unified optimization paradigm, in-

cluding cost upper bound, profit lower bound, or ROI lower bound.

The proposed framework is easy to implement and readily to han-

dle large-scale problems. It has been successfully applied to many

scenarios in Alibaba Group. The results of both offline experiments

and online A/B testing demonstrate its effectiveness.

CCS CONCEPTS
• Information systems → Decision support systems; • Ap-
plied computing → Marketing; • Computing methodologies
→ Supervised learning; Planning and scheduling.

KEYWORDS
Marketing; Budget allocation; Market response; Forecasting; Opti-

mization

1 INTRODUCTION
When and where should you spend the money? The answer to this

question is the key to budget allocation in marketing and this topic

has been studied for decades in traditional business. The environ-

ment and decision-making process in online business are much

more dynamic and complex than traditional ones. And the market-

ing budget allocation is sophisticated and needs to be readjusted

quite often, e.g. weekly or even daily, much more often than a few

times per year like traditional marketing does. That brings great

challenges, especially for companies with large and diversified mar-

kets [19, 32]. Fortunately, in online business, commercial activities

can be tracked and depicted by the collected data from multiple

sources. By leveraging these data, data-driven methods can help us

to overcome above challenges. The intelligent techniques allow us
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Figure 1: Our framework for marketing budget allocation.

to gain deeper insights into the market and make more informed

decisions. Moreover, when the market is monitored and analyzed

automatically, new patterns can be detected more quickly, and the

budget allocation is thus readjusted timely [1]. In this paper, we

present a novel unified framework for marketing budget alloca-

tion, which contains two sequential steps: learning market response

models from historical data, and optimizing budget allocation based

on learned models. The whole framework is illustrated in Figure 1.

In marketing, the whole market is divided into many segments,

according to different commodities, customers, and consumption

time, etc. In order to resolve how to allocate the budget into each

market-segment, we need to forecast sales response of each seg-

ment if the budget is spent on it. Although black-box forecasting

methods, such as neural networks, have been widely used in many

applications [21, 33, 35], there are several gaps between forecasting

and decision making [2]. One of the biggest challenges is that it

is too difficult to translate black-box forecasting into allocation

decisions. In contrast, the logit demand curve has an explicit ex-

pression and it is very popular in economics [26, 28, 36]. However,

fitting logit demand curves in each market-segment separately has

no capability of sharing information among different segments.

That may cause serious data sparseness problem. Therefore, we

propose a semi-black-box model to extend the capability of logit de-

mand curves via neural networks. The input of forecasting is firstly

split into two different parts: independent variables and contextual

variables. The independent variable we have here is the budget

allocated to each segment. The contextual variables are intrinsic

attributes of market, such as brands of commodities, living cities of

customers, consumption time and so on, and they are constants in

each segment. It will be shown that the elasticity at market average

cost (or market cost) of logit response model is determined by the

bias parameter. By taking contextual variables as input, we use the

same neural network to calculate bias parameters for all segments.
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Based on that, fitting logit demand curves is extended to a process

of learning the elasticity at market cost together with a specific

sensitivity coefficient for each segment, where the relationship

between sales and cost is depicted in an explicit way.

As long as response models are acquired, budget allocation can

be formulated as an optimization problem. LetN denote the number

of market-segments, budget allocation needs to optimize over N
variables to maximize sales under some budget constraint. Due to

the non-convexity of logit demand curves, the optimization prob-

lem is non-convex. Inspired by [7, 20], we reformulate the problem

into an equivalent convex optimization problem. By introducing a

dual variable, the Lagrange multiplier method is applied. According

to KKT conditions, the original problem is reduced to a root finding

problem with respect to dual variable, and it can be solved by bisec-

tion on one dual variable, instead of searching N primal variables.

The algorithm converges in a few iterations and the complexity of

each iteration is O(N ), thus it is readily to handle large-scale prob-

lems. Several kinds of business constraints, including cost upper

bound, profit lower bound, or ROI lower bound, are supported in

one unified paradigm with minor adaptations. What’s more, the op-

timization paradigm can be easily extended to discrete settings with

a little additional computation, where budget variables can only be

chosen from a set of discrete values. One major cause of discrete

decision variables is that 99-ending display prices, e.g. $99, $199 or

$299, are usually preferred after discount or premium [30] in many

situations. We will show that the discrete setting can be solved by

constructing a Multiple Choice Knapsack Problem (MCKP) [17]

from the solution of relaxed continuous problem. Dyer et al. [9]

and Zemel et al. [38] independently developed approximation algo-

rithms for MCKP, running in O(N ) time, and the algorithm can be

further boosted by pruning [27].

The proposed framework is easy to implement and has been

successfully applied to many scenarios in Alibaba Group
1
:

• Daily Marketing: Taopiaopiao, Koubei, CBU, Fliggy.
• Shopping Festival: 11.11 in Tmall and 12.12 in Lazada.

• Interest Discount: Credit Pay and Cash Now in Ant Financial.

To demonstrate the effectiveness of our framework, we present

results of both offline experiments and online A/B testing. The of-

fline part includes experiments on public datasets and optimization

simulations. For the online part, we would like to take the daily

marketing in Taopiaopiao as a typical example, on which an A/B

testing is conducted for five weeks and the improvements are re-

markable. In addition, it is worth mentioning that there are billions

of decision variables in several scenarios, such as Figgy, Credit Pay,

Cash Now, etc., and our approach can handle them very well.

The rest of our paper is organized as follows. We describe how

to learn the market response in Section 2, and how to allocate

budget in Section 3. We present the experimental setups and results

in Section 4. We briefly review related work in Section 5. The

conclusions and future plans are given in Section 6. Finally, details

related to reproducibility are given in Supplement Section.

1
Taopiaopiao is a platform for selling movie tickets. Koubei is a platform for local

services. CBU (also called 1688) is a business-to-business (B2B) platform. Fliggy is a

platform for selling travel tickets. Tmall is a business-to-consumer (B2C) platform, and

Lazada is the Southeast Asian version. Credit Pay (also called Huabei) provides virtual

credit card service, and Cash Now (also called Jiebei) provides consumer loan service.
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Figure 2: The logit response model.

2 MARKET RESPONSE
In online business, the commercial activities can be tracked and

depicted by collected data from multiple sources. Based on that

data, the whole market can be divided into more granular segments

than traditional ones. Each segment may consist of very specific

commodities and customers. For instance, black wool sweater for

children is a market-segment. The market can be further segmented

according to consumption time, e.g. movie tickets on Saturday

evening at a specific cinema is another example of market-segment.

2.1 Logit Response Model
The fundamental building block of marketing budget allocation is

to forecast sales response of each segment if the budget is spend

on it. As black-box forecasting methods, neural networks are very

powerful and have wide applications [21, 33, 35]. However, there are

many challenges to translate black-box forecasting into allocation

decisions [2]. In contrast, the demand curves in economics usually

have explicit expressions. There are many kinds of demand curves,

such as linear, log-linear, constant-elasticity, logit and so on [26, 34].

In this work, we focus on logit demand curve, which is the most

popular response model [26, 28, 36].

The logit model for i-th segment is defined as follow and one

sample is illustrated in Figure 2:

di (c) :=
Di

1 + exp {−(ai + bic)}
, i = 1, . . . ,N , (1)

where c is the unit cost on marketing, and Di > 0 indicates the

overall size of i-th market-segment. c can be either greater than

or less than 0. Positive cost on marketing means price discount

and negative cost means price premium. Since the size of each

market-segment is quite stable, Di can be calculated by simple

statistics in advance. So the only parameters need to be learned are

ai ,bi . Specifically, bi indicates sensitivity and in normal situations

we have bi > 0. That is to say greater cost on marketing brings

higher sales. The response curve is steepest at point ĉi = −ai/bi (as
indicated in Figure 2), and we call this point as market cost, which
represents the average cost onmarketing (including all competitors)

in the whole i-th market-segment. The sales is very sensitive to

cost when the cost is close to ĉi . In another word, a substantial

shifts in sales could be expected even if the change in cost is very

small. The sales becomes less sensitive to cost when cost goes away

from the market cost, and this phenomenon is called as diminishing
marginal effect.
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The most commonmeasure of sensitivity is elasticity. Inspired by

price elasticity [26], we define cost elasticity as the ratio of negative

percentage change in sales to percentage change in cost:

ei (c1, c2) := −[di (c2) − di (c1)]c1
[c2 − c1]di (c1)

. (2)

The elasticity at c can be derived by taking the limit of Eq. (2) as c2
approaches c1:

ei (c) = −∇cdi (c)
c

di (c)
. (3)

Theorem 1. The elasticity at market cost ĉi = −ai/bi for logit
response model is equal to −ai/2. 2

2.2 Semi-black-box Model
The capability of fully utilizing data for logit model is limited. More

specifically, there is no capability of sharing information across dif-

ferent segments when we learn ai and bi for each market-segment

i separately. For market-segments with few distinct values of his-

torical budget allocation, that may cause serious data sparseness

problem. Actually, the input variables of forecasting model can be

split into two different parts: independent variables and contextual

variables. The independent variable we have here is c or the budget
allocated to each segment. The contextual variables are intrinsic

attributes of market and we denote it as xi . The contextual vari-
ables include brands of commodities, categories of commodities,

living cities of customers, and consumption time, etc., and they are

not changing with the independent variable in each segment. The

neural networks take both xi and c as input, and connect them with

sales in a black-box way. Contrarily, the logit model only takes c as
input, and connect it with sales in an explicit way. We propose a

semi-black-box model, which is able to take both xi and c as input,
as well as keep the connection between c and sales in an explicit.

Assumption 1. The elasticity at market cost for logit response
model is determined by contextual variables.

It is intuitive and reasonable to introduce the above assumption.

For instance, T-shirts are less elastic than sweaters in summer,

and movie tickets on the weekend is less elastic than that on the

weekday. Instead of directly forecasting the final sales, we use

a neural network e(xi ) to calculate the elasticity at market cost,

i.e. −ai/2, for each market-segment i(i = 1, . . . ,N ). The elasticity
information can be shared across different segments through e(xi ).
Then the traditional logit response model is extended to a semi-

black-box model:

di (c) =
Di

1 + exp {2e(xi ) − bic}
, (4)

which integrates the capability of neural networks and explicitness

of logit demand curves.

The parameters in neural network e(xi ) aswell asbi (i = 1, . . . ,N )
need to be learned. We first define market share qi (c) as follow:

qi (c) :=
di (c)
Di
=

1

1 + exp {−(ai + bic)}
, (5)

where ai = −2e(xi ). As Di can be calculated by simple statistics in

advance, we can easily construct training set {([xi , c1], q̂i1), · · · ,
([xi , cMi ], q̂iMi )} for each market-segment i(i = 1, . . . ,N ) from
2
The proofs of all theorems can be found in the supplement.

historical observations. Then parameters are learned by minimizing

the following negative log-likelihood through gradient decent:

J = − 1∑N
i=1Mi

N∑
i=1

Mi∑
j=1

[q̂i j logqi j + (1 − q̂i j ) log(1 − qi j )]. (6)

3 BUDGET ALLOCATION
As long as response models are acquired, budget allocation can be

formulated as an optimization problem.

3.1 Problem Formulation
Suppose there are N market-segments, budget allocation needs to

decide unit cost ci for each segment i(i = 1, . . . ,N ) under some

budget constraint. Let c := [c1, . . . , cN ], our objective is to find an

optimal c maximizing total sales under budget constraint. Formally,

min

c
−

N∑
i=1

di (ci ),

s.t.

N∑
i=1

di (ci )ci ≤ B,

(7)

where B is the budget bound and it can be either greater than or less

than 0. Positive B means cost upper bound and negative B means

profit lower bound.

Because

∑N
i=1 di (ci )ci =

∑N
i=1 Diqi (ci )ci is non-convex with

respect to ci , directly solving the above problem is difficult. Inspired

by [7, 20], we can reformulate the problem into an equivalent convex

optimization problem. Since qi (ci ) obviously is a strictly increasing

function when bi > 0, we can get its inverse function, which maps

market share qi to marketing cost ci , as follow:

ci (qi ) = −ai
bi

− 1

bi
[ln(1 − qi ) − lnqi ],

qi ∈ (0, 1), i = 1, . . . ,N .
(8)

Then we define q := [q1, . . . ,qN ] and constraint function д(q) as:

д(q) :=
N∑
i=1

Diqici (qi ) − B. (9)

Theorem 2. д(q) is strongly convex with respect to q.

Therefore, we can reformulate the problem as follow:

min

q
−

N∑
i=1

Diqi ,

s.t. д(q) ≤ 0,

(10)

which is a convex optimization problem with respect to q.

3.2 Algorithm
By introducing a dual variable λ, the Lagrange multiplier method

is applied to solve the convex optimization problem in Eq. (10):

L(q, λ) = −
N∑
i=1

Diqi + λ(
N∑
i=1

Diqici (qi ) − B)

=

N∑
i=1

(λDiqici (qi ) − Diqi ) − λB.

(11)
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3.2.1 KKT conditions. Both objective function and constraint func-

tion are differentiable and convex, and the KKT conditions are:

д(q∗) ≤ 0, (12a)

λ∗ ≥ 0, (12b)

λ∗д(q∗) = 0, (12c)

∇qi (λ∗Diq
∗
i ci (q

∗
i ) − Diq

∗
i ) = 0, i = 1, ...,N , (12d)

where q∗, λ∗ are the optimal solutions of primal and dual problems

respectively, with zero duality gap [5].

While д(q) is strongly convex, the minimum value of д(q) exists,
and let д(q̃) denote it. To obtain the minimum value, we take the

partial derivative of д(q) with respect to each qi and set it to 0.

Then, we can get:

ln

q̃i
1 − q̃i

+
q̃i

1 − q̃i
= ai − 1, i = 1, . . . ,N . (13)

Using LambertW function [6], д(q̃) is uniquely attained at:

q̃i =
W (exp(ai − 1))

W (exp(ai − 1)) + 1 , i = 1, . . . ,N , (14)

whereW (·) is the LambertW function. When д(q̃) > 0, there is

no solution. When д(q̃) = 0, the optimal solution is imminently

obtained at q∗ = q̃. When д(q̃) < 0, the following assumption

holds:

Assumption 2. There exists q such that д(q) < 0.

When the above assumption holds, the constraint function д(q)
satisfies Slater’s condition, and the KKT conditions in Eq. (12) pro-

vide necessary and sufficient conditions for optimality [5].

Theorem 3. The fourth KKT condition Eq. (12d) is equivalent to

λ∗ , 0 and q∗i =
W
(
exp(ai+ biλ∗ −1)

)
W
(
exp(ai+ biλ∗ −1)

)
+1

(i = 1, . . . ,N ), whereW (·) is

the LambertW function.

From λ∗ , 0 and Eq. (12c), it is easy to conclude that д(q∗) = 0.

Then we obtain the following optimality conditions:

д(q∗) =
N∑
i=1

Diq
∗
i ci (q

∗
i ) − B = 0, (15a)

q∗i =
W

(
exp(ai + bi

λ∗ − 1)
)

W
(
exp(ai + bi

λ∗ − 1)
)
+ 1
, i = 1, . . . ,N , (15b)

λ∗ > 0. (15c)

We can see that the primal variables q∗i (i = 1, . . . ,N ) can be rep-

resented by the same dual variable λ∗. That is to say searching N
primal variables is equal to searching one dual variable λ. Let us
define:

qi (λ) :=
W

(
exp(ai + bi

λ − 1)
)

W
(
exp(ai + bi

λ − 1)
)
+ 1
,

λ ∈ (0,+∞), i = 1, . . . ,N ,

(16)

and

f (λ) :=
N∑
i=1

Diqi (λ),

д(λ) := д(q(λ)), λ ∈ (0,+∞).
(17)

Algorithm 1 Bisection algorithm for budget allocation

Input: ϵ,B,ai ,bi ,Di , i = 1, . . . ,N .

1: λl = 0, λr = 1.

2: while д(λr ) > 0 do
3: λl = λr , λr = 2λr .
4: end while
5: repeat
6: λm = (λl + λr )/2.
7: if д(λm ) > 0 then
8: λl = λm .

9: else
10: λr = λm .

11: end if
12: until λr − λl ≤ ϵ
13: λ∗ = λr , q∗ = q(λ∗).
14: Compute c∗i = ci (q

∗
i ) using Eq. (8).

If and only if the root λ∗ of д(λ) = 0 is found, the problem is solved

and the optimal solution is q∗ = q(λ∗).

3.2.2 Bisection method. The bisection method is a numerical root-

finding method, and the precondition is to know two values with

opposite signs. The process repeatedly bisects the interval defined

by these two values and breaks when the interval is sufficiently

small.

Theorem 4. The functions f (λ),д(λ) are strictly decreasing with
respect to λ, and lim

λ→0

д(λ) > 0.

When Assumption 2 holds, there exists λ < +∞ such that д(λ) ≤
0. Together with Theorem 4, the root λ∗ of д(λ) = 0 can be found

by bisection, which is shown in Algorithm 1, and one example is

illustrated in Figure 3. As seen from above, we approximately set

λ∗ = λr in order to satisfy the constraint. In practice, the algorithm

can also be early terminated by f (λl )− f (λr ) ≤ ϵ ′, besides λr −λl ≤
ϵ . It is obvious that f (λ∗) − f (λr ) < ϵ ′ when f (λl ) − f (λr ) ≤ ϵ ′.

3.2.3 Time complexity. At line 2 − 4 of Algorithm 1, there are at

most ⌈log
2
(max(λ∗, 1))⌉+1 iterations to find λr satisfyingд(λr ) ≤ 0.

At line 5 − 12, there are at most ⌈log
2
(max(λ∗,1)

ϵ )⌉ iterations. There-
fore, the total number of iterations is less than ⌈2 log

2
(max(λ∗, 1))+

log
2
( 2ϵ )⌉. If the algorithm can be further early terminated by f (λl )−

f (λr ) ≤ ϵ ′, there are at most ⌈log
2

(
min(max(λ∗,1)

ϵ ,
∑N
i=1 Di
ϵ ′ )

)
⌉ iter-

ations at line 5 − 12. So the total number of iteration is less than

a constant, i.e. ⌈log
2

(
max( 1ϵ ,

∑N
i=1 Di
ϵ ′ )

)
+ 1⌉. In practice, the algo-

rithm converges in a few iterations and the complexity of each

iteration is O(N ), thus it is readily to handle large-scale problems.

3.3 Extension
3.3.1 ROI. In many situations, it is not easy to determine the spe-

cific B. Instead, the efficiency ratio of spending budget is expected

to be no less than a given value. Let R > 0 denote the lower bound of

efficiency ratio or Return on Investment (ROI), the original problem

4
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respect to dual variable λ. The optimal objective value f (λ∗)
is attained when д(λ∗) = 0.

in Eq. (7) is extended to:

min

c
−

N∑
i=1

di (ci ),

s.t.

N∑
i=1

(
Rd(ci )ci − di (ci )

)
≤ 0.

(18)

Then the constraint function in Eq. (9) can be replaced by:

д′(q) :=
N∑
i=1

(
RDiqici (qi ) − Diqi

)
. (19)

Theorem 5. д′(q) is strongly convex with respect to q. д′(λ) is
strictly decreasing with respect to λ, and limλ→0

д′(λ) > 0.

After a similar derivation, we can conclude that the new opti-

mization problem still can be solved by Algorithm 1, except qi (λ)
in Eq. (16) is replaced by:

qi (λ) :=
W

(
exp(ai + bi

λR +
bi
R − 1)

)
W

(
exp(ai + bi

λR +
bi
R − 1)

)
+ 1
,

λ ∈ (0,+∞), i = 1, . . . ,N ,

(20)

and the input B is no longer required.

3.3.2 Discrete settings. In many situations, each ci can only be

chosen from a set of discrete values. One common reason is that

99-ending display prices (e.g. $99, $199 or $299) are preferred after

discount or premium [30]. Let Si := {c1i , . . . , c
|Si |
i } denote the set

of optional values for ci , the original problem in Eq. (7) is then

extended to a NP-hard problem:

min

c
−

N∑
i=1

di (ci ),

s.t.

N∑
i=1

di (ci )ci ≤ B,

ci ∈ Si , i = 1, . . . ,N .

(21)

To solve the discrete problem, we first solve the relaxed continu-

ous problem in Eq. (7) and let c∗ = [c∗
1
, . . . , c∗N ] denote its solution.

After defining:

cli := arg min

ci ∈Si ,ci ≤c∗i
|ci − c∗i |,

cui := arg min

ci ∈Si ,ci>c∗i
|ci − c∗i |, i = 1, . . . ,N .

(22)

The discrete problem can be then solved by constructing a Multi-

ple Choice Knapsack Problem (MCKP) [17], where B is the ca-
pacity of knapsack. In the constructed MCKP, i-th class repre-

sents i-th market-segment, and each class contains two items: the

profit and weight of the first item are di (cli ),di (c
l
i )c

l
i ; the profit and

weight of the second item are di (cri ),di (c
r
i )c

r
i . Since

∑N
i=1 di (cli )c

l
i ≤∑N

i=1 di (c∗i )c
∗
i ≤ B, there exists a solution to the constructed MCKP.

Dyer et al. [9] and Zemel et al. [9] independently developed ap-

proximation algorithms (called Dyer-Zemel) for MCKP, running

in O(N ) time, and the algorithm can be further boosted by prun-

ing [27]. So the additional computation is very limited. In practice,

when |Si | is small we suggest to directly solve the discrete setting

by Dyer-Zemel algorithm with multiple items in each class, instead

of solving the relaxed continuous problem first. Actually, when

discrete setting is directly solved by Dyer-Zemel algorithm, profit

and weight can be generated by arbitrary methods. Moreover, the

discrete settings under ROI constrains also can be readily supported

with few adaptations.

4 EXPERIMENT
To demonstrate the effectiveness of our approach, we present results

of both offline experiments and online A/B testing.

4.1 Market Response
4.1.1 Datasets. The proposed semi-black-box response model is

tested on two datasets.

• Breakfast. It is a public dataset3 and contains sales and pro-
motion records on 4 thousand market-segments (58 products

from 77 stores) over 156 weeks. For each market-segment,

the sales volume is accumulated weekly, and the market

size is approximated by maximum sales in history. Cost on

marketing (discount or premium) can be calculated from

the difference between shelf price and base price. Contex-
tual variables include store, product, manufacture, category,

sub-category, in-store display, etc.

• Taopiaopiao. It is collected fromTaopiaopiao
4
, which is one

of the largest platforms for selling movie tickets in China.

There are 60 thousand market-segments (each day-of-week

of 8 thousand cinemas) over 152 days. For each market-

segment, the sales volume is accumulated daily, and the

market size is provided by government agency
5
. Cost on

marketing can be obtained directly, and contextual variables

include cinema, day-of-week, city, etc.

3
https://www.dunnhumby.com/careers/engineering/sourcefiles

4
https://www.taopiaopiao.com

5
https://zgdypw.cn
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Figure 4: The comparison between logit model and our semi-
black-box model under different partition ratios.

4.1.2 Setups. As we can see, all contextual variables are indicator

variables. In our model, they are firstly represented by one-hot

encodings and then concatenated together as input layer of the

neural network part. After that, there are 5 fully connected layers

with ReLU as the activation function, and the dimension of each

layer is 16. In both the baseline (logit model) and the proposed

semi-black-box model, all trainable parameters are initialized as

zero and updated through gradient decent with Adam rule [18].

The learning rate is 0.01 and all models are trained for 200 epochs.

4.1.3 Results. The results are measured in Relative Mean Absolute

Error (RMAE), which is calculated as:

RMAE =

∑N
i=1 |yi − ŷi |∑N

i=1 ŷi
, (23)

where N is the number of test samples, ŷi is the true value and yi is
the prediction value. For both Breakfast and Taopiaopiao, the whole

datasets are split into training and test sets along business timeline.

In order to comprehensively evaluate our method, we measure

performances under different partition ratios. In particular, the

proportion of dataset selected as training set ranges from 5% to 95%,

and all results are plotted in Figure 4. As can be seen, our semi-black-

box model significantly outperforms the traditional logit model,

especially when the training data is limited. The reason is that our

model is able to share information across different segments, and

thus data sparseness problem is greatly relieved.

4.2 Budget Allocation
To investigate the behaviors of our budget allocation algorithm,

several simulations are conducted.

4.2.1 Setups. We consider a synthetic scenario including N = 100

market-segments, where the parameters of market response models

are generated randomly. More specifically, the parameters are gen-

erated as follow: for i=1,. . . , N, Di ∼ U(0, 100),ai ∼ U(−1, 1),bi ∼
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Figure 5: Convergence processes of three random examples
(grouped by column).

U(0, 1) and B ∼ U(0, 100N ), whereU(l ,u) represents the uniform
distribution on interval (l ,u).

4.2.2 Convergence. The convergence processes of three random
examples are shown in Figure 5. We can see that the proposed algo-

rithm converges in a few iterations, usually less than 10 iterations.

As д(λ) goes to 0, the objective value approaches its maximum

value, which confirms the derivation in Section 3.2.

4.2.3 Parameter sensitivity. To study how the estimation bias of ai
and bi disturbs our algorithm, some artificial biases are simulated

on the generated parameters.

Firstly, after adding different level biases to the generatedai ,bi (i =
1, . . . ,N ), we get the biased parameters:

âi = ai + ϵ |ai |, ˆbi = bi + ϵ |bi |, (24)

where ϵ is randomly sampled from U(−0.2, 0.2) for each group

ai ,bi (i = 1, . . . ,N ). Secondly, ĉi is solved under (âi ,bi ) and (ai , ˆbi )
respectively. Based on ĉi , objective value and constraint function

(or exceeded budget) are calculated using ai and bi :

ˆd(ĉ) =
N∑
i=1

Diqi (ĉi ;ai ,bi ), д̂(ĉ) =
N∑
i=1

Diqi (ĉi ;ai ,bi )ĉi − B. (25)

Then we compute the relative error of objective value and exceeded

budget as follow:

Objective error =
d(c∗) − ˆd(ĉ)

d(c∗) ,

Exceeded budget =
д̂(ĉ)
B
.

(26)

More than 1000 independent Monte Carlo simulations are con-

ducted, and the results are shown in Figure 6.

Obviously, when the estimation bias increases, both objective

error and exceeded budget increase. However, the objective is not

very sensitive to parameters, e.g. the objective error is still less than

1% even with 20% estimation bias. On the other hand, although

budget is more sensitive to parameters than objective, the exceeded

budget is less than 5% when estimation biases of ai ,bi are less than
10%, 5% respectively. Moreover, the algorithm is less sensitive to

ai than bi . One reason is that, in logit response models, bi is the
coefficient of decision variable c while ai is the bias term. Note that

estimation bias is limited under a reasonable forecasting accuracy.

6



0 5 10 15 20

Estimation bias of a (%)

-1

-0.5

0

0.5

1

O
b
je

c
ti
v
e
 e

rr
o
r 

(%
)

(a)

0 5 10 15 20

Estimation bias of a (%)

-20

-10

0

10

20

30

E
x
c
e
e
d
e
d
 b

u
d
g
e
t 
(%

)

(b)

0 5 10 15 20

Estimation bias of b (%)

-1

-0.5

0

0.5

1

O
b
je

c
ti
v
e
 e

rr
o
r 

(%
)

(c)

0 5 10 15 20

Estimation bias of b (%)

-20

-10

0

10

20

30
E

x
c
e
e
d
e
d
 b

u
d
g
e
t 
(%

)

(d)

Figure 6: Parameter sensitivity. (a) (b) The mean and stan-
dard deviation of objective error and exceeded budget with
different estimation biases of a. (c) (d) The mean and stan-
dard deviation of objective error and exceeded budget with
different estimation biases of b.

4.2.4 Discrete settings. The discrete constraints are common in

many real-world situations, and we have presented efficient approx-

imation algorithms for solving discrete problems. To evaluate the

approximate error of proposed methods, several simulations are

conducted. Two approximation algorithms are tested in simulations:

1) Bisection + Dyer-Zemel, which solves the relaxed continuous

problem first and then solves the constructedMCKP byDyer-Zemel;

2) Dyer-Zemel only, which is suggested when the set of options is

small. As the distance between two adjacent optional values, which

indicates the density in discrete constraints, varies from 0.1 to 8,

100 independent Monte Carlo simulations are run for each distance.

The upper bound of approximate error can be calculated as

follow:

Approximate Error =
du − da
du − d0

, (27)

where da is the objective value of approximate solution, d0 is the
objective value with no action (i.e. ci = 0 for every i), and du is the

maximum objective value of relaxed continuous problem. The de-

tailed simulation results are shown in Table 1, which includes both

mean and standard derivation of approximate errors. It is shown

that the upper bound of approximate error is very small when the

options have a high density (or small discrete distance). For exam-

ple, when discrete distances are less than 1, the approximate error

is no more than 1%. As optional values become sparse, the upper

bound of approximate error increases, which is consistent with our

intuition. However, the real approximate error, which is unknown

due to NP-hardness, is not necessarily significant. Moreover, the

budget allocation results of two algorithms are the same in most

situations. Therefore, it is reasonable to suggest directly solving

problems with discrete constraints by Dyer-Zemel algorithm when

the set of options is small and the running time is not the bottleneck.

Table 1: The approximate error upper bound of two algo-
rithms for solving discrete problems.

Approximate error (mean ± stddev) (%)

Distance Bisection + Dyer-Zemel Dyer-Zemel only

0.1 0.0297 ± 0.0337 0.0299 ± 0.0337

0.5 0.3040 ± 0.2614 0.3043 ± 0.2612

1 0.8418 ± 0.5582 0.8418 ± 0.5582

2 3.053 ± 2.247 3.053 ± 2.247

4 15.14 ± 10.43 15.09 ± 10.45

8 49.89 ± 11.52 49.88 ± 11.53

4.3 Real-world Scenarios
In order to show the performance of our approach in real-world

scenarios, we would like to take the daily marketing in Taopiaopiao

as a typical example. Before policy changes, there are several billion

RMB spent on marketing each year to compete for market shares

(as equal to sales) with other platforms, Maoyan for an example.

How to spend money efficiently is a crucial part in the competition.

4.3.1 Setups. In order to avoid price discrimination, the unit cost

(price discount or premium) on marketing is determined for each

market-segment (i.e. each day-of-week of different cinemas). For

instance, the discounts of movie tickets on Sunday for a specific cin-

ema are the same for all Taopiaopiao customers, but the discounts

can be different across different cinemas and also can be different

from Saturday. The cost upper bound is updated weekly. Based on

initial budget, the allocation is firstly calculated at the beginning of

the following week. Then the allocation need to be readjusted daily

based on the left budget. One reason for budget allocation shifting

is the biased forecasting. In addition, the discrete constraints are

required here due to customers’ preference of 99-ending prices.

We design the following cinema-based randomized A/B testing

experiment to form fair comparisons. Firstly, we filter out outliers,

including cinemas with extreme high or low market shares in his-

tory, or abnormal variance of sales, etc. Secondly, 4 hundred cinemas

are randomly picked across different cities as group A, and then

a one-to-one mapping approach is conducted to generate group

B. In the one-to-one mapping approach, the 1-nearest-neighbor is

selected for each cinema in group A based on historical data and

contextual features. Thirdly, an A/A testing runs for several days to

confirm group A and B have similar sales volumes and marketing

responses. Finally, an A/B testing runs for five weeks, where cost

upper bounds of group A and B for each week are the same. The

budget is uniformly allocated in group A, and allocated based on

our approach in group B.

4.3.2 Results. The comparison results on market share are shown

in Figure 7, and the comparison results on ROI are shown in Figure

8. First of all, the sales is effectively improved every week and

the average improvement is above 6%. Actually, the algorithm is

always early terminated by f (λl ) − f (λr ) ≤ ϵ ′. The reason is

that the cost upper bound is given by managers according to their

subjective experience, and it is not necessary to spend that much

money for negligible improvements. So our approach decides to

spend much less money, and thus the improvements on ROI is

remarkable (more than 40% averagely). In one word, the proposed
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approach can improve sales over 6% with spending 40% less money

on marketing by allocating budget into the right market-segments.

As this example scenario shows, the data-driven methods can help

us to makemore informed and effective decisions in online business,

where it is difficult for human to monitor and analyze the business

environment constantly.

5 RELATEDWORK
Marketing is one of the premier components of business man-

agement, and it has been studied for decades [22]. In marketing,

companies need to allocate whole budget across different market-

segments, such as across countries, products, consumption months

and so on [12]. There are great real benefits for improving the effi-

ciency of marketing budget allocation, and thus many studies focus

on this topic [8, 14, 29]. Recently, online business has become an

important part of our daily lives. The environment in online busi-

ness is very dynamic and complex, which brings great challenges to

marketing, especially for companies with large and diversified mar-

kets [19, 32]. Many data-driven techniques are developed [1, 10]

to overcome these challenges, including forecasting [3, 37] and

optimization [16].

As black-box models, neural networks have recently been suc-

cessfully applied to many forecasting applications [21, 33, 35].

Through multiple non-linear transformations, they can achieve

a high forecasting accuracy. However, there are several gaps be-

tween forecasting and decision making [2]. One challenge is that

black-box models often fail to identify relationship between the

independent variable and objective variable, e.g. how cost on mar-

keting effects sales, due to covariate shifting. A related topic on this

problem is causal inference [23, 25]. Another challenge is that opti-

mization on black-box functions is difficult. Therefore, economists

prefer using explicit expressions to reveal relationship between the

independent variable and objective variable. In the context of sales

forecasting, the explicit models are called demand curves. There are

many kinds of demand curves, such as linear, log-linear, constant-

elasticity, logit and so on [15, 26, 34]. We focus on logit demand

curve, which is the most popular response model [26, 28, 36]. How-

ever, the capability of fully utilizing data is limited when the logit

demand curve is fitted for each market-segment separately. That

may cause serious data sparseness problem. One way to relieve

data sparseness problem is Thompson sampling [11, 13], where

independent variables need to change several time for explorations.

In this work, we extend the capability of logit demand curves via

neural networks and a semi-black-box model has been proposed to

relieve the data sparseness problem.

There are also massive works focusing on solving the marketing

(or pricing) problems by formulating them as optimization problems.

Ferreira et al. optimize pricing decisions by integer programming,

and solve it by linear relaxations [10]. Ito et al. maximize future

revenue or profit by binary quadratic programming, and solve it by

semi-definite relaxations [16]. Boutilier et al. formulate the budget

allocation as a sequential decision problem and solve it by MDP

[4]. Staib et al. study the general budget allocation problem from a

robust optimization perspective [31]. In this work, the marketing

budget allocation is firstly formulated as a non-convex problem.

Inspired by [7, 20], whose topics are pricing products with no budget

constraints, we reformulate the problem into an equivalent convex

optimization problem. Efficient algorithms are designed to solve it

in both continuous and discrete settings. It is worth mentioning that

a major cause of discrete decision variables is the preference of 99-

ending display prices in many situations [30]. The discrete settings

can be solved by constructing a Multiple Choice Knapsack Problem

(MCKP) from the solution of relaxed continuous problem. Dyer et

al. [9] and Zemel et al. [38] independently developed approximation

algorithms for MCKP, and the algorithm can be further boosted by

pruning [27]. Actually, MCKP has wide applications [17], such as

advertising optimization in online marketing [24].

6 CONCLUSION
In this paper, we present a novel unified framework for marketing

budget allocation, and there are two sequential steps in the pro-

posed framework. Firstly, the response in each market-segment is

forecasted by a semi-black-box model, which extends logit demand

curves with the capability of neural networks. The new response

model not only can share information across different segments
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to relieve data sparseness problem, but also keeps the explicit ex-

pression between the independent variable and objective variable.

Then budget allocation is formulated as an optimization problem

based on learned response models. The optimization problem can

be solved efficiently by binary search on a dual variable in a few

iterations and the complexity of each iteration is O(N ). Thus it is
readily to handle large-scale problems. Several business constrains,

including cost upper bound, profit lower bound, ROI lower bound,

and discrete constrains, are supported in one unified paradigm with

minor adaptations. This framework is easy to implement and has

been successfully applied to many scenarios in Alibaba Group. The

results of both offline experiments and online A/B testing demon-

strate its effectiveness. Taking the daily marketing in Taopiaopiao

as an example, the proposed approach can improve sales over 6%

with spending 40% less money on marketing.

For future works, we are interested in exploring relationship be-

tween the market cost and contextual variables in the logit response

model. There is also a strong motivation to support boundary con-

straints on decision variables in the optimization part. Moreover,

another interesting topic is to theoretically analyze the approxima-

tion error of algorithms for solving the discrete setting.
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A SUPPLEMENT
A.1 Implementation
In order to improve the reproducibility, we present more details

about the implementation.

A.1.1 Software versions. The details of languages, packages and
frameworks used in the deployment and experiments are as follow:

• Language: Python 2.7.15, Cython 0.28.5, SQL.

9



• Packages: NumPy 1.15.4, SciPy 1.1.0, Tensorflow 1.11.0.

• Frameworks: MaxCompute, Spark 2.3.0.

A.1.2 Large scale. When the training set of forecasting is extremely

large, batch gradient descent should be used instead of gradient

descent, and machines with GPUs are preferred. However, the in-

ference part can be easily paralleled. For the optimization part, our

algorithm can be naturally implemented in a distributed frame-

work, such as Spark, where computations are paralleled across

market-segments.

A.1.3 Other tips.

• The experimental results on semi-black-box models are quite

insensitivity to hyper-parameters in neural networks, and

more layers or higher dimensions are not necessary.

• In some extreme cases, it may need to use high-precision

computing to calculate q in Eq. (15b) to avoid overflow

caused by the exponent. The extreme cases only happen

when ϵ is set to be a very small value, but it is not necessary

in most situations.

• The pseudocode in page 323 of [17] is a good reference for

implementing the Dyer-Zemel algorithm. However, there are

two misprints: the condition in step 6 should be

∑m
i=1wiai >

c and the condition in step 7 should be

∑m
i=1wiai ≤ c .

A.2 Proofs
A.2.1 Theorem 1.

Proof. The derivative of Eq. (1) is

∇cdi (c) =
Dibi exp {−(ai + bic)}
[1 + exp {−(ai + bic)}]2

. (28)

Let us substitute it into Eq. (3) and we can get:

ei (c) = − bic

1 + exp {ai + bic}
, (29)

then we have ei (ĉi ) = ei (−ai
bi
) = −ai

2
. □

A.2.2 Theorem 2.

Proof. Note that

dд

dqi
=

Di
bi

(1 − ai + ln
qi

1 − qi
+

qi
1 − qi

), i = 1, ...,N , (30)

and then

d2д

d2qi
=

Di

biqi (1 − qi )2
, i = 1, ...,N . (31)

That is ∇2

qд(q) = diag([ Di
biqi (1−qi )2 ]). Since Di > 0,bi > 0 and

0 < qi < 1, we have ∇2

qд(q) ⪰ diag([ 27Di
4bi

]) ≻ 0, where equality

holds if and only if qi =
1

3
,∀i . Thus, д(q) is strongly convex. □

A.2.3 Theorem 3.

Proof. From Eq. (12d) and Di > 0, we can get:

λ∗(1 − ai + ln
q∗i

1 − q∗i
+

q∗i
1 − q∗i

) = bi . (32)

Since bi > 0, we have λ∗ , 0.

Let us define xi :=
q∗
i

1−q∗
i
and substitute it into (32), we have

lnxi + xi = ai +
bi
λ∗

− 1, (33)

or equivalently,

xie
xi = exp(ai +

bi
λ∗

− 1). (34)

Since exp(ai + bi
λ∗ − 1) > 0, we have

xi =W
(
exp(ai +

bi
λ∗

− 1)
)
, (35)

whereW (·) is the LambertW function [6]. Then we can obtain

q∗i =
xi

xi+1 =
W
(
exp(ai+ biλ∗ −1)

)
W
(
exp(ai+ biλ∗ −1)

)
+1

. □

A.2.4 Theorem 4.

Proof. Firstly, let xi :=
qi

1−qi . According to

dλ

dqi
=

dλ

dxi

dxi
dqi

=
−bi ( 1

xi + 1)
(1 − ai + lnxi + xi )2

1

(1 − qi )2

= − λ2

biqi (1 − qi )2
, i = 1, . . . ,N ,

(36)

we have:

dqi
dλ
= −biqi (1 − qi )2

λ2
, i = 1, . . . ,N . (37)

The derivative of f (λ) with respect to λ is:

d f

dλ
=

N∑
i=1

Di
dqi
dλ

= −
N∑
i=1

Dibiqi (1 − qi )2

λ2
< 0,

(38)

where Di > 0,bi > 0 and 0 < qi < 1. Thus f (λ) is strictly decreas-

ing with respect to λ.
Secondly, based on Eq. (12d) we have:

1 − ai + lnxi + xi =
bi
λ

(39)

Then according to Eq. (30), we have:

dдi
dqi
=

Di
λ
, i = 1, ...,N . (40)

The derivative of д(λ) with respect to λ is:

dд

dλ
=

N∑
i=1

dдi
dλ
=

N∑
i=1

dдi
dqi

dqi
dλ

= −
N∑
i=1

Dibiqi (1 − qi )2

λ3
< 0,

(41)

whereDi > 0,bi > 0 and 0 < qi < 1. Thusд(λ) is strictly decreasing
with respect to λ.

Finally, since lim

λ→0

qi (λ) = 1 and lim

qi→1

ci (qi ) = +∞, i = 1, . . . ,N ,

we have lim

λ→0

д(λ) → +∞ > 0. □

10



A.2.5 Theorem 5.

Proof. Firstly, ∇2

qд
′(q) = diag([ RDi

biqi (1−qi )2 ]). Since R > 0,Di >

0,bi > 0 and 0 < qi < 1, we have ∇2

qд
′(q) ⪰ diag([ 27RDi

4bi
]) ≻ 0,

where equality holds if and only if qi =
1

3
,∀i . Thus, д′(q) is strongly

convex.
Secondly, the derivative of д′(λ) with respect to λ is:

dд′

dλ
= −

N∑
i=1

Dibiqi (1 − qi )2

Rλ3
< 0, (42)

where R > 0,Di > 0,bi > 0 and 0 < qi < 1. Thus д′(λ) is strictly
decreasing with respect to λ.

Finally, since lim

λ→0

qi (λ) = 1 and lim

qi→1

ci (qi ) = +∞, i = 1, . . . ,N ,

we have lim

λ→0

д′(λ) → +∞ > 0. □

11
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