
Peer assessment of student-produced mechanics lab report videos

Scott S. Douglas
School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30032, USA

John M. Aiken
Physics Education Research Lab, Michigan State University, East Lansing, Michigan 48824, USA

Shih-Yin Lin
National Changhua University of Education, 500, Taiwan

Edwin F. Greco, Emily Alicea-Muñoz, and Michael F. Schatz
School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30032, USA

(Received 30 May 2017; published 1 November 2017)

We examine changes in students’ rating behavior during a semester-long sequence of peer evaluation
laboratory exercises in an introductory mechanics course. We perform a quantitative analysis of the ratings
given by students to peers’ physics lab reports, and conduct interviews with students. We find that peers
persistently assign higher ratings to lab reports than do experts, that peers begin the semester by giving high
ratings most frequently and end the semester with frequent middle ratings, and that peers go through the
semester without much change in the frequency of low ratings. We then use student interviews to develop a
model for student engagement with peer assessment. This model is based on two competing influences
which appear to shape peer evaluation behavior: a strong disinclination to give poor ratings with a
complementary preference to give high ratings when in doubt, and an attempt to develop an expertlike
criticality when assessing peers’ work.
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I. INTRODUCTION

Peer assessment [1] has been used in classrooms across a
broad range of disciplines from second-language writing
[2] to conceptual physics [3], and offers the potential for
instructors to administer open-ended assignments in large
classes without suffering an untenable grading burden [4].
Quantitative studies of peer assessment have, to date,
mostly examined peer assessment by reporting on a single
peer-assessed exercise or by aggregating the results of an
entire course’s worth of exercises; this is usually done to
answer research questions about the overall validity or
reliability of peer assessment [5–7], or questions about
learning outcomes effected by peer assessment [8–10]. Our
own previous work has shown the effectiveness of practice
assignments in improving the accuracy of peer assessment
[11], and has demonstrated quantitative improvements over
time in assessment accuracy among a group of peer
assessors [12]. Left unanswered are questions about how
students’ behavior changes over time through repeated

engagement with peer assessment to effect this improve-
ment in accuracy.
In this study, we measure these changes in student

assessment behavior and develop a model for these changes
by examining peer assessment at the beginning and end of
an introductory mechanics course. Our students partici-
pated in peer assessment several times throughout the
semester-long course, each time producing and assessing
content-rich lab reports in the form of 5 minute video
presentations of physics experiments. We quantitatively
analyze student assessments of these videos at the begin-
ning and at the end of the semester, and then interview
students to gain a qualitative understanding of their
attitudes and practices. This understanding is critical for
developing a more complete view of peer assessment of
physics in particular, and for developing models of student
critique and communication of physics concepts in general.
Finally, we develop a model for student engagement with
peer assessment that explains our observed changes in
terms of two competing influences on students; an incli-
nation to give high ratings (and strong disinclination to give
low ratings), along with a rising recognition that instructors
expect them to have high standards in assessment.
Our paper consists of the following sections: Sec. I,

Introduction; Sec. II, Background, describing peer assess-
ment generally, including a typology of its various forms;
Sec. III, Laboratory Design, discussing the design of our
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physics laboratory activities, peer assessment process, and
classroom setting; Sec. IV, Methods, which describes our
statistical methods and interview procedures; Sec. V,
Results, which contains our analysis of peer grades, peer
ratings, andpeer interviewsof physics labs; andSectionVI—
Discussion, wherewe situate our results among other studies
of peer assessment and discusses the framework suggested to
us by our findings.

II. BACKGROUND

Peer assessment in the physics classroom is fundamen-
tally similar to peer assessment in other fields; all peer
assessment systems involve students at roughly the same
level of education evaluating each other’s work. Beyond
this basic similarity, though, peer assessment systems may
differ widely; the assessments may be anonymous or face to
face; they may provide only low-stakes formative assess-
ment, or they may replace instructor grading entirely;
participation in the system may be compulsory or volun-
tary; and groups, pairs, or individuals may assess the work
of other groups, pairs, or individuals. The huge variety of
possible peer assessment systems affords instructors great
flexibility in implementation, but also cautions us against
bold conclusions about peer assessment in general. Given
this, researchers of peer assessment must be careful to
describe the particular systems investigated in their studies,
which we do in Sec. III.
While the different forms of peer assessment are numer-

ous, the motivating benefits of peer assessment fall into
four broad categories [13]:

• Logistical—A peer assessment system that produces
reasonably instructorlike grades can allow an instruc-
tor to assign open-ended exercises without devoting
many hours to grading.

• Pedagogical—Students’ own content knowledge can
be deepened by exposure to other students’ work.

• Metacognitive—Assessment of another’s work can
help a student map the boundaries of their own
proficiencies and deficiencies.

• Affective—Participating in the grading process in a
substantial way can make final grades seem less
arbitrary and help students fulfill positive, actualized
roles in a community of practice.

The logistical benefits in particular are attractive to
physics instructors leading large-enrollment courses, both
online and on campus; because every additional student
producing work is also another peer assessor, the capacity
of any peer assessment system automatically scales up with
the number of students in the course. This permits the use
of content-rich student exercises in courses where the
assessment of such exercises would otherwise constitute
an untenable burden for instructors.
Peer assessment would confer no logistical benefit at all,

however, if the assessments were so untrustworthy that
instructors had to spend many hours correcting them

anyway. The main logistical concern of any peer assess-
ment system is therefore validity—does the system actually
produce instructorlike assessments? Previous research has
demonstrated that well-designed peer assessment systems
are capable of providing an adequately valid replacement
for instructor grading in many fields [6,7,13]. These studies
usually report validity in terms of agreement between
grades given by instructors and by students to a sample
of exercises. In their 2000 meta-analysis of 48 such peer
assessment studies, Falchikov and Goldfinch [7] report a
range of Cohen’s d ¼ −0.75 to 1.25 for effect sizes
comparing peer grades with expert grades, with a weighted
mean d ¼ −0.02 (excluding outliers), and they report a
mean Pearson’s correlation coefficient of r ¼ 0.69 with a
range of r ¼ 0.14–0.99. Both of these measures are
common statistical tests of agreement, and these mean
values indicate overall good agreement between peer and
instructor grades.
In that meta-analysis, Falchikov and Goldfinch identified

several features of peer assessment systems that contribute
to validity (i.e., peer or instructor agreement), and which we
paraphrase here:

• Peer assessments that involve an overall global
judgment based on well-defined criteria produce
better agreement than assessments which require
marking several individual categories.

• Assessments of familiar academic products like essays
and proofs are more likely to result in high agreement
than are assessments of professional practice like
simulated clinical examinations.

• Good experimental design yields higher agreement—
e.g., instructors who properly reported student pop-
ulation characteristics and used sufficiently large
populations also tended to report higher agreement.

• Assessment by large (20þ) groups of peers produce
worse agreement than assessments by smaller groups
or by individuals.

• Student involvement with the creation of assessment
rubrics tends to improve agreement [7].

Other instructors have augmented their peer assessment
systems with algorithmic weighting of peer grades [3,4,14]
and peer-matching procedures based on machine learning
[15] to further improve accuracy. (Our own peer assessment
system included one such algorithmic enhancement, but we
exclude it from our current analysis in favor of looking only
at the students’ raw responses.)
A subsequent meta-analysis by van Zundert et al. [16]

examined the relationship between peer assessment proce-
dures, student characteristics, andpeer assessment outcomes.
This meta-analysis identified several studies [17–19] where
assessor training was shown to be associated with better peer
assessment outcomes. One of our previous studies [11] also
demonstrated the effectiveness of training in improving the
accuracy of peer assessment, but that study only compared
results between sections, not over time. Our previous study
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and most of the studies included in both meta-analyses were
concerned with establishing the overall validity of various
peer assessment systems in different classroom settings and
among different populations, and so were not designed to
study how students learn to interact with a given peer
assessment system through repeated engagement—and cer-
tainly not through repeated engagement in a physics class-
room, specifically.
Our current study aims to fill in this gap in the literature

by exploring changes in student assessment behavior
during two offerings of a semester-long introductory
mechanics course featuring multiple peer evaluation
assignments of physics lab report videos. One course
offering was conducted entirely online; the other offering
was conducted on-campus in a “flipped” classroom setting
[20]. Our previous work had noted a trend toward greater
student and instructor agreement over time [12]; here, we
explore this trend more fully, and inform our analysis with
qualitative investigations of student attitudes and practices.

III. LABORATORY DESIGN

Our “Your World is Your Lab” introductory mechanics
curriculum featured four laboratory exercises designed to
be completed by individual students, each centered around
a physical system exhibiting a particular type of motion
[21]. The sequence of systems covered by our four labs was
in line with the standard introductory mechanics canon; we
began with zero-net-force motion in one dimension, then
motion with a variable force in one dimension, then two-
dimensional motion with a central force, and finally two-
dimensional harmonic oscillation.

A. Observational data

In each lab, students either received or were instructed to
gather a video of a system exhibiting a specified type of
motion. Students were told to use the cameras on their
smartphones or the webcams built into their laptops to
gather this motion data—we provided no equipment to the
students. This equipment-free design was a strict necessity
for an online course where students never meet in person,
but it was also a convenience for our on-campus sections,
since we saved time and effort by not having to set up or
maintain experimental apparatus.
For the first lab (zero net force), many students elected to

take videos of car traffic on residential roads, or rolled balls
or cans across their desks; for the second lab (1D variable
force—drag from air resistance), students selected house-
hold objects of varying shapes and densities and dropped
them from a few meters’ height. We provided students with
trajectory data of a simulated astronomical system for the
third lab (2D central force), and gave them a video of a
mass swinging on a spring for the fourth lab (2D harmonic
motion). In all labs, we either provided students with data

or they collected it themselves with their own tools from
their own everyday surroundings.

B. Motion analysis

After collecting video motion data, students analyzed it
in Tracker [22], a free Java-based video analysis tool
available through the ComPADRE open source physics
collection [23]. This analysis consisted of superimposing
a coordinate system over the video and tracking the
apparent position of the center of the moving object
frame by frame, thereby producing time series data for
the object’s trajectory [24].

C. Computational modeling

With this time series in hand, students then created a
predictive computational model of the system in VPYTHON
[25] by modifying a provided minimally working program.
Students computed the net force on the system and
implemented Euler-Cromer integration of Newton’s second
law; while the integration code was essentially unchanged
from lab to lab, the computation of the net force in each lab
involved different physical concepts such as drag, gravity,
and Hooke’s law. Students then ran their computational
models with parameters and initial conditions derived from
their video analysis, and finally compared the model’s
output with their observed trajectories. Our intent in
designing this part of the laboratory process was to provide
students with experience creating, testing, and validating
computational models of physical systems, practices that
constitute the “third pillar [26]” of modern science (along
with theory and experiment) but which are often absent
from the introductory physics curriculum.

D. Video lab reports

After students completed their observations, motion
analysis, and computational model, they each produced a
5 minute lab report video in the style of a short contributed
conference talk. Students were provided with a rubric for
their lab report videos at the very beginning of the course,
and were informed that they would use this same rubric to
evaluate their peers’ lab report videos throughout the year
(and that their own videos would be evaluated in the same
manner). We also provided students with several lab report
videos from previous semesters to serve as examples.
Students were free to choose the style and format of their
lab report videos; the vast majority of them chose to make
their videos in the “screencast” format with audio narration
over static or animated slides.
Students were instructed to produce a lab report video

length of 5 min length, but to grant their peers an extra
1 min grace period during evaluation. Students were
instructed to ignore anything after the 6 min mark in the
videos they evaluated, and to deduct points accordingly.
We had dual intent in setting this time limit; we wanted to
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set a reasonable time burden for students in both producing
and evaluating their lab report videos, and we wanted to
give them experience with the strict time limits character-
istic of presentations at academic conferences. As with
computational modeling, the formal presentation of scien-
tific concepts within a given time limit is another practice
expected of professional scientists but often absent from the
physics classroom [27].

E. Peer assessment process

At the end of each lab, after students submitted their lab
report videos, they began a peer assessment process that
comprised a “training” phase followed by an “evaluation”
phase. All students were required to complete both phases
of peer assessment themselves, but we made no attempt to
ensure that students worked alone.
We designed the training phase to improve the accuracy

of assessments, and to increase student buy-in to the
assessment process. This phase comprised four lab report
videos from previous semesters, selected and assessed by
instructors. During training, each student viewed each
video online, assessed it, and submitted the assessment
electronically, after which they were presented with the
detailed instructor assessment for that video. We directed
students to compare their own assessments with the
instructors’ before proceeding to the next training video.
The first two training videos in each lab were for practice

only, and carried no grade. The latter two training videos
carried a grade incentive; students received a small grade
penalty for assessments with ratings far from the ratings
given by instructors. A fifth, final training video disguised
as a peer video was presented to students during the
evaluation phase to further ensure the integrity of the
assessment system [28].
During the evaluation phase, students were assigned

three random peers’ lab report videos (and one disguised
training video), and asked to evaluate them. The students
were also assigned their own videos for self-evaluation.
Students could assess all five videos at their leisure, in
whatever order they chose.

F. Rubric

Each peer or expert grade was calculated from a rubric
consisting of five items rated on a five-point poor-to-
excellent rating scale. Each possible rating was assigned
a numerical score. During peer grading, our peer assess-
ment system showed students the overall numerical grade
corresponding to their selected set of ratings. Students were
given an unlimited number of opportunities to revise their
ratings before the assignment deadline.
An early version of our rubric excluded any assessment

of the lab report video’s production quality. The instructors
believed that the rubric should reflect the goals of the
course, and that developing good production quality
(visual effects, audio cues, overall attractiveness, etc.)

was a relatively unimportant goal compared to the develop-
ment of students’ physics content mastery and argumenta-
tion. However, it was later determined that production
quality was still an important consideration in students’
minds, and could potentially influence students’ ratings of
unrelated rubric items if they were not given the means to
specifically express their opinions about it. In the final
version of the rubric (used for this study), we accommo-
dated this consideration by including a production quality
item on the rubric, but assigning it relatively fewer points
than the other four items.
See the Appendix for the full rubric used in this study.

G. Topping typology

Topping [29] provides a comprehensive typology of peer
assessment systems. Peer assessment as practiced in ourYour
World is Your Lab introductory mechanics course had the
dual objectives of course scalability and student improve-
ment in critique and communication of physics. Our peer
assessment systemper se focusedonquantitative, summative
assessment, with some qualitative assessment provided
through peer comments and some formative assessment
during small-group rehearsals. Lab report videos were the
objects of assessment. Peer assessment substituted for
instructor assessment, and contributed to the assessee’s final
course grade. Assessment was one way, unsigned (the
assessors were unknown to the assessee, but the assessee
was known to the assessors), with no face-to-face contact
during assessment. Assessors were in the same course as the
assessee, which implies similar ability but not necessarily
same year of study. Groups of assessors assessed individual
assessees, but assessors all worked independently and were
unknown to each other. Assessment took place outside of the
classroom, was compulsory, and counted for course credit.

H. Classroom practices

1. Spring 2014—On campus

In Spring 2014, we administered peer assessment in a
flipped [20] on-campus classroom context at Georgia Tech.
The 338 students involved were enrolled in two exper-
imental sections of a large-enrollment Physics I course
(PHYS 2211). This course used the Matter and Interactions
textbook [30].
For the two experimental flipped sections, we replaced

live lectures with online video lectures from the Georgia
Tech Your World is Your Lab curriculum [31]. Class time
originally devoted to lecture was instead spent on group
work and problem solving.
Each student was required to conduct their own experi-

ment and submit their own video lab report, but we did not
deliberately discourage students from working together.
During class time, students met in small groups (∼4
students) to present and receive feedback on their in-
progress lab exercises and lab report videos.
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If students had a dispute with the peer grade they
received for their lab report videos, they could avail
themselves of a regrade by a teaching assistant (TA).

2. Summer 2016—Online

In Summer 2016, we administered peer assessment
entirely online in a Summer Online Undergraduate
Program (SOUP) Physics I course. The SOUP course used
the Matter and Interactions textbook and the Your World is
Your Lab online lecture videos, just like the on-campus
flipped course. The entire course was conducted online;
students met online periodically for group work and TA-led
question and answer sessions. 21 students participated in
the SOUP.
Each student was required to conduct their own experi-

ment and submit their own video lab report, but as in the
on-campus course, students were not actively discouraged
from working together. Once per lab, students met online
through Google Hangouts [32] in small groups (∼4
students, plus one TA) to present and receive feedback
on their in-progress lab exercises and lab report videos.
As before, if students had a dispute with the peer grade

they received for their lab report videos, they could avail
themselves of a regrade by a TA.

I. Student interviews

We conducted five student interviews after the final lab
of the SOUP to inform our quantitative analysis with an
investigation of student attitudes and reasoning. We admin-
istered the interviews online over Google Hangouts, and
recorded video of each interview. Each interview was
conducted by the same researcher and lasted roughly an
hour. The interview began with a think-aloud exercise [33]
where the student performed a warm-up problem and then
watched and assessed a lab video in the same manner as
during the course. The think-aloud portion of the study was
immediately followed by a semistructured interview with
follow-up questions.
During the lab video assessment, the student’s computer

screen was recorded, capturing the lab video itself and
everything the student typed. At all other times, video of the
student’s face was recorded. Transcripts were made for
each interview.

IV. STATISTICAL METHODS

Cheating and guesswork were concerns for our peer
assessment system, especially for the training-phase
videos. Before performing any statistical analysis, we
scrubbed our data set of any student assessments we
deemed suspicious. For videos for which clickstream data
was available, we removed all assessments from students
who were not recorded as having viewed that video.
For videos included in the training phase, we removed all
assessments from students who were in exact item-by-
item agreement with the expert assessment for that video.

This scrubbing process likely resulted in the removal of
some legitimate assessments; nevertheless, this process
successfully eliminated an anomalous peak at zero stu-
dent-expert score difference in Fig. 2(b), and any more
forgiving process for determining “suspicion” would have
required an unacceptable number of subjective judgment
calls. Overall, the scrubbing process removed 413 of 3065
assessments originally intended for Fig. 2(b).
For our quantitative analyses, we compared distributions

of grades and ratings with a nonparametric Kolmogorov-
Smirnoff two-sample test [34] (KS test) with α ¼ 0.05.
In cases where the KS test yielded a statistically significant
difference between distributions of grades,we reported effect

TABLE I. Differences between peer and expert grade for all
peer grades of two groups of physics lab report videos (Group A,
204 randomly selected peer videos, 3 peers per video: Group B,
20 training-phase videos, 338 peers/video). Distributions of
differences are compared with a KS 2-sample test, with effect
sizes calculated by Cohen’s d. Variances are compared with a
Levene test. Standard deviations are reported instead of variances
for clarity.

Group Pre Post Significance Effect size

A Npairs 305 261
Mean 12.38 7.30 p ≪ 0.01 d ¼ −0.51
Std 9.23 10.86 p ¼ 0.05 � � �

B Npairs 1489 1163
Mean 11.94 6.33 p ≪ 0.01 d ¼ −0.53
Std 10.57 10.57 p ¼ 0.29 � � �

FIG. 1. Peer assessments of physics lab report videos taken
from the beginning (pre) and end (post) of the semester show
that the mean peer grade becomes significantly lower and
closer to the mean expert grade by 5 points, about half a letter
grade on a standard 100-point grading scale (p ≪ 0.01, Cohen’s
d ¼ −0.45). A two-sample KS test shows distributions of expert
grades do not significantly change (p ¼ 0.86). Means are
determined from 565 peer grades of a sample of 204 physics
lab report videos selected from the first and last labs of the
semester, along with expert grades for each of those videos. Error
bars show 95% confidence intervals.
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size using Cohen’s d [35]. In Table I, we compare variances
with a Levene test [36], but we report standard deviations
instead of variances for ease of interpretation. In all cases,
error bars represent 95% confidence intervals calculated
from a 104-sample random uniform bootstrap [37].
Discrepancies in reported N values arose from students

withdrawing from the course, neglecting to grade all of
their assigned videos, or neglecting to give a rating for all
five rubric items for a given video. For example, in Fig. 1,
204 video lab reports assigned to three peers each yielded
only 565 complete peer grades, not 612.

V. RESULTS

Here, we compare expert and peer grades of physics lab
report videos selected from the beginning and end of the
semester. All grade data are gathered from the Spring 2014
on-campus session unless otherwise stated. We find that the
difference between student and expert grades diminishes
over the course of the semester, and we follow this trend in
our data through three increasingly fine-grained levels of
quantitative analysis.

A. Peer and expert grades

Our highest-level examination of student and expert
evaluation behavior reveals that our students gave signifi-
cantly lower grades to their peers’ lab reports on average at
the endof the semester (“post”) than they did at the beginning
(“pre”), while average expert grades for those same lab
reports held steady. Mean peer pre and post grades (respec-
tively, 90% and 86%, p ≪ 0.05, Cohen’s d ¼ −0.45) were
around a full letter grade higher thanmean expert pre and post
grades (respectively, 77% and 78%, p > 0.05). Figure 1
shows the mean peer and expert grades for 204 lab reports
submitted by peers at the beginning and end of the semester,
each of which was assigned to three different peers for
grading.
That the mean expert grade of students’ lab report videos

did not change significantly over the course of the semester
should not be taken as evidence that the students did not
improve in their physics understanding or in their labo-
ratory skills. Unlike survey instruments, which are typically
administered unchanged between pre and post, the labs
were for-credit assignments situated in the natural pro-
gression of an introductory mechanics course. The last
laboratory assignment of the semester involved a more
complicated system than did the first (two-dimensional
harmonic oscillation vs one-dimensional constant-velocity
motion, respectively). The last lab also required students to
perform an analysis of mechanical energy, which the first
lab did not. Since the physics content and methodological
requirements of the last lab were more difficult than those
of the first, we view the stability of expert grades as
evidence that students were overall able to stay on par with
increasing instructor expectations.

The decline in mean peer grade indicates that peer
evaluation behavior did change meaningfully over the
course of the semester, and the relative stability of expert
grades suggests that expert evaluations can serve as a useful
baseline against which to compare peer grades.

B. Peer and expert grade differences

Our next level of analysis involves matching peer
grades to expert grades and taking the difference, rather
than just comparing the means of the overall distributions
of grades. We examine two distinct data sets; an N ¼ 566
set of paired peer-expert grade differences for 204
randomly sampled videos graded by 3 peers each
[Fig. 2(a)], and an N ¼ 2652 set of paired peer-expert
grade differences for 20 training-phase videos graded by
all peers [Fig. 2(b)]. In Fig. 2, high peer-expert agreement
would be indicated by narrow distributions centered on
zero. Overall, the distributions of grade differences in both
data sets shifted significantly toward zero over the course
of the semester, but they did not significantly narrow.
We therefore conclude that peer grading became more

(a)

(b)

FIG. 2. Distributions of differences between peer and expert
grades show that peer grades become more accurate, but not more
precise relative to expert grades. Two distinct grading schemes
are considered: (a) In grading scheme one, many peer videos are
each graded by few peers. (b) In grading scheme two, 20 training-
phase videos are each graded by all peers. The mean grade
differences shift significantly toward zero over the course of the
semester, indicating peer grades increase in accuracy. The widths
of the distributions do not change significantly, indicating peer
grades do not become more precise. See Table I for N values and
full tabulation of results.
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accurate over the course of the semester, but not more
precise. See Table I for full tabulation of results.
We hypothesize that these results may indicate peers’

experiences during the semester taught them that experts
tended to give lower grades than peers did (accounting for
the shift toward zero in Fig. 2 and the lowering of the mean
peer grade in Fig. 1), but did not help them develop any
further expertlike rating behavior (accounting for the lack
of narrowing in Fig. 2).
To inform this hypothesis, we examined matched peer-

expert grades at a yet lower level by breaking them into
their constituent poor to excellent ratings.

C. Peer and expert ratings

We compare the distributions of ratings underlying the
grades given by peers and by experts at the beginning and
end of the semester (Fig. 3).

1. Ratings overall

We find that the overall distribution of expert ratings is
relatively stable across the semester. This means that expert

ratings can, like expert grades, serve as a useful basis of
comparison when describing student ratings. Experts give
“fair” ratings most frequently, and give comparatively few
“excellent”’ ratings, in contrast to peers who begin the
semester giving more “good” and excellent ratings than
any other rating.
By the end of the semester, the distribution of peer

ratings had shifted substantially. The fraction of peer
excellent ratings greatly diminished, and the fraction of
peer good ratings greatly increased. No such trend was
present among poor and fair ratings at the lower end of
the rating scale; those rating fractions exhibited insignifi-
cant or relatively small changes, respectively. The “very
good” rating fraction also did not change significantly.

2. Ratings for physics-content rubric items

At our final level of quantitative analysis, we compared
the same sets of peer and expert ratings as above, but broken
down by rubric item (Fig. 4). The five items on the rubric
comprised three physics-content and two nonphysics-
content items, encompassing the whole range of instructor
expectations for lab video production. Items 2, 3, and 4, the
physics-content items, asked the reviewer to assess, respec-
tively, the author’s explanation of the physical model
relevant to that lab, their discussion of their computationally
simulated predictions versus their observations, and their
overall grasp of basic physics concepts. For the full text of
the rubric, see the Appendix.
Among the physics-content items, the peer ratings

changed more than the expert ratings over the course of
the semester, in line with our other findings regarding the
relative stability of expert grades and ratings. In all three
cases, the value of the two-sample KS test statistic (a proxy
for effect size) for pre-to-postcomparisons of student
ratings are larger than for pre-to-postcomparisons of expert
ratings.
As measured by the KS test statistic, the peer and expert

distributions became more similar to each other over the
course of the semester in items 2 (physics models,
Dpre ¼ 0.47, Dpost ¼ 0.29) and 4 (general physics con-
cepts, Dpre ¼ 0.43, Dpost ¼ 0.38), but not item 3 (predic-
tion discussion, Dpre ¼ 0.46, Dpost ¼ 0.48).
In all cases, the most common expert rating for physics-

content items was fair, and the proportion of peer excellent
ratings fell over the course of the semester. In all pre cases,
the most common student rating for physics-content items
was very good or excellent, while in all post cases the most
common student rating was good.

3. Ratings for nonphysics-content rubric items

Items 1 and 5, the nonphysics-content items, asked about
the organizational and structural quality of the presentation,
and the audio and visual quality of the video per se,
respectively. For the full text of the rubric, see the Appendix.

(a) Expert

(b) Peer

FIG. 3. Expert rating distributions (a) do not change signifi-
cantly from pre to post, while peer rating distributions (b) change
dramatically. Five ratings on a five-point poor to excellent scale
determine the numerical value of each peer or expert grade.
Excellent changes from being among the most frequent peer
ratings to among the least frequent, and good ratings become
substantially more frequent. Figure shows 2820 peer ratings of a
sample of 204 physics lab report videos selected from the first
and last labs of the semester, along with expert ratings for each of
those videos. Error bars show 95% confidence intervals.
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The expert ratings distributions for both nonphysics-
content items buck the trends of the physics-content items.
Item 1 (organization and structure) shows a relatively large
pre-to-post change in expert ratings distributions compared
to the peer ratings (Dexpert ¼ 0.27, Dpeer ¼ 0.20), and the
most common expert rating for this item changes from fair’
to good’, unlike any of the physics-content items.
Item 5 (production quality) shows a stable expert ratings

distribution with a substantial peak at good, unlike any
other rubric item. Among both nonphysics-content items,
as measured by the KS test statistic, student ratings
distributions became closer to expert ratings distributions
than for physics-content items.

D. Interviews

After we analyzed our Spring 2014 student ratings, we
interviewed five students who took our course online in
Summer 2016. We aimed to explore the attitudes expressed
by students about the peer assessment process, the labo-
ratory exercises, and instructor expectations, and to explore
how those attitudes changed over time.
We found two recurring, related themes among the

student interviews. The first was the idea that experts
had critical or harsh attitudes toward grading, while
students’ own attitudes were “nice,” especially toward
the beginning of the semester. The second was that low
or bad ratings required a higher level of confidence and
authority on the part of the rater than did higher ratings, and

that the instructors’ greater experience and physics content
knowledge endowed them with more confidence and
authority than students.
One student described her change in rating behavior over

the semester in terms of a reevaluation of her own inclination
toward niceness, while mentioning her uncertainty about
being critical (all quotes edited to remove dysfluencies):

Interviewer: You’re describing the experts having a
different set of knowledge about physics: more knowl-
edge about physics, a better ability to attend to physics
details. But overall, if you had to describe it generally,
what do you think is the difference between how the
experts and how you evaluate these videos?
Student 1: I think now, I would say I’m a lot more
accurate, I guess, in terms of like comparing [my ratings
with] the experts. I think the first time I did [an
assessment], I think I was like being very nice, and I
gave a lot of excellents. And then I realized, like, “Oh,
that was like not what it was at all!” So I think over time
I’ve realized to be more critical toward the video, I
guess. Cuz at first I was like “Oh, yeah, that was good,
that was good!” And then like… as I’ve gone on, I’ve
like gotten more used to being very critical towards like
certain things that people say… I guess, like, if people
say something wrong, it’s not—I think in the beginning,
I was like, “Oh, well, maybe they just like said the wrong
thing.” But like… they said the wrong thing, so I should
mark them down.

FIG. 4. Peer ratings for physics-content rubric items (2, 3, and 4) show a greater pre-to-post decline than peer ratings for nonphysics-
content rubric items (1 and 5). Consistent among all rubric items was a large decline in peer excellent ratings. Expert ratings were
relatively stable across rubric items, with the exception of item 1 (organization and structure). Figure shows 2820 peer ratings of a
sample of 204 physics lab report videos selected from the first and last labs of the semester, along with expert ratings for each of those
videos, sorted by the rubric item to which each rating was assigned. Error bars show 95% confidence intervals. See Table II for a
tabulation of comparisons.
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Interviewer: So at the beginning you said you thought—
at the beginning of the semester you, uh, felt like you
were being nice to your fellow students. Why did you feel
like being nice to your fellow students?
Student 1: Well, I also think I was like… not sure how
harsh to be. [laughs] I guess!

Interviewed students often attributed the differences
between peer and expert attitudes to the greater physics
knowledge possessed by the experts. With respect to the
first theme—the relative harshness of expert ratings—
interviewed students described the experts as being able
to attend to and identify smaller and subtler “physics
errors” than students, since the experts knew more about
physics. Students described themselves as not possessing
the knowledge necessary to notice these errors, and so they
gave higher ratings to their peers’ videos than they would
have if they had been able to notice the errors. Follow-up
questions revealed the students’ usage of physics error to
mean something like a misconception, i.e., a flawed or
undeveloped characterization of a physics concept, rather
than a mathematical or notational error per se.
One student made a particularly clear expression of her

own inexperience relative to the instructors, in the context
of describing the difference between her ratings and the
instructors’ ratings:

Student 2: I guess… the difference between [our ways of]
grading comes down to like, I’ma student, I don’t know as
much as a professor does. And a professor has encoun-
tered a lot more, like, training, and a lot more experience
to actually grade someone else’s work. So, they’re a bit
more meticulous. And I mean, a professor is teaching a
subject so that another person learns the subject. I—I’m
learning it, so I’m not as meticulous as someone else,
because I’m also trying to grasp the concepts.

Finally, some interviewed students explained their own
nice attitudes by describing a feeling of identification with
their peers—as one student put it, the author of any given
peer video “was in the same position [she] was,” and they
were “all trying to get a good grade in this class.” Other
students expressed camaraderie in different ways, such as
“we’re all at the same level,” or by framing the idea in terms
of mutual respect for effort; one student said it was
important to take grading seriously “because they took
time just like I took time to make my video.”

VI. DISCUSSION

A. Generalizability of interview results

The students we interviewed in 2016 took the course in a
different context than did our 2014 students, even though the
curriculum and peer assessment system were unchanged.
The sole 2016 section comprised 21 students and was
conducted entirely online,while the 2014 sections comprised
338 students and had online and on-campus components.

Nevertheless, the peer rating distributions of the 10 pre and
post videos rated in common by all online and on-campus
peers show a very high degree of similarity (see Fig. 5), and
appear to recapitulate the trends we found in the on-campus
peer ratings (compare Fig. 5 to Fig. 3). We therefore believe
that the experiences of both cohorts with respect to peer
evaluation are comparable, and that the interviews of the
online students can yield broadly applicable insights into the
peer evaluation process among both cohorts.

B. Our Peer assessment system compared to others

To situate the results of our study in the existing
literature, we compared our results to the findings of
Falchikov and Goldfinch’s [7] meta-analysis of 48 peer
evaluation studies. This meta-analysis reported a range of
0.75–1.25 for effect sizes comparing peer grades with
expert grades for a matched set of exercises, with a
weighted mean effect size of 0.02. The authors of this
meta-analysis cite the close-to-zero mean d as evidence that
peer grades agree well with expert grades, on average.

(a)

(b)

FIG. 5. Peer rating distributions in two different classroom
contexts—on campus and online—show the same pre (a) and
post (b) trends. The on-campus offering was conducted in 2014,
and comprised 338 enrolled Georgia Tech students. The online
offering was conducted in 2016, and comprised 21 enrolled
Georgia Tech students. Peer ratings of 10 videos evaluated by
students in both course offerings are shown. The similarity of the
distributions indicates good overall repeatability, and suggests
that the students in both classroom contexts are generally
comparable with respect to their peer evaluation behavior. Error
bars show 95% confidence intervals.
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Our own student and instructor effect sizes at the
beginning (pre) and end (post) of the semester were dpre ¼
1.33 and dpost ¼ 0.83, respectively [38]. These effect sizes
provide additional support for our conclusion that peer and
expert agreement increased over time, but they also place
our study at the very high end of the effect size range found
by the meta-analysis. High positive values of effect size
mean that our peers gave significantly higher grades than
did the experts, and though this effect diminished with
time, it was still large at the end of the semester.
In their meta-analysis, Falchikov and Goldfinch also

compared correlations between peer grades and expert
grades, finding a mean Pearson’s correlation coefficient
of r ¼ 0.69 with a range of r ¼ 0.14–0.99, concluding that
the relatively high mean r further supported the conclusion
that peer and expert grades agreed reasonably well [7].
Here, high correlation indicates high agreement between
peers and experts. Our own data shows a peer and expert
correlation rpre ¼ 0.51 and an rpost ¼ 0.25, which would
appear to indicate a declining peer and expert agreement
over time, in contradiction to our other findings. However,
we believe this interpretation is inapplicable to our data.
Our peers’ pre grades were at the very top of the grade scale
and thus constrained by the grade ceiling at 100 points; this
ceiling effect forced a narrowing of the peer grade spread at
higher values of expert grade, thereby leading to an
artificially high correlation coefficient. The post grades
were on average lower than the pre grades, and thus not
subject to a ceiling effect. We therefore disregard our
measured decline in r and again simply interpret our
relatively low correlations as indicative of low peer and
expert agreement compared to other peer assessment
studies.
This comparatively low agreement deserves examination.

Our own peer assessment system featured two prominent
factors identified by the authors of the meta-analysis as
contributing to low peer and expert agreement. First, the
authors conclude that peer assessment studies which have
students assess “academic products andprocesses”of the sort
they “have experienced for much of their formal education”
tend to have higher agreement than studies where students
assess “professional practice which requires them to learn a
new set of skills” [7]. The lab report videos our own students
produced were novel products, intended to include some
practical elements of professional scientific communication.
Students had to learn video production techniques and new
communication skills and were unlikely to have previously
conducted a formal critique of suchwork in the classroom, so
it seems fair to characterize our own peer assessment study as
an assessment of “professional practice” as defined by
Falchikov and Goldfinch.
Second, Falchikov and Goldfinch conclude that studies

where students feel more “ownership” of the assessment
criteria (e.g., where students are directly involved in
developing the grading rubric) tend to exhibit higher

agreement [7]. Our own rubric development process did
not involve the direct input of students.
Given the presence of both of these features, it is perhaps

not surprising that our own study produced peer and expert
agreement on the low end of the scale compared to other
peer assessment systems. However, our research goals
reach beyond establishing whether our peer assessment
system is capable of producing valid grades; we aim to
examine the changes in student behavior effected by our
peer assessment system.

C. Assessing physics content vs nonphysics content

We take the relative stability of expert ratings overall as
evidence that, in general, students were able to keep track
with instructor expectations for lab report videos. However,
not all rubric items showed the same trends in expert
ratings; item 1 (a nonphysics-content item assessing
organization and rhetorical structure) showed the largest
statistical pre-to-post change in expert ratings distributions,
and was also the only rubric item to see a change in the
modal expert rating (fair to good). Taking expert ratings as
“ground truth,” then, this suggests that students were able to
improve the organization and rhetorical structure of their
lab report videos more than they were able to improve their
command of physics concepts or the production quality of
their videos, relative to instructor expectations.
This is a positive result: we developed these laboratory

activities and our peer review system with the goal of giving
our students authentic experiences with physics communi-
cation and critique, and finding an improvement in the
structural and rhetorical quality of the videos suggests that
these activities are indeed helping students to develop some
more expertlike physics communication skills.
Expert ratings of the physics-content items, on the other

hand, suggest that students did not exceed instructor
expectations for physics content, but rather kept pace with
them or fell slightly behind (as was the case with item 3—
prediction—though whether this is a general result about
prediction or if it is attributable to the specifics of the Lab 1
and Lab 4 prediction tasks is difficult to say).
Finally, all our analyses consistently indicate that student

ratings move closer to expert ratings over the course of the
semester, even within individual rubric items (though some
items show more improvement than others—see Table II).
These quantitative results, taken together, indicate that

the introduction of video lab reports and peer assessment
improved students’ physics communication and critique
skills while complementing (or at least not significantly
interfering with) their conceptual physics development.
In this respect, these physics lab exercises would appear to
have fulfilled our instructional goals. Over the course of the
semester, we found students were consistently able to

• create lab report videos which kept pace with
experts’ expectations for physics content,
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• create lab report videos which improved substan-
tially in organization and rhetorical structure, and

• improve their ability to assign expertlike ratings to
their peers’ lab report videos, as evidenced by
improved agreement with expert ratings.

This improvement in student ratings does not, however,
necessarily imply the development of more expertlike
attitudes and practices among students. Students may have
achieved greater agreement with expert ratings through,
e.g., the adoption of simple heuristics like deliberately
giving fewer excellents, or by attending to surface features
of peers’ explanations that are correlated with, but not
actually demonstrative of, expertlike physics understand-
ing. To understand the attitudinal and cognitive changes
undergone by students in peer assessment, then, we must
develop a qualitative model for student engagement with
peer assessment.

D. A model for student engagement with
peer assessment

We believe that a model helpful for understanding
students’ evolving engagement with peer assessment
should address metacognition and participation in a com-
munity of practice.
All physics work involves metacognition to some degree,

but the sort of tasks involved in peer assessment confront
students with especially stark decisions about how confident
they are in their own knowledge. If any part of a student-
produced work seems confusing or flawed to a student
assessor, the assessor must decide whether the work is faulty
or if their own understanding is faulty—a metacognitive
question.When a student encounters confusing passages in a
textbook or exam question, on the other hand, the general

presumption of novice students is that the passage is correct
and their own understanding is at fault. Furthermore, the
stakes of metacognition in peer assessment are especially
high compared to other metacognitive tasks. Consider the
case of a student assessing another student’s explanation of
Newton’s second law—not only must the assessor decide
how good the explanation is, she may also have to decide
whether she is confident enough in her assessment to assign a
bad grade to her fellow classmate.
Likewise, all physics work is conducted in a community

of practice, but students’ understanding of their role in that
community (and the norms and practices of that commu-
nity) are especially pertinent to peer assessment. The role of
an anonymous peer reviewer is unlike any other role we ask
students to perform in our introductory physics courses,
and so student adaptation to that role is of particular interest
to us as researchers. We also provide extensive training
videos and grade incentives to guide students to internalize
instructorlike sets of norms regarding physics content and
the different ratings on the rating scale. The expectations
and practices associated with normative judgment of peers’
performance are unique to peer assessment, and deserve
special attention in our theoretical model.
We reviewed our findings with these two frameworks in

mind, and found three major themes relevant to community
practice and metacognition:

• Student interviews revealed an inclination to give
high ratings and a strong disinclination to give low
ratings.

• Quantitative analysis revealed a decline in high
ratings but no corresponding rise in low ratings.

• Student interviews suggested a relationship between
self-assessed proficiency in physics content and the
justifiability of giving low ratings.

With these themes, we can outline a model of students’
evolving engagement with peer assessment of physics
communication in terms of two competing influences: an
attitude toward the rating scale that includes an initial
inclination to rate peers highly, and an enduring reluctance
to assign low grades born of uncertainty and a self-assessed
lack of physics knowledge, and a rising recognition that
experts expect students to have high standards when
assigning ratings. This latter influence stands in tension with
the former, and studentsworking to resolve this tension could
plausibly yield the changes in ratings we observe.
For example, among the peer ratings, excellent declined in

frequency, good increased, and the other three ratings did not
significantly change from the first lab to the last. In our
proposed model, students begin their first act of peer
assessment with the expectation that high ratings are readily
achievable by their peers and may be given freely, while low
ratings require extra care and confidence and should not be
given lightly. This inclination toward leniencymay be related
to the sense of sympathetic camaraderie students bear toward
each other, as mentioned in our interviews.

TABLE II. Results of comparisons between peer and expert
ratings of two groups of physics lab report videos (204 videos, 3
peers per video, 5 ratings per peer per video). Items 2, 3, and 4
assess physics content; items 1 and 5 do not. Distributions are
compared with a KS 2-sample test, with results reported by the
KS test statistic D [34]. Dpeer compares the pre peer ratings with
the post peer ratings, and likewise Dexpert. Dpre compares the pre
peer ratings with the pre expert ratings, and likewise Dpost.
D ∈ R, 0 ≤ D ≤ 1.D (which does not measure central tendency)
is not equivalent to Cohen’s d, but D does provide a consistent
way to compare whether one pair of distributions is “more
different” or “more similar” than another pair: D ¼ 1 when two
distributions do not overlap at all (maximum difference), D ¼ 0
for identical distributions (maximum similarity), D varies con-
tinuously in between.

Item 1 Item 2 Item 3 Item 4 Item 5

Dpeer 0.20 0.25 0.25 0.17 0.19
Dexpert 0.27 0.09 0.19 0.04 0.06
Dpre 0.53 0.47 0.46 0.43 0.37
Dpost 0.15 0.29 0.48 0.38 0.23
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Over the course of the semester, as students learn more
about instructor expectations regarding lab reports and gain
more experience in their roles as peer assessors, students
begin to consider ratings at the high end of the scale loftier
and less achievable than they once did. As they gain
familiarity with the rubric and with instructor expectations
for the lab reports, they also learn to attend to their peers’
videos with a more critical, scrutinizing attitude. We would
expect these factors to lead to proportionately fewer high
ratings as the semester goes on.
On the other end of the rating scale, we propose that

students persist in the justifiable belief that low ratings
deserve special care, that low ratings should only be assigned
when they are confident that the work deserves a low rating,
and that confidence in rating is born of expertisewith physics
content. Students we interviewed consistently reported an
awareness that they were learning physics at an introductory
level, and that their physics content knowledge was much
less than that of an instructor—it is unlikely that a student
would begin to consider themselves an expert after only a
semester of introductory-level instruction, so we would
predict that the proportion of low ratings would not change
very much over the course of the semester.
Our particular data cannot definitively confirm any one

model of student behavior in peer assessment, and the
predictive value of our model needs to be demonstrated

through future work. We might expect, for example, to find
very different initial distributions of ratings among students
in a less cooperative classroom culture (e.g., a strictly curved
class where students compete for a fixed number of A’s, or at
an institution where much more emphasis is placed on class
rank). We may also expect to find a different evolution at the
low end of the rating scale among peers in upper-level
physics courses. Our model, such as it is, serves mainly as a
useful and suggestive interpretive tool to inform further
research. Specifically, we aim to investigate the connection
between peer assessment and other classroom behaviors
(such as video-watching behavior and the way students
present physics concepts in their videos) to inform a more
general model of student behavior in peer assessment.
Further study with a standardized conceptual instrument
(such as the Force and Motion Conceptual Evaluation [40])
should also help shed light on the effects of these lab
exercises and peer assessment on physics concept develop-
ment in particular.
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APPENDIX: RUBRIC

The full rubric used in this study for peer assessments, as it appeared to students.
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