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ABSTRACT

Extracting information from disparate clinical data sources in electronic health records

is crucial to building intelligent systems that can reason with clinical variables and support

decision making. This dissertation describes a novel framework for representing and rea-

soning with medical events and temporal information, in unstructured clinical narratives,

by using linguistic insights from clinical text in training machine learning models for time-

line extraction. Importantly, we leverage both temporal and semantic representations of

medical events in learning structured relationships within and across clinical data sources

and creating a longitudinal timeline of events over the patient’s history.

To this end, the main problems addressed in this work are medical event coreference

resolution and temporal relation learning, both in intra- and cross-document settings, and

information fusion across structured and unstructured data. While prior work in clinical

informatics has addressed some of these problems in a limited capacity, other problems

like cross-narrative temporal ordering and information fusion are being addressed for the

first time in this dissertation.

The generated timeline has important implications in various clinical applications with

temporal constraints such as patient recruitment for clinical trials, medical document sum-

marization, adverse drug reaction mining, question answering and clinical decision making.

We explore the utility of the timeline in resolving temporal eligibility criteria for clinical

trial recruitment.
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CHAPTER 1: INTRODUCTION

Temporal reasoning is a very basic yet vital ability of humans, no matter what language

we speak. As noted by Mani [2005], early humans somehow developed a way of reasoning

in terms of events and their positions in the stream of time. However, there is considerable

cross-linguistic and cross-domain variation in encoding temporal information in natural

language. Languages like English use the interplay of tense and aspect to encode temporal

information. However, the importance of these features may vary across various domains

and tasks. One such natural language domain with distinct sub-language and temporal

characteristics is medicine. In this dissertation, we study clinical data in electronic health

records and propose methods for extracting a timeline of medical events over the patient’s

history.

1.1 Electronic Health Records

Whenever a patient visits a health care delivery setting such as a clinic or a hospital, one

or more unstructured electronic notes describing his present medical condition, diagnoses

and treatments, along with his past medical history gets generated. These notes, usually

written by a nurse or a physician, include discharge summaries, radiology and pathology

reports, history and physical reports, and are collectively termed as clinical narratives. Un-

structured clinical narratives, along with structured patient data, forms part of the electronic

health record (EHR) of the patient. The adoption of EHRs in hospitals in the United States
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is over 80% as of 2013.1 A patient could have a large number of different types of clinical

narratives in the EHR.

Unstructured clinical narratives in the EHR describe various medical events related to

the patient’s condition and health care and also contain some information on when these

events occurred, as seen in the sanitized “history and physical” report is shown in Figure

1.1. The narrative begins with a semi-structured portion which includes details like the pa-

tient and physicians names, the note creation or admission date, the medical record number

(MR# in the figure) and the patient’s date of birth (DOB). This is followed by an unstruc-

tured portion that captures the patient’s condition and the health care being provided to the

patient. The text in this unstructured portion has mentions of various symptoms, diseases,

tests, medications and other medical events concerning the patients healthcare. Some ex-

amples of these medical events (underlined phrases in Figure 1.1) include “cocaine use,”

“hypertension,” “chest pain,” “blood pressure,” “cocaine abuse.” Clinical text is also very

temporal in nature with frequent mentions of temporal expressions indicating when a med-

ical event occurred relative to other events in the patient’s history. However, the text is

often temporally incoherent. The narrative goes back and forth in time describing events

that happened at different points of time in the past, in the context of current events. For

instance, the “history of present illness” section mentions the lack of “chest pain” now, an

“episode” that happened 2 days ago, followed by “chest pain” that happened yesterday.

Some temporal expressions co-occuring with medical events (highlighted in italics in Fig-

ure 1.1) include 2 days ago, now, yesterday, 2 to 3 weeks ago, currently. The nature of

this temporal information is varied and complicated; temporal expressions are often sparse

1http://www.healthit.gov
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HISTORY   PHYSICAL                                                        DATE:  06/03/2009 

NAME:  Smith Bob     MR#:  XXX-XX-XXXX 

ATTENDING PHYSICIAN:  Bill Payne MD                DOB:  02/28/1960 

 

CHIEF COMPLAINT 

Chest pain and arm infection. 

HISTORY OF PRESENT ILLNESS 

Patient is a 48-year-old male with history of cocaine use hypertension who presented with chest pain  

which started 2 days ago . He does not have  chest pain now but ever since the episode 2 days ago he  

has felt a little weaker.  He did have chest pain yesterday and this is what prompted him to come  

to the  ER.  He also  notices that he has had some infections under his arms.  He states that he had to  

have an  abscess I and D 3 or 4 months ago under his arm and 2 to 3 weeks ago he noticed some more  

spots and  these spots have now grown and now are under both arms. Currently he is chest pain free.  

 

REVIEW OF SYSTEMS 

On exam initial blood pressure was 189/106 current blood pressure 148/83 with heart rate of 74  

respirations  16.  Heart regular rhythm.  No murmurs.   Arms:  He does have tender areas right  

greater than left under the arm. Difficult to tell if there is any erythema but  obvious cellulitis sludge  

abscess under the right arm which is tender. 

 

ASSESSMENT/PLAN 

Currently he is chest pain free.  We will check a 2-D echocardiogram.  Consult Cardiology for a stress test.   

Axillary abscesses.  Consult Surgery for I and D.  We will place on IV vancomycin pain control. 

Cocaine abuse.  Encouraged to quit. 

Figure 1.1: Sanitized history and physical report. Underlined phrases are medical events
and italicized phrases are temporal expressions.

and vague [Zhou and Hripcsak, 2007]. Moreover, clinical text also exhibits a distinct sub-

language abundant with domain-specific terminology, abbreviations and ambiguous terms.

For example, abscess I and D, consult surgery for I and D. Besides unstructured clinical

narratives, the EHR also contains structured and semi-structured data sources like lab re-

ports, problem lists, discharge lists, and encounter lists, medication lists and patient demo-

graphics. There tends to be a lot of redendant information embedded across these disparate

data sources at different levels of semantic and temporal granularity.
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All of these factors, combined with the increasing size of historical patient data in

EHRs, makes it difficult for clinicians to reliably search, identify and review specific infor-

mation related to the patient. This presents opportunities for natural language processing

(NLP) to enable unstructured clinical data-analysis and information extraction.

1.2 Clinical Motivation

Clinicians typically formulate hypotheses based initially on the patient’s chief com-

plaint and the biomedical context and then modify those conjectures as more information

emerges. They evaluate the likelihood, severity, and urgency for treatment of the diseases

being considered. Much of this information depends on, among many other factors, when

certain medical events took place in the patient’s history, their temporal relationship with

other medical events, and their recurrence pattern.

Clinical reasoning at its core involves modeling medical knowledge about the patient

and making probabilistic inferences. Thus, machine learning provides the appropriate

framework to model noisy and uncertain clinical information for temporal reasoning, al-

lowing us to generate a probable timeline of medical events over the patient’s history. Clin-

icians often rely on subjective probabilities or beliefs, also known as heuristics. Heuristics

improve cognitive efficiency as clinicians wade through piles of findings. Designing fea-

tures based on clinical domain specific heuristics helps in training effective in machine

learning models for information extraction and temporal reasoning from unstructured clin-

ical narratives. This is important as the clinical sub-language has distinct domain-specific

characteristics that may require novel NLP methods for information extraction. Some chal-

lenges include dealing with information redundancy within and across unstructured narra-

tives, as well as understanding implicit, explicit and relative temporal cues about when
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certain events occurred in the patient’s history. Consolidating all of the medical event and

temporal information found in clinical narratives, and also attempting to merge this with

structured data in the EHR, helps generate a complete and concise picture of the events that

occurred in a patients medical history.

Taking all of this into account, we extract semantic and temporal representations of

medical events in clinical narratives to help address problems like coreference resolution

and temporal reasoning to enable medical event timeline generation. Such a timeline

could be used to influence physician behavior and improve the quality of health care in

general through applications like patient recruitment for clinical trials, information retrieval

from bio-repositories, medical document summarization, adverse drug reaction mining

among others. We discuss two such applications next.

1.3 Why Extract a Medical Event Timeline from EHRs?

In this section, we describe some applications of extracting and structuring information

from clinical data sources in the EHR.

Patient Accrual for Clinical Trials. Clinical trials are research studies that try to an-

swer scientific questions and to find better ways to prevent, diagnose, or treat a disease.2

Consider a scenario where a clinician needs to answer the following question. “Which

patients have a history of another primary malignancy ≤ 3 years, with the exception of

non-melanoma skin cancer and carcinoma in situ of uterine cervix?” The answer to this

question will help decide if the patient is eligible for a particular clinical trial.

The Ohio State University Wexner Medical Center (OSUWMC) has various clinical

trials in place including trials for Chronic Lymphocytic Leukemia (CLL). CLL is a type of

2http://www.clinicaltrials.gov
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cancer in which the bone marrow makes too many lymphocytes. Around 800 CLL patients

are treated annually at OSUWMC for CLL.3 The selection of patients for a clinical trial is

general done on a prospective basis . When a new trial for CLL is initiated, any incoming

patients suffering from CLL are examined for eligibility. Occasionally, patient selection is

also done retrospectively by examining clinical narratives of CLL patients and determin-

ing if they match multiple eligibility criteria. However, performing this task manually is

extremely challenging as one has to read to multiple of clinical narratives to try and infer

the answer. Moreover, the nature of the medical sub-language and implicit temporal cues

make the task even more complex and tedious. The process of prospective patient selection

is very slow, and also depends on how many patients come to the hospital for treatments or

follow-up once the trial has been initiated [Weng et al., 2010]. There are multiple instances

of delays in commencing the trial because of shortage of eligible patients. There could also

be a section of CLL patients who visit the hospital less frequently, say yearly, and hence

never get considered for these trials prospectively [Raghavan and Lai, 2010].

While there have been significant efforts to move to structured data collection, clinical

narratives are pieces of clinical documentation used for capturing nuances of a patient’s

progress that are difficult to capture in a structured manner. Therefore, clinical narratives

remain a critical data source for tasks such as the scenario described above. The ability to

identify patients for clinical trials automatically, or even reduce the search space, would be

of immense value to the clinical research community [Thadani et al., 2009].

Patient cohort selection for clinical trial recruitment needs to examine structured rela-

tionships between diseases and diagnoses in the patient’s history. This may involve per-

forming temporally conjunctive queries where knowledge of the timeline of a patient’s

3http://cll.osu.edu
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medical history is critical to understanding the progression of diseases and the efficacy

of treatments [Jung et al., 2011]. In addition, studies show that temporal constraints are

present in 38% of clinical trial eligibility criteria and such constraints can be coarse (intake

of ATT during the past 5 years) or fine-grained (antacids for 4 hours before and 4 hours

after itraconazole) [Luo et al., 2011]. Finally, a longitudinal timeline of medical events can

often be important to clinical decision making and the practice of evidence based medicine.

Physicians often evaluate the likelihood, severity, and urgency for treatment of diseases

based on when certain medical events took place in the patient’s history, their relationship

with other medical events, and their recurrence pattern, among other factors.

Retrieval of Specimens from a Biospecimen Repository. Biospecimen reposito-

ries provide long term storage of tissues that can be used for future research. Given that

biospoecimen repositories to date are frequently not characterized apart from some very

superficial information about the patient from whom the sample was retrieved from, the

retrieval of specimens with a particular phenotype is challenging. Also, the labels on the

specimen tend to have limited information which makes enabling an automatic search dif-

ficult. Thus, augmenting these specimen labels with patient characteristics extracted from

the EHR facilitates more specific tissue retrieval from the repository.

Moreover, any clinical application that requires generating a chronological summary of

the patient’s medical conditions to help clinical decision making would benefit from such

a timeline. The timeline can also be mined for temporal patterns that may benefit adverse

drug reaction mining. Thus, to enable temporal constraint resolution to help such clini-

cal applications, and keeping in mind the characteristics of clinical narratives, we address

a number of problems that help achieve the goal of timeline generation from a patient’s
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EHR. We briefly describe these problems and the contributions made in addressing these

problems in the following sections.

1.4 Dissertation Outline

The natural language processing problems addressed in the generation of such a time-

line are captured in Figure 1.2. The contributions made in addressing each of these prob-

lems are discussed in Section 1.5. The organization of the rest of the dissertation is de-

scribed next.

In Chapter 2, we review the background and preliminaries relevant to the topics covered

in this dissertation. In doing so, we trace the development of the notion of “events” and

“time” in linguistics and philosophy and describe medical events in the context of these

notions. We examine prior work in the representation of events, and relationships between

events, while noting their relevance to our work.

In Chapter 3, we describe the clinical dataset used throughout the dissertation for var-

ious experiments, including the types of clinical narratives and their characteristics, and

describe our annotation schema and evaluation metrics.

We then investigate the problem of temporal relation learning by learning to assign

medical events to coarsely defined time-bins within each narrative in Chapter 4. The time-

bins along with the admission and discharge dates on each note allow us to derive a coarse

partial temporal ordering of events across all narratives of a patient. Moreover, these time-

bins serve as an important feature in both coreference resolution and fine-grained temporal

ordering.

Chapter 5 addresses the problem of medical event coreference resolution. Given mul-

tiple mentions of a medical event within and across clinical narratives of a patient, we
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Figure 1.2: Problems addressed in this dissertation. Solving all of these problems helps
extract medical events and temporal information from unstructured clinical narratives and
generate a timeline over the patient’s history. We also describe efforts towards integrating
medical events from structured data into the generated timeline.

want to resolve these mentions to the same instance of the medical event. Some example

coreference chains include {heart attack, myocardial infarction, myocardial infarction},

{chest pain, episode, chest pain}, {abscess, wound}. Coreference resolution is an impor-

tant step with respect to our final goal of probabilistic timeline generation as over 20% of

the medical events within and 40% of medical events across clinical narratives corefer. We

propose training semi-supervised models for the task of medical event coreference resolu-

tion by determining semantic and temporal relatedness between medical events. Resolving

coreferences not only helps identify unique instances of medical events, but also helps in
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identifying additional temporal expressions associated with each mention that may help

determine when the medical event occurred.

Next, we address the problem of learning a fine grained temporal ordering of medi-

cal events in the same clinical narrative in Chapter 6. In previous work, temporal relation

learning has been explored in limited capacity. These include rule-based methods [Zhou

et al., 2006] used on discharge summaries, and some classification-based approaches in the

CLEF project [Roberts et al., 2008] and the i2b2 tasks [Aramaki et al., 2006]. In this work,

we describe a novel ranking method to learn intra-narrative temporal relations. We lever-

age characteristics of the clinical discourse and narrative structure, including the fact that

every narrative always has a temporal grounding in the form of an admission or discharge

date (for inpatient notes) or encounter date or date of service (for outpatient notes), for

inducing a temporal ordering of events within each narrative. The learned time-bins and

coreference information serve as useful features in this process. We demonstrate that this

model works better for temporal ordering of medical events within a clinical narrative than

the traditionally used pairwise-classification approach by [Mani et al., 2006; Roberts et al.,

2008].

Once this task is complete, we have multiple sequences of medical events correspond-

ing to clinical narratives of a patient. Next, we address the problem of cross-narrative

temporal ordering in Chapter 7. We learn to combine temporally ordered medical event

sequences into a single sequence of temporally ordered medical events across all clinical

narratives of a patient. In general, there is little prior work on the problem of cross doc-

ument temporal relation learning and no prior work in the biomedical domain. Our main

contribution here is modeling the problem as a multiple sequence alignment task using a
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weighted finite state transducer-based framework to efficiently find the most likely tem-

porally ordered sequence of medical events. We align sequences based on cross-narrative

coreference and temporal relation information learned from a corpus of patient narratives.

We show that this method performs better than dynamic programming and integer linear

programming-based solutions to multiple sequence alignment.

Finally, we investigate the problem of information fusion where we extract medical

events along with timestamps from structured notes, such as medication lists and lab tests,

in the EHR, as described in Chapter 8. We then learn to map medical events from the

structured data to corresponding events in the unstructured data. This mapping across data

sources provides additional temporal information for all the learning tasks including intra-

and cross-narrative coreference resolution and temporal ordering, thus helping us generate

a comprehensive longitudinal account of medical events in the patient’s history.

1.5 Dissertation Contributions

The main contributions of our work are described in this section. We break the problem

of timeline generation from clinical text into multiple sub-problems, and develop methods

to address each of them.

• Coreference Resolution (Chapter 5). We approach with the problem of informa-

tion redundancy within and across longitudinal clinical narratives by addressing the

problem of medical event coreference resolution. Although coreference resolution

is a well studied problem in computational linguistics [Ng, 2010; Soon et al., 2001],

there has been very little research on medical event coreference resolution in clini-

cal text. An important barrier to training supervised models for this task is obtain-

ing expert annotations. Zheng et al. [2012] and the i2b2 challenges [Savova et al.,
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2010b] have recently explored the application of supervised learning algorithms to

this problem based on various features in clinical text. However, none of the existing

research has successfully demonstrated the use of semi-supervised methods for this

task. Moreover, in prior work, coreference resolution of medical events has not been

modeled on the basis of temporal and semantic similarity.

In this work, we train semi-supervised models for medical event coreference reso-

lution with limited annotated data. We demonstrate that these models perform al-

most as well as a supervised model on a dataset of clinical narratives. The ability

to perform coreference resolution with limited annotations is of immense value to

the clinical community and can be used to enable not only applications like tempo-

ral reasoning as in our work, but also, search, medical document summarization and

cross-document relation learning.

• Temporal Relation Learning (Chapters 4, 6, 7). Chronologically ordering med-

ical events in unstructured and temporally incoherent clinical text and generating a

comprehensive timeline of medical events across the patient’s history has enormous

utility in clinical applications with temporal constraints. Our main contributions in

addressing the task of timeline generation are in developing novel NLP methods for

temporal ordering in clinical text, at both an intra-narrative and cross-narrative level.

In the case of intra-narrative temporal ordering, we leverage an interval based repre-

sentation of medical events to enable temporal ordering by ranking events in relative
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order of occurrence. We show that the ranking method works better than tradition-

ally used classification-based approaches. Thus, demonstrate the need to rethink re-

sources and methods used for the temporal relation learning task on real-world data

like clinical text.

To the best of our knowledge, this is the first work that addresses the problem of

cross-narrative reasoning between medical events in clinical text. We enable cross-

narrative temporal ordering across all the clinical narratives of a patient with the help

of a novel WFST-based approach for multiple sequence alignment. We empirically

demonstrate that this method outperforms iterative pairwise dynamic programming,

and another state-of-the-art ILP-based method [Do et al., 2012], for the task of mul-

tiple sequence alignment. Moreover, the proposed WFST-based framework may be

useful in modeling multi-alignments across a variety of domains such as spoken dia-

log systems and speech.

• Information Fusion (Chapter 8). Information is captured in both structured and

unstructured formats in the EHR. While most of our work focuses on the NLP of un-

structured data for the problem of temporal reasoning, we also explore how merging

concepts across structured and unstructured data sources can help better address this

problem. Our main contribution here is the development of a temporal model from

timestamped structured data to predict the probability of medical event occurrences.

This probability can be used as an informative feature in training models for temporal

reasoning from unstructured data.
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In summary, we propose a novel framework for timeline generation from a patient’s

EHR, where the framework addresses a number of problems essential to the task of gen-

erating a medical event timeline. In the chapters that follow, we describe methodologies

to address each of these problems and explore the generated timeline’s utility in solving

temporal clinical trial eligibility criteria. However, to better motivate and understand these

problems, we need understand the background and prior work in representing and reason-

ing with events and time, and familiarize ourselves with the dataset and annotations used

for our experiments. In Chapter 2, we explore the evolution of the definition of “events”

in natural language, and the representation of “time,” while noting relevant prior work in

learning to represent and reason with events in general as well as medical events. We then

describe the nature of our dataset including the type of clinical narratives and the annotation

schema and attributes in Chapter 3.
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CHAPTER 2: A BRIEF HISTORY OF TIME AND EVENTS

Events are woven together in time, and hence time is an intrinsic parameter in the in-

terpretation of event occurrences. An appropriate representation of events, their attributes,

and their temporal and semantic relationships is required to enable the automatic learning

of relations between events in discourse. To this end, this chapter brings you a historical

perspective on events in linguistics. This includes event representation and interpretation,

temporal and coreference relations between events, both in the clinical domain and in gen-

eral. We also review the necessary background for understanding the topics in this disserta-

tion and past work related to these topics. We begin with a discussion about event definition

and representation by philosophers and linguists over the years and how this differs from

what we consider as a medical event.

2.1 What are Events?

The question of event representation raises a deeper question about defining an event.

Philosophers and linguists have long debated the meaning of an event and propounded

multiple theories of the definition of an event.

In philosophy, events are objects in time or instantiations of properties in objects. In

the clinical domain, these objects in time may correspond to medical conditions affecting

the patient or treatments given to the patient. The structure of events, including incidents

and states, could consist of a host of participants, props, times and locations [Martin and

Jurafsky, 2000]. However, in clinical text, the main protagonist of an event is usually the
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patient. Further, in defining event representation, we need to ensure all desired inferences

can be directly derived from the representation. We first briefly describe our representa-

tion of medical events, and then proceed to compare it with event representations used by

linguists over the years.

2.1.1 Medical events

We consider medical events as cover terms for mentions that are incidents, activities,

states, or entities associated with the patient’s medical condition and health care. These

include diseases like mitral valve prolapse, myocardial infarction, procedures like surgery

and lab tests like blood test, echocardiogram, as well as normal health situations like preg-

nancy and smoking. Physicians often refer to adverse medical conditions as events, for in-

stance, cardiac events such as myocardial infarction. Medical events can be instantaneous,

for example, “The patient stated that the cough had become bothersome.” They could last a

period of time, for example, “The patient gives a history of fever associated with chills for

the last 1 month.” We also consider as events predicates describing states or circumstances

in which something holds true, for example, “The patient had fever yesterday.” Syntacti-

cally, in many studies using clinical text, medical events are restricted to concepts or noun

phrases, as seen in the i2b2 [Guo et al., 2006] data annotations. However, we consider noun

phrases along with verb phrases (coughing), adjectives (polymicrobial infection) and event

nominals (intubation) as medical events. We also cover certain entities that participate in

events (patient has high blood pressure). In general, any diseases, symptoms, tests, medi-

cations and conditions related to the patient’s health or healthcare is considered a medical

event.
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2.1.2 The Evolution of Event Definition in Linguistics

We now study how events are defined and interpreted in literature and their relevance

to the notion of a medical event used in various medical reasoning systems including the

work described in this dissertation.

The common interpretation of an event in linguistics corresponds to a verbal predi-

cate. meaWe begin with looking at first-order logic (FOL) that uses quantified variables,

a domain of discourse over which the quantified variables range, finitely many predicates

defined on that domain, and a recursive set of axioms that are believed to hold for those

things [Bechhofer et al., 2002].

First-order logic-based representation. FOL is often used for creating semantic rep-

resentations with events, objects, and properties; for example, a predicate suffer with sub-

ject patient and object palpitations suffer(patient, palpitations). The advantages of FOL

representations for medical events is that they have well-defined syntax and clean mathe-

matical semantics.

Rule-based medical reasoning models like MYCIN [Buchanan and Shortliffe, 1984]

have their own logical structure and FOL allows for precise, and compact, representation

of these models. However, logic is not the suitable for problems such as medical decision

making under uncertainty, and in handling unknown data.

Consider the example rule: ∀x symptom(x, fever)→ disease(x, pneumonia). However,

this rule by itself is insufficient as the patient can have several other diseases. We can

augment the rules as follows: ∀x symptom(x, fever)→ disease(x, pneumonia)→ disease(x,

influenza)→ disease(x, ear infection).

However, due to the overwhelming number of facts in medicine, it is not possible to

explicitly represent all those facts as rules. Moreover, first-order representations cannot

17



handle discourse anaphora and coreference which is an important part of our work in time-

line construction.

Another important limitation of FOL is fixed number of arguments or arity. Recogniz-

ing that suffer(patient, palpitations) and suffer(patient, palpitations, admission, hospital)

are the same event becomes difficult. In order to overcome this, Davidson [2001] intro-

duced the idea that sentences are indefinite descriptions of eventualities. Thus, he intro-

duced the notion of an “event argument” along with subject and object for each verb. For

instance, ∃e suffer(e, patient, palpitations, admission, hospital). This event variable gives

us a handle on the event in question, however still leaves issues such as capturing ancillary

facts with additional predications (time). For instance, ∃e suffer(e, patient, palpitations) ∧

time(e, admission) ∧ location(e, hospital).

Neo-Davidsonian representation. Parsons [1990] noted that this can be overcome

by distilling the event representation to a single argument that stands for the event itself

(known as neo-Davidsonian representation) . For instance, ∃e suffer(e) ∧ sufferer(e, pa-

tient) ∧ symptom(e,palptitations) ∧ time(e,admission) ∧ location(e, hospital). This elimi-

nates the need for a fixed number of arguments and allows for as many roles and fillers as

appear in the input. Now, we can add temporal variables and temporal predicates relating

an end point to the current time as indicated by the tense of the verb. However, the relation

between verb tenses and points in time is complicated — a present tense verb may be used

to refer to a past or future event. Thus, Reichenbach and Reichenbach [1956] introduced

the notion of reference time. In representing medical events, we use a similar notion of ref-

erence time, usually corresponding to the admission time or date of creation of the narrative

to which the event belongs.
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Vendler’s classification and Bach’s eventualities. Based on these related notions,

event expressions are traditionally divided into certain classes beginning with Vendler’s in-

fluential classification of verbs (Figure 2.1) based on temporal properties [Vendler, 1967].

Bach coined the term “eventualities” to include all aspectual types, both stative and eventive

[Bach, 1986; Tenny and Pustejovsky, 2000]. Recent work has adopted the use of “event” as

the cover term for Bach’s eventuality [Tenny and Pustejovsky, 2000]. Approaches within

event semantics take eventualities as basic entities in the domain of discourse, along with

individuals and times [Dowty, 1986]. Our medical event representation covers the tradi-

tional eventualities under the constraint that it has to be a medically relevant term. Since

medical events are domain specific concepts that can also be noun phrases, in many in-

stances, they are an argument (object) of the verbal predicate (eventuality). An important

point to note is that event expressions can easily be shifted from one class to another. Con-

sider the following examples. (1) “The patient coughed.” This has no natural endpoint,

and hence may be an activity. (2) “The patient coughed yesterday.” This has a temporal

endpoint and may be an accomplishment. Thus, the classification of an event is not just

governed by the verb but by the semantics of the entire expression in context.

Dowty’s representation and the development of Vendlers representation. Dowty

explicitly rejects approaches that try to reduce the differences between different verb classes

to purely temporal properties, because they do not capture important lexical semantics of

verbs, and hence provide no adequate motivation for the different behavior of the verbal

classes [Tenny and Pustejovsky, 2000]. Classifications of verbal predicates into classes

that build on the work of Vendler and Dowty have been used for the analyses of a number

of grammatical phenomena. Thus, we consider properties of the verbal predicate along

with its arguments, as well as semantic, temporal and discourse context, in representing
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eventualities 

states non-states 

activities 
events 

accomplishments achievements 

no change during the span of 
time over which they are true 

e.g. The patient suffered. 

ongoing event with 
internal change and duration,  

but no necessary temporal endpoint 
e.g. The patient has a cough. 

events with duration and an 
obligatory temporal endpoint.  

e.g. His leg was amputated. 

instantaneous 
culmination or endpoint 
e.g. He was admitted to 

the ER. 

Figure 2.1: Vendler’s four categories of verbal predicates [Vendler, 1967].

medical event structure. However, in order to seek explanations for why events fall into

these classes requires representing the meaning of arguments with semantic roles and se-

lectional restrictions. We do not include this level of deep representation in our medical

event structure.

Following the work of Dowty, Vendlerian classification was further developed within

tense logic and event semantics. Tense locates an eventuality in time (past, present, fu-

ture), whereas aspect distinguishes between events which are ongoing or completed. For

example, “The patient coughed” and “The patient was coughing” are both in past tense, but

are aspectually different. Kamp and Reyle [1993] make a distinction between states and

non-states, as only non-statives can be used as answers to the question “What happened?.”

They argue that states and non-states have different temporal consequences. The patient

20



was ill yesterday (state). The patient had a blood test yesterday (non-state). Further, lexical

meaning can be best captured using different levels of representation including event struc-

ture, argument structure, qualia structure and inheritance structure. Thus, event structure is

one level of semantic specification.

In the context of our work, we want to be able to answer the following types of questions

using the medical event representation: Does the patient have a history of hypertension?

Was an echocardiogram done last week? Did the patient suffer from a heart attack 2 days

ago? These questions refer to the temporal aspects of the properties of medical events in

question. Eventualities give rise to temporal relations, sharing of participants, and corefer-

ential relations.

Coreferential relations among eventualities plays an important role for facilitating ac-

cess to content and extracting relevant information. Along with eventualities, medical

events include domain-specific concepts that are usually noun phrases describing medi-

cal conditions; they also could be verb phrases, adjectives or event nominals. Similar to

neo-Davidsonian approach described earlier, we can think of medical events as first order

individuals, existentially quantified, where participants to the event are conjoined relations

between individuals and the event [Parsons, 1990]. We include additional arguments in the

event structure to capture temporally related discourse relations, as well as cross-narrative

relations. Although the way we interpret the logical medical event representation is similar

to neo-Davidsonian theories of event structure, the syntactic details of the representation

will vary due to our definition of medical events.

On the one hand, in representing medical events, considering the entire verbal predicate

and its arguments may us to include richer grammatical categories such as aspect, telicity,
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semantic roles, transitiveness as part of the event structure. Aspect helps in understand-

ing inter-clausal temporal relations, and facilitates reasoning about temporal progression

in clinical discourse. It also allows us to reason about the persistence of events. Further,

discourse relations like narration, causality, explanation, parallel, are related to the move-

ment of time in discourse. Discourse is coherent if it exhibits these structural relationships

between its various segments [Hobbs, 1977]. This can be enabled with a rich event repre-

sentation relating event and argument structure.

On the other hand, even if we consider verbs co-occurring with medical events, they

are not always accurately reflective of the medical event’s temporal nature. Moreover,

in discharge summaries, almost all medical events or co-occurring verbs are in the past

tense (before the discharge date). This is complicated by the clinical sub-language, and

the fact that the reference time and medical event with respect to which the tense of the

verb is expressed is not always clear. Based on the type of clinical narrative, when it was

generated, the reference date for the tense of the verb could be in the patient’s history,

admission, discharge, or an intermediate date between admission and discharge.

The biggest challenge in considering a rich event representation includes getting anno-

tators with the requisite expertise in linguistics and medicine. This may not be practically

feasible as it will further extend the time taken to annotate longitudinal clinical text, leading

to increased costs.

Ultimately, in order to provide events with the ability to relate to one another, it would

be necessary to enrich them with a structure enabling identification of their temporal char-

acteristics, their context, and their meaning. Such a rich computable structural represen-

tation would be immensely beneficial to solving many problems in the clinical research

community. Based on this motivation, we develop a medical event representation that is
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computable and helps us reason about relationships between medical events in clinical dis-

course. In developing a representation for medical events, we consider two main problems

suggested by Bunt [2007], that are as follows.

1. Ambiguity: Interpreting the meaning of natural language expressions requires a lot

of context information, such as clinical domain knowledge, how the discourse was

generated, and what occurred earlier in the discourse. Thus, handling ambiguity with

the help of well defined attributes from the clinical discourse is important in identify-

ing distinct occurrences of events and in learning relationships between those events

in clinical text. In the absence of such information, natural language expressions

could be very ambiguous.

2. Robustness: Linguistic semantic theories are often developed as components of

grammatical theories and informed by the analysis of carefully constructed, gram-

matically perfect sentences. However the clinical sub-language is distinct with domain-

specific abbreviations and grammatically irregular sentences. Our medical event

structure tries to capture the elements of such sentences, without delving deep into

possibly inconsistent grammatical details of medical events across clinical discourse.

We describe in detail the annotation template for medical event representation and re-

lationships between medical events in Chapter 4. As discussed earlier, events give rise

to temporal relations, sharing of participants, and coreferential relations. In clinical dis-

course, often the primary participant in a medical event is the patient. This is of course

barring the cases where family history or social history of the patient mentions a relative.

We first describe the history of time-based analysis and temporal reasoning in medical sys-

tems and review prior work in temporal relation learning in both the clinical domain and
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in general. We then explore work in coreference resolution; specifically, we examine the

different types of coreferences including coreference between event pairs, and coreference

between entity pairs, and describe their relevance to medical event coreference resolution.

2.2 Time and Time Again: The Representation of Time

Effective reasoning with temporal knowledge in natural language requires an appro-

priate representation of time. Temporal reasoning systems have used either a point-based

representation or an interval-based representation of time. Early problem-solving systems

represented time as a sequence of time slices, where a set of facts hold true in a particular

time-slice [McDermott, 1982]. Before the interval-based representation by Allen [1981],

there were was not much prior work on computer representations of time that would enable

temporal reasoning in natural language. In the 1970s, Kahn and Gorry [1977] describe a

system that maintains temporal relations and provides the rest of the system with the tools

to test, retrieve, add, and delete temporal information. Allen’s representation varies from

that of Kahn and Gorry [1977] as it allows relative temporal relationships to be maintained

in a highly structured fashion. It also includes a notion of the present time (i.e., “now”),

which is maintained in a manner that does not require knowledge of the exact present time

[Allen, 1981].

In general, a point-based representation is desirable if every event is assigned a date.

Unfortunately, in real applications, many events cannot be assigned a precise date. In nat-

ural language, time references are rather relative and vague. In such cases, time intervals

are convenient. References to temporal relations in natural language are often relative, im-

plicit and fuzzy in nature and maybe implicitly introduced by tense and by the description

of how events are related to other events. This is true of temporal references in clinical
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text as well. An example of a sentence that exhibits an implicit temporal relation, “He is

on Dilantin while receiving busulfan.” The temporal connective “while” indicates that the

time when the medical event regarding administration of Dilantin occurred is during the

time when he was being receiving busulfan. The tense indicates that the medications are

being administered at the present time with respect to when the clinical note was written.

As illustrated in Figure 2.2, Allen [1981] models intervals by using endpoints where

he assumes a model consisting of a fully ordered set of points of time. An interval is an

ordered pair of points with the first point less than the second. The relations that can be

defined between the endpoints is shown in Figure 2.2. Such a representation is convenient

in modeling medical events as well as it gives us the flexibility of learning relationships

between these endpoints in a relative manner. This works well as much of the temporal

cues in clinical text are implicit and relative to an anchor date such as admission.

2.3 Temporal Reasoning in Clinical Systems

The ability to reason with time-oriented data is central to the practice of medicine. Mon-

itoring clinical variables over time often provides information that drives medical decision

making, including diagnosis and treatment planning.

Back in the 1970s, time-oriented databanks [Fries, 1972] stored and dealt with explicitly

timestamped clinical variables. Early expert medical systems such as MYCIN [Buchanan

and Shortliffe, 1984] and ONCOCIN [Shortliffe et al., 1981] recognized the need to asso-

ciate time information with clinical data. However, such systems were based on a fixed set

of rules, which were in many cases disease specific, and hence had limited ability to exploit

the temporal nature of clinical data for reasoning. In most cases these systems dealt with
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t1.start t1.stop t2.start t2.stop 

t1.start t1.stop 

t2.start t2.stop 

t1.start t1.stop 
t2.start t2.stop 

t1.start 

t2.start t2.stop 

t1.stop 

t1.start t1.stop 
t2.stop t2.start 

t1.start 
t2.start t2.stop 

t1.stop 

t1 before t2 

t1 overlaps t2 

t1 during t2 

t1 starts with t2 

t1 finishes with t2 

t1 equals t2 

Figure 2.2: Allen’s temporal representation using endpoints. Ordering endpoints of time
allows learning of temporal relationships {before, after, overlaps, equals, during, finishes
with, starts with} [Allen, 1981]

limited categorical clinical variables such as WBC count, bilirubin levels, blood pressure

readings etc.

Further, in the 1970s and 1980s, there were some important studies like the Linguistic

String Project (LSP) at New York University [Grishman et al., 1973]. LSP was one of the

first NLP systems for English and was eventually adapted to medical text. This was devel-

oped as part of the time program that takes the output of the NLP system, recognizes and

analyzes time information, and formalizes the variant time expressions in a representation

which consists of the following fields: relation, reference point, direction, quantity and

time-unit. It also describes a representation for medical events which can be used to form

directed graph. The vertices of such a graph correspond to points in time, and the directed
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edges to the intervals of time between the points. The output of the time program can be

used to answer time-related queries.

Story and Hirschman [1982] identified words and structures that carry time information

in medical data and emphasized that the identification should embrace explicit temporal in-

formation like verb tense, adverbial expressions of time, as well as implicit information like

multiple references to the same event in a text, and narrative time progression. Obermeier

[1986] developed a system called “grammatical representation of objective knowledge”

for analyzing temporal information in medical text. The authors defined “key events” as

domain-specific concepts which is used to order and group events. The 1990s saw a lot of

research in temporal reasoning and temporal data management, but most work focused on

structured medical records stored in databases [Böhlen, 1995; Pedersen and Jensen, 1998;

Shahar, 1999].

More recently, the 21st century has seen considerable research in processing time in

natural language in many domains. Modern statistical approaches and advances in natural

language processing now also enable representations and learning over large-scale patient

data in the biomedical domain. However, privacy concerns do not allow easy creation of

publicly accessible clinical corpora. The difficult nature of the medical sub-language also

makes it difficult to annotate clinical text with temporal information. In spite of these

hurdles, the past decade has seen a lot of research in processing time in clinical text using

rule-based methods as well as statistical machine learning.

Zhou and Hripcsak [2007] survey work done by researchers in medical decision support

systems, where some systems model time implicitly, whereas others do it explicitly. An

example of an implicit temporal statement includes “significant weight loss during last

year.” On the other hand, explicit time modeling has a model of time in which various

27



factors are associated to the model of time and uses the association of entities to the time

model to draw inferences.

Although there has been a push towards capturing clinical information as structured

data, physicians have a tendency to record patient information in the “free text” input boxes

of the EHR. Often, narratives are also transcribed from notes dictated by physicians and

only available in unstructured format. Problems in processing unstructured clinical data

include extracting precise and contextually relevant medical concepts, for e.g. diseases,

symptoms, tests, findings and medications. Automatically encoding the extracted med-

ical concepts using medical terminologies is important for various clinical applications

including billing systems. Further, extraction of temporal and semantic relationships be-

tween medical concepts from the unstructured data is challenging. Various medical data

understanding systems like “The Special Purpose Radiology Understanding System” and

“Symbolic Text Processor” have been used to processes specific clinical datasets such as

radiology reports, but they do not capture explicit temporal information. However, they

do identify a change of state. Possible values for states include {unchanged, improved,

recurrence, worsened}. One limitation of most medical reasoning systems is that they tend

to ignore referential relations between discourse units [Zhou and Hripcsak, 2007]. Re-

cently developed medical NLP systems use a conceptual representation structure to address

anaphoric reference relations spanning sentences [Savova et al., 2010a].

More recently, Zhou et al. [2006] have modeled the temporal information contained in

clinical discharge summaries as a Simple Temporal Problem (STP). Based upon this work,

they further proposed an architecture for representing, extracting and reasoning about tem-

poral information in clinical narrative reports, and incorporate this as part of the MedLEE

NLP system [Chiang et al., 2010].
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In the last few years, a shared task has been defined called the i2b2 challenge.4 Their

challenges include datasets for coreference resolution and temporal relation learning. Re-

searchers have used these datasets to extract a limited set of temporal relations using rule-

based and machine learning methods [Sun et al., 2013].

2.3.1 Learning Temporal Relations using TimeML and Timebank

Until around the year 2003, there were no shared resources or prior work on automati-

cally learning temporal relations from unstructured text. Most of the prior work in this area

focused on temporal data management using temporal databases [Jensen and Snodgrass,

1999]. Since then, there have been efforts to develop a shared corpus of newswire text

annotated with event and time information. An annotation scheme that was developed by

Pustejovsky et al. [2003a], called TimeML, was used to annotate events, times, and their

temporal relations in newswire text and develop the Timebank corpus [Pustejovsky et al.,

2003b]. Tensed verbs, adjectives, or nominals are considered as “events ” by the TimeML

scheme. Event attributes include tense, grammatical aspect, polarity (negative or positive),

modal operators which govern the event being tagged, and cardinality of the event if its

mentioned more than once. Temporal expressions are annotated based on TIMEX scheme,

defined as part of TimeML, and temporal relations tagging events to other events and/or

times are annotated using the TLINK tag. An example simplified annotated sentence from

Timebank is shown below.

• On the other hand, it’s

<EVENT eid=“e1” class=“OCCURRENCE”> turning </EVENT>

out to be another very

4https://www.i2b2.org/NLP
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<EVENT eid=“e369” class=“STATE”> bad </EVENT> financial

<TIMEX3 tid=“t83” type=“DURATION” functionInDoc=“NONE”> week

</TIMEX3>

In the above sentence, the annotation identifies an event turning, with ID e1, and assigns

it a class of type “occurrence” indicating something that happens or occurs in the world.

Similarly, it also identifies bad as an event with ID e369, and week as a temporal expres-

sion with ID t83 and of type “duration.” The temporal expression annotation has certain

attributes like functionInDoc that indicates whether the temporal expression provides a

temporal anchor for other temporal expressions in the document. The event turning is

linked to temporal expression week with the temporal relation “simultaneous” as indicated

in the example TLINK annotation below.

• <TLINK lid=“l52” relType=“SIMULTANEOUS” eventID=“e369”

relatedToTime=“t83”/>

Similarly, events may also be related to other events via a temporal relation. TimeML

uses 14 temporal relations between event-event pairs and event-time pairs, which reduce

to a disjunctive classification of 6 temporal relations {SIMULTANEOUS, IBEFORE, BE-

FORE, BEGINS, ENDS, INCLUDES}. These temporal relations correspond to Allen’s

interval-based representation for temporal relations [Allen, 1981].

The Timebank corpus has evolved as a community resource for temporal relation learn-

ing in the NLP community [Boguraev et al., 2007]. The TempEval framework was created

for evaluating systems that automatically annotate texts with temporal relations using the

TimeML format Verhagen et al. [2009]. The TempEval challenges included creating sys-

tems for temporal expression extraction, identifying temporal relations between a set of
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events and all time expressions appearing in the same sentence, identifying temporal rela-

tions between events and the document creation time and identifying the temporal relations

between contiguous pairs of matrix verbs. HeidelTime [Strötgen and Gertz, 2010], a rule

based system for extraction and normalization of temporal expressions achieved an F-score

of 86%, for extraction in TempEval-2. Systems developed for the TempEval challenge also

include the rule-based system by Kolya et al. [2010], TRIPS and TRIOS [UzZaman and

Allen, 2010], among others [Lee and Katz, 2009]. While the TempEval tasks are mostly

restricted to a set of three temporal relations {before, after, overlaps}, there are various

other researchers who have tried to learn all of Allen’s temporal relations between event

pairs.

Mani et al. [2006] train a Maximum Entropy classifier to classify event pairs into one

of the 6 Allen’s temporal relations. They utilize the hand-tagged features in Timebank in-

cluding tense, aspect, modality, polarity and event class for learning. They also expand

the training dataset by doing a transitive closure on temporal relations in the corpus and

report improved results. Chambers and Jurafsky [2008] report that they were unable to

replicate this performance on Timebank. Instead they propose a two stage architecture that

first learns the hand-tagged attributes of events in Timebank. These attributes include as-

pect, tense, aspectual class, and then use the learned features along with other linguistic

features to classify temporal relations between event pairs. Using this two-stage architec-

ture, they report a 3% improvement over results reported by Mani et al. [2006]. Lapata and

Lascarides [2006] trained a classifier based on syntax and clausal ordering features to learn

inter-sentential events.

However, since the nature of language and events occurring in the new domain is very

different from clinical language used in the EHR, the Timebank corpus cannot be directly

31



used for learning temporal relations between medical events in clinical text. In our work,

we leverage the advances in machine learning for natural language processing to train mod-

els of information extraction from clinical narratives based on clinical domain heuristics.

More specifically, we propose an end-to-end system which will help generate a probabilis-

tic timeline of medical events from within and across unstructured longitudinal clinical

narratives. In this system, we use an event representation (described in Chapter 3) and

enable temporal ordering of medical events within and across clinical narratives. Another

important component in this system is performing medical event coreference resolution.

We explore some relevant prior work in coreference resolution next.

2.4 Coreference Resolution

Coreference is defined as when two or more expressions in a text have the same referent,

i.e., they refer to the same person or thing. Coreference resolution is a well-studied problem

in discourse analysis and is considered a difficult natural language processing task, typically

involving the use of sophisticated knowledge sources and inference procedures [Charniak,

1972].

Different types of coreference occur in natural language including anaphora, noun

phrase or entity coreference and event coreference. Anaphora resolution is the problem

of trying to identify an antecedent for an anaphoric, where an anaphoric is a noun phrase

that depends on the antecedent. On the other hand, noun phrase coreference resolution,

the task of determining which noun phrases in a text refer to the same real-world entity.

The ACE terminology [Doddington et al., 2004] defines an entity as an object or a set of

objects in the world, for instance, person, place, or organization. While anaphora and entity

coreference resolution have been widely studied on standard NLP corpora, there is limited
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prior work on event coreference resolution. In general accordance with event definitions

and interpretations described in Section 2.1, ACE defines an event in natural language as a

specific occurrence involving participants, where the event trigger or mention is the word

that most clearly expresses an event’s occurrence. An event could have attributes such as

type, polarity, modality, genericity, and tense. Events are typically verbs such as tore and

exploded, although event nominals may also be considered as events. Event coreference

resolution addresses the task of grouping all the mentions of events in a document into

equivalence classes so that all the mentions in a given class refer to a unified event [Chen

and Ji, 2010].

2.4.1 Entity coreference resolution

Entity or noun phrase coreference resolution is a well studied problem with many suc-

cessful techniques proposed over the years [Strube and Ponzetto, 2006; Haghighi and Klein,

2010; Raghunathan et al., 2010a]. Clustering, as well as pairwise coreference resolution

models, have been explored by different researchers to match entity pairs using various

syntactic and semantic features. The WordNet5 semantic class feature is widely used for

coreference resolution, although it is known to have limited coverage. Bean and Riloff

[2004] propose a semi-supervised method to extract case frames from large corpora. They

then use case frames to represent the contextual role of NPs, where a case frame is a fre-

quent pattern surrounding an NP. The intuition is that NPs frequently appearing in the same

case frame are likely to be semantically related or equivalent.

Machine learning approaches to noun phrase coreference resolution are described in

detail in the survey paper by Ng [2010]. The problem is usually cast as a classification

task where a pair of noun phrases is classified as coreferring or not based on constraints

5http://wordnet.princeton.edu
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that are learned from an annotated corpus. A separate clustering mechanism identifies pos-

sibly contradictory pairwise classifications and constructs a partition on the set of NPs.

Soon et al. [2001] applied an NP coreference system based on decision tree induction to

two standard coreference resolution data sets [Van Deemter and Kibble, 2000], achieving

performance comparable to the best-performing knowledge-based coreference engines. A

popular off-the-shelf coreference resolution system is the Stanford NLP group’s corefer-

ence resolution system.6 This was the top ranked system at the CoNLL-2011 shared task.

The system is based on work by Raghunathan et al. [2010b] who propose a coreference

architecture called seives, where tiers of coreference models at different levels of precision

are applied one after the other. This clustering-based model propagates global information

by sharing attributes across mentions in the same cluster. This method outperforms many

state-of-the-art unsupervised and supervised coreference resolution methods on standard

corpora.

More recently, Do et al. [2013] have proposed methods for event detection and coref-

erence resolution from newswire text. Durrett and Klein [2013] use hand-crafted, shal-

low, heterogeneous semantic, syntactic and discourse features in training a coreference

model that outperforms both the Stanford coreference resolution system and the IMS sys-

tem [Björkelund et al., 2013] which was the best performing English coreference resolution

system.

2.4.2 Event coreference resolution

Compared to the extensive work on entity coreference, the related problem of event

coreference remains relatively under-explored, with minimal work on how entity and event

6http://nlp.stanford.edu/software/dcoref.shtml
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coreference can be considered jointly on an open domain [Van Deemter and Kibble, 2000;

Bagga and Baldwin, 1998; Humphreys et al., 1997; Haghighi and Klein, 2010].

The problem of determining if two events are identical was originally studied in phi-

losophy. As discussed earlier, Davidson [2001] argued that two events are identical if they

have the same cause and effect. However, he abandoned this model and adopted Quinean

theory on event identity [Malpas, 1992], where each event refers to a physical object that

is well defined in space and time, and two events are identical if they have the same spatio-

temporal location. Based on a similar notion, we consider two medical event as identical

if the events correspond to the same occurrence with the same spatio-temporal location.

However, syntactically the notion of a medical event is quite different from what is consid-

ered an event in linguistics. Noun phrases, verbs, nominals, adverbs could all be medical

events.

2.4.3 Medical event coreference resolution

Previous work in coreference resolution of medical entities performs coreference reso-

lution on hospital discharge summaries by treating coreference resolution as a binary clas-

sification problem [He, 2007]. The author investigates critical features for coreference

resolution for entities that fall into five medical semantic categories that commonly appear

in discharge summaries.

The Unified Medical Language System (UMLS) [Bodenreider, 2004] knowledge sources

include a large Metathesaurus of concepts and terms from many biomedical vocabularies

and classifications; a Semantic Network of sensible relationships among the broad seman-

tic types or categories to which all Metathesaurus concepts are assigned; and a lexicon

which contains syntactic, morphological, and orthographic information for biomedical and
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common words in the English language. The lexicon and its associated lexical resources

are used to generate the indexes to the Metathesaurus and also have wide applicability in

natural language processing applications in the biomedical domain.

Coreference resolution algorithms that are part of open source NLP tools like the Stan-

ford Coreference Resolution System do not account for domain specific temporal attributes

of clinical text. The MUC [Van Deemter and Kibble, 2000] and Automatic Content Ex-

traction (ACE) [Doddington et al., 2004] corpora have been extensively used for training

and testing coreference models. These corpora are mostly homogeneous consisting of doc-

uments only from the newswire domain.

To our knowledge, the only previous work that considered entity and event coreference

resolution in the clinical domain is by He [2007], but limited to the medical domain and

focused on just five semantic categories. We consider medical event coreferences where

events are considered as coreferring if they are semantically and spatio-temporally similar.

In other words, events that mean the same, resolve to the same occurrence and the same

time point or duration, are considered as coreferring. In sync with this definition, medical

event pairs that corefer may correspond to examples like {chest pain, pain}, {episode,

chest pain}, {heart attack, myocardial infarction}, {tumor, cancer} and {hypertension,

hypertension}. We explore the application of semi-supervised methods to the problem of

pairwise medical event coreference resolution and show promising results.

Another important component of our timeline generation system tries to integrate infor-

mation across structured and unstructured data sources. This allows us to use timestamped

structured data to help learn from unstructured data.
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2.5 Information Fusion

Integrating information across disparate data sources is an important knowledge ex-

traction task. It helps generate a combined representation that may provide a better under-

standing of the underlying data. There are studies in different domains for fusing different

data sources such as integrating genomic data into the EHR [Kho et al., 2013], combining

cross-lingual resources for word alignment [Souza et al., 2013] and using structured and

semi-structured data sources for question answering [Kalyanpur et al., 2012]. Integration

across different data soucres including structured and ustructured data is essential to these

applications. However, information fusion across data sources in the EHR is a relatively

unexplored problem. We explore how structured information from the EHR can be used

to better enable the process of timeline generation from unstructured clinical narratives.

We observe a significant improvement in the accuracy of the timeline generated fron the

unstructured data after using the process of information fusion.

In this chapter, we first traced the representation of events and time in linguistics and

philsophy and noted its relevance in the context of medical events. We then discussed tem-

poral relation learning using the Timebank and in the clinical domain, the types of coref-

erence problems in natural language including that of medical event coreference resolution

and finally information fusion. Next, we describe our dataset, annotations, and compare

the schema to TimeML, in Chapter 3.
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CHAPTER 3: ANNOTATING CLINICAL NARRATIVES FOR
COREFERENCE RESOLUTION AND TEMPORAL REASONING

Addressing the natural language processing problems of coreference and temporal re-

lation learning using machine learning methods requires annotated data for training models

and evaluating results. This Chapter first defines a medical event, describes the annotation

schema and inter-annotator agreement for events and their attributes.7 Finally, the evalua-

tion metric for the generated medical event timeline is outlined.

3.1 Introduction

As discussed in the previous chapter, the TimeBank corpus annotated using the TimeML

specification, is a community shared resource for temporal relation learning in newswire

text [Pustejovsky et al., 2003a]. In the medical domain, Zhou et al. [2006] defines annota-

tions for temporal expressions found in discharge summaries. Savova et al. [2010a] propose

how they are going to work towards temporal relation discovery with the long term goal

of integrating temporal reasoning into the medical NLP system, cTAKES. The authors ob-

serve how off the shelf parsers don’t work well with medical data as most of the parsers are

trained on the Wall Street Journal, establishing the need for domain-specific corpora. They

note, “For example, rash is typically an adjective in newswire but is a noun in clinical notes;

erythema is not identified as a noun.....” Although the authors propose using TimeML for

7Parts of this work have been published in AMIA 2012. P. Raghavan, E. Fosler-Lussier, and A. Lai,
“Inter-Annotator Reliability of Medical Events, Coreferences and Temporal Relations in Clinical Narratives
by Annotators with Varying Levels of Clinical Expertise,” AMIA Annual Symposium, 2012.
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tagging clinical narratives, they do not explain why or how these tags are the right choice.

None of the annotation formats fully capture the requirements for temporal reasoning and

coreference resolution within and across clinical narratives of a patient. We define an anno-

tation format that supports these tasks and in turn enables creation of a longitudinal record

of events over a patient’s medical history. The proposed specification extends the TimeML

[Pustejovsky et al., 2003a] annotation format to accommodate attributes specific to clinical

text. The annotation specification that will help identify medical events, temporal expres-

sions and temporal and coreference relations between medical events.

However, creating annotated clinical corpora with such detailed relationships is tedious,

expensive and requires experts with domain knowledge. Many clinical narrative annotation

efforts have used physicians, which can potentially be cost-prohibitive. Within this popu-

lation, it can be difficult to find individuals willing to devote the time and effort to doing

manual annotations. Thus, our annotation effort uses annotators that are current students

or graduates from diverse clinical backgrounds with varying levels of clinical experience.

We demonstrate that in spite of this diversity, the annotation agreement across the team of

annotators is reasonably high.

3.2 Contributions

Our main contribution is defining a new tag and attributes for medical events. This is

motivated by the observation that medical events do not have properties similar to events

described in TimeML. Further, attributes like tense and aspect are not always useful for

learning temporal relations between medical events since most clinical narratives are writ-

ten in the past tense. Moreover, since our primary interest is in ordering medical events,

there is a need to define special attributes for medical events including their temporal rank
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as well as any coreference relations. The main contributions described in this chapter are

as follows:

• We define an annotation schema with annotation elements and attributes defined for

coreference resolution and temporal ordering of medical events.

• Measurement of inter-annotator reliability by determining inconsistencies across an-

notators by various annotators at various levels. We measure the consistency of iden-

tifying a word or phrase as a medical event and applying the same concept code to

the event. We also measure inconsistencies in noting that medical events corefer and

in noting temporal relations between events.

• Demonstration of high agreement across annotators with diverse clinical expertise.

In this study, the annotators were current students and recent graduates from diverse

medical and nursing backgrounds with varying levels of clinical experience. In spite

of this diversity, we demonstrate that the annotation consistency across the team of

annotators is high. We also describe the patterns of agreement between annotators

from these different backgrounds.

3.3 Motivation

Timebank is the standard, widely used corpus for temporal relation learning in the com-

putational linguistics community. However, the differences in the nature of data between

Timebank and clinical text make it difficult to use Timebank for temporal relation learning

in the clinical domain. Medical events need not be verbs and are in fact in most cases noun

phrases. In contrast, events in the news domain denote change in state, and are usually

verbs. Thus, the temporal properties of medical events and events in the news domain are
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MRN:12432    Inpatient Progress Note       Name: Jack Payne 
Date:04/02/2011 

Today patient alert and spoke 1-2 word answers to xxxs. 
Denied c/o.  

Tm 100.8 ax HR 77 BP 141/90 RR 27 94% RA. 

Heart RRR  

Lungs clear anterior chest Abdomen +BS soft NT Assessment 
and Plan: Extremities no edema 

Fever: U/A clear BC no growth so far.  

No obvious source except ? 

sacral decubitus (present on admission). 

MRI for xxx osteomyelitis pending. 

Wound care nurse to see Monday. 

Figure 3.1: Excerpt from a sanitized progress note.

quite different. For instance, tense and aspect are often used to temporally order events

in Timebank. However, since many medical events are noun phrases, and most narratives

are written in the past tense, tense becomes a less informative feature in clinical text. Fur-

ther, differences in granularity of temporal expressions, and ways of expressing time with

domain specific terminology adds to the difficulty in using the Timebank corpus for the

clinical domain. Timebank annotations are also restricted to a single document. We intend

to study cross narrative relationships between medical events. Finally, information about

medical event coreferences is critical to many of our proposed tasks, especially when try-

ing to reason with medical events across narratives. Such coreference information is not

available in Timebank, and even if it were available, the differences between events in the

news and clinical domain would deter the use of Timebank. Thus, to strengthen the moti-

vation for generating a corpus of clinical narratives, we now examine the nature of text in

a progress note (Figure 3.1) and a discharge summary (Figure 3.2).
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MRN:12432 Discharge Summary     Name: Jack Payne 

Admission Date:03/29/2011     Discharge Date:04/10/2011 

 
HISTORY OF PRESENT ILLNESS  

Mr. Payne came in with a problem of a leaking G-tube. 
HEENT anicteric The G-tube had been in place since 2008. 
HOSPITAL COURSE 

The G-tube was surgically removed at laparotomy 
(not cooperative with deep breaths) with closure of the 
stomach. After approximately 2 days of nothing by mouth 
status we started bringing him around.  
It took some time for his diet to be appreciated and he was 
returned to an ECF (Extended care facility) with a regular 
diet and wound care 

Figure 3.2: Excerpt from a sanitized discharge summary.

Characteristics of Clinical Narratives: In order to automatically process the progress

note, we would require knowledge of what each of the abbreviations and symbols mean.

The note is written with the expectation that the reader (usually a physician or a nurse)

has implicit knowledge about what is being described. Along with omitted implicit in-

formation, we can also observe short phrases, incomplete sentences and extensive domain

specific terminology. Temporal expressions in this note include “to see on Monday,” “To-

day patient alert.” Let us also examine an excerpt from a sample discharge summary seen

in Figure 3.2. As seen in the figure, the content in a discharge summary is usually grouped

into different sections that describe the history of illness, hospital course, and plan after

discharge. Discharge summaries tend to be more verbose, with mostly complete sentences.

However, there is again considerable use of medical terminology, and multiple temporal

references. Similarly, other types of clinical narratives also exhibit such characteristics to

varying degrees, making it difficult to automatically extract information from them. In or-
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der to perform supervised machine learning to infer a relative temporal order among events,

there is a need for annotated data. Instances of events and temporal expressions need to be

annotated to facilitate creation of features for machine learning of temporal relations in

clinical text. Thus, we define an annotation specification that supports the following tasks:

• Identify medical events and temporal relations between medical events that occur in

clinical narratives. For instance, chest pain before echocardiogram, echocardiogram

before diastolic dysfunction, mitral valve prolapse simultaneous diastolic dysfunc-

tion.

• Identify overlapping mentions of medical events within and across all clinical nar-

ratives for a patient, and resolve medical event coreferences. Resolving medical

event co-references requires identifying which medical events belong to the similar

semantic categories, comparing when the medical events occurred, i.e., establishing,

if possible, an overlap in time frame of the occurrence of the medical events.

• Learn temporal relations between medical events that occur within and across all

clinical narratives for a patient. The temporal relations could be at different levels of

granularity.

• Temporal reasoning to infer new temporal relations between medical events.

• Learn the temporal order of medical events across all clinical narratives of a patient.

The tasks described above support the final goal of being able to generate a chronology

of unique medical events from across all clinical narratives for each patient. The corpus

used for annotation and training our learning models is described next.
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3.4 Annotating Clinical Narratives

We now describe our annotation specification for clinical narratives, while describing

how much these annotations are similar to and differ from TimeML. To help understand

the use of the annotations and their associated attributes, we discuss the apply relevant tags

to the following example sentence: “The patient was admitted to the hospital 2 days after

chest pain stopped.”

3.4.1 Annotating Medical Events

As discussed in Chapter 2, Section 2.1.1, medical events include diseases and disorders,

normal health situations like pregnancy that may affect the patient’s health, as well as any

treatments, procedures and drugs administered to the patient. Thus, the annotators were

instructured to annotate any word or contiguous group of words found in a patient narrative

that has a contextually relevant match in the UMLS as a medical event. These include the

following.

• Any disease or disorder. These include medical conditions which are typically nouns.

For example, heart attack, chest pain, hypothermia and diastolic dysfunction.

• Any treatment, test or procedure. These are again generally nouns. For example,

echo-cardiogram and cholesterol profile.

• Any drugs administered. These are typically nouns which are names of drugs such

as beta blockers and niacin.

• Any normal health condition that requires health care such as pregnancy.

• Any observations related to the patient that may affect his health care. These could

be nouns or verbs based on context. For instance, smoking and drug abuse.
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The general notion of an event in TimeML are that events are used as a cover term

for situations that happen or occur. In the clinical domain, a medical event describes the

patient’s state, at a particular time point or time duration, as seen from a medical standpoint.

In TimeML, events may be expressed by means of tensed or untensed verbs (example 1 and

2), nominalizations (example 3) , adjectives (example 4), or prepositional phrases (example

5). Some examples of such events in the medical domain are as follows8:

(1) The patient was screened for hepatitis.

(2) He was advised to exercise.

(3) She was asked to take a blood test.

(4) The patients cholesterol levels were high.

(5) She gets some dyspnea on exertion when she walks.

However, from the perspective of knowledge extraction for helping clinical applica-

tions, we are interested in medical concepts like hepatitis, blood test, cholesterol levels,

and dyspnea in these sentences. These concepts correspond to the patient suffering from

medical conditions like hepatitis or dyspnea, the cholesterol levels of the patient or a blood

test being administered to the patient. These are referred to as medical events in the clinical

community as they correspond to an occurrence of something the patient suffers from or is

being treated with.

Events are semantically grouped into various classes in TimeML. A subset of classes

that may occur in clinical narratives, include the following:

8Note: Not all possible events have been tagged in the above examples.
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• Perception: This class represents physical perception of a medical event. E.g. see,

watch, noted, listen

• Occurrence: This class represents something that happens or occurs in the world.

E.g. loss of blood, suffered from a stroke

• Reporting: This class represents narration of an event, declaration. E.g. the patient /

physician reported / explained

We expect perception and occurrence to be the most common classes occurring in clinical

text.

While medical events could be of the general events class “occurrence”, they are often

noun phrases or nominals. Thus, we create a new tag called “Medical”, with its own at-

tributes. The Medical Event Tag: A medical event is a word or a contiguous group of

words found in a clinical narrative that describes a medical condition affecting the patient’s

health. Some examples of medical events include stroke, myocardial infarction, niacin,

beta blockers and smoking.

In TimeML, an event has one or more instances with certain attributes. These include

attributes such as tense and aspect. However, most of the event instance attributes as defined

by TimeML are not applicable to medical events. Let us now examine why this is the case.

Tense places temporal references along a conceptual time line. On the other hand, as-

pect encodes how a situation or action occurs in time. These features are useful as they help

place a situation in time. Since tense is identified by inflections of the verb, it is possible

to assign values to the tense attribute for events as defined in TimeML. This assignment

is not possible for “medical events.” This is because medical events are typically names

of illnesses, treatments, tests and other medical conditions. With respect to the temporal
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relation learning problem, in the example sentences above, we are interested in understand-

ing when was the patient screened for hepatitis, when blood test was taken, when were the

patient’s cholesterol levels high, and when did the patient suffer from dyspnea. The answer

to “when” needs to be answered relative to other medical events in the text. So our ob-

jective is to relate these medical entities with respect to time. The tense of generic events

if appropriately associated with medical events occurring in the same sentence, this could

help determine the relative time of occurrence of those medical events. However, a notable

characteristic of clinical narratives is that they are usually written to capture what happened

to the patient in his history, during the day, or during his hospital stay. Thus, most of the

described events tend to be in the past tense. Therefore, tense of an event may not always

be an informative feature in clinical text.

Taking all of this into consideration, we introduce new attributes for instances of tag

“Medical.” These attributes are specific to medical events and are useful features for tem-

poral reasoning and co-reference resolution. While we annotate medical events with the

newly introduced attributes, we would also like to annotate other event classes and use

them wherever applicable. They may be useful, in combination with temporal signals,

for standard medical events like admission and discharge (e.g. “after admission,” “before

admission,” “on getting admitted,” “during admission”). Details on how to tag event in-

stances are presented in the next section. Similar to the TimeML format, we define the

Backus-Naur Form (BNF) for the medical event tag. We begin by describing the BNF for

the TimeML event tag.

BNF for Events: The BNF for events is shown in Figure 3.3. The document ID (do-

cid) is the clinical narrative name followed by an integer indexing clinical narratives of a
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attributes ::= docid mid class
docid :: = patient narrative name<integer>
mid ::= e<integer>
class ::= REPORTING | OCCURRENCE | PERCEPTION

Figure 3.3: Basic BNF for events

particular type for a given patient. For instance, a patient with could have Radiology1, Ra-

diology2, Radiology3, HistoryPhysical1, DischargeSummary1, DischargeSummary2 etc.

The medical event ID (mid) is the unique ID assigned to every event in a clinical narrative.

A single patient could have multiple clinical narratives from radiology reports and progress

notes to discharge summaries, either all documenting the progress of a particular medical

condition or for various ailments over his medical history. Thus the combination of docid

and mid helps uniquely identify an event in the patients history.

As mentioned earlier, class refers to the semantic categorization of a medical event. The

events are highlighted in our example sentence, “The patient was admitted to the hospital

2 days after chest pain stopped.”

• <EVENT docid=ds2 mid=me5 class=OCCURRENCE>admitted</EVENT> chest

pain

• <EVENT docid=ds2 mid=me7 class=OCCURRENCE>stopped</EVENT>

Here, ds stands for discharge summary. Thus ds2 represents the second discharge summary

of a patient. Chest pain is a medical event that has properties different from what is con-

sidered to be a TimeML event. Thus, we define a medical event tag which has additional

attributes that are as follows:

• Semantic Type (semtype): Semantic type corresponds to the UMLS semantic type.
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• Concept ID (cui) and Semantic Type: The CUI of a medical event represents the

UMLS concept ID that is the closest contextual match for the medical event we are

annotating.

• Polarity: The polarity of a medical event indicates whether the event actually oc-

curred (positive polarity) or did not occur (negative polarity) as understood from the

clinical text.

• Signal: This includes any function words that indicate a temporal relationship like

when, in, before and after.

• Medical event coreferences (coref): The attribute coref helps track overlapping men-

tions of the same medical event within and across the clinical narratives for a partic-

ular patient.

• Time bins: The coarse time period in which the medical event occurred is referred

to as a time-bin. We define the following time-bins associated with a medical event:

before admission (beforeadm), on admission (onadm), after admission (afteradm)

and after discharge (afterdis). Admission and discharge are two events that almost

always occur in every clinical narrative. Medical events could have occurred before

the patient was admitted or during his stay in the hospital (in case of an in-patient

narrative). Similarly, a medical event could have occurred before or after the patient

is discharged from hospital. Knowledge of when a medical event occurred relative

to the admission or discharge date could be leveraged for temporal inference. Hence,

we have attributes beforeadm, onadm, afteradm, and afterdis, which take on boolean

values indicating whether a medical event happened before or after admission and

before or after discharge.
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• Temporal expression (tempex): The ID of the temporal expression that is anchored

to the medical event.

• Temporal anchors (start and finish): The start and finish attributes indicate the time

when the medical event started and finished by associating corresponding temporal

expressions IDs. For events where the duration is unclear or where the events are an

occurrence at a specific time point, both the start and finish take the same value.

• Rank (localrank and globalrank): The local indicates the temporal rank of the medi-

cal event within the clinical narrative and global rank indicates the temporal rank of

the medical event across all clinical narratives of the patient.

As the annotator reads through the patient narrative and encounters medical event oc-

currences that are the same as previously seen medical events, they get added to the coref

attribute. This is determined by semantic and spatiotemporal similarity between two events.

Thus, the coref attribute helps multiple occurrences of the same medical event in the text.

Taking into account these additional attributes for medical events, the updated BNF for the

medical event tag would be as shown in Figure 3.4.

Significance of Medical Event Coreference Attribute: The “coref” attribute is of

significance because clinical narratives are written by clinicians at various points of the pa-

tient’s hospital stay. History and Physical and Social Work Assessment reports are usually

written during admission whereas Progress Notes are written for each day of the hospital

stay. On the other hand, discharge summaries are written when the patient is discharged

from the hospital. Though the purpose of each type of note is distinct, they all capture

the course of events that occur during the patient’s stay. Hence, there could potentially

50



attributes ::= docid mid tense pos polarity signal semtype cui
coref waybefore beforeadm onadm afterdis
docid :: = clinical narrative name<integer>
medicaleventid ::= me<integer>
polarity ::= NEG | POS (default, if absent, is POS)
signal ::= <string> | NULL
semtype := <UMLS semantic type>
cui := C<integer>
coref := docid : mid | NULL
beforeadm := true | false (boolean)
waybeforeadm := true | false (boolean)
onadm := true | false (boolean)
afterdis := true | false (boolean)
tempex := <string> | NULL
start := t<integer>
finish := t<integer>
localrank := <integer>
globalrank := <integer>

Figure 3.4: Medical Event BNF with additional attributes. This is an instance of the med-
ical event start. If the start and finish are both known, there is another instance of the
medical event with its own attribute values is created for the event with the attribute finish
:= t<integer> replacing start := t<integer>
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be a considerable amount of overlapping entities across these narratives. The “coref” at-

tribute along with the attribute “semcat” for the UMLS semantic category, helps identify

two properties that help characterize overlap:

• Medical events that are semantically equivalent

• Medical events that take place at the same time point / time duration.

The instances of events are highlighted in our example sentence, “The patient was admitted

to the hospital 2 days after chest pain stopped.”

• <EVENT docid=ds2 mid=me1 tense=PAST pos=VERB polarity=POS>admitted

</EVENT>

• <EVENT docid=ds2 mid=me2 polarity=POS semtype=Sign or Symptom

cui=C0008031 coref=ds2:me15, hp1:me3 beforeadm=TRUE afterdis=FALSE

tempex=t1 start=t1 finish=t1>chest pain </EVENT>

• <EVENT docid=ds2 mid=me3 tense=PAST pos=VERB polarity=POS>

stopped</EVENT>

The event “admitted” is tagged with attributes “past tense” and “positive polarity.” Sim-

ilarly, “stopped” is tagged with attributes “past tense” and “positive polarity.” The medical

event “chest pain” is tagged with “polarity positive” since “chest pain” is not negated.

The “semantic category” and “concept ID” for “chest pain” are “Sign or Symptom” and

C0008031 respectively, as per UMLS meta-thesaurus. The “coref” attribute tells us that

event with ID me15 from the patient’s second “discharge summary” (ds2) and event with

ID me3 from the patient’s first “history and physical report” (hp1) are coreferring with the

current event “chest pain.”
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attributes ::= docid tid type functionInDocument beginPoint endPoint
quant freq mod anchorTimeID
docid := clinical narrative name<integer>
tid ::= t<integer>
type ::= DATE | TIME | DURATION | SET
functionInDocument ::= ADMISSION TIME | DISCHARGE TIME | DOB | OTHER
beginPoint ::= tid
endPoint ::= tid
quant ::= every/ each etc.
freq ::= <integer> | 2 times etc.
value ::= duration | date
mod ::= BEFORE | AFTER | ON OR BEFORE | ON OR AFTER | LESS THAN |
MORE THAN | EQUAL OR LESS | EQUAL OR MORE | START |MID | END
| APPROX
eventAnchor ::= m<integer>

Figure 3.5: BNF for Temporal expressions

3.4.2 Annotating Temporal Expressions

We define a simplified version of the TIMEX tag from TimeML and adapt it to clinical

narratives. Changes include attributes for time duration and rank. Additionally, we also

adapt some attributes defined as part of the Temporal Constraint Structure that is used to

implement TimeText [Zhou et al., 2006]. This includes attributes indicating the beginning

and end of a time period and the medical events to which a temporal expression can be

anchored. This tag is used to annotate any words or phrases that indicate the time point

or time duration of an event. The simplified BNF for this tag is as follows: The document

ID (docid) has the same interpretation as before. Temporal expression ID (tid) uniquely

identifies a temporal expression within a narrative. The “type” of a temporal expression

could be any one of the following:
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• DATE: Describes a calendar time. For example, Friday October 1 1999, yesterday

and this summer.

• TIME: Refers to a time of the day. For example, eleven in the morning and last night.

• DURATION: Describes a time duration. For example, 20 days, 3 hours and 2 months.

• SET: Describes a set of times. For example, twice a week and every two days.

• quant and freq: Used when a temporal expression is of the type SET to indicate

temporal granularity and frequency.

• beginPoint and endPoint: Used when the start and end of a duration is anchored by

another time expression.

The eventAnchor allows us to identify a temporal expression anchored to an event.

These events are typically the standard admission or discharge events. For instance, “chest

pain started just a day before admission.” In this case, the temporal expression would be a

day, the temporal signal would be before and the event anchor would be admission. How-

ever, temporal expressions could be anchored to medical events as well. The instances of

temporal expressions are highlighted in our example sentence, “The patient was admitted

to the hospital 2 days after chest pain stopped.”

• <TIMEX docid=ds2 tid=t1 type=DURATION functionInDocument=OTHER

eventAnchor=me2> 2 days </TIMEX>

In case of the temporal expression 2 days, the event type is “duration,” and the event anchor

is the medical event “chest pain” with id me2.
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3.4.3 Temporal Nature of Clinical Text

The temporal relationship between medical events is varied and complicated. Zhou and

Hripcsak [2007] identify six major categories of temporal expressions from a corpus of dis-

charge summaries: “date and time,” “relative date and time,” “duration,” “event-dependent

temporal expression,” “fuzzy time,” and “recurring times.” The study of temporal expres-

sions in clinical text indicates that relative time (e.g., ever since the episode 2 days ago)

may be more prevalent than absolute time (e.g., 06/03/2007). Further, temporal expres-

sions may be fuzzy where “history of cocaine use” may imply that cocaine use started “2

years ago” or “10 years ago.” All of this makes the problem of temporal relation learning

from clinical text extremely challenging. However, addressing this problem is essential to

many applications in the biomedical domain including patient recruitment for clinical tri-

als. We briefly motivate the clinical trial recruitment task since we finally plan to evaluate

the utility of the proposed methods for timeline generation in such a task.

3.4.4 Annotating Temporal Relations

The tag is used to annotate temporal relations between medical events. It is an important

tag as it relates the previously defined tags in a meaningful manner to identify temporally

related events. The temporal relations are adapted from Allen’s temporal relations as de-

fined in Chapter 2. The temporal relations are defined in terms of an interval calculus

using thirteen mutually exclusive binary relations as different ways of relating two convex

intervals. Using this calculus, given facts can be formalized and then used for automatic

reasoning. The thirteen relations include before, after, meets (and its inverse e.g. event X

meets Y and Y meets X), overlaps (and its inverse), starts (and its inverse), during (and its

inverse), finishes (and its inverse), is equal to. The BNF for temporal relations is defined
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attributes ::= trelid, eventid, relatedto, eventid, reltype
docid :: = clinical narrative name<integer>
tlinkid ::= trel<integer>
event ::= eid
relatedto event ::= eid
relationtype ::= BEFORE | AFTER | INCLUDES | IS INCLUDED | DURING
| DURING INV | SIMULTANEOUS | IAFTER | IBEFORE | IDENTITY | BEGINS
| ENDS | BEGUN BY | ENDED BY

Figure 3.6: BNF for temporal relations

as follows. The “trelid” attribute is used to uniquely identify a temporal relation within a

document. The attributes “event” and “relatedto event” are used to specify the event IDs

of the related events. The event relation type is specified with the “reltype” attribute. The

temporal relation tag in case of our example sentence, “The patient was admitted to the

hospital 2 days after chest pain stopped,” would be as follows:

<TLINK docid=ds2 tlinkid=tlink1 event=e6 relatedto event = e5 relationtype=BEFORE>

In this example, event e6 is BEFORE event e5.

3.5 Comparison with TimeML and Analysis

We have adapted the TimeML[Pustejovsky et al., 2003a] annotation format to clinical

narratives. The proposed changes include the following:

• A new class of events called “Medical” for annotating medical events.

• New attributes associated with instances of events with class “Medical.” These in-

clude, medical event UMLS semantic type, UMLS concept ID, boolean attributes

placing the medical event before / on admission / after admission / discharge, med-

ical events that are coreferring, the “start time” and “end time” of a medical event
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in order to learn medical event durations, rank of the event, both within and across

clinical narratives for a patient.

• An “event anchor” for temporal expressions that help identify temporal expressions

that are anchored to events.

Let us study how various tags are linked together with the help of the example sentence,

“The patient was admitted to the hospital 2 days after chest pain stopped.” In this sentence,

we identified admitted and stopped as events and chest pain as a medical event. We also

annotate “2 days” as a temporal expression and “after” as a temporal signal. The links

between these annotations is as follows: The temporal expression 2 days is linked to the

two medical events using the temporalanchor attribute of the medical events. The medical

event chest pain is linked to the event admitted using the temporal relation tag. Let us also

examine a few more sample sentences from a discharge summary and study their annotation

as per the format described in this chapter.

“The patient had been well until 4 months before admission.”

Here, medical events include “well” and “admission.” “Until 4 months” is a temporal ex-

pression and “before” is a temporal signal. The temporal relations between events are as

follows: “before” is anchored to “until 4 months,” “until 4 months” is anchored to “well”

and “well” is related to “admission” using relation type BEFORE

• <EVENT docid=ds1 eid=e1 class=OCCURRENCE>well</EVENT>

• <EVENT docid=ds1 eid=e2 class=OCCURRENCE>admission</EVENT>

• <TIMEX docid=ds1 tid=t1 type=DURATION functionInDocument=OTHER sid=s1

eventAnchor=e1:ei1> until 4 months </TIMEX>
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• <TLINK docid=ds1 tlinkid=tlink1 eventinstance = e1 : ei1 relatedto eventinstance =

e2 : ei1 relationtype=BEFORE>

“She was again admitted to the hospital where acylovir given intravenously for 10 days

had no effect.”

Events include “admitted” and “effect.” Medical events include “acylovir” and “intra-

venously” “for 10 days” is a temporal expression The temporal relations between events

are as follows: “for 10 days” is anchored to “acylovir.” “for 10 days” is anchored to “intra-

venously.” “no effect” is anchored to “acylovir.” “admitted” is related to “acylovir” using

relation type BEFORE

• <EVENT docid=ds1 eid=e1 class=OCCURRENCE>admitted</EVENT>

• <EVENT docid=ds1 eid=e2 class=MEDICAL>acylovir</EVENT>

• <TIMEX docid=ds1 tid=t1 type=DURATION functionInDocument=OTHER sid=s1

eventanchor=e2:ei1> for 10 days </TIMEX>

• <TLINK docid=ds1 tlinkid=tlink1 eventinstance = e1 : ei1 relatedto eventinstance =

e2 : ei1 relationtype=BEFORE>

3.6 Annotator Agreement

The corpus used to calculate agreement consists of three clinical notes from a chronic

lymphocytic leukemia (CLL) patient’s record. This patient was one of approximately 2060

CLL patient records we have collected over the last 10 years at The Ohio State University

Wexner Medical Center (OSUWMC). The notes consisted of a discharge summary, radiol-

ogy report and a history and physical report with an average of 600 words per narrative.
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A team of 5 annotators with diverse backgrounds, but with some experience in under-

standing medical terminology, was hired to annotate the corpus. Our team had one medical

student with a degree biomedical engineering, but no clinical experience (medstud); three

recently graduated nurse practitioners with clinical experience gathered through the process

of receiving their nurse practitioner degrees (np); and one graduate entry nurse practitioner

student with some clinical experience and experience in working with biomedical docu-

ments (nstud). In order to achieve the level of detail we wanted in our annotations, each

annotator required approximately one month’s effort. This included clinical informatics

IRB training, getting them familiar with the UMLS, explaining the motivation behind the

task, having them read and understand the annotation guidelines and annotating a sam-

ple clinical narrative. The annotations efforts described in this paper were coded in Excel

sheets.

An important aspect of annotating a large corpus is consistency. We measure consis-

tency in terms of inter-annotator reliability. Inter-annotator agreement measures the consis-

tency in annotating a particular concept across annotators. We measure inter-annotator reli-

ability using Cohen’s kappa statistic11. Kappa is interpreted as the proportion of agreement

among raters after chance agreement has been removed. It can be expressed as follows:

Kappa =
Proportion of observed agreement− chance agreement

1− chance agreement
(3.1)

Chance agreement is estimated by the proportion of agreements that would be expected if

the observer’s ratings were completely random. Chance agreement increases as the vari-

ability of observed ratings decreases. The use of Kappa requires minimal assumptions

about the underlying nature of the data. Three data collection conditions should be met: 1)

The subjects to be rated are independent of each other, 2) the raters score the subjects in

an independent fashion, and 3) the rating categories are mutually exclusive and exhaustive.
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The flexibility of different forms of kappa is also a major advantage. Kappa is appropriate

for nominal and ordinal data, where there are two or more raters per subject. Kappa can be

calculated for each scale point or averaged into a generalized Kappa across the entire set of

ratings.

We use the methods proposed by [Conger, 1980] to calculate agreement between mul-

tiple annotators. The author suggests a multiple-rater agreement statistic obtained by aver-

aging all pairwise overall and chance-corrected probabilities.

For annotation of medical events, if the annotators marked a partially overlapping sec-

tion of text as a medical event, we considered it to be an agreement. For medical event

coreference, we considered agreement in a pairwise fashion. For example, for events A, B,

and C, if annotator #1 identified events A and B corefer, and events B and C corefer, but

annotator #2 only identified events B and C corefer, we count that as having 1 annotation in

agreement. We also did not consider transitive closure. In the example given, if annotator

#1 also identified events A and C coreferring and annotator #2 also identified events A and

B as coreferring, which would count as having 2 annotations in agreement, and not 3. For

temporal relations, we considered whether or not the same pairwise temporal relationship

between events was identified. With medical events, we further analyzed whether or not

the coders identified the medical events with the same UMLS CUIs.

Inter-annotator agreement metrics The total number of words in each clinical narrative

(CN) is as follows: CN1= 454, CN2 = 612, CN3=386. Given the text in each narrative,

the main unit of annotation is a medical event. Some examples of medical events in these

clinical narratives include B-cell lymphoma, mass, physical examination, and beta block-

ers. We present statistics on the number of medical events, coreference pairs and temporal

relations annotated by each annotator in the clinical narratives in Table 3.1.
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The number of medical events, coreference pairs and temporal relations noted by each

annotator in three different clinical narratives. We also present precision and recall metrics

for each annotator measured against a reference annotator. In Tables 3.2 and 3.3, we present

precision and recall values for medical event mentions, coreference pairs, and temporal

relation pairs across the three narratives with the medical student (medstud) as the reference

annotator. The other annotators are a nursing student (nstud) and three nurse practitioners

(np1, np2, np3).

Precision and recall values for medical event mentions across the three narratives with

(medstud) as the reference annotator.

No. of Medical Events Coreference Relations Temporal Relations
Annotator CN1 CN2 CN3 CN1 CN2 CN3 CN1 CN2 CN3

medstud 65 81 53 15 19 12 15 19 12
nstud 58 70 58 8 10 7 8 10 7
np1 67 95 69 13 15 10 13 15 10
np2 52 87 70 12 16 10 12 16 10
np3 59 76 55 12 15 10 12 15 10

Table 3.1: The number of medical events, coreference pairs and temporal relations noted
by each annotator in three different clinical narratives.

Annotator CN1 CN2 CN3
P R P R P R

nstud 94.8 84.6 89.3 87.5 88.2 80.4
np1 86.6 89.2 85.1 98.8 90.2 96.6
np2 96.1 76.9 90.8 97.5 88.6 95.2
np3 94.9 81.2 97.4 91.4 91.4 89.8

Table 3.2: Precision and recall percentages for medical event mentions across the three
narratives with (medstud) as the reference annotator.
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Annotator CN1 CN2 CN3
P R P R P R

nstud 87.7 98.3 86.4 85.2 84.1 79.6
np1 92.5 89.7 72.6 98.6 94.6 94.3
np2 92.3 82.8 75.3 95.7 85.3 92.4
np3 84.7 86.2 92 100 93.4 90.7

Table 3.3: Precision and recall values for coreference pairs across the three narratives with
(medstud) as the reference annotator

In Table 3.5, we present the average pairwise Cohen’s kappa for medical events, coref-

erences, temporal relations, and medical event concept unique identifiers across narratives

CN1, CN2, and CN3. To further illustrate and clarify our results, we plot these values in

Figure 3.7.

Annotator CN1 CN2 CN3
P R P R P R

nstud 96.9 94.0 98.7 85.2 92.7 82.4
np1 89.6 77.6 97.1 71.5 87.4 75.7
np2 92.3 71.6 96.5 88.4 86.8 85.8
np3 91.5 80.5 96.1 78.9 83.6 74.3

Table 3.4: Precision and recall values for temporal relation pairs across the three narratives
with (medstud) as the reference annotator.

In looking at our results, we note that for medical events, the average kappa agreement

between annotators from different backgrounds mostly varies between 0.80 and 0.85. The

highest agreement is between np2 and np3 of 0.96. The lowest agreement was between

nstud and np1 (kappa=0.78). For medical event coreference, the agreement is high between

the medical student and the nurse practitioners, with kappa ranging from 0.81 and 0.92. The
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Figure 3.7: Pairwise Kappa agreement for medical events, coreference, temporal relations,
and medical event CUIs. The pattern of agreement across the categories for different anno-
tator pairs is more or less the same.

Annotator Pairs ME Coref TempRel ME CUI
medstud, nstud 0.84 0.82 0.81 0.82
medstud, np1 0.86 0.9 0.85 0.78
medstud, np2 0.83 0.92 0.86 0.78
medstud, np3 0.85 0.91 0.88 0.8
nstud, np1 0.78 0.81 0.79 0.79
nstud,np2 0.85 0.82 0.85 0.81
nstud,np3 0.83 0.85 0.8 0.82
np1,np2 0.8 0.81 0.83 0.83
np1, np3 0.83 0.86 0.82 0.82
np2, np3 0.96 0.89 0.84 0.81
Average kappa 0.843 0.859 0.833 0.806

Table 3.5: The average pair wise Cohen’s kappa for medical events, coreference, temporal
relations, and medical event concept unique identifiers across CN1, CN2 and CN3.
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highest agreement of 0.92 is between medstud and np2. With temporal relations, the kappa

agreement varies between 0.79 and 0.88 with the highest Kappa of 0.88 between medstud

and np3. When looking at medical event CUIs, the agreement varies between 0.78 and

0.83.

The overall average inter-annotator kappa statistic for medical events, coreferences,

temporal relations, and medical event concept unique identifiers was 0.843, 0.859, 0.833,

and 0.806 (Table 3.5), respectively, all of which show excellent agreement. The average

pairwise Cohen’s kappa [Conger, 1980] is highest between when medstud is paired with

other annotators (kappa=0.86). The average of the pairwise agreement among the nurse

practitioners is 0.846, whereas the average of the pairwise Cohen’s kappa between each

nstud/np from the nursing group and medstud is 0.82. This is across all three categories

medical events, coreferences, and temporal relations.

While overall agreement for coreferences is already high (0.859), it may be an underes-

timate. We did not consider transitive closure in our calculations. For example, if annotator

#1 marked events A and B corefer, B and C corefer, and A and C corefer, but annotator #2

marked events A and B corefer and B and C corefer, we still consider there to be a missing

annotation (A and C corefer).

3.7 Error Analysis

While the inter-annotator agreement for medical event CUIs was lower than for medi-

cal events, coreference, and temporal relations, agreement was still very high. Figure 3.7

indicates that the pattern of agreement across various annotations by different annotators

with varying clinical expertise is more or less uniform.
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In an analysis of the reason behind the discrepancies we discovered that in many cases

there was either a discrepancy in the granularity to which the medical events were coded or

whether or not clinical judgment was used in selecting the CUI. For example, all of our an-

notators marked “B-Cell CLL” as an event. The three NPs coded this term as “C0023434:

Chronic Lymphocytic Leukemia.” Both medstud and nstud coded this event as “C0475774:

B-cell chronic lymphocytic leukemia variant.” While both could be considered correct an-

notations for “B-Cell CLL,” C0475774 is the more specific term. In another example, all

of the annotators marked the phrase “white blood cell count of 10,000.” For this situa-

tion, medstud selected “C0750426: white blood cell count increased,” while nstud selected

“C0023508: White Blood Cell count procedure.” In contrast, all three NPs selected dif-

ferent CUIs, applying clinical judgment to the medical events. Np2 selected “C0860797:

differential white blood cell count normal.” Overall we found the medical student’s (who

did not have any real life clinic experience) annotations remained true to what was ob-

served and could be inferred based on the data. However, the nursing student and the nurse

practitioners often used clinical judgment to infer certain annotations that were not directly

observed in the data. For instance, classifying something as an acute condition based on

certain readings or values in the text.

3.8 Discussion

One limitation of our study is the small number of narratives. The main reason for this

limitation is due to the large amount of effort required to annotate the narratives to the detail

that we desired. Given that the 3 narratives used in the study required a month of effort

for each annotator, we needed to begin having the annotators annotate non-overlapping

narratives in order to increase the overall size of our gold standard. Another limitation
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of our study is the lack of a physician annotator to compare their annotations. Given the

amount of time required for our existing annotators to complete the annotations, having

an additional physician annotator was not feasible. One reason for the time required to

generate these annotations may be the lack of sophisticated annotation tools. Although we

developed an annotation schema using Knowtator [Ogren, 2006] and trained our annotators

to use this tool, the nursing and medical students always prefered using Excel sheets to

record annotations.

3.9 Clinical Corpus and Timeline Evaluation

With the help of the annotation process described in the previous sections, we anno-

tate a corpus of clinical data obtained from the The Ohio State University Wexner Medical

Center. The dataset contains patient records for Chronic Lymphocytic Leukemia (CLL)

and Methicillin-resistant Staphylococcus aureus (MRSA). The annotators annotate admis-

sion notes, history and physical reports, radiology reports, pathology reports and discharge

summaries for 7 patients in the corpus. The average number of clinical narratives is 80 with

an average of around 23 medical events per narrative. Table 3.6 shows the distribution of

medical events across clinical narratives.

15% of the medical events corefer within and across the clinical narratives for each

patient. The narratives are annotated with medical events and their attributes as per the

format specified in Figure 3.4. The attributes also include time-bins, coreference relations

between medical events, and temporal ranks for medical events both within and across

narratives. It also includes the temporal starts and stops that associate each event with

relevant temporal expressions. This allows representing medical events as an interval by

splitting each medical event into a start and a stop whenever relevant temporal information
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Patient Narratives Medical events
p1 5 125
p2 9 239
p3 20 488
p4 13 318
p5 8 220
p6 10 136
p7 15 297

Table 3.6: Distribution of medical events across clinical narratives for each patient

is available. For instance, if we know that palpitations started yesterday and stopped 2

days later, we can represent palpitations as palpitationsstart and palpitationsstop. When

specific information about the starts and stops are unavailable, and for certain machine

learning methods (time-bin learning in Chapter 4 and coreference resolution in Chapter 5),

we assume a point notation for the medical event. (considering that the event started and

the stop is unknown). The annotation for temporal relations is generated as per the format

specified in Figure 3.6.

Evaluating Timelines. Once the proposed system generates a medical event timeline,

we need to evaluate it against the gold-standard timeline in our annotations. This is illus-

trated in Figure 3.8.

We measure the transformations required to obtain the reference sequence in the gold-

standard from the one generated by our system. We adapt word error rate, which is an edit-

distance measure popularly used in automatic speech recognition as an evaluation metric.

Thus, we calculate the fewest modifications (edits) required to the system output so that it
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Figure 3.8: Example of a system generated timeline and the gold-standard timeline pro-
vided by the annotators.

is the same as the reference in the gold standard. The accuracy is given by

Accuracy =
Total MEs− (I + S + D)

Total MEs
(3.2)

Here, “Total MEs” corresponds to the total number of medical events in the sequence,

and insertions (I), substituitions (S) and deletions (D) correspond to the medical events

required to the system generated timeline to obtain the gold-standard timeline in our an-

notations. In Figure 3.8, in going from the system generated output (sysout) to the gold

standard output (gsout), we insert admission in position 2, replace admission with chest

painstop in position 4 and delete chest painstop in position 6. Thus, we require 3 edit oper-

ations in going from sysout to gsout. Since the total number of medical events is 5, this

gives us an accuracy of 40%.
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3.10 Conclusion

In this chapter, we first established the need for an annotated corpus of clinical narra-

tives by comparing the nature of clinical language to Timebank. We then discussed in detail

the contents of certain types of clinical narratives like discharge summaries and radiology

reports, and provided an annotation schema for annotating elements of these narratives.

Finally, we described the metric used to evaluate the timeline generated by the methodol-

ogy proposed in this dissertation. In the chapters that follow, we describe in detail various

stages of the timeline generation process that leverage the annotations that were described

in this chapter.

69



CHAPTER 4: COARSE INTRA-NARRATIVE TEMPORAL
ORDERING OF MEDICAL EVENTS

Temporal relationships between medical events can be viewed at different granularities,

where the medical events could be part of the same data source or across different data

sources. Thus, in developing this framework for timeline generation, we begin at a higher

level of temporal granularity and then drill down to a finer level. In the sections that follow,

we describe a methodology for generating a coarse timeline of medical events within a

narrative. This in turn can be used to derive an overall partially ordered timeline across

narratives.9

4.1 Introduction

In the context of clinical text, the notion of time can be defined as follows: “A dura-

tion or relation of events expressed in terms of past, present, and future, and measured in

units such as minutes, hours, days, months, or years.” 10 These events describe medical

conditions affecting the patient’s health, or tests and procedures performed on a patient.

Over the course of time, the EHR of the patient could have hundreds of such unstructured

clinical narratives for various admissions and discharges, daily progress, lab tests, physical

review, etc. Sample excerpts from two different clinical narratives (cn1 and cn2) of the

same patient, generated over time, are shown in Figures 4.1 and 4.2.

9This work has been published in BioNLP 2012. P. Raghavan, E. Fosler-Lussier, and A. Lai, “Temporal
Classification of Medical Events,” BioNLP 2012.

10Stedman’s Medical Dictionary: http://www.medilexicon.com
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HISTORY PHYSICAL                                                                DATE: 09/01/2007  

NAME: Smith Daniel T                                                          MR#: XXX-XX-XXXX  

ATTENDING PHYSICIAN: John Payne MD                           DOB: 03/10/1940  

HISTORY OF PRESENT ILLNESS  

The patient is a 67-year-old Caucasian male with a history of paresis secondary to back  

injury who is bedridden status post colostomy and PEG tube who was brought by EMS with  

a history of fever. The patient gives a history of fever on and off associated with chills for 

the last 1 month. He does give a history of decubitus ulcer on the back but his main  

complaint is fever associated with epigastric discomfort.  

PAST MEDICAL HISTORY  

Significant for polymicrobial infection in the blood as well as in the urine in July 2007 history  

of back injury with paraparesis. He is status post PEG tube and colostomy tube.  

REVIEW OF SYSTEMS  

Positive for decubitus ulcer. No cough. There is fever. No shortness of breath.  

PHYSICAL EXAMINATION  

On physical exam the patient is a debilitated malnourished gentleman in mild distress.  

Abdomen showed PEG tube with discharging pus and there are multiple scars one in the  

midline. It had a healing wound. Bowel sounds were present. Extremities revealed pain and  

atrophied muscles in the lower extremities with decubitus ulcer which had a transparent  

bandage in the decubitus area which was stage 2-3. CNS - The patient is alert and awake x3.  

There was good power in both upper extremities. Cranial nerves II-XII grossly intact.  

Figure 4.1: Excerpt from a de-identified clinical narrative (cn1) [2007]

There has been a lot of interest in building timelines of medical events from across such

unstructured patient narratives [Jung et al., 2011; Zhou and Hripcsak, 2007]. An important

characteristic of a clinical narrative is that the medical events in the same narrative are more

or less semantically related by narrative discourse structure. However, medical events in

the narrative are not ordered chronologically. The clinical narrative structure moves back

and forth in time and is not always temporally coherent (as seen in Figure 4.1 and 4.2).

Thus, creating a timeline from longitudinal clinical text requires learning Allen’s temporal

relations [Allen, 1981] such as before, simultaneous, includes, overlaps, begins, ends and

their inverses between medical events found within and across patient narratives. However,
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learning temporal relations for fine-grained temporal ordering of medical events in clinical

text is challenging: the temporal cues typically found in clinical text may not always be

sufficient for this task. Instead, as a first step towards temporal ordering, we learn a coarser

temporal ordering of medical events by learning to assign them to coarsely defined temporal

classes that we call time-bins. Time-bins like way-before-admission, before-admission,

on-admission, after-admission, after-discharge are defined around an anchor date that is

mostly likely to occur in every clinical narrative such as the admission date or the date of

creation of the narrative.

 

HISTORY   PHYSICAL                                   DATE:  06/17/2009 

NAME:  Smith Bob                                                 MR#:  XXX-XX-XXXX 

ATTENDING PHYSICIAN:  Bill Payne MD              DOB:  02/28/1960 

 

He is a 48-year-old African American gentleman with a history of  

hypertension and cocaine use. He has hidradenitis of both axilla  

resected. The patient is MRSA positive on IV antibiotics at the present  

time.  The patient's physical condition is excellent but he had MRSA in  

the axilla for hidradenitis that was devastating.  The wounds now are  

very large but he is wound vac and being changed to alginate. Both  

axilla show major wounds of 20-25 cm in diameter and 4-5 cm deep in  

overall size and he has excoriations on his chest from the tape.  The  

plan is to change him from vac to alginate and see him in a week. 

Figure 4.2: Excerpt from another de-identified clinical narrative (cn2)[later in 2007]

72



4.2 Contributions

The main innovation in this chapter is the assignment of medical events to time-bins

centered around a reference date. The assignment of medical events to time-bins is done

with the help of features based on narrative structure and explicit temporal expressions.

This allows us to label a sequence of medical events from each clinical narrative with

a highly probable sequence of time-bins using Conditional Random Fields (CRFs). The

learned time-bins can be used as an informative temporal feature for tasks such as med-

ical event coreference resolution and fine-grained temporal ordering of medical events as

demonstrated in Chapters 5 and 6. Moreover, the coarse temporal orderings of medical

events within each narrative, can be partially combined with the help of explicit dates in

each narrative, like the admission and discharge date, to create a comprehensive coarse par-

tial ordered timeline of medical events across the patient’s history. Such a timeline by itself

is useful to maybe useful clinical tasks like clinical decision making where the temporal

constraints that need to be resolved are coarse.

4.3 Related Work

Prior work in machine learning of temporal relations on the WSJ-based Timebank cor-

pus [Pustejovsky et al., 2003a] include Mani et al. [2006]; Chambers et al. [2007]; Verhagen

et al. [2009], who experimented with pairwise classification for learning temporal relations

between event pairs. However, as described in Chapter 3, it is difficult to directly adopt

Timebank for temporal reasoning in clinical text. Previous attempts at learning temporal

relations between medical events in clinical text include Jung et al. [2011]; Zhou et al.

[2006]; Bramsen et al. [2006]. A comprehensive survey of temporal reasoning in medical

data is provided by Zhou and Hripcsak [2007]. Gaizauskas et al. [2006] learn the temporal
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relations before, after, is included between events from a corpus of clinical text much like

the event-event relation TLINK learning in Timebank [Pustejovsky et al., 2003a]. Bram-

sen et al. [2006] characterize temporal organization of discharge summaries in terms of

temporal segments and their ordering, where a temporal segment to be a fragment of text

that does not exhibit changes in temporal focus. They learn temporal relations between

segments using a supervised classifier. The clinical text corpora used in these studies are

not freely available. Before getting into fine-grained temporal ordering, in this task, we

define coarse time-bins and classify medical events into one of the time-bins. Our task

varies from prior work in the following aspects: Instead of pairwise classification of events

into multiple granular temporal relations, we use coarse granularity time-bins and classify

each instance of a medical event and assign it to a time-bin. This is a relatively easier task;

learning time-bins with high accuracy can be then used to inform fine-grained temporal

relation learning models. Using a sequence tagging model allows us to capture temporal

progression from narrative order of medical events in clinical text (see temporal features in

section 4.4.3 for an example).

4.4 Assigning Medical Events to Time-bins

We adress the problem of assigning medical events to time-bins using a sequence learn-

ing approach. In order to understand why sequence learning model is appropriate for this

task, and what features help the machine learning model, we first describe the medical

event representation used for this task.

4.4.1 Medical event representation

In order to keep the task of classifying medical events into coarse time-bins relatively

easy to learn, we use a time-point notation for representing medical events. Each mention
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of a medical event is assigned to a time-bin without taking into consideration whether it de-

notes the beginning or end of that event. We also do not differentiate between coreferences

of the same medical event. Thus, if chest pain is mentioned in the past medical history and

the same chest pain continues to persist in the after admission time-bin, the two different

mentions of chest pain get anchored to different time-bins. Similarly, cocaine use started

in the history of the patient and cocaine abuse still persists. We assign the two different

mentions of this medical event into different time-bins.

4.4.2 Time-bins

We learn to classify medical events into one of the following time-bins: way before

admission, before admission, on admission, after admission, after discharge. The time-

bin way before admission is intended to capture all medical events that happened in the

past medical history of the patient but are not mentioned as being directly related to the

present illness. Before admission captures events that occurred before admission and are

related to the present illness. On admission captures medical events that occur on the day

of admission. After admission captures medical events that occur between admission and

discharge (during the hospital stay or clinic visit). Finally, medical events that are supposed

to occur in the future after the patient is discharged belong to the class after discharge.

Further, the time duration of each time-bin varies based on the patient. For instance,

the hospital stay of a patient could be 4 days or 1 month or a year. This makes it very

difficult to define exact time-bins based on the intuitions described above. In order to

make the problem consistent across different patients, we restrict way before admission to

events that happened more than a year ago and before admission to events that occurred in
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HISTORY OF PRESENT ILLNESS 

Patient is a 48-year-old male with history of cocaine use hypertension who  

presented with chest pain which started 2 days ago . He does not have   

chest pain now but ever since the episode 2 days ago he has felt a little  

weaker.  He did have chest pain yesterday and this is what prompted him to  

Come to the  ER.  He also  notices that he has had some infections under his  

arms. 

Transition functions State functions 

Figure 4.3: Linear chain CRF used to assign time-bin label sequence to a medical event
sequence

the same year before admission. If it is unclear as to when in the past the medical event

occurred, we assume it happened way before admission.

For the task proposed in this paper, an observation sequence is composed of medical

events in the order in which they appear in a clinical narrative, and the state sequence is the

corresponding label sequence of time-bins. This is illustrated in Figure 4.3. Each label in

the label sequence could be any one of the time-bins way before admission (wba), before

admission (ba), on admission (a), after admission (aa), after discharge (ad). Thus, given a

sequence of medical events in narrative order we learn a corresponding label sequence of

time-bins {wba, b, a, aa, ad}.
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The probability of time-bin (label) sequence y, given a medical event (input) sequence

x, is given by,

P (Y |X) = exp
∑
i

(S(x, y, i) + T (x, y, i)) (4.1)

where i is the medical event index and S and T are the state and transition features re-

spectively. State features S consider the label of a single medical event and are defined as,

S(x, y, i) =
∑
j

λjsj(y, x, i) (4.2)

Transition features consider the mutual dependence of labels yi−1 and yi (dependence be-

tween the time-bins of the current and previous medical event in the sequence) and are

given by,

T (x, y, i) =
∑
k

µktk(yi−1, yi, x, i) (4.3)

where sj and tk are the state and transition feature functions. Above, sj is a state feature

function, and λj is its associated weight and tj is a transition function, and µj is its asso-

ciated weight. In contrast to the state function, the transition function takes as input the

current label as well as the previous label, in addition to the data. The mutual dependence

between the time-bins of the current and previous medical events is observed frequently in

sections of the text describing the history of the patient. Around 40% of the medical events

in gold standard corpus demonstrate such dependencies.

4.4.3 Feature Space

We extract features from medical event sequences found in each clinical narrative. The

extracted feature-set captures narrative structure in terms of the narrative type, sections,

section transitions, and position in document. The medical event and the context in which

it is mentioned is captured with the help of lexical features. The temporal features resolve
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temporal references and associate medical events with temporal expressions wherever pos-

sible.

Section-based features. Determining the document-level structure of a clinical narrative is

useful in mapping medical events to time-bins. This can be achieved by identifying differ-

ent sections in different types of clinical narratives and relating them to different time-bins.

Commonly found sections in discharge summaries and history and physical reports include:

“past medical history,” “history of present illness,” “findings on admission,” “physical ex-

amination,” “review of systems,” “impression,” and “assessment/plan.”Some clinical notes

like cn2 in Figure 4.2 may not have any section information.

The combined feature representing the type of clinical narrative along with the sections

can be informative. Section transitions may also indicate a temporal pattern for medi-

cal events mentioned across those sections. For e.g., “past medical history” (way before

admission), followed by “history of present illness” (way before admission), followed by

“findings on admission” (on admission), followed by “physical examination” (after ad-

mission), followed by “assessment/plan” (discharge). Medical events in different types of

sections may also exhibit different temporal patterns. A “history of present illness” section

may start with diseases and diagnoses 30 years ago and then proceed to talk about them

in the context of a medical condition that happened few years ago and finally describe the

patient’s condition on admission.

In addition to the section information, we also use other features extracted from the

clinical narrative structure such as the position of the medical concept in the section and in

the narrative.

Lexical features. Bigrams are pairs of words that occur in close proximity to each other,

and in a particular order. The bigrams preceding the medical event in the narrative can
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be useful in determining when it occurred. For instance, “history of cocaine use and

hypertension,” “presents with chest pain,” “have chest pain,” “since the episode,” etc. If

the preceding bigram contains a verb, we also extract the tense of the verb as a feature.

However, tense is not always helpful in learning the time of occurrence of a medical event.

Consider the following line from cn2 in Figure 4.2, “He has hidradenitis of both axilla

resected.” Though “has” is in present tense, the medical event has actually occurred in the

history and is only being observed and noted now. Additionally, we also explicitly include

the preceding bigrams and the tense of verb for the previous and next medical event as a

feature for the current medical event.

Every medical event that occurs above a certain frequency threshold in all the clinical

narratives of a particular patient is also represented as a binary feature. More frequent

medical events tend to occur in the history of the patient, for example, cocaine use. We

use a threshold of 3 in our experiments. The medical event frequency in also calculated in

combination with other features such as the type of clinical narrative and section type.

Dictionary features. We map each medical event to the closest concept in the UMLS

Metathesaurus and extract its semantic category. The semantic categories in UMLS include

“Finding,” “Disease or Syndrome,” “Therapeutic or Preventative procedure,” “Congenital

abnormality,” and “Pathologic Function.” The intuition behind this is that medical events

associated with certain semantic categories may be more likely to occur within certain

time-bins. For instance, a medical event classified as “Congenital abnormality” may be

more likely to occur way before admission.

Temporal features. Temporal features are derived from any explicit dates that are in the

same sentence as the medical concept. The gold-standard corpus contains annotations for

temporal anchors for events. Although there are no explicit dates in cn1 and cn2, there
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may be narratives where there are mentions of dates such as fever on June 7th, 2007. In

some cases, there may also be indirect references to dates, which tell us when the medical

event occurred. The reference date with respect to which the indirect temporal reference

is made depends on the type of note. In case of history and physical notes, the reference

date is usually the admission date. For instance, in chest pain which started 2 days ago,

this would mean chest pain which started 2 days before admission. Since the admission

date is 06/03/2007 (3rd June 2007), chest pain would have started on 06/01/2007 (1st June

2007). Similarly, 3 to 4 months ago resolves to February 2007 or March 2007 and 2 to 3

weeks ago resolves to first or second week of May 2007. Whenever the exact date is fuzzy,

we assume the date that is farthest from the reference date as accurate. So in case of these

examples, February 2007 and first week of May 2007 are assumed to be correct. We also

calculate the difference between admission date and these dates associated with medical

events. Another fuzzy temporal expression is “history of,” where history could mean any

time frame before admission. We assume that any medical event mentioned along with

“history of” has occurred way before admission.

4.5 Experiments

We use the gold-standard corpus described in Chapter 3, Section 3.9 for our experi-

ments. We conduct two sets of experiments with the clinical narratives in this corpus: 1)

Medical event, time-bin experiments using hand-tagged features from the corpus and 2)

Medical event, time-bin experiments using automatically extracted features from the cor-

pus.

We first conducted experiments using the hand-tagged features in our corpus. We ex-

tracted the features described in the previous sections and used 10-fold cross validation.

80



We use the Mallet11 implementation of CRFs and MaxEnt. CRFs are trained by Limited-

Memory Broyden-Fletcher-Goldfarb-Shanno (BFGS) for our experiments. The per-class

accuracy values of both sequence tagging using CRFs and using a MaxEnt model are indi-

cated in Table 4.1.

When modeled as a multi-class classification task using MaxEnt, we get an average

precision of 81.2% and average recall of 71.4% whereas using CRFs we obtain an aver-

age precision of 89.4% and average recall of 79.2%. In order to determine the utility of

temporal features, we do a feature ablation study with the temporal features removed. In

this case the average precision of the CRF is 79.5% and average recall is 67.2%. Similarly,

when we remove the section-based features, the average precision of the CRF is 82.7% and

average recall is 72.3%. The section-based features seems to impact the precision of the on

admission and after admission time-bins the most.

We compare our approach for classifying medical events to time-bins with the following

rule-based baseline. We assign medical events to time-bins based on the type of narrative,

any explicit dates and section in which they occur. Each section is associated with a pre-

defined time-bin. In the case of the sections in cn1, any medical event under “history of

present illness” is before admission, “review of systems” is after admission and “assess-

ment/plan” is discharge. If the narrative has a “past medical history” or a similar section,

the events mentioned under it would be assigned to way before admission However, this

baseline does not work for clinical narratives like 4.2 that do not have section information.

This model gives us an average precision of 58.02% and average recall of 60.26% across

the 5 time-bins. Per-class predictions for the baseline are shown in Table 4.1.

11http://mallet.cs.umass.edu
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Class (time-bin) Section baseline MaxEnt CRF
P R P R P R

way before admission 56.3 61.4 72.4 63.5 79.8 66.7
before admission 60.2 57.5 83.4 80.8 92.0 92.4
on admission 63.8 59.1 76.6 72.1 87.5 75.2
after admission 57.5 68.2 88.6 82.1 93.6 99.1
after discharge 52.3 55.1 85.2 58.7 94.3 62.5

Table 4.1: Time-bin predictions by the section baseline method and per-class precision (P)
and recall (R) for medical events, time-bins using hand-tagged extracted features.

The most common false positives for the before admission class are medical events

belonging to on admission. This may be due to lack of temporal features to indicate that

the event happened on the same day as admission. Frequently, medical events that belong

to the aa, ba and wa time-bin get classified as after discharge. One of the reasons for this

could be misleading section information in case of historical medical events mentioned in

the assessment/plan section.

Next, we conduct experiments using automatically extracted features. This is done as

follows. The medical events are extracted using MetaMap Aronson [2001], which recog-

nizes medical concepts and codes them using UMLS. Based on this UMLS code, we can

extract the semantic category associated with the code. Compared to the 1854 medical

events marked by the annotators, MetaMap identifies 1257 medical events, which are a

subset of the 1854. The UMLS coding by the annotators is more contextually relevant and

precise.

We use a rule-based algorithm to identify and extract document structure based features

such as sections from clinical narratives. In case of the lexical features, we extract bigrams

and calculate the tense of the verb preceding the medical event using the Stanford NLP
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Gold-standard Features
P R

medical event 81.2 71.4
CRF 89.4 79.2
CRF (no temp. feats) 79.5 67.2
CRF (no section feats) 82.7 72.3

Automatic Features
P R

medical event 74.3 66.5
CRF 79.6 69.7
Baseline (P;R) 58.0 60.3

Table 4.2: Overall Result Summary: Average precision (P) and recall (R) with manually
annotated gold-standard features, automatically extracted features and the baseline.

software.12 The temporal features are extracted with the help of TimeText developed by

Zhou and Hripcsak [2007] that automatically annotates temporal expressions in clinical

text. However, it is not able to capture many of the implicit temporal references. Following

this, a temporal expression is linked to a medical event if it occurs in the same sentence as

the medical event.

The average precision and recall of the MaxEnt model using automatically extracted

features is 74.3% and 66.5% respectively. Sequence tagging using CRFs gives us an av-

erage precision and recall of 79.6% and 69.7% respectively. Although the results are not

as good as using hand-tagged features, they are certainly promising. One reason for the

loss in accuracy could be because the automatically calculated temporal features are not as

precise as the hand-tagged ones. These results are summarized in Table 4.2.

12http://nlp.stanford.edu/software
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4.6 Discussion

Consider the clinical narratives cn1 and cn2 in Figures 4.1 and 4.2. The medical events

assigned to time-bins allow us to derive a coarse temporal order between medical events

within and across the longitudinal medical history of the patient. Since we learn time-

bins centered around admission in each narrative and we also know the admission date and

perhaps the discharge dates in cn1 and cn2, we can derive a coarse partial order across the

medical events in cn1 and cn2 (Figure 4.4). Even if the discharge date is not known, we

still know that the admission date A1 of cn1 is 6/03/2007 and A2 of cn2 is 06/17/2007.

Thus, A2 > A1, and all the time-bins in cn2 that are on or after admission would have

happened after A2. The overall partial ordering can now be mined for coarse temporal

patterns between symtoms, diseases, medications and tests for applications like adverse

drug reaction mining and clinical decision making.

The simplified medical event “point” representation allows learning of a highly accu-

rate coarse temporal relations, using gold standard annotations for medical events, as seen

in Table 4.2. However, even if medical event annotations are unavailable, we demonstrate

that the same methodology could be applied after extracting medical events using MetaMap

[Aronson, 2001] and temporal expressions using TimeText [Zhou et al., 2006]. Shown in

Table 4.2, are the results for assigning medical events to time-bins using automatic tools

for annotating medical events and temporal expressions. We observe that the sequence

tagger doesn’t perform as well as it does with the gold-standard annotations for these el-

ements. This is because MetaMap has certain limitations in terms of mapping medical

events in text to UMLS concepts. While annotators map phrases in the text to contexually

relevant UMLS concepts, MetaMap provides a list of possible UMLS concepts for a word

or a phrase, which may not always be contexually relevant. Further, if we depend only on

84



    A1 D1 

   A2 D2 

cocaine use 
 
hypertension 

 chest pain 
  
abscess 

chest 
pain 
  
     
 
arm  
infection 

heart regular  
rhythm 

cellulitis 

2-D 
echocardiogram 

stress test 

MRSA 
positive 

hidradenitis of axilla  
resected 
 
 
MRSA in the axilla for 
hidradenitis 

wounds 

wound vac 

IV antibiotics 

alginate cocaine use 
 
hypertension 

way before before admission after discharge 

before admission after discharge 
way before 

p1-cn1 

p1-cn2 

Figure 4.4: Medical events in clinical narratives cn1 and cn2 for patient p1 assigned to
time-bins. A1 is the admission date in cn1 and D1 is the discharge date. Similarly A2 is
the admission date in cn2 and D2 is the discharge date. Thus, we have, A1 < D1, D1 <
A2, A2 < D2

TimeText for temporal cues, and associate the cues to medical events based on some heuris-

tics, it increases the margin of error. This is because the correct temporal expression may

or may not get anchored to a particular medical event. Inspite of these limitations, the au-

tomatic feature provide a reasonable accuracy of 79.6% precision and 69.7% recall. This is

promising as with newer tools for medical concept extraction, such as HealthTermFinder13

by Columbia, the gap between medical concept extraction with gold-standard vs. automatic

feature extraction may be bridged.

13http://projects.dbmi.columbia.edu/nlp/healthtermfinder
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4.7 Conclusion

We investigate the task of classifying medical events in clinical narratives to coarse

time-bins. We describe document structure based, lexical and temporal features in clinical

text and explain how these feature are useful in time-binning medical events. The extracted

feature-set when used in a sequence tagging framework with CRFs gives us high accuracy

when compared with a section-based baseline or a MaxEnt model. We also experimented

with hand-tagged vs. automatically extracted features for this task and observe that while

automatically extracted features show promising results, they are not as good as using

hand-tagged features for this task.

The learned time-bins can be used as an informative feature for tasks such as medical

event coreference resolution (Chapter 5) and fine-grained temporal ordering of medical

events (Chapter 6). The time-bins also allow us to generate a coarse partially ordered

timeline of medical events across the patient’s history.

The next logical step would be to deepen the granularity of temporal relation learn-

ing and order medical events within time-bin in each clinical narrative. The characteristic

of information redundancy in clinical narratives implies that there may be multiple ref-

erences to the same medical event in the same time-bin (provided the classification has

be learned accuractely). Resolving these references and identifying coreferring medical

events in time-bins helps associate medical events with more temporal features (if multiple

mentions of the same medical events co-occur with temporal expressions that help resolve

their time of occurence) and perform better fine-grained temporal ordering. To this end, we

now address the problem of medical event coreference resolution in the next chapter.
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CHAPTER 5: COREFERENCE RESOLUTION IN CLINICAL
TEXT

Information redundancy is a fundamental concept that is essential to automated infor-

mation integration, relationship learning between entities, and inference. In the context

of the electronic health record, redundant information arises both within and across clin-

ical data sources. The tendency to copy and paste an old clinical note and edit parts of

it whenever a new note is generated, gives rise to multiple mentions of the same medical

event across notes. Moreover, the tendency to summarize past information in the context

of newer medical events also results in multiple mentions of the medical event both within

and across clinical narratives. The ability to resolve multiple mentions of the same medical

event not only helps identify unqiue medical events in the patient’s history, but also acts as

a useful anchor in infereing relationships between medical events across narratives.14

5.1 Introduction

Coreference resolution in clinical text refers to the problem of identifying all medical

events that refer to the same medical event. Medical events are a cover-term for medical

concepts including entities, events or states associated with the patient’s medical condition

and healthcare. These include medical conditions, drugs administered, diseases, procedures

14This work has been previously published in NAACL 2012. P. Raghavan, E. Fosler-Lussier, and A. Lai,
“Exploring Semi-Supervised Coreference Resolution of Medical Concepts using Semantic and Temporal
Features,” North American Association for Computational Linguistics Annual Meeting - Human Language
Technologies Conference (NAACL HLT), 2012.
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and lab tests, as well as normal health situations like pregnancy affecting the patient’s

health.

The large number of clinical narratives generated per patient, adds to the complexity

of the challenge. Consider the example of a patient suffering from chronic lymphocytic

leukemia (CLL). Such a patient may have been admitted to the hospital or have visited

the clinic numerous times over the years. Every hospital stay leads to the generation of

clinical narratives documenting patient history, medical conditions on admission, progress

during the hospital stay, discharge and possibly an assessment plan after discharge. Redun-

dant medical events may be found across various clinical narratives describing the patient’s

medical history, or when a physician describes lab and radiology results in the context of

the present illness. Extracting and unambiguously resolving such clinical references to

the same medical condition, diagnosis or procedure is extremely important in processing

clinical text for various clinical applications.

Machine learning models for addressing this problem require gold-standard annota-

tions for medical event coreferences for training and evaluation purposes. However, ob-

taining coreference annotations within and across clinical narratives is a tedious and time-

consuming task. Moreover, since the annotations are credible only when marked by medi-

cal domain experts (physicians, medical or nursing students), this places more constraints

on the annotation process. One way to address this problem is to try and leverage lim-

ited annotated data to train models for coreference resolution in a semi-supervised manner.

Thus, in this chapter, we explore the application of certain semi-supervised resolution mod-

els for coreference resolution and compare its performance to using a supervised learning

model.
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5.2 Contributions

We investigate the task of resolving references to the same medical event in the clinical

narratives of a patient using supervised and semi-supervised methods. Our main contribu-

tions are as follows:

• Since manual coreference annotation of patient narratives is a slow and expensive

process and publicly available datasets are difficult to acquire (at the time of this

work), we study the application of semi-supervised methods, co-training and using

expectation constraints with posterior regularization, to medical event coreference

resolution.

• We work with the hypothesis that if two medical events have the same meaning and

have occurred at the same time, there is a very high probability that they corefer.

Based on this hypothesis, we explain extraction of semantic and temporal feature

sets that are effectively used for medical event coreference resolution.

• We demonstrate that the semi-supervised methods perform comparably with super-

vised learning for pairwise medical event coreference using a MaxEnt classifier, with

the help of corpora created from the New England Journal of Medicine (NEJM) and

clinical narratives obtained from the Ohio State University Wexner Medical Center.

5.3 Related Work

Coreference resolution is a well-studied problem in computational linguistics [Ng, 2010;

Raghunathan et al., 2010a; Soon et al., 2001]. There has been recent interest in corefer-

ence resolution in the clinical domain with standard supervised approaches to noun phrase

coreference resoltuion [Soon et al., 2001] being applied to medical events and anaphora
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[He, 2007; Zheng et al., 2012]. Medical NLP systems like Mayo’s cTakes [Savova et al.,

2010b], IBM’s MedKAT,15 and MedLEE [Chiang et al., 2010], have components specif-

ically trained or designed for the clinical domain, to support tasks such as named entity

recognition. However, other than cTakes, which recently introduced a module for coref-

erence resolution, none of the other systems provide solutions for this problem. Recently,

the i2b2 challenge16 on coreference resolution examined coreference resolution in clini-

cal data. The problem addressed in our paper is similar to the task described in the i2b2

challenge.17 However, the participating systems are not available publicly for comparison.

A disadvantage of supervised methods is the need for an unknown amount of anno-

tated training data for optimal performance. We investigate the applicability of two weakly

supervised methods, co-training [Blum and Mitchell, 1998] and posterior regularization

[Ganchev et al., 2010] to the task of medical event coreference resolution using semantic

and temporal views. We annotate a corpus of clinical narratives to tag medical events, tem-

poral relations, and coreference information. We use this corpus as a gold standard to evalu-

ate the proposed approach to resolving coreferences between medical events in clinical text.

Creating annotated clinical corpora is tedious, time consuming, and costly, as it requires

experts with medical domain knowledge. Thus, the ability to train semi-supervised models

with limited labeled data for medical event coreference resolution would be of tremendous

value to the clinical community.

To summarize, we study the problem of intra and cross-narrative coreference resolution

on longitudinal patient data using relatedness between medical events in terms of semantics

15https://cabig-kc.nci.nih.gov/Vocab/KC/index.php/OHNLP

16https://www.i2b2.org/NLP/Coreference/

17https://www.i2b2.org/NLP/Coreference/assets/CoreferenceGuidelines.pdf
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and time. Further, we importantly demonstrate that this task gives us reasonable results

even when modeled as a semi-supervised problem.

5.4 Medical Event Coreference Resolution

Problem Formulation. Consider a corpus of clinical narratives, where multiple clinical

narratives are associated with each patient. If Pi, i ∈ {1, 2, ..., n} where n is the number

of patients in corpus, then for each Pi, we have a set of associated clinical narratives. Each

clinical narrative in turn has a set of medical events. Thus, each Pi has a set of associated

medical events, M = {M1,M2,M3, ..} that occur within each clinical narrative as well as

across clinical narratives for that Pi. We study the problem of medical event coreference

resolution of all medical events in M for each Pi. The pipeline consisting of semantic

and temporal feature extraction and application of semi-supervised learning algorithms

is illustrated in Figure 5.1. We describe in detail the components of the pipeline in the

following sections.

5.4.1 Semantic and Temporal Features

We extract features based on semantic and temporal relatedness for each pair of med-

ical events. Semantic relatedness measures closeness between medical events in terms of

their meaning. This is quantified by measuring distance between medical events in the

UMLS Metathesaurus graph structure [Xiang et al., 2011]. Temporal relatedness measures

the closeness between medical events in terms of when they occurred. This is achieved by

first learning to assign every medical event to a time-bin, and then using the time-bin as

a feature for learning to resolve coreferences. Extracting semantic and temporal features

helps identify conditionally independent views of the data for co-training classifiers. As
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Figure 5.1: Medical event coreference resolution pipeline: Extract semantic and temporal
features from clinical text to train MaxEnt classifiers using 1) Co-training or 2) Posterior
Regularization

previously noted by [Nigam and Ghani, 2000], it is hard to identify conditionally indepen-

dent views for real-data problems. However, we believe there are no natural dependencies

between the semantic and temporal feature sets. While semantic features help identify syn-

onymous medical events, that alone may not guarantee coreference. Medical events that

are similar in meaning, but dissimilar in terms of their time of occurrence, most probably

do not corefer. Similarly, medical events that occur during the same time duration but are

dissimilar in terms of meaning, most probably do not corefer.

Semantic Relatedness. We leverage the UMLS to derive a semantic relatedness score

between medical events. The UMLS codifies concepts found in various medical vocabular-

ies (e.g., ICD18 and SNOmedical eventD-CT19) and includes relationships between various

concepts. The medical events and their relationships are modeled in a graph structure.

We use the k-Neighborhood decentralization method (kDLS) [Xiang et al., 2011] to in-

dex and transitively traverse associated relations between concept unique identifiers (CUIs)

in the UMLS graph. The UMLS uses semantic relations to mark the available links between

18http://www.cdc.gov/nchs/icd.htm

19http://www.ihtsdo.org/snomed-ct/
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two concepts. Around 2,404,937 CUIs and 15,333,246 links between them are seen in the

full UMLS graph structure. The kDLS method is shown to outperform both breadth-first

and depth-first search in terms of speed and various other measures in finding important

information, such as reachability, distance, and a summary of paths, between two concepts

in the UMLS graph structure. The relation between two concepts Mj (denoted by x) and

Mk (denoted by y) is measured as follows.

R(x, y) =
∑

p∈D(x,y)

1

γlength(p)−1
+
∑

q∈D(y,x)

1

γlength(q)−1

where D(x, y) is the set of paths from x to y and D(y, x) is the set of paths from y to

x obtained using the kDLS method, excluding paths with length equal to 1. In order to

make the measurement between medical events unbiased against the available links in the

UMLS that directly connect them, the paths with length 1 (direct connection between the

two concepts in the UMLS) between them are not counted. Each path’s contribution to

the relation score R(x, y) is determined by its length and γ. γ is varied between 1 to 50;

if γ is set to 1, then all paths contribute equally to R irrespective of their lengths. When

γ increases, more weight will be placed on the short paths as opposed to the long paths.

[Xiang et al., 2011] observe several fold enrichment values when γ is varied between 5 and

15.

Besides traversing the UMLS graph structure using the kDLS method to obtain a sim-

ilarity score between medical events, we also measure similarity between medical events

by taking into account the surrounding context. We do so by measuring the KL-divergence

between the sentences to which the medical events belong. In order to avoid the possibility

of an empty set when calculating the intersection of the probability distributions, we use a

smoothing method that makes the probability distributions sum to 1 [Brigitte, 2003].
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Another important semantic feature is the type of relation between the medical events.

This feature is calculated by first computing the stemmed word overlap between the medi-

cal events and deriving features based on exact and partial matches between the word stems

of the medical events. If there is no exact or partial match between the concepts, we query

the UMLS to check if the stem of one of the medical events occurs in the UMLS definition

or atoms of the other medical event. An atom is the smallest unit of naming within the

UMLS. A medical event in UMLS represents a single meaning and contains all atoms in

the UMLS that express that meaning in any way, whether formal or casual, verbose or ab-

breviated. All the atoms within a concept are synonymous. Besides the described features,

we also include the UMLS semantic category of each medical event and the WordNet20

similarity score between sentences containing the medical event.

Temporal Relatedness. Clinical text is frequently characterized by temporal expressions

co-occurring with medical events [Zhou and Hripcsak, 2007]. For instance, two days ago,

fever started 4 days before rash, July 10th, 2010 etc. The ability to associate medical events

with temporal expressions helps order medical events and determine potential temporal

overlap between them. This in turn could be a powerful discriminatory feature in medical

event coreference resolution. Consider the medical event chest pain that occurs multiple

times in a clinical narrative. If these mentions of chest pain have occurred at the same time,

there is a possibility that they all refer to the same instance of the medical event chest pain.

Instead of relying on implicit temporal references that may or may not be evident from

the clinical narrative, we focus on temporal expressions that are found in most clinical

narratives. We do so by leveraging structural properties of clinical narratives such as section

information and explicit temporal information such as admission and discharge dates, to

20http://wordnet.princeton.edu/
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learn to assign medical events to time periods we refer to as time-bins (Chapter 2). The

list of features extracted for the task of medical event coreference resolution include the

following:

• Verb pattern in the sentence in which the medical event occurs.

• Last verb before the medical event in the same sentence.

• Type of clinical narrative.

• Section under which the medical event is mentioned.

• Position of the medical event.

• Dates that fall in the same sentence as the medical event.

• Difference between admission date and the date in the same sentence as the clinical

narrative.

• The learned time-bin of each medical event. We also derive features based on the

overlapping in time-bins for the medical event pair and the nature of time-bin (past,

present, future).

• Difference in verb patterns in the sentences of the medical event pair.

• Difference in dates between the medical event pair.

• UMLS relatedness score between the medical event pair and all the UMLS related

and other features described previously in the semantic relatedness section.

5.5 Weakly Supervised Learning

Co-training. We co-train two MaxEnt classifiers, one each on the semantic features fs

and temporal features ft of the data, to classify pairs of medical events as corefer or no-

corefer in a semi-supervised fashion. We use the co-training algorithm proposed by [Blum

and Mitchell, 1998].
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The assumption here is that each feature set contains sufficient information to train a

model for classification of medical events. Consider the concept pair, {renal inflammation,

posterior uveitis} that corefer. The semantic view for this concept pair may not strongly

indicate coreference. The “UMLS relation type” feature indicates that the two concepts

are not similar in meaning. However, both concepts are mapped to the same time-bin af-

ter admission. Thus, the time-bin along with features extracted based on explicit temporal

expressions co-occurring with the medical events indicate a coreference between the pair

of medical events. Similarly, the semantic view is confident about the coreference of cer-

tain medical event pairs which do not occur in the same time-bin. The classifiers trained

on each view complement each other in the learning process. Thus, we can leverage the

predictions made by each classifier on the unlabeled dataset to augment the training data of

both classifiers.

The co-training algorithm is shown in Figure 5.2. We set a threshold for an unlabeled

sample to be added into the labeled pool. An unlabeled sample is labeled in a particular

iteration, if classifier confidence > 1/number of labels. In the next iteration, randomly

pick a subset of unlabeled samples and label all samples in this subset. This could include

samples that have already been labeled in previous iterations. A label is assigned in a

subsequent iteration if: the sample was previously labeled OR if classifier confidence >

threshold. The parameters in this algorithm are the number of iterations, the pool size

of examples selected from the unlabeled set in each iteration and the number of labeled

examples added at each iteration to the labeled data pool. Similar to Blum and Mitchell

[1998], we update the pool size by 2p + 2n in each iteration, where p is the number of

medical pairs that corefer and n is the number of medical event pairs that do not corefer.
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Function coTrain
Repeat till all unlabeled data is labeled.

1. Train classifier c1 on tf s to obtain model m1

2. Train classifier c2 on tf t to obtain model m2

3. Use m1 to classify a subset of unlabeled data
and update the training data as,
tf s.subset = {usubset1, predicted label}
iff classifier confidence > 1/number of labels

4. Use m2 to classify a subset of unlabeled data
and update the training data as,
tf t.subset = {usubset2, predicted label}
iff classifier confidence > 1/number of labels

5. tf s = tf s + tf t.subset +
{usubset1, predicted label}

6. tf t = tf t + tf s.subset +
{usubset2, predicted label}

Figure 5.2: Co-training [Blum and Mitchell, 1998] for the binary pairwise classification
task of medical event coreference resolution.

c = classifier, u = unlabeled data.
usubset1, usubset2 = subsets of unlabeled data.
usubset1 and usubset2 are mutually exclusive.

F = {fs, ft} is the features space divided into conditionally independent semantic and
temporal feature sets.

tf s = {fs,l} training data consisting of semantic features of a medical event pair along with
class label.

tf t = {ft,l} training data consisting of temporal features of a medical event pair along with
class label.
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Posterior Regularization. The next semi-supervised method applied to medical event

coreference resolution is MaxEnt with posterior regularization using expectation constraints

[Ganchev et al., 2010]. This method incorporates prior knowledge directly on the output

variables during learning. The prior knowledge is expressed as inequalities on the expected

value under the posterior distribution of user-defined constraint features. Thus, posterior

regularization incorporates side-information into unsupervised estimation in the form of

constraints on the model’s posteriors. It is similar to the EM algorithm during learning, but

solves a problem similar to MaxEnt inside the E-Step to enforce the constraints.

Posterior regularization is used to derive a multi-view learning algorithm while speci-

fying constraints that the models should agree on the label distribution. We train MaxEnt

models based on two views of the data, semantic and temporal. This method starts by con-

sidering the setting of complete agreement where there is a common desired output for the

two models and each of the two views is sufficiently rich to predict labels accurately. The

search is restricted to model pairs p1, p2 that satisfy p1(y|x) ≈ p2(y|x), where p1 and p2

each define a distribution over labels. The product distribution p1(y1)p2(y2) is considered

and constraint features are defined such that the proposal distribution q(y1, y2) will have the

same marginal for y1 and y2. There is one constraint feature defined for each label y given

by, φy(y1, y2) = δ(y1 = y)δ(y2 = y), where δ(.) is the 0-1 indicator function. The con-

straint set Q = q : Eq[φ] = 0 requires that the marginals over the two output variables are

identical q(y1) = q(y2). An agreement between two models is defined as agree(p1, p2) =

argmin KL(q(y1, y2)||p1(y1)p2(y2)) | Eq [φ] = 0.

In the semantic feature set, we convert the following feature (described in Section 5.4.1)

into expectation constraints. The type of relation between the pair of medical events, is

derived from matching the word stems and querying the UMLS definition and atoms of
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the medical events. Based on the relation between the medical events (i.e., partial match,

complete match, UMLS definition match, UMLS atom match, and no match), we indicate

the probability of label distribution coref and no-coref. If the relation turns out to be no

match, there is a high probability that the medical events do not corefer. In the temporal

feature set, we convert the features based on time-bins of the medical events in the pair into

expectation constraints.

5.6 Experiments

We use two annotated clinical corpora for our experiments. The first is a small corpus

of 6 chronic lymphocytic leukemia (CLL) case reports extracted from the New England

Journal of Medicine (NEJM) annotated with 722 medical events. The other corpus is the

annotator-generated gold-standard corpus described in Chapter 3, Section 3.9. The clinical

narratives include discharge summaries, radiology and pathology reports. The NEJM case

report is similar to a clinical discharge summary, however it is far more logically coherent

and less noisy as it is consists of carefully written journal articles.

The first step involves extraction of semantic and temporal features for the annotated

medical events, as described in Section 5.4.1 from both corpora. The semantic relatedness

scores are computed using the kDLS [Xiang et al., 2011] method to calculate the relation-

ship between concepts in the UMLS with value of γ set to 7. The type of relation between

medical events is derived by matching word stems in each medical event using the Lucene21

implementation of the Porter stemming algorithm. We query the UMLS Metathesaurus

(UMLS 2011AB) for finding a match between medical event and the UMLS definition or

21http://lucene.apache.org/
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UMLS atoms. The WordNet similarity score is computed using Java API for WordNet

Searching (JAWS).22

Explicit temporal expressions annotated in the corpora are included in our temporal

feature set. Medical events in the NEJM are mostly described temporally relative to the

patient’s admission. Temporal expressions like “3 weeks before admission” are common.

Hence, we use a algorithm parses case reports and identifies the temporal expressions an-

chored to admission. All medical events following such a temporal expression are an-

chored to it until a new temporal expression is encountered. Over 88% of the medical

event-temporal expression associations done with the algorithm above is accurate when

compared with the NEJM gold standard.

We use the learned time-bins (Chapter 4) as a temporal feature. The percentage of

medical events that fall under time-bins “way before admission” and “on admission” are

less than 5%, affecting the learning accuracy of those classes. When modeled as a multi-

class classification task using MaxEnt, we achieve 86% accuracy.

5.7 Results and Discussion

Class NEJM Clinical Narratives
Precision Recall Precision Recall

coref 79.24 94.53 74.81 88.33
no-coref 86.71 90.62 83.92 94.86

Table 5.1: Supervised learning for medical event coreference resolution.

22http://lyle.smu.edu/˜tspell/jaws/
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Class NEJM Clinical Narratives
Co-train Precision Recall Precision Recall
coref 70.32 82.54 69.26 87.31
no-coref 82.54 84.85 71.15 89.44
PR Precision Recall Precision Recall
coref 76.63 90.41 74.81 84.25
no-coref 80.35 89.21 78.93 87.46

Table 5.2: Co-training and posterior regularization (PR) for medical event coreference res-
olution using semantic and temporal feature sets.

We perform the following experiments for medical event coreference resolution: (i)

Supervised learning with a MaxEnt classifier, using the combined semantic and temporal

feature set, (ii) Co-training two MaxEnt models, (iii) Training MaxEnt models with using

posterior regularization.

We use the MaxEnt classifier available in Mallet for (i) and (ii) and the the Mallet

implementation of MaxEnt models with posterior regularization for (iii).

From all the candidate pairs in the clinical narrative corpus, 1025 pairs corefer. We

randomly sample the no-coref instances to reduce the bias towards negative instances. The

results for all 3 experiments for both corpora is shown in Tables 5.1, 5.2. We also train-

test a supervised MaxEnt classifier on a 60-40 split of the entire corpus. This gives us a

precision of 74.81% and 88.33% recall (coref) for the binary classification task of pairwise

medical event coreference resolution in the clinical narratives corpus. In the both the semi-

supervised experiments, we use an initial labeled pool size of 30 where 12 medical event

pairs that corefer (p) and 18 that do not corefer (n). The growth size of each iteration of co-

training is 2p+2n. At each iteration, confidently labeled examples are added to the training

set from the previous iteration. The co-training algorithm is run until all unlabeled instances
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become labeled. The parameters in the posterior regularization implementation include

the regularization penalty for each step and the number of iterations. We use the default

values (maxIterations=100, pGaussianPriorVariance=0.1, qGaussianPriorVariance=1000)

suggested on the Mallet toolkit page [Bellare et al., 2009]. Co-training two MaxEnt models

based on independent semantic and temporal views of the data results in 69.26% precision

and 87.31% recall (coref), whereas training MaxEnt models with expectation constraints

gives us 74.81% precision and 84.25% recall (coref), on the corpus of clinical narratives.

Posterior regularization does better than co-training and the performance of both the semi-

supervised methods is comparable to the supervised classifier trained on a 60-40 split of the

corpus. Thus, our results indicate that the use of semantic and temporal features is effective

for medical event coreference resolution in clinical text. It is clear from the co-training and

posterior regularization results that treating medical event coreference resolution as a semi-

supervised problem works well as demonstrated through our experiments.

5.8 Conclusions

We investigated the task of medical event coreference resolution in clinical text using

supervised and semi-supervised learning methods. We create annotated corpora of clinical

text with case reports from the NEJM and narratives obtained from OSUWMC. We work

with the hypothesis that determining semantic and temporal similarity between medical

events helps resolve coreferences. In order to test this hypothesis, we describe the pro-

cess of semantic and temporal feature extraction from clinical text. We demonstrate the

effectiveness of the extracted features in a supervised binary classification task for medi-

cal event coreference resolution with MaxEnt classifiers (using the combined feature set)

as well as using semi-supervised methods of co-training MaxEnt classifiers and training
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MaxEnt models using posterior regularization (using two independent views of the data -

semantic view and temporal view). Thus, we show that medical event coreference resolu-

tion can be performed using semi-supervised learning with semantic and temporal views

of the data.

Resolving coreferences is critical to the intra- and cross-narrative temporal ordering

tasks. Chapter 6 uses coreference information as a feature in learning temporal relations

within each clinical narrative. Coreference implicitly entails the simultaneous temporal re-

lation and no-coreference entails relationships like before, after. Frequently, coreference

information is the only useful indicator that helps determine cross-narrative temporal or-

dering as seen in Chapter 7.
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CHAPTER 6: INTRA-NARRATIVE TEMPORAL ORDERING

Reasoning about temporal relationships in clinical text could be done at different levels

of temporal granularity. We began by learning temporal relations within a clinical narra-

tives by learning to assign medical events to coarse time-bins in Chapter 4. Now, with

the help of these learned time-bins and coreference information (Chapter 5), we enable

fine-grained temporal relation learning between medical events within the same clinical

narrative. In doing so, we also demonstrate the need for novel NLP methods that are better

suited to addressing problems in the clinical domain, by comparing our methods on both a

corpus of clinical narratives and Timebank [Pustejovsky et al., 2003a].23

6.1 Introduction

There has been considerable research on learning temporal relations between events in

natural language. Most learning problems try to classify event pairs as related by one

of Allen’s temporal relations [Allen, 1981], i.e., before, simultaneous, includes/during,

overlaps, begins/starts, ends/finishes and their inverses [Mani et al., 2006]. The Timebank

corpus, widely used for temporal relation learning, consists of newswire text annotated

for events, temporal expressions, and temporal relations between events using TimeML

[Pustejovsky et al., 2003a]. In Timebank, the notion of an “event” primarily consists of

23This work has been published in ACL 2012. P. Raghavan, E. Fosler-Lussier, and A. Lai, “Learning to
Temporally Order Medical Events in Clinical Text,” (Short Paper) Association for Computational Linguistics
Annual Meeting (ACL), 2012.
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verbs or phrases that denote change in state. This varies from the notion of a “medical

event” which mainly consists of noun phrases and nominals.

We study the problem of learning temporal relations between medical events in clin-

ical text. The idea of a medical “event” in clinical text is very different from events in

Timebank. Medical events are temporally-associated concepts in clinical text that describe

a medical condition affecting the patient’s health, or procedures performed on a patient.

Learning to temporally order events in clinical text is fundamental to understanding pa-

tient narratives and key to applications such as longitudinal studies, question answering,

document summarization and information retrieval with temporal constraints. We propose

learning temporal relations between medical events found in clinical narratives by learn-

ing to rank them. This is achieved by representing medical events as time durations with

starts and stops and ranking them based on their proximity to the admission date.24 This

implicitly allows us to learn all of Allen’s temporal relations between medical events.

6.2 Contributions

Researchers have successfully demonstrated how temporal relations between events can

be learned from such a corpus in a multi-class classification framework using features of

events like tense, aspect and part of speech [Mani et al., 2006; Chambers et al., 2007].

However, there may be a need to rethink how we learn temporal relations between events

in different domains. Timebank, its features, and established learning techniques like clas-

sification, may not work optimally in many real-world problems where temporal relation

learning is of great importance. We establish the need to rethink the methods and resources

used in temporal relation learning, as we demonstrate that the resources widely used for

24The admission date is the only explicit date always present in each clinical narrative.
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learning temporal relations in newswire text do not work on clinical text. When we model

the temporal ordering problem in clinical text as a ranking problem, we empirically show

that it outperforms classification; we perform similar experiments with Timebank and ob-

serve the opposite conclusion (classification outperforms ranking).

Moreover, the fine-grained intra-narrative temporal ordering along with explicit dates

in the narrative can be used to generate a partially ordered timeline across all clinical nar-

ratives for a patient. This timeline may be sufficient to help clinical applications that do not

require fine-grained resolution of cross-narrative temporal relationships.

6.3 Related Work

The Timebank corpus provides hand-tagged features, including tense, aspect, modality,

polarity and event class. There have been significant efforts in machine learning of temporal

relations between events using these features and a wide range of other features extracted

from the Timebank corpus [Mani et al., 2006; Chambers and Jurafsky, 2008; Lapata and

Lascarides, 2006]. The SemEval/TempEval [Verhagen et al., 2009] challenges have often

focused on temporal relation learning between different types of events from Timebank.

Zhou and Hripcsak [2007] provide a comprehensive survey of temporal reasoning with

clinical data. There has also been some work in generating annotated corpora of clinical

text for temporal relation learning [Roberts et al., 2008; Savova et al., 2009]. However,

none of these corpora are freely available. Zhou et al. [2006] propose a Temporal Constraint

Structure (TCS) for medical events in discharge summaries. They use rule-based methods

to induce this structure.

We demonstrate the need to rethink resources, features and methods of learning tempo-

ral relations between events in different domains with the help of experiments in learning
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temporal relations in clinical text. Specifically, we observe that we get better results in

learning to rank chains of medical events to derive temporal relations (and their inverses)

than training a classifier for the same task.

The problem of learning to rank from examples has gained significant interest in the

machine learning community, with important similarities and differences with the problems

of regression and classification [Joachims et al., 2007]. The joint cumulative distribution

of many variables arises in problems of learning to rank objects in information retrieval

and various other domains. To the best of our understanding, there have been no previous

attempts to learn temporal relations between events using a ranking approach.

6.4 Learning Temporal Relations using Ranking

We model the temporal relation learning problem as a ranking task, where the rank of a

medical event corresponds to its relative temporal order in the clinical narrative. To enable

the use of a ranking model, it is first important to represent medical events appropriately.

Given the point-based notation for medical events used in Chapter 4, if we use a ranking-

based model to rank each point (medical event) by its relative time of occurrence, we will

be able to learn only the temporal relations before, after, simultaneous between medical

events. In order to enable the learning all of Allen’s temporal relations, i.e. before, after,

starts with, finishes with, during, overlaps (and their inverses) between medical events

using a ranking model, we describe an alternate interval-based event representation.

6.4.1 Representation of Medical Events

Clinical narratives contain unstructured text describing various medical events includ-

ing conditions, diagnoses and tests in the history of a patient, along with some information

on when they occurred. Much of the temporal information in clinical text is implicit and
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embedded in relative temporal relations between medical events. Medical events are tem-

porally related both qualitatively (e.g., paresis before colostomy) and quantitatively (e.g.

chills 1 month before admission). Relative time may be more prevalent than absolute time

(e.g., last 1 month, post colostomy rather than on July 2007). Temporal expressions may

also be fuzzy where history may refer to an event 1 year ago or 3 months ago. The relation-

ship between medical events and time is complicated. Medical events could be recurring

or continuous vs. discrete date or time, such as fever vs. blood in urine. Some are long

lasting vs. short-lived, such as cancer, leukemia vs. palpitations.

We represent medical events of any type in terms of their time duration. The idea of

time duration based representation for medical events is in the same spirit as the Temporal

Constraint Structure(TCS) [Zhou et al., 2006]. We break every medical event me into

me.start and me.stop (in essence making every event 2 events). Given the ranking of all

starts and stops, we can now compose every one of Allen’s temporal relations [Allen, 1981].

If it is clear from context that only the start or stop of a medical event can be determined,

then only that is considered. For instance, “history of paresis secondary to back injury who

is bedridden status post colostomy” indicates the start of paresis is in the past history of

the patient prior to colostomy. Its exact date or stop time (if any) may not be clear from

a single narrative. We only know about paresis.start relative to other medical events and

may not be able to determine paresis.stop. For recurring and continuous events like chills

and fever, if the time period of recurrence is continuous (last 1 month), we consider it to

be the time duration of the event. If not continuous, we consider separate instances of the

medical event. For medical events that are associated with a fixed date or time, the start

and stop are assumed to be the same (e.g., polymicrobial infection in the blood as well as in

the urine in July 2007). In case of negated events like no cough, we consider cough as the
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medical event with a negative polarity. Its start and stop time are assumed to be the same.

Polarity allows us to identify events that actually occurred in the patient’s history.

6.4.2 Data Characteristcs and Feature Generation

Given a patient with multiple clinical narratives, our objective is to induce a partial

temporal ordering of all medical events in each clinical narrative based on their proximity

to a reference date (admission).

Data Characteristics. The training data consists of medical event chains, where each

chain consists of an instance of the start or stop of a medical event belonging to the same

clinical narrative along with a rank. The assumption is that the medical events in the same

narrative are more or less semantically related by virtue of narrative discourse structure and

are hence considered part of the same medical event chain. The rank assigned to an instance

indicates the temporal order of the event instance in the chain. Multiple medical events

could occupy the same rank. Based on the rank of the starts and stops of event instances

relative to other event instances, the temporal relations between them can be derived as

indicated in Figure 6.1. Our corpus for ranking consisted of 91 clinical narratives obtained

from the medical center and annotated with medical events, temporal expressions, relations

and event chains.

Thus, we extracted 91 medical event chains across 7 patients. The distribution of med-

ical events across event chains and chains across patients (p) is as as follows. p1 had 5

chains with 125 medical events, p2 had 9 chains with 90 medical events, p3 had 20 chains

with 488 medical events, p4 had 13 chains with 318 medical events, p5 had 8 chains with

220 medical events, p6 had 10 chains with 136 medical events, and p7 had 15 chains with

297 medical events.
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e1 before e2 

e1 overlaps e2 

e1 during e2 

e1 starts with e2 

e1 equals e2 

< e1.start e1.stop e2.start e2.stop 

e1.start e1.stop e2.start e2.stop 

e1.start e1.stop e2.start e2.stop 

e1.start e2.start e2.stop e1.stop 

e1.start e1.stop e2.stop e2.start 

e1.start e2.start e2.stop e1.stop 

< < 

< < < 

< < < 

< < ~ 

~ < < 

~ ~ < 

e1 finishes with e2 

Figure 6.1: The start/ stop notation allows learning temporal relations between events by
ranking the starts and stops using before (<), after (>) and simultaneous(∼) relations. This
also maps to learning pairwise ranking constraints between the medical events.

Feature Generation. We construct a vector of features, from the manually annotated

corpus, for each medical event instance. Although there is no real query in our set up, the

admission date for each chain can be thought of as the query “date” and the medical events

are ordered based on how close or far they are from each other and the admission date.

The features extracted for each medical event include the the type of clinical narrative,

section information, medical event polarity, position of the medical concept in the narrative

and verb pattern. We extract temporal expressions linked to the medical event like history,

before admission, past, during examination, on discharge, after discharge, on admission.

Temporal references to specific times like next day, previously are resolved and included

in the feature set. We also extract features from each temporal expression indicating its

closeness to the admission date. Differences between each explicit date in the narrative is
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also extracted. The UMLS [Bodenreider, 2004] semantic category of each medical concept

is also included based on the intuition that medical events of a certain semantic group may

occur closer to admission. We tried using features like the tense of medical event or the

verb preceding the medical event (if any), part-of-speech (POS) tag in ranking. We found

no improvement in accuracy upon their inclusion.

A list of the features used are as follows.

• Verb pattern in the sentence in which the medical concept occurs.

• Last verb before the medical concept in the same sentence.

• Type of clinical narrative.

• Section under which the medical concept is mentioned.

• Section under which the medical concept is mentioned.

• Position of the medical concept within the section.

• Sentence number of the medical concept in the entire clinical narrative

• Temporal expressions linked to the medical event. Examples include history, before

admission, past, during examination, on discharge, after discharge, on admission.

Temporal references to specific times like next day, previously are resolved and in-

cluded in the feature set. We also extract features from each temporal expression

indicating its closeness to the admission date.

• Dates that fall in the same sentence as the medical concept.

• Difference between admission date and the date in the same sentence as the medical

concept. This is the only query (admission date) dependent feature.

• UMLS semantic category of the medical event. The intuition behind this feature is

that medical events of a certain semantic group may occur closer to admission.
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Importantly, the learned time-bins for each medical event (described in Chapter 4) are

also used to derive a set of features for each medical event. These features include binary

feature for each pair of medical events indicating whether they belong to the same time-bin,

rank assigned to the time-bin (way-before admission < before admission < on-admission

< after-admission < after-discharge).

The learned coreference information is also used as a feature in order to bias the ranking

model towards assigning the same rank to events that corefer, and different ranks to events

that do not corefer.

6.5 Ranking Model, Experiments and Results

We ran ranking experiments using SVM-rank [Joachims, 2006], and based on the rank-

ing score assigned to each start/stop instance, we derive the relative temporal order of

medical events in a chain.25 This in turn allows us to infer temporal relations between all

medical events in a chain.

Ranking Model. SVMRank optimizes the area under a ROC curve [Marrocco et al., 2008].

The ROC curve is determined by the true positive rate vs. the false positive rate for varying

values of the prediction threshold. This ranking model is then utilized to rank entities in

a new sample set. Given independently and identically distributed training samples S of

size n containing entities e (as a feature vector of m attributes) with their target ranking r*

the learner will build a ranking model to minimize the ranking error. In linear SVM, this

is equivalent to finding the weight vector so that the maximum number of the following

inequalities is satisfied.

∀(ei, ej) ∈ r∗n : w̄.ei > w̄.ej (6.1)

25In evaluating simultaneous,±0.05 difference in ranking score of starts/stops of medical events is counted
as a match.
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where (ei, ej) ∈ r∗n if ei has been ranked higher than ej based on the target rank r∗n

The weight vector is first computed and then used for ranking a new sample of n new

entities.

Results. The first baseline (baseline1) for this task is the temporal order of medical

events as they occur in the narrative (natural reading order). We also generate a rule-

based baseline (baseline2) for intra-narrative temporal ordering. We use a deterministic

algorithm, based on the regular expression-based TimeText tagger [Zhou et al., 2006] to

annotate temporal expressions and then anchor them to medical events using the following

procedure:

(i) Parse the document in natural reading order.

(ii) On encountering a temporal expression, anchor all following medical events to this

temporal expression until you encounter the next temporal expression.

(iii) Repeat (i) and (ii) until the end of the narrative.

We now adjust the temporal order in baseline1 based on any explicit and relative temporal

expressions that the medical events are anchored to using the above procedure. These

temporal expressions include dates, and expressions that are relative to these dates like

yesterday, 2 days ago and last week. The natural reading order based baseline1 gives us an

accuracy of 47.3%. This improves to 58.9% accuracy using the rule-based baseline2.

We then ran SVM-rank on the corpus of clinical narratives described in Section 6.4.2.

The ranking error on the test set is 28.2%. On introducing the time-bin feature, the ranking

error drops to 16.8%. The overall accuracy of ranking medical events on including the time-

bin feature is 80.2%. Each learned relation is now compared with the pairwise classification

of temporal relations between medical events. We train a SVM classifier [Joachims, 1999]
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Relation Clinical Text Timebank
Ranking Classifier Ranking Classifier

begins 81.2 73.3 52.6 58.8
ends 76.3 69.8 61.3 82.8
simultenous 85.4 71.3 50.2 56.6
includes 83.7 74.2 59.6 60.7
before 88.3 77.1 61.3 70.4

Table 6.1: Per-class accuracy (%) for ranking, classification on clinical text and Timebank.
We merge class ibefore into before.

with an RBF kernel for pairwise classification of temporal relations. The average classifi-

cation accuracy for clinical text using the same feature set is 71.3%. We used Timebank

(v1.1) for evaluation, 186 newswire documents with 3345 event pairs. We traverse transi-

tive relations between events in Timebank, increasing the number of event-event links to

6750 and create chains of related events to be ranked. Classification works better on Time-

bank, resulting in an overall accuracy of 63.8%, but ranking gives only 55.4% accuracy.

All classification and ranking results from cross validation are presented in Table 6.1.

6.6 Discussion

In ranking, the objective of learning is formalized as minimizing the fraction of swapped

pairs over all rankings. This model is well suited to the features that are available in clin-

ical text. The assumption that all medical events in a clinical narrative are temporally

related allows us to totally order events within each narrative. This may work because

a clinical narrative usually has a single protagonist, the patient. This assumption, along

with the availability of a fixed reference date in each narrative, allows us to effectively ex-

tract features that work in ranking medical events. However, this assumption is not true in

114



newswire text: there tend to be multiple protagonists, and it may be possible to totally order

only events that are linked to the same protagonist. Ranking implicitly allows us to learn

the transitive relations between medical events in the chain. Ranking medical event starts/

stops captures relations like includes and begins much better than classification, primarily

because of the date difference and time-bin difference features. However, the hand-tagged

features available in Timebank are not suited for this kind of model. The features work

well with classification but are not sufficiently informative to learn time durations using

our proposed event representation in a ranking model. Features like “tense” that are used

for temporal relation learning in Timebank are not very useful in medical event ordering.

Tense is a temporal linguistic quality expressing the time at, or during which a state or ac-

tion denoted by a verb occurs. In most cases, medical events are not verbs (e.g., colostomy).

Even if we consider verbs co-occurring with medical events, they are not always accurately

reflective of the medical events’ temporal nature. Moreover, in discharge summaries, al-

most all medical events or co-occurring verbs are in the past tense (before the discharge

date). This is complicated by the fact that the reference time / medical event with respect

to which the tense of the verb is expressed is not always clear. Based on the type of clinical

narrative, when it was generated, the reference date for the tense of the verb could be in

the patient’s history, admission, discharge, or an intermediate date between admission and

discharge. For similar reasons, features like POS and aspect are not very informative in

ordering medical events. Moreover, a feature like aspect requires annotators with not only

a clinical background but also some expert knowledge in linguistics, which is not feasible.
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6.7 Conclusions

Representing and reasoning with temporal information in unstructured text is crucial to

the field of natural language processing and biomedical informatics. We presented a study

on learning to rank medical events. Temporally ordering medical events allows us to induce

a partial order of medical events over the patient’s history. We noted many differences be-

tween learning temporal relations in clinical text and Timebank. The ranking experiments

on clinical text yield better performance than classification, whereas the performance is

the exact opposite in Timebank. Based on experiments in two very different domains, we

demonstrate the need to rethink the resources and methods for temporal relation learning.

On applying the ranking methods described in this chapter to temporally order med-

ical events, we obtain sequences of temporally ordered medical events corresponding to

each clinical narrative. These sequences when combined with the explicit dates like ad-

mission, discharge dates, and note creation date can be used to create a partially ordered

timeline across all narratives of the patient. However, certain applications like multiple

document summarization and clinical trial recruitment may require reasoning about fine-

grained temporal relationships across clinical narratives. Thus, we investigate the problem

of cross-narrative temporal ordering of medical events in the next chapter.
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CHAPTER 7: CROSS-NARRATIVE TEMPORAL ORDERING OF
MEDICAL EVENTS

Cross-narrative temporal ordering of medical events is essential to the task of gener-

ating a comprehensive timeline over a patient’s history. However, reasoning about cross-

document relationships is always challenging in any domain. As Radev [2000] points out,

clusters of topically related documents, containing events that have evolved over time, are

a challenge for natural language processing. For applications like cross-document summa-

rization, combining sentences written by different sources are not likely to read coherently.

In fact, the lack of logical continuity and context in the text across documents is a huge

barrier in effectively reasoning about cross-document relationships between events. In this

chapter, we describe the process of cross-narrative temporal reasoning using coreference

and temporal relations between medical events to combine medical event sequences ob-

tained using the ranking methodology described in Chapter 6.26

7.1 Introduction

Discourse structure, logical flow of sentences, and context play a large part in order-

ing medical events based on temporal relations within a clinical narrative. Cross-narrative

temporal relation ordering is a challenging task as it is difficult to learn temporal rela-

tions among medical events which are not part of the logically coherent discourse of a

26This work has been published in ACL 2014. P. Raghavan, E. Fosler-Lussier, N. Elhadad, and A. Lai,
“Cross-narrative Temporal Ordering of Medical Events,” Association for Computational Linguistics Annual
Meeting (ACL), 2014.
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single narrative. Resolving cross-narrative temporal relationships between medical events

is essential to the task of generating an event timeline from across unstructured clinical

narratives such as admission notes, radiology reports, history and physical reports and dis-

charge summaries. Such a timeline has multiple applications in clinical trial recruitment

[Luo et al., 2011], medical document summarization [Bramsen et al., 2006; Reichert et al.,

2010] and clinical decision making [Demner-Fushman et al., 2009].

Given multiple temporally ordered medical event sequences generated from clinical

narratives in a patient record, how can we combine the events to create a timeline across

all the narratives? The tendency to copy and paste text and summarize past information in

newly generated clinical narratives leads to multiple mentions of the same medical event

across narratives [Cohen et al., 2013]. These cross-narrative coreferences act as impor-

tant anchors for reasoning with information across narratives. We leverage cross-narrative

coreference information along with confident cross-narrative temporal relation predictions

and learn to align and temporally order medical event sequences across longitudinal clin-

ical narratives. We model the problem as a sequence alignment task and propose solving

this using two approaches. First, we use weighted finite state machines to represent med-

ical events sequences, thus enabling composition and search to obtain the most probable

combined sequence of medical events. As a contrast, we adapt dynamic programming al-

gorithms [Needleman et al., 1970; Smith and Waterman, 1981] used to produce global and

local alignments for aligning sequences of medical events across narratives. We also com-

pare the proposed methods with an Integer Linear Programming (ILP) based method for

timeline construction [Do et al., 2012]. The cross-narrative coreference and temporal rela-

tion scores used in both of these approaches are learned from a corpus of patient narratives

from a large medical center.
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7.2 Contributions

Learning of cross-document event-event relations is a relatively unexplored area. This

work explores this task in the context of learning temporal and coreference relations be-

tween medical events across clinical narratives.

The main contribution of this work is a general framework that allows aligning multiple

event sequences using cascaded weighted finite state transducers (WFSTs) with the help of

efficient composition and decoding. Moreover, we demonstrate that this method can be

used for more accurate multiple sequence alignment of medical events when compared to

dynamic programming or other ILP-based methods proposed in literature.

7.3 Related Work

In the areas of summarization and text-to-text generation, there has been prior work

on several ordering strategies to order pieces of information extracted from different input

documents [Barzilay et al., 2002; Lapata, 2003; Bollegala et al., 2010]. In this chapter, we

focus on temporal ordering of information, as discussed next.

Recent state-of-the art research has focused on the problem of temporal relation learn-

ing within the same document, and in many cases within the same sentence [Mani et al.,

2006; Verhagen et al., 2009; Lapata and Lascarides, 2006]. Chambers and Jurafsky [2009]

describe a process to induce a partially ordered set of events related by a common pro-

tagonist by using an unsupervised distributional method to learn relations between events

sharing coreferring arguments, followed by temporal classification to induce partial order.

The task was carried out on the Timebank newswire corpus, but was limited to an intra-

document setting. More recently, Do et al. [2012] proposed an ILP-based method to com-

bine the outputs of an event-interval and an event-event classifier for timeline construction
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on the ACE 2005 corpus. However, this approach is also restricted to events within docu-

ments and requires annotations for event intervals. We empirically compare our methods

for timeline creation from longitudinal clinical narratives to such an ILP-based approach

in Section 7.8. While a lot of this work has been done in the news domain, there is also

some recent work in rule-based algorithms [Zhou et al., 2006] and machine learning ap-

plied to temporal relations between medical events in clinical text [Roberts et al., 2008].

Clinical narratives are written in a distinct sub-language with domain specific terminology

and temporal characteristics, making them markedly different from newswire text.

There is limited prior work in learning relations across documents. Ji and Grishman

[2008] extended the one sense per discourse idea [Yarowsky, 1995] to multiple topically

related documents and propagate consistent event arguments across sentences and doc-

uments. Barzilay and McKeown [2005] propose a text-to-text generation technique for

synthesizing common information across documents using sentence fusion. This involves

multisequence dependency tree alignment to identify phrases conveying similar informa-

tion and statistical generation to combine common phrases into a sentence. Along with

syntactic features, they combine knowledge from resources like WordNet to find similar

sentences. In case of clinical narratives and medical event alignment, the objective is to

identify a unique sequence of temporally ordered medical events from across longitudinal

clinical data.

To the best of our knowledge, there is no prior work on cross-document alignment

of event sequences. Multiple sequence alignment is a problem that arises in a variety

of domains including gene/protein alignments in bioinformatics [Notredame, 2002], word

alignments in machine translation [Kumar and Byrne, 2003], and sentence alignments for
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summarization [Lacatusu et al., 2004]. Dynamic programming algorithms have been pop-

ularly leveraged to produce pairwise and global genetic alignments, where edit distance

based metrics are used to compute the cost of insertions, deletions and substitutions. We

use dynamic programming to compute the best alignment, given the temporal and coref-

erence information between medical events across these sequences. More importantly,

we propose a cascaded WFST-based framework for cross-document temporal ordering of

medical event sequences. Composition and search operations can be used to build a single

transducer that integrates these components, directly mapping from input states to desired

outputs, and obtain the best alignment [Mohri et al., 2000]. In natural language processing,

WFSTs have seen varied applications in machine translation [Kumar and Byrne, 2003],

morphology [Sproat, 2006], named entity recognition [Krstev et al., 2011], and biological

sequence alignment/ generation [Whelan et al., 2010] among others. We demonstrate that

the WFST-based approach outperforms popularly used dynamic programming algorithms

for multiple sequence alignment.

7.4 Problem Description

Medical events are temporally-associated concepts in clinical text that describe a med-

ical condition affecting the patient’s health, or procedures performed on a patient. We

represent medical events by splitting each event into a start and a stop. When there is in-

sufficient information to discern the start or stop of an event, it is represented as a single

concept. If only the start is known then the stop is set to +∞, whereas when only the stop is

known , the start is set to the date of birth of the patient.27 Temporal relations exist between

the start and stop of events as shown in Figure 7.1. Following the work of [Raghavan et al.,

27Patient date of birth, admission / discharge date are usually available in the metadata associated with a
clinical narrative.
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e1 before e2 

e1 overlaps e2 

e1 during e2 

e1 starts with e2 

e1 equals e2 

< e1.start e1.stop e2.start e2.stop 
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e1.start e1.stop e2.start e2.stop 

e1.start e2.start e2.stop e1.stop 

e1.start e1.stop e2.stop e2.start 
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< < ~ 

~ < < 

~ ~ < 

e1 finishes with e2 

Figure 7.1: Medical event representation mapped to temporal relations. ∼ indicates simul-
taneity between the events. e1start = e2start and e1stop = e2stop, when e1 and e2 corefer.

2012], such a representation allows us to temporally order the event starts and stops within

each clinical narrative by learning to rank them in relative order of time. The problem def-

inition is as follows:

Input: Sequences of temporally ordered medical event starts and stops. This corresponds

to N1, N2, and N3 in Figure 7.2. Each sequence corresponds to a clinical narrative. The

total number of sequences correspond to the number of clinical narratives of a patient.

Problem: Combine medical events across these sequences to generate a timeline i.e., a sin-

gle comprehensive sequence of medical events over all clinical narratives of the patient.

Expected Output: In the example shown in Figure 7.2, the output would be as follows:

Timeline (N1,N2,N3)= {cocaine usestart < hypertensionstart = hypertensionstart < admis-

sion1 < chest painstart ∼ palpitationsstart < chest painstop < heart attackstart = myocardial

infarctionstart < admission2 < infectionstart < MRSAstart < admission3 < woundsstart}.
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dob 
+∞ 

dob 

+∞ 

hypertensionstart admission1 chest painstart chest painstop 

palpitationsstart myocardial 
infarctionstart 
 

MRSAstart admission2 

hypertensionstart 

heart attackstart 

dob 
+∞ cocaine usestart infectionstart 

 

woundsstart admission3 

N1 

N2 

N3 

episodestart 

Figure 7.2: Given temporally ordered medical event sequences, N1, N2, N3, we address the
task of combining events across these sequences by merging or ordering them to create a
single comprehensive timeline.

The goal of multiple sequence alignment is to find an alignment that maximizes an over-

all alignment score. Thus, in order to align event sequences, we need to compute scores

corresponding to cross-narrative medical event coreference resolution and cross-narrative

temporal relations.

7.5 Cross-Narrative Coreference Resolution and Temporal Relation
Learning

The first approach to learning a temporal ordering of medical events across all clinical

narratives is to consider all pairs of events across all narratives and learn to classify them as

sharing one of Allen’s temporal relations [Allen, 1981] using a single learning model. Al-

ternatively, a ranking approach, similar to the one used to generate intra-narrative temporal
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ordering, can also be extended to the cross-narrative case. However, the features related to

narrative structure and relative and implicit temporal expressions used for temporal order-

ing within a clinical narrative may not be applicable across narratives. For instance, a his-

tory and physical report may have sections like “past medical history,” “history of present

illness,” “assessment and plan,” and a certain logical pattern to the flow of text within and

across these sections. Further, temporal cues like “thereafter,” “subsequently,” follow from

the context around an event mention. The absence of such features in the cross-narrative

case does not allow such a model to generate accurate temporal relation predictions.

Thus, for use in our sequence alignment models, we train two independent classifiers

for medical event coreference and temporal relation learning across narratives. We train

a classifier to resolve cross-narrative coreferences by extracting semantic and temporal

relatedness feature sets for each pair of medical concepts. Extracting these feature sets

helps us train a classifier to predict medical event coreferences using the methods described

in Chapter 5. Another classifier is then trained to classify pairs of medical event starts

and stops across narratives as sharing temporal relations, i.e., {before, after, overlaps}.

The learned cross-narrative coreference predictions can then be used along with confident

temporal relation predictions to derive a joint probability to enable cross-narrative temporal

ordering.

Sequence alignment algorithms have been developed and popularly used in bioinfor-

matics. However, multiple sequence alignment (MSA) has been shown to be NP complete

[Wang and Jiang, 1994] and various heuristic algorithms [Notredame, 2002] have been

proposed to solve this problem. We propose a novel WFST-based representation that en-

ables accurate decoding for MSA when compared to popularly used dynamic programming
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algorithms [Needleman et al., 1970; Smith and Waterman, 1981] or other state of the art

methods [Do et al., 2012].

In the problem of aligning events across multiple narrative sequences, we want to align

temporally ordered medical events corresponding to clinical narratives of a patient. Un-

like problems in biological sequence alignment where the symbols to be aligned across

sequences are restricted to a fixed set, our symbol set is not fixed or certain because the

symbols correspond to medical events in clinical narratives. Moreover, we cannot have

fixed scores for symbol transformations since our transformations correspond to corefer-

ence and temporal relations between the medical events across sequences. The computation

of these scores is described next.

7.5.1 Scoring Scheme

Let us assume a and b are medical events in the first clinical narrative and have been

temporally ordered so a < b. Similarly, x and y are medical events in the second clinical

narrative such that x < y. There exists a match or an alignment between a pair of medical

events, across the sequences, in the following cases:

1. If the medical events are simultaneous and coreferring, denoted as a = x.

2. If the medical events are simultaneous and non-coreferring, denoted as a ∼ x.

3. If the a medical event from one sequence is before a medical event from another

sequence, denoted as a < x.

4. If the a medical event from one sequence is after a medical event from another se-

quence, denoted as a > x.
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We now illustrate how the scores for candidate aligned sequences are computed using the

learned cross-narrative coreference and temporal probabilities for the following three sce-

narios:

• The medical events across sequences are simultaneous and corefer as illustrated

in Figure 7.3. For example, let the medical events chestpainstart, chestpainstop,

epsiodestart and epsiodestop be denoted by a, b, x and y respectively. if astart =

xstart < bstop = ystop, then we compute the probability of the candidate sequence as

P(a simult x | a coref x) P(a coref x)

• Some medical events across sequences are simultaneous but do not corefer as illus-

trated in Figure 7.4. For example, let the medical events chestpainstart, chestpainstop,

palpitationsstart and palpitationsstop be denoted by a, b, x, y respectively. if astart ∼

xstart < bstop < ystop, then we compute the probability of the candidate sequence as,

P(a simult x | a no-coref x) × P(x before b | a no-coref x) × P(b before y | a no-coref

x) P(a no-coref x)

• The medical events across sequences are not simultaneous and do not corefer as

illustrated in Figure 7.5. For example, let the medical events hypertensionstart,

palpitationsstart, infectionstart and MRSAstart be denoted by a, b, x, y respec-

tively. if astart < xstart < bstart < ystart, then we compute the probability of the

candidate sequence as, P(a before x | a no-coref x) P(a no-coref x) × P(x before b | x

no-coref b) P(x no-coref b) × P(b before y | b no-coref y) P(b no-coref y)

Thus, the coreference and temporal relation scores can be leveraged for aligning sequences

of medical events. These scores are used in both the WFST-based representation and de-

coding, as well as for dynamic programming.
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chest painstart 

episodestart 

chest painstop 

episodestop 

< 

< 

a = x                            

a b 

x y 

< b = y                            

Score = P(a simult x | a coref x) P(a coref x) 

Figure 7.3: Score computation for aligning events across temporally ordered event se-
quences chest painstart < chest painstop and episodestart < episodestop, where events across
the sequences occur simultaneously and corefer.

7.5.2 Alignment using a Weighted Finite State Representation

A weighted finite-state transducer (WFST) is an automaton in which each transition

between states is associated with an input symbol, an output symbol, and a weight [Mohri

et al., 2002]. WFSTs can be used to efficiently represent and combine sequences of medical

events based coreference and temporal relation information. The WFST representation

gives us the ability to talk about the global joint probability derived from coreference and

temporal relation scores described in Section 7.5.1. It allows us to build a weighted lattice

of sequences that can be searched for the most probable sequence of medical events from

across all clinical narratives of a patient.

We use unweighted FSAs to represent the input described in Section 7.4, i.e. temporally

ordered sequences of medical events corresponding to clinical narratives. This corresponds

to N1 and N2 in Figure 7.6.
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chest painstart 

palpitationsstart 

chest painstop 

palpitationsstop 

< 

< 

a b 

x y 
a ~ x                            < b     <     y                            

Score = P(a simult x | a no-coref x) ×                  
  P(x before b | a no-coref x) ×                                
 P(b before y | a no-coref x) P(a no-coref x)  
 

Figure 7.4: Score computation for aligning events across temporally ordered event se-
quences chest painstart < chest painstop and palpitationsstart < palpitationsstop, where some
events across the sequences occur simultaneously but do not corefer.

Based on whether we want to align the sequences purely based on coreference scores

or both coreference and temporal relation scores, the arc weights for the WFST can be

determined. M c
12 is a WFST that maps input symbols from N1 to output symbols in N2 and

is weighted by the probability of coreference or no-coreference between medical events

across N1 and N2 (shown in Figure 7.6). The representation in WFST M c+t
12 shown in

Figure 7.7 allows us to align N1 and N2 based on both coreference as well as temporal

relation probabilities. The WFST has ε transitions to accommodate insertion and deletion

of medical events when combining the sequences. Deletions correspond to the case when

an event in the first sequence does not map to any event in the second sequence; similarly

insertions correspond to the case where an event in the second sequence does not map to

any event in the first sequence. The WFST composition operation allows the outputs of one

WFST to be fed to the inputs of a second WFST or FSA. Thus, we build our final machine
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palpitationsstart < 
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Score = P(a before x |a no-coref x) P(a no-coref x) × 
P(x before b | x no-coref b) P(x no-coref b) × 
P(b before y | b no-coref y) P(b no-coref y)  

infectionstart MRSAtart 
< < 

Figure 7.5: Score computation for aligning events across temporally ordered event se-
quences hypertensionstart < palpitationsstart and infectionstart < MRSAstart, where events
across the sequences do not occur simultaneously and do not corefer.

by composing the three sub-machines as,

D = N1 ◦M i
12 ◦N2. (7.1)

where i = c or i = c+ t. This gives us a combined weighted graph by mapping the output

symbols of the first medical event sequence to the input symbols of the second medical

event sequence. The scores on the decoding graph are derived from only the coreference

probabilities if i = c and both coreference and temporal relation probabilities if i = c+ t.

In the medical event sequence alignment problem, we want to align multiple sequences

of medical events that correspond to multiple clinical narratives of a patient. Since we want

to now combine all narrative chains belonging to the same patient, the composition cascade

to build the final combined sequence will be as,

Df = N1 ◦M i
12 ◦N2 ◦M i

23 ◦N3 ◦M i
34... ◦Nn (7.2)
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N1 

N2 

M12 

Figure 7.6: N1 and N2 are medical event sequences represented using FSAs. M c
12 maps

medical events across N1 and N2 and is weighted only by the probability of coreference
between events across N1 and N2.

where i = c or i = c + t and n is the number of medical event sequences corresponding

to clinical narratives of a patient. During composition we retain intermediate paths like

M i
23 utilizing the ability to do lazy composition [Shu, 2006] in order to facilitate beam

search through the multi-alignment. The best hypothesis corresponds to the highest scoring

path which can be obtained using shortest path algorithms like Djikstra’s or Viterbi beam

search algorithm. The best path corresponds to the best alignment across all medical event

sequences based on the joint probability of cross-narrative medical event coreferences and

temporal relations across the narrative sequences.
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0

cocaineuse:-/0.13
hypertension:-/0.27

chestpain:-/0.23

1

-:cocaineabuse/0.1

cocaineuse:cocaineabuse/0.9

hypertension:cocaineabuse/0.4

chestpain:cocaineabuse/0.3

cocaineuse:-/0.13
hypertension:-/0.24

chestpain:-/0.23

2

-:admission/0.1

cocaineuse:admission/0.1

hypertension:admission/0.1

chestpain:admission/0.1

cocaineuse:-/0.13
hypertension:-/0.24

chestpain:-/0.23

3

-:chestpain/0.1

cocaineuse:chestpain/0.17

hypertension:chestpain/0.23

chestpain:chestpain/0.86

cocaineuse:-/0.13
hypertension:-/0.24

chestpain:-/0.23

4/4

-:myocardialinfarction/0.1

cocaineuse:myocardialinfarction/0.2

hypertension:myocardialinfarction/0.1

chestpain:myocardialinfarction/0.1

cocaineuse:-/0.13
hypertension:-/0.24

chestpain:-/0.23

Figure 7.7: M c+t
12 is a WFST representation used for mapping medical events between N1

and N2 (from Figure 7.6) and is weighted by both the coreference and temporal relation
probabilities

7.6 Narrative Sequence Alignment for Cross-narrative Temporal Or-
dering

The complexity of decoding increases exponentially with the number of narrative se-

quences in the composition, and exact decoding becomes infeasible. One solution to this

problem is to do the alignment greedily pairwise, starting from the most recent medical

event sequences, finding the best path, and iteratively moving on to the next sequence, and

proceeding until the oldest medical event sequence. The disadvantage of such a method is

that it does not take into account constraints between medical events across multiple event

sequences and may lead to a less accurate solution.

An alternative method is to use lazy composition to perform more efficient composi-

tion as it allows practical memory usage. We also use beam search to make for an efficient

approximation to the best-path computation [Mohri et al., 2002]. This allows for accom-

modating constraints from across multiple sequences and generates a more accurate best

path. Thus, this method generates more accurate alignments when we have more than two

sequences to be aligned.
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For instance, say a, b ∈ N1, x, y ∈ N2, and m,n ∈ N3 are temporally medical event

sequences corresponding to narratives N1, N2 and N3. Based on the learned pairwise tem-

poral relations, if we have the following constraints a < x, m > x, m < a. Aligning

N1 and N2 greedily pairwise may give us the best combined sequence as a, x, b, y ∈ N12.

Now in aligning N12 with N3, we won’t be able to accommodate m > x and m < a.

However, performing a beam search over the composed WFST in equation 7.2 allows us to

accommodate such constraints across multiple sequences.

The complexity of composing two transducers is O(V1V2D1(logD2 +M2)) where each

edge from the first sequence matches every edge in the second sequence and Vi is the

number of states, Di is the maximum out-degree and Mi maximum multiplicity for the

ith FST. The complexity of the shortest path computation is O(V logV + E) [Mohri et al.,

2002].

We also use popular dynamic programming algorithms [Needleman et al., 1970; Smith

and Waterman, 1981] for sequence alignment of medical events across narratives and com-

pare it to the WFST-based representation and decoding.

7.6.1 Pairwise Alignment using Dynamic Programming

Dynamic programming algorithms have been popularly used for sequence alignment

in a variety of problems in computational biology, speech recognition and other domains

[Myers and Habiner, 1981; Notredame, 2002]. We adapt two such dynamic programming

algorithms for sequence alignment: 1) Global alignment using the Needleman Wunsch al-

gorithm (NW) [Needleman et al., 1970] and 2) Local alignment using the Smith-Waterman

algorithm (SW) [Smith and Waterman, 1981]. NW allows us to align all events in one

sequence with all events in another sequence. However, a drawback of NW is that short

132



and highly similar sequences maybe missed because they get overweighted by the rest of

the sequence. NW is suitable when the two sequences are of similar length with significant

degree of similarity throughout. On the other hand, SW gives the longest sub-sequence

pair that yields maximum degree of similarity between the two original sequences. It does

not force all events in a sequence to align with another sequence. SW is useful in aligning

sequences that differ in length and have short patches of similarity. The time complexity of

these methods for sequences of length m and n are O(mn).

The scoring scheme described earlier is used to update the scoring matrix for dynamic

programming. In order to accommodate the temporal relations before and after, we insert a

null symbol after every medical event in each sequence in the scoring matrix. A vertical or

horizontal gap arises when cases 1, 2, 3 and 4 in Section 7.5.1 are not true. If the medical

events are not simultaneous, not before or not after, the medical events will not align. Thus,

the value of each cell in the scoring matrix is determined by computing the maximum score

at each position C(i, j) as,

max{(C(i− 1, j − 1) + Sij), (C(i, j − 1) + w), (C(i− 1, j) + w)} (7.3)

where, Sij = max{P (i = j), P (i < j), P (i > j)},

and w = max{(1− P (i = j)), (1− P (i < j)), (1− P (i > j))}.

Here, C(i − 1, j − 1) corresponds to a match, whereas C(i − 1, j) and C(i − 1, j)

correspond to a gaps in sequence one and two. The first row and column C(i, 0) and C(0, j)

are set to 0.

In the case of the SW algorithm, the negative scoring matrix cells are set to zero, thus

making the positively scoring local alignments visible. Backtracking starts at the highest
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scoring matrix cell and proceeds until a cell with score zero is encountered, yielding the

highest scoring local alignment.

The time and space complexity grows exponentially with the number of sequences to

be aligned and finding the global optimum has been shown to be a NP-complete problem.

The time complexity of aligning N sequences of length L is O(2NLN) [Wang and Jiang,

1994]. Thus, for MSA using dynamic programming, we use a heuristic method where we

combine pairwise alignments in, an iterative manner, starting with the latest narrative and

progressing towards the oldest narrative.

7.7 Experiments and Evaluation

Corpus Description. We gathered a gold standard set of seven patients (80 clinical

narratives overall) with manual annotation of all medical events mentioned in the narratives,

coreferences, and medical event sequence information (described in Chapter 3, Section 3.9.

The annotation agreement across annotators is high, with 89.5% agreement corresponding

to inter-annotator Cohen’s kappa statistic of 0.86 [Conger, 1980]. The types of clinical

narratives included discharge summaries, history and physical reports, radiology reports

and pathology reports. The distribution of the number of medical event sequences and

medical events across patients is shown in Table 7.1.

Evaluation Metric. The accuracy of the timeline generated by our proposed methodol-

ogy is calculated as the number of transformations required to obtain the reference sequence

in the annotated gold-standard from the one generated by our system. Transformations are

measured in terms of the minimum edit distance, insertions, deletions, and substitutions of

medical events (described in Chapter 3, Section 3.9).
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p1 p2 p3 p4 p5 p6 p7
No. of Narrative Sequences 5 9 20 13 8 10 15

No. of Medical events 125 239 488 318 220 136 297
% Accuracy % Avg.

WFST (MSA)[c+t] 76.1 73.2 81.2 83.5 76.4 82.5 79.7 78.9
WFST (Pairwise)[c+t] 70.4 67.1 73.5 74.1 61.8 75.5 62.9 69.3

SW (Pairwise)[c+t] 71.2 69.7 75.5 75.6 66.3 77.4 68.3 72.1
NW (Pairwise)[c+t] 68.1 66.3 72.1 74.4 61.1 75.5 63.6 68.7

WFST (MSA)[c] 68.5 65.3 72.3 74.4 67.2 71.3 69.1 69.7
WFST (Pairwise)[c] 61.2 63.3 61.9 60.4 59.8 64.8 60.5 61.7

SW (Pairwise)[c] 60.3 63.7 68.2 62.3 58.6 66.7 60.2 62.8
NW (Pairwise)[c] 56.6 60.1 59.3 65.6 54.7 63.1 58.2 59.6

Table 7.1: The distribution of medical events across narrative sequences and sequences
across patients and multiple sequence alignment results for the WFST-based framework,
and dynamic programming using just coreference scores [c] and using coreference as well
as temporal relation scores [c+t].

Experiments and Results. We first use a ranking model to obtain sequences of tem-

porally ordered medical events corresponding to clinical narratives (intra-narrative) based

on the method of [Raghavan et al., 2012]. The overall accuracy of ranking medical events

using leave-one-out cross validation is 80.2%. These sequences serve as the input to the

problem of cross-narrative sequence alignment.

We first run a baseline experiment for the task of cross-narrative temporal ordering,

where we use the note creation and admission/ discharge dates to create an ordering across

all sequences. This generates a timeline with 54.1% accuracy.

The cross-narrative coreference and temporal relation pairwise classification models

are trained using a Maximum entropy classifier. The coreference resolution performs with

71.5% precision and 82.3% recall. The temporal relation classifier performs with 60.2%
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precision and 76.3% recall. The learned pairwise coreference and temporal relation prob-

abilities are now used to derive the score for the WFST and dynamic programming ap-

proaches.

WFST representation and decoding. We build finite-state machines using the open

source OpenFST library.28 We use a tropical semi-ring that is weighted using the negative

log-likelihood of the computed scores. OpenFST provides tools that can search for the

highest scoring sequences accepted by the machine, and can sample from high-scoring

sequences probabilistically, by treating the scores of each transition within the machine as

a negative log probability. As shown in Equation 7.2, the decoding process to compute the

most likely combined medical event sequence can be defined as searching for the best path

in the combined graph representation. The best path is the one that minimizes the total

weight on a path (since the arcs are negative log probabilities). In searching for the best

path, the beam size is set to 8. The accuracy of the WFST-based representation and beam

search across all sequences using the coreference and temporal relation scores to obtain the

combined aligned sequence is 78.9%.

Dynamic Programming. We use the NW and SW algorithms described in Section

7.6.1 to produce local and global alignments respectively. We use the scoring scheme

described in Section 7.5.1 to update the cost matrix for dynamic programming and im-

plement the algorithms as described in Section 7.6.1. The overall accuracy of sequence

alignment with both coreference and temporal relation scores using Needleman-Wunsch

is 68.7% whereas Smith-Waterman gives an accuracy of 72.1%. In case of aligning just

two sequences, both methods yield the same results. The accuracy of cross-narrative MSA

for each patient, for each method, using cross validation, is shown in Table 7.1. Results

28www.openfst.org
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indicate that the WFST-based method outperforms the dynamic programming approach for

multi-sequence alignment (statistical significance p<0.05). Morever, the results using both

coreference and temporal realtion scores for alignment outperform using only coreference

scores for alignment using all approaches. This indicates that cross-narrative temporal re-

lations are important for accurately aligning medical event sequences across narratives.

7.8 Discussion

The accuracy of alignments across multiple medical event sequences is affected by the

error induced by the coreference and temporal relation scores. Often, insufficient temporal

cues leads to misclassification of events incorrectly as sharing the “overlaps” temporal re-

lation and often as coreferring. This induces errors in the score calculation and hence the

alignments. Thus, there is no clear trend with respect to the number of medical events and

narratives of a patient (Table 7.1.) and the alignment accuracy as it depends on the learned

coreference and temporal relation probabilities used to calculate the score. Additionally,

we also implemented the ILP method for timeline construction proposed in Do et al. [2012]

that also allows combining the output of classifiers subject to some constraints. We derive

intervals from event starts and stops and learn two perceptron classifiers for classifying the

temporal relations between events and assigning events to intervals. The classifier proba-

bilities are then used to solve the optimization problem using the lpsolve solver.29 We also

use intra-document coreference information to resolve coreference before performing the

global optimization. We observe that in case of MSA, the optimal solution using ILP is

29http://lpsolve.sourceforge.net/5.5
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still intractable as the number of constraints increases exponentially with the number of se-

quences. In this case, aligning the medical event sequences pairwise in an iterative manner

gives us an overall average accuracy of 68.2% similar to dynamic programming.

7.9 Conclusion

We propose a novel framework for aligning medical event sequences across clinical

narratives based on coreference and temporal relation information using cascaded WFSTs.

FSTs provide a convenient and flexible framework to model sequences of temporally or-

dered medical events and compose them into a combined graph representation. Decoding

this graph allows us to jointly maximize coreference as well as temporal relation proba-

bilities to derive a timeline of the most likely temporal ordering of medical events. This

approach to aligning multiple sequences of medical events significantly outperforms other

approaches such as dynamic programming. Moreover, we demonstrate the importance of

learning temporal relations for the task timeline generation from across multiple clinical

narratives by empirically proving that decoding using both coreference and temporal rela-

tion scores is far more accurate than decoding with only coreference scores.

At the end of the decoding process using the WFST framework, we obtain the high-

est scoring sequence of medical events that corresponds to the timeline of medical events

across the patient’s history. This timeline can now be leveraged to help various clinical

applications including clinical trial recruitment, information retrieval with temporal con-

straints, multi-document summarization and clinical decision making. The accuracy of this

overall timeline is limited by the temporal cues available in the unstructured clinical text.

Often these cues may be sparse, implicit and hard to decipher and anchor to a medical

event. One way to address this is to leverage temporal cues from the structured data in
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the patient’s electronic health record to help the models that extract information from the

unstructured portion of the patient’s health record. In the next chapter, we explore the dif-

ferent ways in which structured data can be useful in combination with unstructured data

to the process of medical event timeline generation.
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CHAPTER 8: INFORMATION FUSION

Electronic health records (EHRs) capture patient information using structured con-

trolled vocabularies and unstructured narrative text. There is a wealth of temporal infor-

mation in the structured and semi-structured data in the EHR. The ability to fuse informa-

tion across structured data and unstructured clinical narratives allows generating a more

accurate and complete timeline of medical events from a patient’s EHR. This is because

information fusion across these data sources enables the use of temporal information from

structured data to improve the process of temporal relation learning from unstructured data.

In this chapter, we address an important question of leveraging the structured data to

help information extraction from unstructured data in the EHR. Given the large amount of

timestamped medical events in the structured data for a particular disease, can we leverage

this to improve machine learning models for timeline generation from the unstructured

data?

Next, we explore the problem of information fusion across structured and unstructured

data in the EHR and investigate whether it helps in the process of using the medical event

timeline for clinical trial recruitment.

8.1 Introduction

The overall purpose of our research has been to generate an improved longitudinal

health record, which contains a comprehensive clinical summary of patient problems and

treatments that are appropriately identified and organized in time. The electronic health

record is composed of multiple data sources that are often redundant [Wrenn et al., 2010]
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or inconsistent [Hripcsak et al., 2009], stored in uncoordinated unstructured clinical nar-

ratives and structured data. Structured data typically encodes lab results, encounters and

medication lists, while unstructured data captures the physician’s interpretation of the pa-

tient’s condition, prognosis, and response to therapeutic intervention. An excerpt from

structured lists of encounters and procedures are seen in Figure 8.1.

We propose methods to integrate structured (e.g. laboratory results, encounters, dis-

charge conditions, medication lists, demographics, patient birth and death information)

and unstructured information (e.g. discharge summaries, history & physical reports, ad-

mission notes, radiology reports) to help generate a comprehensive medical event timeline.

The proposed methods for information fusion includes learning a temporal model from the

structured data and using it as a prior in the machine learning models for temporal relation

learning (Chapter 6) and coreference resolution (Chapter 5) from the unstructured data.

Since the generated timeline merges information from multiple data sources, the resulting

information is more accurate than would be possible if these sources were used individually

[Dasarathy, 2001].

Further, we explore the utility of the generated timeline in clinical trial recruitment. We

perform an empirical study to validate the argument and show that structured data alone

is insufficient in resolving eligibility criteria for recruiting patients onto clinical trials for

chronic lymphocytic leukemia (CLL) and prostate cancer. Unstructured data is essential to

solving 59% of the CLL trial criteria and 77% of the prostate cancer trial criteria. More

specifically, for resolving eligibility criteria with temporal constraints, we show the need

for temporal reasoning and information integration with medical events within and across

unstructured clinical narratives and structured data.

141



MRN  Start Time Stop Time Encounter 

100002222 24-AUG-07 31-AUG-07  Lymphsrc unsp xtrndl org 

100002222  01-SEP-07 30-SEP-07 Screen mammogram NE   

100002222  07-SEP-07 07-SEP-07 Gastroduodenal dis NEC   

100002222  17-NOV-07 19-NOV-07 Swelling in head & neck 

 
MRN  Start Time Stop Time Procedure 

100002222  24-AUG-07 31-AUG-07  Lipid Panel 

100002222  24-AUG-07 31-AUG-07  Total Bilirubin 

100002222  24-AUG-07 31-AUG-07  Direct Bilirubin 

100002222  24-AUG-07 31-AUG-07  Glycosylated   
      Hemaoglobin(A1C) 

100002222  01-SEP-07 30-SEP-07           Bilateral Screening  
      Mammography  

Figure 8.1: Sample excerpt from structured of encounters and procedures (medical events)
for a patient. Each medical event has an associated start and stop timestamp.

8.2 Contributions

Structured data in the EHR has timestamped medical events in lists of discharge condi-

tions, encounters, medications and lab reports. Many of these medical events are referenced

in the descriptions provided by physicians in unstructured clinical notes. Information fu-

sion across these data sources can be done in two ways.

i Leverage the entire structured dataset (across all patients) for a disease (say chronic

lymphocytic leukemia dataset (CLL)) to estimate a temporal model that can be used to

inform the learning models from unstructured data.

ii Match medical concepts across structured and unstructured data and use it for im-

proved inference in clinical applications including resolving eligibility criteria for clin-

ical trails.

Some more specific contributions include the following.

• The timestamps in the structured data are considered ground truth, and can used to

correct the time of occurrence of medical events in the unstructured data.
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• Information fusion with structured data helps introduce detailed meta-data about cer-

tain medical events in the timeline. This in turn is very useful in practical applications

where we need to query the timeline for information. For instance, a medical event

“blood test” in the unstructured data timeline, may get mapped to 50 medical events

in the structured data describing various parameters measured and calculated during

the blood test such as bilirubin levels, RBC / WBC counts etc.

• We empirically evaluate the commonly assumed hypothesis that unstructured clinical

text processing is required, and that structured data alone is insufficient to accurately

resolve eligibility criteria. This is done with the help of a clinical trial use case.

• We experimentally demonstrate the need for cross-narrative temporal reasoning and

information fusion across structured and unstructured data in solving certain tempo-

ral eligibility criteria

8.3 Related Work

The recent decade has seen considerable research in the natural language processing

of unstructured clinical text [Chiang et al., 2010; Aronson, 2001; Savova et al., 2010b].

Demner-Fushman et al. [2009] discuss how successful processing of clinical narratives is

the key to overall success of automated clinical decision support systems. They stress the

importance of medical concepts with the help of named entity recognition and learning

relations between those named entities are important for better understanding clinical nar-

rative text. Wang et al. [2009] propose a framework for automated pharmacovigilance by

applying NLP and association statistics on comprehensive unstructured clinical data from

the EHR. They argue that previous algorithms have focused on coded and structured data,

and therefore miss important clinical data relevant to this task. Medical NLP systems like
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Mayo’s cTakes [Savova et al., 2010a] and MedLEE [Chiang et al., 2010] have components

specifically trained or designed for information extraction from multiple clinical text.

To the best of our understanding there is no prior work on information fusion across

structured and unstructured data in the EHR with the objective of improving information

extraction from unstructured data. We address this problem by estimating a temporal model

with the timestamped medical concepts in the structured data and using this as a prior in

learning temporal relations from unstructured data.

There has been some work on modeling temporal knowledge in eligibility criteria to

help effective clinical text processing [Ross et al., 2010; Boland et al., 2012]. Ross et al.

[2010] observe that temporal features were present in 40% of clinical trial criteria analyzed

as part of their study, where the type of temporal expression in the criteria ranged from

well-specified to loosely-specified. Similarly, there have been considerable efforts, includ-

ing rule-based algorithms, temporal annotation of clinical corpora, and machine learning

methods, towards learning temporal relations and generating timelines of medical events

from unstructured clinical text [Zhou and Hripcsak, 2007; Sun et al., 2013]. Zhou et al.

[2006] extract temporal relations between medical events in discharge summaries. The

CLEF project [Savova et al., 2010a] uses a pairwise supervised classification approach to

learn temporal relations between medical events within the same narrative. While temporal

information has been studied in the intra-document context, there is not much prior work

in cross-narrative temporal relation learning and information fusion. Carlo et al. [2010]

attempt to align medical problems in structured and unstructured EHR data using UMLS

by studying the information overlap between structured ICD-9 diagnoses and unstructured

discharge summaries. They conclude that this is a non-trivial task with the need for bet-

ter methods to detect correlating structured and unstructured data before aligning them.

144



Köpcke et al. [2013] compare the eligibility criteria defined in trial protocols with patient

data contained in the EHR in multi-site trials to determine the extent of available data com-

pared with the eligibility criteria of randomly selected clinical trials. However, their study

is restricted to structured data in the EHR. In spite of the large body of recent work in

processing structured and unstructured clinical narratives for temporal reasoning, and other

NLP tasks, there are no prior studies that empirically evaluate the usefulness of structured

vs. unstructured data for a clinical task. We perform an empirical analysis of CLL and

prostate cancer patient records and evaluate the performance of structured and unstruc-

tured data in resolving clinical trial eligibility criteria. We specifically focus on criteria

with temporal constraints and illustrate the need for unstructured clinical narrative analysis

including cross-narrative temporal reasoning and information fusion.

8.4 Information Fusion across Structured and Unstructured Data

A patient’s EHR has structured and unstructured data. In the last few chapters of this

dissertation, we have proposed applying supervised machine learning models to learn tem-

poral and coreference relations between medical events. However, such supervised learning

models depend on accurate gold-standard annotations for training and evaluation purposes.

Annotating clinical narratives for fine-grained relationships between medical events is a

tedious and time-consuming task as described in Chapters 3 and 5. Further, the annotations

need to be marked by medical domain experts to ensure correct interpretation of the clini-

cal sub-language. This puts limitations on the amount and type of annotations that can be

generated within a reasonable amount of time. Moreover, some clinical narratives may not

even have sufficient temporal expressions co-occurring with medical events. This makes

it difficult to accurately predict their relative temporal order and place them on a timeline.

145



In this section, we address these problems with the help of structured data using the the

methodology described in Section 8.5.

8.5 Temporal Model from Structured data

Our strategy for information fusion tries to address a bigger problem of the lack of

expert knowledge. Much of the knowledge required for clinical systems to perform better is

expert medical domain knowledge. Often, physicians make decisions simply because they

“know” certain facts either from years of experience or through intensive medical training.

For instance, a physician knows that it is highly probable that the event MRSA will be

followed by antibiotics. In order to replicate such knowledge one may need to build a very

vast knowledge base with complex causal, temporal and semantic relationships at a patient,

disease level, capturing the kind of knowledge that a physician may have. While the UMLS

meta-thesaurus is an ontology that attempts to do this, it is not nearly as comprehensive

enough. Moreover, it does not capture causal or temporal relationships. In this section, we

explore how structured data can be used as a possible substitute for expert knowledge about

temporal relationships between medical events.

Structured data contains timestamped medical events as part of lists of discharge con-

ditions, encounters, medications and lab values. Given a disease dataset, there may be

thousands of such lists across all patients. For instance, across all patients, the structured

portion of our CLL dataset has 144512 timestamped procedures, 30083 timestamped en-

counters and 10731 diagnoses. The timestamped medical events in these lists can be used

to estimate a temporal model to help timeline generation.

The proposed model is similar to a language model that models the probability of a

sequence of words. Instead, this model models the probability of a sequence of medical
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events using a probability distribution. Thus, the temporal model tries to capture certain

temporal properties of a disease domain. The probability of observing medical events

me1, ..,mem is computed as follows.

P (me1, . . . ,mem) =
m∏
i=1

P (mei|me1, . . . ,mei−1) ≈
m∏
i=1

P (mei|mei−(n−1), . . . ,mei−1)

(8.1)

Here, the probability of observing the ith medical event mei in the context of the preceding

i−1 medical events can be approximated by the probability of observing it in the shortened

context of the preceding n− 1 medical events (nth order Markov property). Since we have

access to limited structured data, we set n to 2. However, given access to larger amounts of

structured data for a particular disease, it may be possible to estimate larger order temporal

models. The maximum likelihood estimate when n = 2 is given as follows.

P (mei|mei−1) =
count(mei−1mei)

count(mei−1)
(8.2)

This would work well for frequent events. However, since we have limited structured data,

and also given that not every medical event documented in the unstructured data may be

present in the structured data, there may be zero count medical events. We perform a

Laplace (add 1) smoothing to address the zero count problem.

Now, we can estimate the probability of certain medical events occurring after certain

other medical events from the structured data (Equation 8.2). This probability can be used

as a temporal feature in the temporal relation learning and coreference resolution models.

If medical event sequence is highly probable, then it can even be introduced as a hard

constraint in learning temporal relations from unstructured data. The results for the final

timeline (cross-narrative temporal ordering) using the probability estimated from the tem-

poral model on the structured data is shown in Table 8.1. We see there is a significant
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improvement in accuracy in temporal ordering in unstructured data on introducing proba-

bilities from the temporal model as features.

p1 p2 p3 p4 p5 p6 p7
Needleman-Wunsch 70.3 69.2 74.1 80.4 63.5 78.1 69.2
Smith-Waterman 73.1 73.5 78.5 83.8 68.7 79.6 74.5
WFST beam search 79.4 77.1 85.2 86.1 77.1 84.2 86.7

Table 8.1: Cross-narrative temporal ordering from unstructured data using the probability
from the temporal model estimated from the structured data as a feature

8.6 How essential are unstructured clinical narratives and informa-
tion fusion to clinical trial recruitment?

Clinical trial recruitment may be semi-automated through information extraction from

the EHR. Clinical trials have eligibility criteria that describe characteristics and constraints

that help determine if a patient qualifies for a trial. Typically, clinicians and trial recruit-

ment coordinators identify potential clinical trial patients from characteristics described in

their medical history and match them against the eligibility criteria for individual trials.

This standard model of clinical trial recruitment is rife with errors. If the clinical staff is

unfamiliar with a particular trial or if there are competing trials, an eligible patient may

be overlooked. On the other extreme, the clinical trials staff may be asked to pre-screen

patients who are clearly not candidates. This information mismatch has the potential to be

streamlined. Generating automated queries corresponding to eligibility criteria and query-

ing patient records from the EHR in order to identify qualifying patients provides an ef-

ficient and agnostic approach to clinical trials recruitment. The pertinent question then is
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whether structured data, being easier to automatically process and understand, has suffi-

cient information to resolve these eligibility criteria, or if there is a need to extract and

reason with medical concepts in unstructured clinical narratives.

Researchers have often emphasized the importance of using clinical narratives for clin-

ical decision support [Demner-Fushman et al., 2009], information retrieval [Tange et al.,

1998], question answering [Kalyanpur et al., 2012] and automated clinical trial recruitment

[Köpcke et al., 2013]. Unstructured data in clinical narratives captures important decisions

and relationships between medical concepts including causal (symptom caused disease),

consequential (why a drug or treatment was administered) and temporal (symptom before

disease / treatment). Furthermore, Rosenbloom et al. [2011] suggest that clinical notes con-

taining naturalistic prose have been more accurate and reliable for identifying patients with

given diseases, and more understandable to healthcare providers reviewing patient records.

However, to the best of our knowledge, there are no prior empirical studies that evaluate

the usefulness of structured vs. unstructured data considering their advantages and limita-

tions for a clinical task. In this paper, we study two datasets of structured and unstructured

data with patients suffering from chronic lymphatic leukemia (CLL) and prostate cancer

obtained from The Ohio State University Wexner Medical Center. Given a set of eligibil-

ity criteria from corresponding clinical trials, we evaluate the number of criteria that can

be resolved using information from just the structured data and the number of criteria that

require information extraction from and reasoning with unstructured clinical narratives and

data.30

30This work has been published in AMIA CRI 2014. P. Raghavan, J. Chen, E. Fosler-Lussier, and A.
Lai, ”How essential are unstructured clinical narratives and information fusion to clinical trial recruitment?”
AMIA Joint Summits on Translational Science, 2014.
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8.6.1 Data Description

The EHR data used in this study consists of medical records for 2060 CLL patients and

1808 prostate cancer patients. The CLL dataset contains 95 different types of unstructured

reports including discharge summaries, history and physical reports, specialty reports such

as wound care, operative notes, OB/GYN and psych evaluations, social work assessment,

referral letters and progress notes. It also consists of radiology reports, pathology reports

and cardiology reports. The total number of unstructured clinical narratives in the CLL

dataset is 100704. The structured data consists of lab reports, procedures list, diagnoses

list and encounters list. The prostate cancer dataset consists of 2652 oncology reports,

1582 pathology reports, 6606 radiology reports as part of unstructured data. The structured

data in this dataset includes a discharge medications list (30178 medications), laboratory

values (939 values), and a medications list (141932 medications). The clinical trials dataset

consists of a set of top 100 clinical trials each, as defined by clinicaltrials.gov, for both CLL

and prostate cancer.

8.6.2 Methodology

Medical concept extraction - We annotated the clinical trial criteria datasets with medi-

cal concepts, concept unique identifiers (CUIs) and semantic types using MetaMap [Aron-

son, 2001]. We then extracted criteria containing the following semantic types: Disease

or Syndrome, Laboratory or Test Result, Procedure, Sign or Symptom, and Pharmacologi-

cal Substance. The criteria containing the Temporal Concept semantic type were labeled as

temporal eligibility criteria. Similarly, we also annotated both patient datasets with medical

concepts and the semantic types mentioned previously. Matching medical concepts across

clinical trials and patient datasets - In order to evaluate the degree of overlap between the
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clinical trials dataset and structured and unstructured data in the medical records dataset,

we compute the Match between medical concepts across these datasets. The match func-

tions are computed across the datasets as follows. 1) UMLS CUI Match where an exact

CUI match is computed and 2) Phrase Match where we compute a match between medical

concepts (textual fragment identified as the medical concept). Thus we have,

• Match(CUI in the trial dataset, CUI in structured data)

• Match(CUI in the trial dataset, CUI in unstructured data)

• Match(Phrase in the trial dataset, medical concept in the structured data)

• Match(Phrase in the trial dataset, medical concept in the unstructured data)

These match functions are computed for two levels of analysis - (i) medical concept-

level, where we compare all the medical concepts in the trials dataset against the structured

and unstructured data, and (ii) eligibility criteria level, where we compare all the med-

ical concepts in each criterion against the structured and unstructured data. The medical

concept-level match helps analyze the number and type of medical concepts typically found

in the structured and unstructured datasets when solving clinical trial eligibility criteria. As

shown in the algorithm below, we compute the match between all medical concepts in the

clinical trials dataset and the structured data. If there are no matching concepts found in

the structured data, we then compute a match with the unstructured data.

The eligibility criteria-level match helps us analyze the number of criteria that can be

solved by structured data, unstructured data or both. In order to evaluate the need for

temporal reasoning and information fusion and constrain the number of eligibility criteria,

we restricted the eligibility criteria-level analysis to criteria with temporal constraints. We
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compare each eligibility criterion against both structured data and unstructured data to de-

termine if the concepts in the criterion require only structured data, only unstructured data

or both datasets together for resolution, as shown in the algorithm below.

The algorithm first compares all medical concepts in the eligibility criterion against all

medical concepts in the structured data. If all the concepts in the criterion are found in the

structured data, we conclude that the criterion may be resolved using the structured data.

We then do a similar comparison for unstructured data and if all concepts in the criterion

are found in the unstructured data, we conclude that the criterion may be resolved using the

unstructured data.

Information fusion. In the case where all the concepts in the criterion are found in both

the structured as well as the unstructured data, we conclude that the criterion can be solved

using either the structured or the unstructured data. However, the criterion may also require

both structured as well as unstructured data for resolution. Taking this into consideration,

we define information fusion as follows. Given medical concepts m1, ...,mn in a clinical

trial criterion, if Sk is a set of k concepts that match the structured data and Uj is a set of j

concepts that match the unstructured data, where k, j > 0 and k, j < n. Now there are two

possibilities.

i L = Sk ∩ Uj is not empty. Here, L concepts match both structured and unstructured

data.

ii L = Sk ∩ Uj is empty. Here, L concepts match the structured data and the remainder j

concepts match the unstructured data. So Sk and Uj are disjoint.

Temporal reasoning in unstructured data - For subset of criteria that require unstructured

data for resolution, we further analyze the temporal constraints in the criteria and attempt

152



to answer the following questions. How many temporal constraints can be solved using

coarse temporal reasoning within each clinical narrative? How many temporal constraints

require more granular temporal ordering within each clinical narrative? How many tempo-

ral constraints require cross-narrative temporal reasoning? In order to answer these ques-

tions, we run a CRF-based time-bin tagger (Chapter 4) and learn to associate the medical

events within each narrative with one of the coarse time-bins: “way before admission, be-

fore admission, admission, after admission, discharge.” The time-bin tagger was trained on

different patient records not part of this dataset. We also perform fine-grained temporally

ordering by learning to rank medical concepts within a clinical narrative by their order of

occurrence (Chapter 6). This gives us both a coarse ordering and a fine-grained ordering of

medical concepts within each clinical narrative. These intra-narrative temporal orderings

are then combined with the admission and discharge dates across narratives to generate a

cross-document partially ordered timeline of medical concepts for each patient.

8.6.3 Results

The methodology is empirically evaluated by calculating the extent of match between

the eligibility criteria dataset and the structured and unstructured datasets. The medical

concept-level match results between the trials datasets, consisting of all eligibility criteria,

and the structured and unstructured data are shown in Table 8.2. The CLL trials dataset

has 2167 medical concepts and the prostate cancer dataset has 1019 medical concepts. The

CLL trials have a total of 1720 eligibility criteria, while the prostate cancer trials have

1325 eligibility criteria, containing diseases, procedures, tests, symptoms and medications.

We observe that more than half of the medical concepts in the CLL and prostate patient
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data were only found in the unstructured data. The most frequent medical concept seman-

tic types found in the unstructured datasets include Finding, Sign or Symptom, Disease

or Syndrome, whereas the most frequent medical concept semantic type in the structured

data includes Laboratory Test or Procedure, Pharmacological Substance and Disease or

Syndrome. If the structured data has diagnoses and encounters lists, there tend to be over-

lapping Disease or Syndrome type concepts across the structured data and unstructured

clinical narratives.

CLL Prostate Cancer
CUI Medical Concept CUI Medical Concept

Structured Data Match 23% 29% 11% 19%
Unstructured Data Match 61% 68% 48% 57%

Table 8.2: Medical Concept-level Analysis on CLL and Prostate Cancer Trials and Patient
Records

354 of the eligibility criteria in the CLL trials and 297 of the eligibility criteria in the

prostate cancer trials have temporal constraints. Table 8.3 shows results from matching

temporal clinical trial eligibility criteria against structured and unstructured data. In both

patient datasets, matching the textual fragment identified as the medical concept gives us

a higher match percentage than trying to match CUIs. Importantly, the dependence on

unstructured data for resolution of temporal eligibility criteria is higher than structured

data. There is especially a huge gap between the structured and unstructured data match in

the case of prostate cancer, where structured data only contributes to the resolution of 9%

of the criteria.
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CLL Prostate Cancer
CUI Medical Concept CUI Medical Concept

Structured Data Match 35% 37% 9% 9%
Unstructured Data Match 53% 59% 75% 77%

Table 8.3: Eligibility Criteria-level Analysis on CLL and Prostate Cancer Trials and Patient
Records

We observed that from the temporal criteria requiring unstructured data for resolution,

frequently intra-narrative temporal reasoning was sufficient for resolving temporal con-

straints. The learned time-bins, along with the admission and discharge dates on each

narrative, were useful in assigning medical concepts to coarse time-periods and in resolv-

ing 41% of the eligibility criteria that required an unstructured data match. For instance,

the constraint, “patients with a distant history (greater than 6 months before study entry) of

venous thromboembolic disease are eligible,” requires mapping of venous thromboembolic

disease to a time-bin way before time. Whereas “clinically significant bleeding event within

the last 3 months, unrelated to trauma, or underlying condition that would be expected to

result in a bleeding diathesis” required fine-grained temporal ordering of medical concepts.

Further, as shown in Table 8.4, from the criteria that required unstructured data for reso-

lution, 33% and 35% required cross-narrative temporal reasoning in the CLL and prostate

cancer dataset respectively. A criteria such as, “fever > 100.5 F for 2 weeks without evi-

dence of infection,” requires extracting the fact that fever lasted for 2 weeks by examining

multiple mentions of fever across history and physical reports and discharge summaries

to determine when fever started and stopped. This additionally requires the ability to per-

form coreference resolution across clinical narratives. Criteria requiring information from

both structured and unstructured data (information fusion) were determined based on the
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presence of the medical concepts in the criteria across these data sources. For instance,

“if they have achieved stable blood pressure (bp) on a regimen of over 2 drugs after 6-8

weeks of therapy.” The value of “bp” can be obtained from the structured data, however the

nuanced relationship information about the drug regimen that was prescribed to stabilize

“bp,” along with its time duration, requires time-bin learning and cross-narrative temporal

reasoning. We observed that while a large percentage of CLL criteria required fusion, the

lower number of prostate cancer criteria is mainly due to limited structured data available

for prostate cancer.

CLL Prostate Cancer
Cross-Narrative Temporal Reasoning 33% 35%

Information fusionL = Sk ∩ Uj is not empty 24% 3%
Information fusion L = Sk ∩ Uj is empty 17% 1%

Table 8.4: Eligibility Criteria that require Cross-narrative Temporal Reasoning and Infor-
mation Fusion for resolution

8.6.4 Discussion

We studied two datasets of patients, CLL and prostate cancer, and evaluated the use-

fulness of structured vs. unstructured data in recruiting for corresponding clinical trials.

We observed that the type of structured data, its granularity, and the information available

vary across patient datasets. While the CLL patient dataset has detailed structured data in

the form of diagnoses lists, encounters list, procedures and lab values, the prostate cancer

dataset has limited structured data mostly consisting of medication lists and lab values.

More fundamentally, the data heterogeneity reflects the underlying tumor heterogeneity at

multiple levels. These levels include: (i) patient referral patterns, (ii) patterns of disease
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treatment, and (iii) differences in disease stages. At The OSU James Cancer Hospital,

the majority of prostate cancer patients tend to be referrals from community oncologists

or urologists after failure of first and second line therapies. In contrast, CLL patients are

mostly evaluated from time of diagnosis and thus their entire case history is within the OSU

system. Secondly, laboratory values for prostate cancer patients are often drawn at their lo-

cal laboratory and subsequently faxed to their oncologist at OSU. These labs are not directly

accessible and are found in the unstructured component of the medical record. In stark con-

trast, CLL labs are nearly universally drawn at OSU. These tumor type differences would

help explain our findings that prostate cancer requires the use of the unstructured data more

frequently. The end result is that prior treatment history for prostate cancer patients who

are seen at a later stage will have their disease course and treatment course summarized in

the unstructured narrative. CLL patients are captured at an earlier stage and therefore their

disease course and treatment history is more easily obtained from the structured text. This

tumor type heterogeneity is reflected in the diagnosis codes that are available. In the case

of CLL, these codes are useful in checking eligibility criteria that check for the presence or

absence of a medical condition can be resolved easily from the structured data using these

lists. In case of prostate cancer, this data is not as complete. Tumor heterogeneity aside,

structured data may also fail if the medical concept is at a finer level of granularity than

what is required for an exact match. In such cases, examining the unstructured data for

additional information, or additional processing to check for related higher level concepts

for medical events in the structured data may help better resolve the eligibility criteria.
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8.6.5 Conclusion

We performed an empirical evaluation of clinical trial eligibility criteria resolution us-

ing structured and unstructured patient datasets from CLL and prostate cancer. We ob-

served that unstructured data is essential to resolving eligibility criteria in 59% of the CLL

trial criteria and 77% of the prostate cancer trials. We also demonstrated the need for

cross-document temporal relation learning and information fusion across structured and

unstructured data sources. Although structured data is useful in resolving certain criteria, it

is limited by information granularity and structured data type. Thus, structured data is best

used for first pass filtering of EHR data in eliminating a criterion based on the presence

or absence of a certain lab test or diagnoses, prior to a more nuanced second pass using

unstructured data. Moreover, improving the coverage of the structured data in the EHR

would improve its ability to be used as a clinical trial recruitment tool.
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CHAPTER 9: CONCLUSIONS AND FUTURE WORK

Extracting and reasoning with events and time expressions in natural language has be-

come an active area of research in the computational linguistics. Specifically, this is an

important topic in clinical informatics as time is an important feature of longitudinal clin-

ical text. The increased availability of electronic health records over the past decade has

given researchers the opportunity to extract and reason with clinical variables in structured

and unstructured patient records to help support clinical applications.

In this dissertation, we presented a novel framework for medical event timeline gener-

ation from a patient’s electronic health record. The framework (illustrated in Chapter 1,

Figure 1.2) consists of models for intra- and cross-narrative temporal ordering of medical

events from unstructured clinical narratives and a module for information fusion across

structured and unstructured data. This is the first end-to-end framework for timeline gener-

ation from clinical narratives. Importantly, through a series of experiments to address the

problem of temporal relation learning and coreference resolution, we demonstrate how we

can leverage clinical domain heuristics in training machine learning models for information

extraction from unstructured clinical text.

9.1 Summary of Work and Contributions

We first address the problem of intra-narrative temporal ordering in Chapters 4 and

6. The main contribution in addressing this problem is leveraging narrative structure and

sub-language characteristics in training models for learning coarse as well as fine-grained
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temporal relations between medical events in the same clinical narrative. We demonstrate

our approach through experiments on an actual dataset of unstructured and structured pa-

tient data obtained from the EHR at The Ohio State University Wexner Medical Center.

The patient narratives are annotated with medical events, temporal relations and corefer-

ence information to enable training and evaluation of machine learning models.

Time-bin learning. In Chapter 4, we addressed the problem of learning to assign

medical events to coarsely defined time-bins using a sequence tagging approach with a

linear-chain Conditional Random Field. We demonstrated through experiments that this

outperforms a MaxEnt model that does not use any sequence information.

The main contribution here is that the learned time-bins (along with explicit dates like

admission, discharge) can be used to infer a coarse partially ordered timeline of medical

events that may be useful to clinical applications with coarser temporal constraints. The

time-bins also serve as a useful temporal feature for coreference resolution and fine-grained

temporal ordering of medical events.

Semi-supervised coreference resolution. Since information redundancy is a charac-

teristic of clinical narratives, we propose methods for coreference resolution of medical

events in Chapter 5. Taking into consideration how tedious and time-consuming the task

of obtaining expert annotations for these tasks is, we explore semi-supervised methods,

co-training and posterior regularization, for medical event coreference resolution.

Importantly, we empirically demonstrate that posterior regularization does almost as well

as supervised learning (on a 60/40 split of the data) for this task. This contribution is of

great value to the community, where owing to the difficult nature of the data and the task,

annotations are hard to obtain for supervised learning. The learned coreferences also serve

as a useful feature in learning fine-grained temporal relations.
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Ranking for temporal ordering. In Chapter 6, we learn all of Allen’s temporal rela-

tions between the medical events “starts” and “stops” by learning to rank them in relative or-

der of occurrence using SVM-rank. We demonstrate through experiments that this method

outperforms a pairwise classification approach to learning temporal relations between med-

ical events. We observe that the opposite is true of these methods on the Timebank corpus

of newswire text.

An important contribution here is highlighting the differences between domains in learning

to temporally order events. State-of-the-art methods that are proven to perform well on

standard community-shared corpora (usually newswire text) do not always perform as well

on other real-world data. This finding has important implications for styles of data repre-

sentation and resources used for temporal relation learning: clinical narratives may have

different language attributes corresponding to temporal ordering relative to Timebank, im-

plying that the field may need to look at a wider range of domains to fully understand the

nature of temporal ordering.

The ranking process helps generate temporally ordered medical event sequences corre-

sponding to each clinical narrative. Given these sequences, we next address the problem of

cross-narrative temporal ordering using a novel sequence alignment approach.

Cross-narrative temporal ordering This cross-narrative problem is a huge challenge

due to the lack of discourse coherence and context across narratives. We model this prob-

lem as a sequence alignment task by leveraging coreference and temporal relation informa-

tion to align medical events across narratives in Chapter 7.

The important contribution here is the novel framework for multiple sequence alignment

using cascaded weighted finite state transducers (WFSTs) to derive the most likely tempo-

ral ordering of medical events for a patient. The alignment scores are computed based on
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learned pairwise temporal and coreference relations between medical events across clinical

narratives. We demonstrate that this method outperforms iterative pairwise dynamic pro-

gramming and an integer linear programming-based method [Do et al., 2012] for the task

of cross-narrative alignment of multiple medical event sequences. The result of the cross-

narrative alignment is the most probable sequence of medical events (timeline) across the

patient’s history.

Information fusion. We then explore how structured data in the EHR, that is usually

available in plenty, can help the process of timeline extraction from unstructured clinical

narratives in Chapter 8, Section 8.4. The main contribution here is the proposed temporal

model estimated from timestamped medical events that can be used compute the probability

of certain medical events following certain other events based on event frequencies. We

demonstrate through are experiments that using the probability from this temporal model as

a temporal feature helps improve the accuracy of the timeline generated from the structure

data.

Utility of generated timeline. Finally, we investigate the utility of the framework

for timeline generation in resolving temporal clinical trial eligibility criteria. With the help

of a set of criteria extracted from http://clinicaltrials.gov, we demonstrate

through experiments that information extracted from unstructured clinical narratives, and

information fusion across structured and unstructured data is required to resolve certain

constraints in temporal eligibility criteria.

9.1.1 How does this research affect the state-of-the art in the commu-
nity?

The proposed framework is the first of its kind for timeline generation from longitudi-

nal clinical text. While there have been limited efforts at temporal relation learning from
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clinical text by Zhou and Hripcsak [2007]; Harkema et al. [2005]; Sun et al. [2013], among

others, there isn’t any integrated framework for temporal relation learning at various lev-

els of granularity both within and across unstructured clinical narratives. Moreover, this

work tries to address a difficult problem of learning cross-narrative events relations. Pre-

vious work has mostly been restricted to extracting information from a single clinical note

of a certain type (say discharge summaries). Even generally, cross-document relations in

NLP have only been explored to a limited extent. In this work, we learn relations between

events within and across unstructured clinical narratives, enabling information extraction

from longitudinal clinical text. Moreover, we do this across all types of clinical notes.

Through experiments with classification and ranking on Timebank and clinical narratives,

we demonstrated the need for novel NLP methods for real-world data such as clinical text.

Moreover, generating a timeline of events from temporally incoherent unstructured text

has been a topic of significant interest in the clinical informatics community. The proposed

framework, is the first effort at producing a comprehensive timeline, considering unstruc-

tured and structured data, across the patient’s history.

9.2 Future Work

This is the first attempt at generating such a timeline from longitudinal clinical text.

There is a lot of scope for improving the features and models used in this dissertation to

generate a more accurate timeline. Moreover, the generated timeline can be used as a tool to

enable many other problems in natural language processing. In this section, we enumerate

some future directions for this work.
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• Event and Temporal Expression Extraction. The learning models proposed in

this dissertation are trained on gold-standard medical events and temporal expres-

sions (although we use TimeText [Zhou et al., 2006] to generate additional temporal

expressions) tagged by our annotators. The popular tool for automatic event extrac-

tion in the clinical informatics community is MetaMap [Aronson, 2001]. However,

MetaMap has its own limitations including the fact that it doesn’t always identify

contextually relevant medical concepts and often doesn’t identify the entire long

phrase that constitutes the concept. Better mechanisms for automatic extraction of

medical concepts and temporal expressions and anchoring of temporal expressions

to medical events will help the process of completely automated timeline extraction

to a large extent [Jindal and Roth, 2013].

• Duration of Events. The framework for timeline generation only considers the rel-

ative temporal ordering between medical events in longitudinal clinical text. How-

ever, in many clinical applications, it is important to know the duration of the medical

event. Although we learn this to some extent as we order event starts and stops (and

some explicit dates that the events are anchored to), we fall short of learning the exact

time interval between the event start and stop. There has been prior work in learning

to interpret temporal phrases given a corpus of utterances and the times they refer-

ence, using a compositional grammar of time expressions [Angeli et al., 2012]. This

allows us to ground temporal expressions probabilistically using a loosely supervised

EM-style bootstrapping method. Leveraging such methods may be an important part

of predicting the duration of medical events.
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• Evaluation and Scalability. We have evaluated our methods on a limited dataset

of clinical data due to the tedious nature of the annotation process. Expanding the

dataset and verifying the applicability and scalability of these methods is something

that needs to be addressed. If direct evaluation is not possible, as that would require

detailed annotations on a larger dataset, the methods can be indirectly evaluated. The

indirect evaluation can be done by measuring the use of the timeline in resolving

temporal constraints for various clinical applications. Cross-institutional validation

of these methods to demonstrate generalizability across clinical datasets from differ-

ent EHRs.

• Discourse Relations. There are different types of discourse relations between tex-

tual units in discourse. These include comparison, expansion, contingency, causal,

temporal. We have focused on the temporal relation between medical events in clin-

ical text. Events in clinical text can be related by other relations like causality which

is of great significance to medicine. Learning different types of discourse relations,

to represent more complex non-linear relationships with the events in the generated

timeline, could be an interesting area of research.

• Information Fusion. There may be multiple ways to combine structured and un-

structured in the EHR. We have explored information fusion in a limited setting us-

ing structured data to help the process of learning from unstructured data. However,

training temporal models on very large disease datasets, will help generate more ac-

curate predictions. It would be interesting to see how much this helps unstructured

data learning.
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• Visualization of the timeline. The output of our system is a partially ordered med-

ical event timeline. Such a timeline may contain over 100 or more medical events.

Designing a cognitively engineered display for visualizing the timeline in an intu-

itive manner, to help clinical understand and analyze the information available in the

timeline, will be of immense use to the clinical community.

9.3 Conclusions

Electronic health records have brought an emerging challenge to health care: how do

clinicians extract critical information, from rapidly growing quantities of health records,

which can be perhaps used to influence physician behavior, and improve the quality of

health care? Clinical data has distinct sub-language specific characteristics that present

opportunities for natural language processing to enable unstructured data-analysis using

clinical domain-heuristics in training machine learning models.

In this dissertation, we describe a novel framework for timeline generation from clinical

narratives. Specifically, we propose methods for representing and reasoning with medical

events and temporal information, both within and across narratives. We learn to resolve

medical event coreferences and incorporate the learned information as an integral part of

the temporal ordering process. We propose a novel ranking-based approach for learning

intra-narrative temporal relations. Cross-narrative temporal ordering of medical events

is a huge challenge due to the lack of discourse coherence across narratives. We model

this problem as a multiple sequence alignment task, using a cascaded weighted finite state

transducer (WFST)-based approach, and derive the most likely temporal ordering of med-

ical events for a patient. The generated medical event timeline is of great utility in clinical
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applications with temporal constraints including clinical trial recruitment, multi-document

summarization and adverse drug reaction mining.
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APPENDIX A: TYPES OF CLINICAL NARRATIVES

The clinical narratives corpus includes radiology notes, history and physical reports,

social work assessments, progress notes, discharge instructions and discharge summaries.

Some common characteristics across different types of patient narratives are as follows.

Every clinical narrative is characterized by a structured header with information such as

“medical record number” (MRN), “patient name,” “physician name,” “admission date,”

“discharge date,” and “patient’s date of birth”. This is followed by multiple sections with

unstructured content describing details of the patient’s medical condition and the health

care administered. The sections and section content vary based on the type of clinical

narrative. The sections are usually delineated by a section header. However, there may

be some exceptions where the entire note is a continuous paragraph without any section

grouping. We examine the characteristics of different types of clinical narratives to better

understand their characteristics.

A.1 Discharge Summaries

A discharge summary is a clinical report prepared by a physician or a health profes-

sional at the conclusion of a hospital stay or series of treatments. It outlines the patient’s

chief complaint, the diagnostic findings, the therapy administered and the patient’s response

to it, and recommendations on discharge, usually described under appropriately titled sec-

tions. Based on the discharge summaries that were studied, we noted the use of mostly
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complete sentences. However, there is considerable use of medical abbreviations and ter-

minology. The sections that are usually found in a discharge summary are as follows:

• Past Medical History: This section briefly states medical conditions from the pa-

tient’s history that maybe relevant to his present illness. For instance, “Medical his-

tory - Significant for a mitral valve prolapse and a questionable history of hyperten-

sion.” The medical conditions stated in this section may be detailed in the “History

of Present Illness” section.

• Social History: It describes any social habits that may affect the patient’s health. For

instance, “The patient is a smoker 10-pack-year history of IV drug abuse 5 years ago

history of incarceration 5 years ago.”

• History of Present Illness: This section describes the patient’s medical condition

before admission to the hospital. It also includes some initial observations after ad-

mission to the hospital. It outlines diseases, complaints, medication routines and

habits of the patient that maybe relevant to his present illness. For instance, “The

patient noted no palpitations. Episodes lasted less than 5 minutes. She said that she

would typically take an aspirin lie down and she would feel better ....,” “At the time

of admission to the ER the patient was chest pain free ....” The sentences within this

section are usually in sequential order of time. This section may contain medical con-

ditions that are coreferring with those found in “Past Medical History” and “Social

History.”

• Physical Examination: This section includes observations from the physical exami-

nation of the patient throughout his stay in the hospital. This could include observa-

tions on blood pressure, pulse, and respirations. It may also include cardiovascular
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details, condition of the lungs, abdomen, etc., based on the patient’s present illness.

For instance, “Vital signs - On admission the patient’s blood pressure was 141/82

pulse 98 respirations 18 afebrile.”

• Hospital Course: This section describes the treatment course that the patient under-

went during his stay in the hospital. The temporal flow is not necessarily sequential.

It generally details the various medical conditions that were diagnosed and treated,

including details of tests done and drugs administered. For instance, “She did have

an echo-cardiogram done which showed a normal ejection fraction of 55% mild dias-

tolic dysfunction with mitral valve prolapse and mild aortic and mitral regurgitation

moderate tricuspid regurgitation noted. The patient also had a stress test which was

negative ....”

• Disposition: This section describes the patient’s disposition with respect to his med-

ical condition before discharge from the hospital. For instance, “The patient was not

having chest pain was up and ambulating and was tolerating a regular diet ....”

• Diagnosis: This section describes the final diagnosis for the patient’s present illness.

This medical condition described in the final diagnosis is most likely coreferring

with instances described in “Past Medical History,” “History of Present Illness,” and

“Hospital Course.” For instance, “Mitral valve prolapse.”

There maybe other sections which are minor variations to the ones described above.

These include “Review of Systems,” “History,” “Wound Clinic History,” “Vital Signs at

the Time of Discharge.” These may vary based on the patient’s illness and the physician

writing the discharge summary. The patient’s follow up and care could also form a separate

section in the discharge summary. However, there may also be a different clinical narrative
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outlining recommendations for the patient after discharge. This clinical narrative is usually

called “Discharge Instructions.” There may be instances where a discharge summary only

has one continuous paragraph which is a combination of the content under all sections.

A.2 History and Physical (H&P) Report

H&P reports contain an admitting diagnosis that answers the question, “Why is this

patient being admitted?” or “Why does this patient need to be in the hospital?” They are

structured similar to discharge summaries, but are usually more detailed. The H&P report

describes the “Past Medical History (PMH)” and the History of Present Illness (HPI) of

the patient. It is divided into sections such as “History of Present Illness,” “Past Medical

History,” “Physical Examination.”

• History of Present Illness (HPI): The HPI tells the story of the patient from the time

they are admitted to the moment the physician / nurse sees them. In case of a direct

admission, it describes the whole outpatient story and what was tried, leading up to

why they are being admitted. For a consult, the HPI tells the story of the patient up

until the point of why the physician is being consulted.

• Past Medical History (PMH): It documents on-going medical problems, list of surg-

eries etc. If something is recent or pertinent to the current illness, it is usually de-

scribed in more detail.

• Chief Complaint: It states the primary medical condition (disease, ailment) of the

patient. For example,“Pelvic osteomyelitis and decubitus along with sepsis for IV

antibiotics ....”
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• Family History: This section describes any relevant medical conditions that run in

the family.

• Laboratory Data: This section lists lab measurements and readings. For example,

Shows sodium 128 potassium 4.1 chloride 97 bicarb 27.8.

• Assessment and Plan: This section describes the current assessment of the patient’s

condition outlines the treatment plan. For example, “Sepsis. Will continue IV Pri-

maxin Tobramycin and Zyvox ....”

Generally, when the discharge summary lacks detail, the relevant details can instead

be obtained from the “History and Physical” report under similar sections. It naturally

follows that “History and Physical” report has multiple coreferring events with discharge

summaries.

A.3 Radiology Report

Radiology reports contain observations from scans obtained through x-ray, ultrasound,

MRI, CT, and other medical imaging technology. It is the primary means of communication

between the radiologist and the referring physician. The measurements in a radiology

report may be referenced in other clinical narratives. A sample snippet from a radiology

report is as follows: “Left subclavian Groshong catheter tip in the SVC. No pneumothorax.

The lungs are clear ....” They usually document the radiologist’s observations of the scan

reports.

A.4 Pathology Report

A pathology report is written by a physician who specializes in interpreting laboratory

tests including evaluation of tissues, cells and organs to diagnose a disease. The report
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may describe the lab specimen, its microscopic description and impression or diagnosis. A

snippet from a pathology report is as follows: “ Cytogenetic analysis of the sample showed

a clone of cells with a deletion of 13q. Patients with deletions of 13q and CLL have an good

prognosis ....” The description in a pathology report may have some information overlap

with lab values in the structured data.

A.5 Social Work Assessment

Social Work Assessment reports are usually written by clinical social workers who as-

sess patients with social, emotional, interpersonal, and socioeconomic issues. Areas of

assessment31 include, but are not limited to: Adjustment to chronic and catastrophic illness

or procedures and treatment, ability to follow medical regimen, family functioning, social

or financial concerns, abuse, neglect, violence, mental illness and emotional distress, sub-

stance abuse, adjustment to loss, cultural, religious, and language needs. These reports are

mostly structured. There is usually a comments section that is unstructured. This section

gives general details about where the patient currently lives, where he will go after being

discharged from hospital, the transportation he will need, where his medical reports need

to be sent to, etc. A sample snippet is as follows: “Pt is a non- smoker. Plan is for pt

to return home with Interim home health care once medically stable. When pt discharged

please complete coc’s and fax copies with EDI and scripts ....”

31http://www.mghsocialwork.org/aboutus.html
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