
- I l l -
minium

XA9846500

METHODOLOGY OF FORMAL SOFTWARE
EVALUATION

JAN TUSZYNSKI
Sydkraft Konsult AB
Malmo, Sweden

Abstract
Sydkraft AB, the major Swedish utility, owner of ca 6000 MWei installed in nuclear

(NPP Barseback and NPP Oskarshamn), fossil fuel and hydro Power Plants is facing
modernisation of the control systems of the plants. Standards applicable require structured,
formal methods for implementation of the control functions in the modern, real time
software systems. This presentation introduces implementation methodology as discussed
presently at the Sydkraft organisation. The approach suggested is based upon the process of
co-operation of three parties taking part in the implementation; owner of the plant, vendor
and Quality Assurance (QA) organisation. QA will be based on tools for formal software
validation and on systematic gathering by the owner of validated and proved-by-operation
control modules for the concern-wide utilisation.

1. Software project organisation

1.1. General

QA of the real-time systems has two main approaches available:
• vendor evaluation
• product evaluation

QA through vendor evaluation is presently the most favoured approach. Assumption
that "good vendor will guarantee right quality.... " is comfortable for both plant owners and
vendors. Vendor's assurances of ".. full turn-key, functional responsibility based on our
standard products ..." sounds nicely for the owner as it will simplify his organisation for both
purchase and implementation. The problems will show up first when guarantees are
concerned. There are no vendors willing to cover dominating costs of the control system
modernisation; cost of plant stand-still.

The method recommended will accordingly include direct product evaluation by
application of formal tools for verification and validation (V&V). Application of formal
tools puts anyhow special demands on owner's and vendor's organisation. That is generally
valid for any tools having meaning in a context of work pattern only.

- 112 -

1.2. Standards and recommendations
Power industry and especially nuclear one is bound to follow standards and

recommendations. Methodology described in this paper is based on,
• IEC880: Software for computers important to safety for NPP.

Including recent updates as Supplement to IEC88O and draft IEC880-1.
• The Swedish recommendations corresponding IEC-880 are,

KSU-TBE106: Programmable control systems. Software

Other standards give recommendations for general industrial systems, rules of
classification, etc.:
• IEC1508: (Draft) Functional safety of electrical/electronic/programmable electronic

safety related systems
• IEC SC65A WG9: Software for computers in the application of industrial safety-related

system"
• IEC 1226: NPP- Instrumentation and control systems important for safety. Classification
• IEEE 308 (384, 379) - Standard Criteria for Class IE Power Systems for Nuclear Power

Generating Stations
• DIN V 19250: Grundlegende Sicherheitsbetrachtungen fiir MSR-Schutzeinrichtungen

Draft IEC880-1 chapter 2 recommends formal methods for software procurement
meant here as "methodical framework"1 consisting of methods for formal specifications,
formal verification of specifications, formal software development. The same norm requires
proof obligations defined in mathematical terms. Formal proof is then defined as
mathematical proof of fulfilment of proof obligations. Formal proof is practically possible
only if special tools are available.

1.3. "Third party"; external QA organisation
Procurement of the control systems is normally done through tendering when the

owner selects the vendor2. Both parties have the same implementation aim but different
interests. All differences are supposed to be regulated in the contract defining strictly
division of responsibilities. The contract includes demands on quality assurance and thus
request for a third party to be involved; QA organisation. QA organisation can be internal or
external. Internal QA, inside owner's or vendor's organisation, concerns mainly
verifications, i.e. check-up that tasks performed comply with demands of earlier stages of
the project. External QA goes in between the owner and the vendor and concerns mainly
validation, i.e. check-up of the compliance between demand (specification) and the final
result.

This study concerns mainly an external QA organisation which shall be independent of
both the vendor and in some degree of the owner3. External QA organisation will be the
main user of the formal tools for validation of real-time systems.

"formal" means then; conceptually right, according to fixed rules.
2 Selecting of the vendor is usually complicated process concerning naturally economy but in a great

degree evaluation of the vendor's capability to deliver real-time system of required quality. Vendor's
evaluation can be done according to ISO9000 or still better by application of various software procurement
models as e.g. (CMM) Capability Maturity Model

independence is defined by the contract or by valid standards and means often participation of
authorities

- 113 -

2. The process of software procurement
Procurement of SW shall be done in well defined stages4, mainly as the following,

• (FA): Functional Analysis.
Crucial activity defining, according to controlled process requirements, functions of the
real-time system.

• (FS): Function Specification.
Functions as identified by FA are here described formally and unambiguously.

• (DP): Design and Programming.
• (Int): Integration

of Soft and Hardware into the common, final product
• (Ver): Verification,

actually not a stage but a QA process where particular project stages will be checked up
and accepted

• (Val): Validation,
tests of conformance between FS and functions delivered

2.1. Types of software

Two groups of SW products are concerned,
1. Operating system; principally integrated part the vendor's system.
2. Application functions; executing the actual, process dependent functions required of the

control system.
QA methodology discussed here concerns mainly application functions. Operating

system will be treated generally in the same way as hardware; i.e. as a program environment
for applications provided by the vendor. It means that all formal test of applications must be
done in vendor's target environment of the real-time system. Exclusion of the operating
system from formal testing does not exclude that system from the particular interest of the
owner. Operating system is presently main CCF5 factor of redundant links of control
systems.

2.2. Modularity
QA shall be based on modularity. Division in modules (Design and Programming)

shall be formalised according to the following,
1. Structuring and modularisation of the software according to Function Specification, most

often on the object control level, get fixed "standardised" form of "type-circuits" (figure
1). The control functions on group and block level will be normally based on "type-tools"
(e.g. for sequence control)6

2. Modules shall be classified according to required safety and availability (figure 2)
3. Class and function shall be described formally in the specification of module

requirements.
4. Modules shall be procured according to well established project routines concluded by

module validation (certification)
5. Modules when ready and certified shall be placed in software libraries.

4 main condition for any verifications
5 Common Cause Failure; existence of a common function in separated links of the system which in case

of failure can stop functioning of all links.
6 Division in object, group and block levels corresponds to the traditional control system structure as

applied presently for Swedish Power Plants.

- 114 -

OPERATOR STATION

~4 1 SWITCH OF. Alt

/ROCESS CONTROL STATION LOCAL FANEL 11 I

' '"" LotrtUmoie f"^ ~ " ^ ^ f "| "^
.„. I ON/OFF ' I. * ' I

MMC
HANDLER

CALCULATIONS

INTERFACE :
wiih (unction i :

2 4 V * " N

Figure 1: Components of the complete type-circuit

2.3. Quality through re-application. Software libraries.
Basis for the proposed QA system is re-application of the software modules. Quality

can be achieved through systematic product improvement through experience gathering and
continuous reduction of systematic errors in the specifications and software. This policy is
clearly defensive by assuming errors in all new software.

The main conclusion of that assumption is that new software shall not be allowed in

Figure 2: Modularity through division in classes

- 115 -

the highest class of the control modules; i.e. safety systems. The problem can be solved by
initial application of modules to the lower classes only. Gradual advancement to higher
classes will be allowed parallel to operating experience.

QA through re-application requires software library (figure 3) as a base for all software
procurement. The following will be required for the library:
• fixed routines for module documentation, validation, storage, retrieve, update and

revision
• library structure, e.g. according to module applications and classes
• means for creating library subsets suiting various power plants, organisations, etc.
• special attention shall be given to validation of library modules. The modules shall be

certified for storage in the library through validation based on formal methods.
• the rules for module handling shall be adopted to class of modules.
• responsibility for validation, maintenance, up date, etc. of each library subset shall be well

defined.

tructunng
Classification

Div. in modul

"1 all modules
from lib

(tested
&

i Certified);

QA: task 1

test & certification
of library modules

QA:task2

supervision of
modules used for
applications (only
library modules
acceptable)

Figure 3: Software implementation through project library

Management of library shall be facilitated by the special software maintenance system.
The system shall allow configuration of the project specific library. The project library shall
gather all the structures, tools and modules identified during structuring and modularisation
of the software. The identified elements can be subsequently taken from the owner's or / and
vendor's libraries. In case suitable elements are not available the new elements must be
developed. Inclusion of all modules into project library shall follow owner's rules for library
handling. The project library will become the basic element of the project bound QA.

- 116 -

One of the main advantages of a formally organised libraries will be possibility to
trace down development process of any module purchased or developed for the actual
application.

3. Verification of Specification
An external QA consists mainly of validation of the final software product. As

validation compares the product with product specification it must be assumed that
specifications are correct. Verification of specifications becomes accordingly crucial for
software correctness.

Verification methods start usually from recognition of potential errors in
specifications, e.g.
• principal function errors caused by misunderstanding of the process controlled, errors in

that process etc.
• erroneous object assignment
• errors in syntax and semantics
• errors of consistency

De-bugging of errors of assignment, syntax, semantics and consistency can be handled
by formal specification languages and corresponding verification tools.

The problem of principal function errors is normally approached through the
functional analysis (FA). FA, carried by the owner (process supplier), is based upon fixed
rules and criteria applicable to the process controlled, and on a deep knowledge of that
process.

There is a number of well established FA methods, majority based on some form of
failure / event tree. The method used widely in nuclear industry is PSA7 dealing with event
tree initiated by the probable events of accidents.

FA will be documented in functional circuit diagrams, in several levels of detail,
starting with overviews and "zooming" down to the formal language function specifications
of modules and structures employed .

4. Final product validation

4.1. General

Validation means final product acceptance, or formal proof as defined by IEC880,
licensing the product for inclusion in the software library. Validation will be performed by
the QA organisation during design and programming period with the final module
acceptance during FAT9.

Validation can be performed through:
• direct check-up according to test programme
• check-up by comparison

Both methods require special tools. Validation will be applied to both specific
modules of the library and to the groups of modules interconnected to perform specified
application function.

Test objects for all validations named here are vendor's real-time target systems.

7 Probabilistic Safety Analysis
8 Various methods of FA are well described in the literature: e.g. ref [8]
9 Factory Acceptance Tests

- 117 -

OWNER VKNDOR

PROBLEM,
tests prescribed

normally
not feasible

Figure 4: Validation through test programme

4.2. Validation through test programme
Validation through test programme (figure 4) assumes that such a programme is

feasible and can be run in a limited time period. That assumption can be realised for simple
modules only. Validation of this kind will require,
• complete test programmes defining test input data values and sequences and expected test

results. Test programmes must be automatically generated from functional specifications.
• test environment including test data generator and test object response analyser.

All criteria for the product acceptance must be included in a response analyser

4.3. Validation by comparison
Validation by comparison is based on procurement of an alternative to target program

produced by vendor (figure 5). Validation of this kind will require,
• "pattern program"10 generated automatically from the formal functional specification.
• complete test environment including test data generator and comparator of responses.

Validation will be here realised by parallel inclusion of identical test data into a pattern
and a target. All response deviations must be reported by the comparator and subsequently
analysed. Main advantages of this method are simplified selection of test data (through e.g.
statistical approach) and direct representation of the actual specification through its pattern

10 VTT Finland (P. Haapanen el al) uses here "test oracle" [7]

- 118 -

OWNER VENDOR

TEST TEST OBJECT

t ARK RKULTSJIlbMIC ».L .'

Figure 5: Validation through comparison

REFERENCES
[1]: "An introduction to Formal Methods", A. Diller, Z. Wiley and Sons, Inc., NY

1990
[2]: "An Integrated Formal Approach for Developing High Quality Software for

Safety-Critical Systems", Meng Ouyang, Michael W. Golay, MIT, Michael S. Novak, ABB
Combustion; Report No. MIT-ANP-TR-035

[3]: "Formal and Abstract Software Module Specifications - A Survey", Yabo Wang,
Tech. Report 91-307, ISSN 0836-0227, Queen's University, Ontario, Canada, 1991.

[4]: "Validation and Reliability Testing of Safety-Critical Software for Wolsong NPP
Units 2, 3 and 4", J.S. Baxter, el al Atomic Energy of Canada, Ltd, and H.B. Kim, el al,
Korean Atomic Energy Research Institute.

[5]: "The Use of an Integrated Test Environment in the Design and Verification of
Digital Closed Loop Automatic Control Systems for the Sizewell B PWR", G.P. Paulson, el
al, Westinghouse; K. Drury, el al, Nuclear Electric Ltd; Paper at the 1996 ANSI Meeting,
Proceedings NPIC & HMIT '96.

[6]: "Qualification of an Advanced Digital Safety System", Werner Bastl, Dieter
Wach; Institute for Safety Technology (ISTec) GmbH; Paper at the 1996 ANSI Meeting,
Proceedings NPIC & HMTT '96.

[7]: "Validation of Programmable Automation Systems for Safety Critical
Applications", Pentti Haapanen, el al, Technical Research Centre of Finland (VTT);
International Workshop on Licensing Issues, March 1996, GRS/ISTech, Munich

[8]: "Dependability of Critical Computer Systems,Guidlines" The European
Workshop on Industrial Computer Systems Technical Committee 7 (EWICS TC7). del 1, 2
och3,F.J.Redmill(1988).

[9]: "Digital Instrumentation and Control Systems in Nuclear Power Plants. Safety and
Reliability Issues" National Research Council. Procured on request of USNRC. National
Academy Press, 1997.

