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OPTIMAL DYNAMIC PORTFOLIO SELECTION: MULTIPERIOD
MEAN-VARIANCE FORMULATION

Duan Li and Wan-Lung Ng

Department of Systems Engineering and Engineering Management,
Chinese University of Hong Kong

The mean-variance formulation by Markowitz in the 1950s paved a foundation for modern port-
folio selection analysis in a single period. This paper considers an analytical optimal solution to the
mean-variance formulation in multiperiod portfolio selection. Specifically, analytical optimal portfo-
lio policy and analytical expression of the mean-variance efficient frontier are derived in this paper
for the multiperiod mean-variance formulation. An efficient algorithm is also proposed for finding
an optimal portfolio policy to maximize a utility function of the expected value and the variance of
the terminal wealth.

Key Words: multiperiod portfolio selection, multiperiod mean-variance formulation, utility
function

1. INTRODUCTION

Portfolio selection is to seek the best allocation of wealth among a basket of securities.
The mean-variance formulation by Markowitz (1959, 1989) provides a fundamental basis
for portfolio selection in a single period. Analytical expression of the mean-variance
efficient frontier in single-period portfolio selection was derived in Markowitz (1956)
and Merton (1972). The problem of multiperiod portfolio selection has been studied
by Smith (1967); Chen, Jen, and Zionts (1971), Mossin (1968), Merton (1969, 1990),
Samuelson (1969), Fama (1970), Hakansson (1971a, 1971b), Elton and Gruber (1974a,
1974b, 1975), Winkler and Barry (1975), Francis (1976), Dumas and Luciano (1991),
Östermark (1991), Grauer and Hakansson (1993) and Pliska (1997). Enormous difficulty
was reported by Chen et al. (1971) in finding optimal solutions for a multiperiod mean-
variance formulation. The literature in multiperiod portfolio selection has been dominated
by the results of maximizing expected utility functions of the terminal wealth and/or
multiperiod consumption. Specifically, investment situations where the utility functions
are of power form, logarithm function, exponential function, or quadratic form have been
extensively investigated in the literature.

To our knowledge, no analytical or efficient numerical method for finding the opti-
mal portfolio policy for the multiperiod mean-variance formulation and determining the
mean-variance efficient frontier has been reported in the literature. In this sense, the con-
cept of the Markowitz’s mean-variance formulation has not been fully utilized in mul-
tiperiod portfolio selection. This paper represents an extension of the existing literature
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to capture the spirit of risk management in dynamic portfolio selection. The analyti-
cal result (Markowitz 1956; Merton 1972) in single-period portfolio selection has been
generalized in this paper to multiperiod portfolio selection. Analytical optimal portfolio
policy is derived for the multiperiod mean-variance formulation along with the analytical
expression of the mean-variance efficient frontier.

The organization of this paper is as follows. In Section 2, the mean-variance for-
mulation for multiperiod portfolio selection is discussed. The analytical solution to the
multiperiod mean-variance formulation is stated in Section 3. Detailed derivation of the
analytical results is provided in Section 4. The mean-variance formulation for multiperiod
portfolio selection is investigated in Section 5 for investment situations where there is a
riskless asset. The multiperiod mean-variance formulation is then generalized in Section
6 to investment situations where a utility function of the expected terminal wealth and
the risk is maximized. Three cases are studied in Section 7 and the paper concludes in
Section 8 with a suggestion for further study.

2. MEAN-VARIANCE FORMULATION FOR
MULTIPERIOD PORTFOLIO SELECTION

We consider a capital market with (n+ 1) risky securities, with random rates of returns.
An investor joins the market at time 0 with an initial wealth x0. The investor can allocate
his wealth among the (n+ 1) assets. The wealth can be reallocated among the (n+ 1)
assets at the beginning of each of the following (T − 1) consecutive time periods. The
rates of return of the risky securities at time period t within the planning horizon are
denoted by a vector et = [

e0t , e
1
t , . . . , e

n
t

]′
, where eit is the random return for security i at

time period t . It is assumed in this paper that vectors et, t = 0, 1, . . . , T − 1, are statisti-
cally independent and return et has a known mean E(et) = [

E
(
e0t
)
,E
(
e1t
)
, . . . ,E

(
ent
)]′

and a known covariance

Cov (et) =

 σt,00 · · · σt,0n
...

. . .
...

σt,0n . . . σt,nn

 .
Let xt be the wealth of the investor at the beginning of the t th period, and let uit , i =
1, 2, . . . , n, be the amount invested in the ith risky asset at the beginning of the t th
time period. The amount investigated in the 0th risky asset at the beginning of the t th
time period is equal to xt −∑n

i=1 u
i
t . An investor is seeking a best investment strategy,

ut = [
u1
t , u

2
t , . . . , u

n
t

]′
for t = 0, 1, 2, . . . , T − 1, such that (i) the expected value of the

terminal wealth xT , E(xT ), is maximized if the variance of the terminal wealth, Var(xT ),
is not greater than a preselected risk level, or (ii) the variance of the terminal wealth,
Var(xT ), is minimized if the expected terminal wealth, E(xT ), is not smaller than a
preselected level. Mathematically, a mean-variance formulation for multiperiod portfolio
selection can be posed as one of the following two forms when security 0 is taken as a
reference:

(P1(σ )) : max E(xT )(1)

s.t. Var(xT ) ≤ σ

xt+1 =
n∑
i=1

eit u
i
t +

(
xt −

n∑
i=1

uit

)
e0t

= e0t xt + Pt
′ut t = 0, 1, 2, . . . , T − 1
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and

(P2(ε)) : min Var(xT )(2)

s.t. E(xT ) ≥ ε

xt+1 =
n∑
i=1

eit u
i
t +

(
xt −

n∑
i=1

uit

)
e0t

= e0t xt + Pt
′ut t = 0, 1, 2, . . . , T − 1,

where

Pt =
[
P 1
t , P

2
t , . . . , P

n
t

]′ =
[
(e1t − e0t ), (e

2
t − e0t ), . . . , (e

n
t − e0t )

]′
.(3)

Notice that E(et(et)′) = Cov(et) + E(et)E(et ′). It is reasonable to assume in this paper
that E(et(et)′) is positive definite for all time periods; that is,

E(et(et)′)=


E((e0t )

2) E(e0t e
1
t ) . . . E(e0t e

n
t )

E(e1t e
0
t ) E((e1t )

2) . . . E(e1t e
n
t )

. . . . . . . . . . . . . . . . . . . . . . . . . . . .
E(ent e

0
t ) E(ent e

1
t ) . . . E((ent )

2)

> 0 ∀t = 0, 1, . . . , T − 1.(4)

The following is true from equation (4):[
E((e0t )

2) E(e0t P
′
t)

E(e0t Pt) E(PtP′
t)

]

=


1 0 . . . 0

−1 1 . . . 0
. . . . . . . . . .
−1 0 . . . 1

E(et(et)′)


1 −1 . . . −1
0 1 . . . 0
. . . . . . . . . . . .
0 0 . . . 1

 > 0 ∀t = 0, 1, . . . , T − 1.(5)

Furthermore, we have the following from equation (5):

E(PtP′
t) > 0 ∀t = 0, 1, . . . , T − 1(6)

and

E((e0t )
2)− E(e0t P

′
t)E

−1(PtP′
t)E(e

0
t Pt) > 0 ∀t = 0, 1, . . . , T − 1.(7)

One of the advantages of adopting problem formulation (P1(σ )) or (P2(ε)) in multi-
period portfolio selection over the expected utility approach is that formulation (P1(σ ))
or (P2(ε)) enables an investor to specify a risk level he can afford when he is seeking to
maximize his expected terminal wealth or specify an expected terminal wealth he would
like to achieve when he is seeking to minimize the corresponding risk. It is easier and
more direct for investors to provide this kind of subjective information than for them to
construct a utility function in terms of terminal wealth.
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A multiperiod portfolio policy is an investment sequence,

π = {µ0, µ1, µ2, . . . , µT−1}

=



µ1

0
µ2

0
...

µn0

 ,

µ1

1
µ2

1
...

µn1

 ,

µ1

2
µ2

2
...

µn2

 , . . . ,

µ1
T−1
µ2
T−1
...

µnT−1


 .(8)

More specifically, π is a feedback policy and µt maps the wealth at the beginning of the
t th period, xt , into a portfolio decision in the t th period,


u1
t

u2
t
...

unt

 =


µ1
t (xt )

µ2
t (xt )
...

µnt (xt )

 .(9)

A multiperiod portfolio policy, π∗, is said to be efficient if there exists no other multi-
period portfolio policy, π , such that E(xT ) |π ≥ E(xT ) |π∗ and Var(xT ) |π ≤ Var(xT ) |π∗

with at least one equality strictly. By varying the value of σ in (P1(σ )) or the value of
ε in (P2(ε)), the set of efficient multiperiod portfolio policies can be generated.

An equivalent formulation to either (P1(σ )) or (P2(ε)) in generating efficient multi-
period portfolio policies is

(E(w)) : max E(xT )− wVar(xT )(10)

s.t. xt+1 = e0t xt + Pt
′ut t = 0, 1, 2, . . . , T − 1,

where w ∈ [0,∞). It is well known that if π∗ solves (E(w)), then π∗ solves (P1(σ ))
with σ = Var(xT ) |π∗ and π∗ solves (P2(ε)) with ε = E(xT ) |π∗ . Note the relationship
w = ∂E(xT )/∂Var(xT ) at the optimal solution of (E(w)). Problem formulation (E(w))
is preferable to be adopted in investment situations where an investor is able to specify
his desirable trade-off between the expected terminal wealth and the associated risk.

3. ANALYTICAL SOLUTION TO THE
MULTIPERIOD MEAN-VARIANCE FORMULATION

Analytical solutions to all three problems (P1(σ )), (P2(ε)), and (E(w)) are derived in
this paper. The major results of the analytical optimal multiperiod portfolio policy and
the analytical expression of the mean-variance efficient frontier are stated in this section;
the detailed derivation of these results is given in the next section.
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Define

Bt = E
(
Pt

′)E−1(PtP′
t
)
E(Pt) t = 0, 1, . . . , T − 1(11)

A1
t = E

(
e0t

)
− E

(
P′
t
)
E−1(PtP′

t
)
E
(
e0t Pt

)
t = 0, 1, . . . , T − 1(12)

A2
t = E

(
(e0t )

2
)

− E
(
e0t P

′
t

)
E−1(PtP′

t
)
E
(
e0t Pt

)
t = 0, 1, . . . , T − 1(13)

B1
t = Bt

∏T−1
k=t+1A

1
k

2
∏T−1
k=t+1A

2
k

t = 0, 1, . . . , T − 1(14)

B2
t = Bt

( ∏T−1
k=t+1A

1
k

2
∏T−1
k=t+1A

2
k

)2

t = 0, 1, . . . , T − 1,(15)

where in equations (14) and (15)
∏T−1
k=T A

i
k , i = 1, 2, are defined to equal to one. Define

further

µ =
T−1∏
t=0

A1
t(16)

ν =
T−1∑
t=0

(
T−1∏
k=t+1

A1
k

)
B1
t(17)

τ =
T−1∏
t=0

A2
t(18)

a = ν

2
− ν2(19)

b = µν

a
(20)

c = τ − µ2 − ab2.(21)

The optimal multiperiod portfolio policy for problem (E(w)) is specified by the fol-
lowing analytical form:

u∗
t = −E−1(PtPt

′)E
(
e0t Pt

)
xt

+1

2

(
bx0 + ν

2wa

)( T−1∏
k=t+1

A1
k

A2
k

)
E−1(PtPt

′)E(Pt)

∀t = 0, 1, . . . , T − 2,(22)

u∗
T−1 = −E−1(PT−1P′

T−1

)
E
(
e0T−1PT−1

)
xT−1

+1

2

(
bx0 + ν

2wa

)
E−1(PT−1P′

T−1

)
E(PT−1) .(23)
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The optimal multiperiod portfolio policy for problems (P1(σ )) and (P2(ε)) is speci-
fied by the following analytical form:

u∗
t = −E−1(PtPt

′)E
(
e0t Pt

)
xt

+1

2
(bx0 + ν

2w∗a
)

(
T−1∏
k=t+1

A1
k

A2
k

)
E−1(PtPt

′)E(Pt)

∀t = 0, 1, . . . , T − 2,(24)

u∗
T−1 = −E−1(PT−1P′

T−1

)
E
(
e0T−1PT−1

)
xT−1

+1

2
(bx0 + ν

2w∗a
)E−1(PT−1P′

T−1

)
E(PT−1) ,(25)

where

w∗ =


ν

2
√
a(σ−cx2

0 )
when (P1(σ )) is solved

ν2

2a[ε−(µ+bν)x0] when (P2(ε)) is solved.
(26)

The mean-variance efficient frontier for problems (P1(σ )), (P2(ε)), and (E(w)) is
specified by the following analytical form:

Var(xT ) = a

ν2 [E(xT )− (µ+ bν)x0]
2 + cx2

0

for E(xT ) ≥ (µ+ bν)x0.(27)

With the analytical solution, the implementation of optimal multiperiod portfolio policy
for problem (P1(σ )), (P2(ε)), or (E(w)) is straightforward. The optimal multiperiod
portfolio policy consists of two terms and exhibits a decomposition property between
the investor’s risk attitude and his current wealth. The second term in u∗

t is dependent on
the investor’s risk attitude and is independent of his current wealth. It can be calculated
off-line before the real investment process starts. The first term in u∗

t is dependent on the
current wealth and is independent of the investor’s risk attitude. It is calculated on-line
at every time period when the current wealth is observed.

4. DERIVATION OF THE ANALYTICAL SOLUTION

All three problems (P1(σ )), (P2(ε)), and (E(w)) are difficult to solve directly due to
their nonseparability in the sense of dynamic programming. Variance minimization has
been a notorious problem in stochastic control. Let I t be an information set available at
time t and I t−1 ⊂ I t , ∀t . A key observation is that although the expectation operator
satisfies the smoothing property: E[E(· | I j ) | I k] = E(· | I k), ∀j > k, the variance
operation does not: Var[Var(· | I j ) | I k] �= Var(· | I k), ∀j > k.

The optimal multiperiod portfolio policy for problem (E(w)) will first be derived.
The solutions to problems (P1(σ )) and (P2(ε)) will then be obtained based on the
relationships between (P1(σ )), (P2(ε)), and (E(w)).

A solution scheme adopted in this paper is to embed problem (E(w)) into a tractable
auxiliary problem that is separable, investigate the relationship between the solution sets



optimal dynamic portfolio selection 393

of problem (E(w)) and the auxiliary problem, and search for the solution to the auxiliary
problem that attains the optimum point of problem (E(w)).

Define
∏

E(w) to be the set of optimal solutions of problem (E(w)) with given w;
that is,

�E(w) = {π |π is a maximizer of (E(w))} .(28)

Define

Ũ
(
E
(
x2
T

)
,E(xT )

)
= E(xT )− wVar(xT )

= −wE
(
x2
T

)
+
[
wE2(xT )+ E(xT )

]
.(29)

It is obvious that Ũ is a convex function of E
(
x2
T

)
and E(xT ). The following auxiliary

problem is now constructed for (E(w)),

(A (λ,w)) : max E
{

−wx2
T + λxT

}
(30)

s.t. xt+1 = e0t xt + Pt
′ut t = 0, 1, 2, . . . , T − 1.

Prominent features of problem (A (λ,w)) are that (A (λ,w)) is of a separable structure
in the sense of dynamic programming and the objective function of (A (λ,w)) is of a
quadratic form while the system dynamic is of a linear form. Define �A (λ,w) to be the
set of the optimal solutions of problem (A (λ,w)) for given λ and w; that is,

�A (λ,w) = {π |π is a maximizer of (A (λ,w))} .(31)

Denote

d(π,w) = ∂Ũ
(
E
(
x2
T

)
,E(xT )

)
∂E(xT )

|π
= 1 + 2wE(xT ) |π .(32)

Theorem 1. For any π∗ ∈ �E (w), π∗ ∈ �A (d (π∗, w),w).

Proof. By contradiction, assume that π∗ /∈ �A (d (π∗, w),w). Then, there exists a π
such that [−w, d (π∗, w

)] [ E
(
x2
T

)
E(xT )

]∣∣∣∣
π

>
[−w, d (π∗, w

)] [ E
(
x2
T

)
E(xT )

]∣∣∣∣
π∗
.(33)

Notice equation (32) and

∂Ũ
(
E
(
x2
T

)
,E(xT )

)
∂E
(
x2
T

) = −w.(34)

Since Ũ is a convex function of E
(
x2
T

)
and E(xT ), the following property is satisfied,

Ũ
(
E
(
x2
T

)
,E(xT )

)
|π ≥ Ũ

(
E
(
x2
T

)
,E (xT )

)
|
π∗

+ [−w, d (π∗, w
)]{[E

(
x2
T

)
E(xT )

]∣∣∣∣
π

−
[

E
(
x2
T

)
E(xT )

]∣∣∣∣
π∗

}
.(35)
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Combining equations (33) and (35) yields

Ũ
(
E
(
x2
T

)
,E(xT )

)
|π > Ũ

(
E
(
x2
T

)
,E (xT )

)
|
π∗ ,(36)

which contradicts the assumption of π∗ ∈ �E(w). ✷

The implication of Theorem 1 is that the solution set for problem (E(w)) is a subset of
the solution set for problem (A (λ,w)). We can embed the nontractable primal problem
(E(w)) into a tractable auxiliary problem (A (λ,w)) with a quadratic utility function. The
following theorem provides a necessary condition under which a solution of (A (λ,w))
constitutes an optimal multiperiod portfolio policy of (E(w)).

Theorem 2. Assume π∗ ∈ �A (λ
∗, w). A necessary condition for π∗ ∈ �E(w) is

λ∗ = 1 + 2wE(xT ) |π∗ .

Proof. For a given w, the solution set of (A(λ,w)) can be parameterized by λ. In
other words, each point in ∪λ�A(λ,w) can be expressed in terms of λ as {E(x2

T (λ,w)),
E(xT (λ,w))}. Since �E(w) ⊆ ∪λ�A(λ,w), problem (E(w)) can be reduced in abstract
to the following equivalent form:

max
λ
Ũ
(
E(x2

T (λ,w)),E (xT (λ,w))
)

= max
λ

−wE
(
x2
T (λ,w)

)
+
[
wE2(xT (λ,w))+ E(xT (λ,w))

]
.(37)

A first-order necessary optimality condition for optimal λ∗ is

−w∂E
(
x2
T (λ

∗, w)
)

∂λ
+ [1 + 2wE(xT ) |π∗ ]

∂E (xT (λ∗, w))
∂λ

= 0.(38)

On the other side, when π∗ ∈ �A (λ∗, w), we have the following from Reid and Citron
(1971),

−w∂E
(
x2
T (λ

∗, w)
)

∂λ
+ λ∗ ∂E(xT (λ∗, w))

∂λ
= 0.(39)

Hence, the vector [−w, (1 + 2wE(xT ) |π∗)] is proportional to
[−w, λ∗]. We must have

λ∗ = 1 + 2wE(xT ) |π∗ . ✷

The optimal solution of the auxiliary problem (A (λ,w)) can be derived analytically
using dynamic programming (Li, Chan and Ng (1998)). The optimal portfolio policy for
auxiliary problem (A (λ,w)) at each time period t is of the following form,

u∗
t (xt ; γ ) = −Kt xt + vt (γ ) t = 0, 1, . . . , T − 1,(40)

where

γ = λ

w
(41)

Kt = E−1(Pt
′Pt
)
E
(
e0t Pt

)
(42)

vt (γ ) = γ

2

(
T−1∏
k=t+1

A1
k

A2
k

)
E−1(PtP′

t

)
E(Pt)

t = 0, 1, 2, . . . , T − 2,(43)
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with the following boundary condition,

vT−1(γ ) = γ

2
E−1(PT−1P′

T−1

)
E(PT−1) ,(44)

where A1
t and A2

t are defined in equations (12) and (13), respectively. Substituting (40)
into the equation of wealth dynamics yields the dynamics of the wealth under portfolio
policy u∗

t (xt ; γ ),

xt+1 (γ ) =
(
e0t − Pt

′Kt
)
xt (γ )+ Pt

′vt (γ ) .(45)

Taking expectation on both sides of (45) and noticing the statistical independence between
(e0t ,Pt) and xt , we have the following recursive expression for the expected wealth
between successive time periods under portfolio policy u∗

t (xt ; γ ),

E(xt+1 (γ )) = A1
t E(xt (γ ))+ γ

2

(
T−1∏
k=t+1

A1
k

A2
k

)
Bt ,(46)

where Bt is defined in equation (11). Squaring both sides of (45) yields

x2
t+1 (γ ) =

[(
e0t

)2 − 2e0t Pt
′Kt + K′

tPtP′
tKt

]
x2
t (γ )

+2
(
e0t − Pt

′Kt
)
xt (γ )Pt

′vt (γ )+ vt (γ )′ PtPt
′vt (γ )

t = 0, 1, . . . , T − 1.(47)

Taking expectation on both sides of the above equation and simplifying the resulting
expression leads to the following recursive expression for the expected value of the
squared wealth between successive time periods under portfolio policy u∗

t (xt ; γ ),

E
(
x2
t+1 (γ )

)
= A2

t E
(
x2
t (γ )

)
+ γ 2

4

(
T−1∏
k=t+1

A1
k

A2
k

)2

Bt .(48)

Solving the two recursive equations (46) and (48) yields explicit expressions for the
expected values of the terminal wealth and the square of the terminal wealth under
portfolio policy u∗

t (xt ; γ ),
E(xT (γ )) = µx0 + νγ(49)

E
(
x2
T (γ )

)
= τx2

0 + ν

2
γ 2,(50)

where µ, ν, and τ are defined in equations (16), (17) and (18), respectively.
The variance of the terminal wealth under portfolio policy u∗

t (xt ; γ ) can be expressed
in terms of γ using (49) and (50),

Var(xT (γ )) = E
(
x2
T (γ )

)
− E2 (xT (γ ))

= a(γ − bx0)
2 + cx2

0 ,(51)

where a, b, and c are defined in equations (19), (20), and (21), respectively.
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It can be seen that the expected terminal wealth E(xT (γ )) is an increasing linear
function of γ whereas the variance of the terminal wealth, Var(xT (γ )), is a quadratic
function of γ . From (49) and (51), we can express Ũ

(
E
(
x2
T

)
,E(xT )

)
as a function

of γ ,

Ũ
(
E
(
x2
T

)
,E(xT )

)
= µx0 + νγ − w[a(γ − bx0)

2 + cx2
0 ].(52)

Clearly, Ũ is a concave function of γ . Differentiating (52) with respect to γ yields

dŨ

dγ
= ν − 2wa(γ − bx0).(53)

The optimal γ must satisfy the optimality condition of dŨ/dγ = 0; that is,

γ ∗ = bx0 + ν

2wa
.(54)

Substituting the optimal γ ∗ in (54) into equation (40) yields the optimal multiperiod
portfolio policy for (E(w)) specified in (22) and (23).

Substituting (54) into (49) and (51) yields the expression for the expected value and
the variance of the terminal wealth on the efficient frontier in terms of w,

E(xT (w)) = (µ+ bν)x0 + ν2

2wa
(55)

Var(xT (w)) = ν2

4aw2 + cx2
0 .(56)

Given a problem (P1(σ )) or (P2(ε)), we can first calculate the associated w in terms
of σ or ε using (55) or (56) and then compute the corresponding optimal γ ∗ using (54).
Substituting the optimal γ ∗ into (40) yields the optimal multiperiod portfolio policy for
(P 1(σ )) or (P2(ε)) specified in (24), (25), and (26).

The mean-variance efficient frontier given in equation (27) can be obtained by elimi-
nating the parameter w in (55) and (56).

5. INVESTMENT SITUATIONS WITH ONE RISKLESS ASSET

Investment situations where there exists a riskless asset can be regarded as a special
case in the general multiperiod mean-variance formulation discussed above. Let the 0th
security be riskless. In other words, we consider now a capital market with n risky assets
and a riskless asset offering a sure rate of return. In this case e0t equals to a constant st
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and cov
(
e0t , e

i
t

)
= 0, i = 0, 1, . . . , n, ∀t = 0, 1, . . . , T − 1. The parameters defined in

equations (11)–(15) now take the following forms:

Bt = E
(
P′
t
)
E−1(PtP′

t
)
E(Pt) t = 0, 1, . . . , T − 1(57)

A1
t = st (1 − Bt) t = 0, 1, . . . , T − 1(58)

A2
t = s2t (1 − Bt) t = 0, 1, . . . , T − 1(59)

B1
t = Bt

2
∏T−1
k=t+1 sk

t = 0, 1, . . . , T − 1(60)

B2
t = Bt

4(
∏T−1
k=t+1 sk)

2
t = 0, 1, . . . , T − 1,(61)

where in (60) and (61)
∏T−1
k=T sk is defined as equal to one. The expressions for µ, ν, τ ,

a, b, and c in (16)–(21) can be then simplified to the following using (57) to (61):

µ =
T−1∏
t=0

st (1 − Bt)(62)

ν = 1

2
[1 −

T−1∏
t=0

(1 − Bt)](63)

τ =
T−1∏
t=0

s2t (1 − Bt)(64)

a = 1

4

T−1∏
t=0

(1 − Bt) [1 −
T−1∏
t=0

(1 − Bt)](65)

b = 2
T−1∏
t=0

st(66)

c = 0.(67)

Notice that the relationship of
∏T−1
t=0 (1 − Bt) = 1 −∑T−1

t=0
∏T−1
k=t+1(1 − Bk)Bt is used

in the above derivation.
The optimal parameter γ ∗ for problem (E(w)) in the investment situations with a

riskless asset can be found using (54), (63), (65), and (66):

γ ∗ = 2
T−1∏
t=0

stx0 + 1

w
(∏T−1

t=0 (1 − Bt)

) .(68)

The optimal portfolio policy for problem (E(w)) in the investment situations with a
riskless asset is given as follows from (54), (22), (23), and (68),
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u∗
t = −stE−1(PtPt

′)E(Pt) xt

+
T−1∏
k=0

skx0 + 1

2w
(∏T−1

k=0 (1 − Bk)

)
( T−1∏

k=t+1

1

sk

)
E−1(PtP′

t

)
E(Pt)

t = 0, 1, . . . , T − 2;(69)

u∗
T−1 = −sT−1E

−1(PT−1P′
T−1

)
E(PT−1) xT−1

+
T−1∏
k=0

skx0 + 1

2w
(∏T−1

k=0 (1 − Bk)

)
E−1(PT−1P′

T−1

)
E(PT−1) .(70)

Note that u∗
t , t = 1, 2, . . . , T − 1, is proportional to E−1(PtP′

t )E(Pt ). This implies
that each investor will spread his wealth among risky securities in the same relative
proportions. On the other side, the ratio of the investment in risky assets to the investment
in the riskless asset is determined at each time period by observing the realized value of
his wealth and based on the investor’s attitude toward risk. This result can be viewed as
an extension of the well-known separation theorem in single-period portfolio selection
to formulations in multiperiod portfolio selection.

The expected terminal wealth and the variance of the terminal wealth under the optimal
portfolio policy u∗

t in the investment situations with a riskless asset are given as follows
using (55), (56), (62), (63), (65), (66), and (67):

E(xT ) =
T−1∏
t=0

stx0 +
(
1 −∏T−1

t=0 (1 − Bt)

)
2w

(∏T−1
t=0 (1 − Bt)

)(71)

Var(xT ) =
(
1 −∏T−1

t=0 (1 − Bt)

)
4w2

∏T−1
t=0 (1 − Bt)

.(72)

The optimal portfolio policy for (P1(σ )) and (P2(ε)) in the investment situations
with a riskless asset is given as follows from (54), (24), (25), (68), (71), and (72),

u∗
t = −stE−1(PtPt

′)E(Pt) xt

+
T−1∏
k=0

skx0 + 1

2w∗
(∏T−1

k=0 (1 − Bk)

)
( T−1∏

k=t+1

1

sk

)
E−1(PtP′

t

)
E(Pt)

t = 0, 1, . . . , T − 2;(73)

u∗
T−1 = −sT−1E

−1(PT−1P′
T−1

)
E(PT−1) xT−1

+
T−1∏
k=0

ktx0 + 1

2w∗
(∏T−1

k=0 (1 − Bk)

)
E−1(PT−1P′

T−1

)
E(PT−1) ,(74)

where

w∗ =
{ 1

2

√
(1−∏T−1

t=0 (1−Bt ))
σ

∏T−1
t=0 (1−Bt ) when (P1(σ )) is solved

(1−∏T−1
t=0 (1−Bt ))

2(ε−∏T−1
t=0 st x0)(

∏T−1
t=0 (1−Bt )) when (P2(ε)) is solved.

(75)
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Finally, the analytical expression of the mean-variance efficient frontier in equation
(27) can be reduced to the following simpler form for situations with a riskless asset
using equations (62)–(67),

Var(xT )=
∏T−1
t=0 (1 − Bt)

1 −∏T−1
t=0 (1 − Bt)

(
E(xT )− x0

T−1∏
t=0

st

)2

for E(xT ) ≥
T−1∏
t=0

stx0.(76)

Notice that one end point of the mean-variance efficient frontier is the point with E(xT )
=
∏T−1
t=0 stx0 and Var(xT ) = 0 that is associated with the investment decision with which

the investor keeps all his money in the riskless asset.
The optimal portfolio policy of multiperiod mean-variance formulation with one risk-

less asset, E(w), is generated by solving auxiliary problem A(λ∗, w) where optimal
parameter λ∗ = 2w

∏T−1
t=0 stx0 + (1/

∏T−1
t=0 (1 − Bt)) as proven in (68). For a given

wealth xT−1 at period T − 1, the optimal portfolio policy u∗
T−1 is obtained by mini-

mizing E(−wx2
T + λ∗xT ). It can be demonstrated that for a given wealth xt at period t ,

the optimal portfolio policy u∗
t is obtained by minimizing E[−w(sT−1 . . . st+1xt+1)

2 +
λ∗sT−1 . . . st+1xt+1). This is a kind of property similar to the so-called partially myopic
policy introduced in Mossin (1968) while maximizing expected utility functions of the
terminal wealth. Notice that the objective function in the auxiliary problem, A(λ∗, w), is
of a quadratic form. The policy derived in this section, however, is not a myopic policy,
as evidenced by the appearance of λ∗ in the control policy at all time periods. Optimal
parameter λ∗ is determined by the initial wealth and the return statistics along the entire
time horizon.

When setting T = 1 in our formulation, problems (P1(σ )) and (P2(ε)) are reduced
to the single-period mean-variance formulation (Markowitz 1959). It can be verified (Ng
1997) that the expressions of the efficient frontier are exactly the same as given in this
paper and in equation (35) of Merton (1972) when setting T = 1. The work of multiperiod
mean-variance approach presented in this paper can be viewed as a generalization of the
analytical work of Merton (1972) in single-period mean-variance formulation.

The mean-variance hedging problem is studied in Duffie and Richardson (1991), Schäl
(1994), and Schweizer (1995), where an optimal dynamic strategy is sought to hedge
the derivatives under an imperfect market situation. The result in this section on mul-
tiperiod mean-variance formulation with one riskless asset can be also derived from
the mean-variance hedging framework. The mean-variance hedging problem formulation
(Schweizer 1995) considers a market with one risky asset and one riskless one. The
investor optimizes the investment amount in the one risky asset and thus the amount in
the riskless asset in order to minimize the gap between the contingent claim and the final
wealth of his portfolio. An analytical solution is obtained for the mean-variance hedging
problem formulation (Schweizer 1995) with one risky asset and one riskless one using
the projection theorem. Integrated with the separation property mentioned earlier in this
section, the analytical solution for the multiperiod mean-variance formulation with one
riskless asset discussed in this section can be derived using the result of mean-variance
hedging problem formulation.

6. MULTIPERIOD PORTFOLIO SELECTION VIA MAXIMIZING UTILITY
FUNCTION U(E(xT ),VAR(xT ))

We consider in this section a more general problem formulation for multiperiod portfolio
selection. The objective of an investor now is to maximize U (E(xT ),Var(xT )), a utility



400 d. li and w.-l. ng

that is a function of the expected value and the variance of the terminal wealth xT . Since
investors always would like to maximize their final wealth with a low risk level, utility
function U (E (xT ),Var(xT )) is assumed to satisfy the following:

∂U (E(xT ),Var(xT ))

∂E(xT )
> 0(77)

and

∂U (E(xT ),Var(xT ))

∂Var(xT )
< 0.(78)

Kroll, Levy, and Markowitz (1984) found that solutions obtained by maximizing
U (E(xT ),Var(xT )) and via direct utility maximization are highly correlated to each
other.

The following multiperiod portfolio selection problem is formulated:

(U) : max U (E(xT ),Var(xT ))(79)

s.t. xt+1 = e0t xt + Pt
′ut t = 0, 1, 2, . . . , T − 1.

Define �U to be the set of the optimal solutions of problem (U); that is,

�U = {π |π is the maximizer of (U)} .(80)

Problem formulation (U) covers a general class of multiperiod portfolio selection prob-
lems. A utility function, in general, can be nonlinear with respect to E(xT ) and Var(xT ).
The multiperiod mean-variance formulation discussed in the previous sections can be
seen as a special case of problem formulation (U) where the utility function is linear
with respect to E(xT ) and Var(xT ).

Lemma 1. If π∗ ∈ �U , then there exists a w > 0 such that π∗ ∈ �E(w).

Proof. Since U is an increasing function of E(xT ) and a decreasing function of
Var(xT ), the optimal solution of (U) must be on the mean-variance efficient frontier
in the {E(xT ),Var(xT )} space. It is known from equation (27) that Var(xT ) is a convex
function of E(xT ) on the efficient frontier. Thus, supporting lines exist everywhere on the
efficient frontier in the {E(xT ),Var(xT )} space. In other words, every efficient solution,
including π∗ ∈ �U , can be generated by the auxiliary problem (E(w)). ✷

Define the following

UE(π) = ∂U (E(xT ),Var(xT ))

∂E(xT )
|π(81)

UV (π) = ∂U (E(xT ),Var(xT ))

∂Var(xT )
|π(82)

Theorem 3. Assume π∗ ∈ �E(w
∗). A necessary condition for π∗ ∈ �U is w∗ =

− (UV (π∗) /UE(π
∗)).

Proof. The efficient frontier in the {E(xT ),Var(xT )} space can be parameterized by
the coefficient w. In other words, each point on the efficient frontier can be represented



optimal dynamic portfolio selection 401

by (E(xT (w)),Var(xT (w))). Since �U ⊆ ∪w≥0�E(w), problem (U) can be reduced in
abstract to the following equivalent form:

max
w≥0

U (E(xT (w)),Var(xT (w))) .(83)

A first-order necessary condition for optimum w∗ > 0 is

UE
(
π∗) ∂E(xT (w∗))

∂w
+ UV

(
π∗) ∂Var(xT (w∗))

∂w
= 0.(84)

On the other hand, when π∗ ∈ �E(w
∗), we have from Reid and Citron (1971):

∂E(xT (w∗))
∂w

− w∗ ∂Var(xT (w∗))
∂w

= 0.(85)

Thus vector
[
UE(π

∗), UV (π∗)
]

is proportional to
[
1,−w∗]. We must have w∗ =

− (UV (π∗) /UE(π
∗)). ✷

Lemma 1 implies that problem (U) can be embedded into problem E(w). Theorem 3
gives a necessary condition for a solution of E(w) to attain the optimum of (U). Problem
(E(w)) can be further embedded into the auxiliary problem (A (λ,w)) as we know from
the previous sections. Thus we can conclude that a multiperiod portfolio problem of
maximizing U (E(xT ),Var(xT )) can be also embedded into (A (λ,w)). The following
theorem gives the condition for optimal parameters with which the solution of (A (λ,w))
attains the optimal point of (U).

Theorem 4. Assume π∗ ∈ �A (λ∗, w∗). Necessary conditions for π∗ ∈ �U are

w∗ = −UV (π
∗)

UE (π∗)
and λ∗ = 1 − 2

UV (π
∗)

UE(π∗)
E(xT ) |π∗ .

Proof. The theorem can be easily proven by combining Theorems 2 and 3. ✷

The optimal solution for problem (A (λ,w)) is provided for given γ = λ/w. The
computational procedure to obtain the optimal γ ∗ can be constructed by studying the
derivative of U with respect to γ . The derivative of the utility function with respect to
γ can be obtained using the following formula:

dU

dγ
=
(

∂U

∂E(xT )
− 2E(xT )

∂U

∂Var(xT )

)
ν + ∂U

∂Var(xT )
νγ,(86)

where
dE(xT )

dγ
= ν and

dE
(
x2
T

)
dγ

= νγ

are used in the above equation based on equations (49) and (50).
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By setting dU/dγ in (86) equal to zero, we have the following necessary optimum
condition for γ : (

∂U

∂E(xT )
− 2E(xT )

∂U

∂Var(xT )

)
+ ∂U

∂Var(xT )
γ = 0;(87)

that is,

γ ∗ = 2E(xT )− ∂U

∂E(xT )
/

∂U

∂Var(xT )
.(88)

As the derivative of dU/dγ is obtainable for given γ , a numerical search method using
gradient information, such as the gradient method or the false position method, can be
adopted to update the value of γ in (A(λ,w)). The search process for optimal γ con-
tinues until the stopping condition (88) is satisfied. Notice that both E(xT ) and Var(xT )
are dependent on parameter γ . Substituting the optimal value of γ ∗ into (40) yields the
optimal portfolio policy for problem (U). The search algorithm is straightforward and
only involves a one-dimensional search.

7. ILLUSTRATIVE CASES

Three cases are given in this section to demonstrate the adoption of the multiperiod
mean-variance formulations and the efficiency of the solution methods derived in this
paper.

example 1. Consider the case study in Chapter 7 of Sharpe, Alexander, and Bailey
(1995) by assuming a stationary multiperiod process with T = 4. An investor has one
unit of wealth at the very beginning of the planning horizon. The investor is trying
to find the best allocation of his wealth among three risky securities, A, B, and C in
order to maximize E(x4) while keeping his risk not exceeding 2; that is, σ = 2. The
expected returns for risky securities, A, B, and C are E(eAt ) = 1.162, E(eBt ) = 1.246,
and E(eCt ) = 1.228, t = 0, 1, 2, 3. The covariance of et = [eAt , e

B
t , e

C
t ]′ is

Cov(et) =
 0.0146 0.0187 0.0145

0.0187 0.0854 0.0104
0.0145 0.0104 0.0289

 , t = 0, 1, 2, 3.

Take security A as the reference asset. Thus,

E(Pt) = E[eBt − eAt , e
C
t − eAt ]′

= [0.084, 0.066]′, t = 0, 1, 2, 3,

E(PtP′
t) = E

[
(eBt )

2 − 2eAt e
B
t + (eAt )

2 eBt e
C
t − eAt e

C
t − eAt e

B
t + (eAt )

2

eBt e
C
t − eAt e

C
t − eAt e

B
t + (eAt )

2 (eCt )
2 − 2eAt e

C
t + (eAt )

2

]

=
[

0.0697 −0.0027
−0.0027 0.0189

]
, t = 0, 1, 2, 3.

E(eAP′
t) =

[
E
(
eAt e

B
t

)
− E

(
(eAt )

2
)
,E
(
eAt e

C
t

)
− E

(
(eAt )

2
)]

= [0.1017, 0.0766], t = 0, 1, 2, 3.
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Furthermore, we have Bt = 0.3566, A1
t = 0.7424, A2

t = 0.8711, t = 0, 1, 2, 3, µ =
0.3038, ν = 0.4077, a = 0.0376, b = 3.2933, and c = 0.0754.

The mean-variance efficient frontier in this example problem is given as follows using
(27):

Var(x4) = 0.2262[E(x4)− 1.6465]2 + 0.0754,

where E(x4) ≥ 1.6465.
From (26), the corresponding w∗ in (E(w)) is 0.75773. The associated optimal port-

folio policy is given as follows using equations (24) and (25):

u∗
t = −Kt xt + vt ,

where

Kt =
[

1.6238
4.2907

]
, t = 0, 1, 2, 3, v0 =

[
4.3548
11.9327

]
,

v1 =
[

5.1094
14.0004

]
, v2 =

[
5.9948
16.4263

]
, v3 =

[
7.0335
19.2726

]
.

The investment in the first security, asset A, at period t is equal to
(
xt −∑

uit
)
. The

corresponding expected terminal wealth and the risk level are given by E(x4) = 4.5632
and Var(x4) = 2, respectively, using equations (55) and (56).

example 2. Consider now a modified version of Example 1. In addition to the three
risky assets, A, B, and C, there exists a riskless asset with a sure return rate of 1.04.
Suppose this time that the investor seeks an efficient portfolio policy with a desired
trade-off between the expected terminal wealth and risk, ∂E(x4)/∂Var(x4) = 2. More
directly, the investor would like to maximize E(x4)− 2Var(x4).

We can calculate

E(Pt) = E[eAt − st , e
B
t − st , e

C
t − st ]

′ = [0.122, 0.206, 0.188]′, t = 0, 1, 2, 3,

and

E(PtP
′
t ) = Cov(e)+ E(Pt )E(P

′
t ) =

 0.0295 0.0438 0.0374
0.0438 0.1278 0.0491
0.0374 0.0491 0.0642

 , t = 0, 1, 2, 3.

Furthermore, we have Bt = E(P ′
t )E

−1(PtP
′
t )E(Pt ) = 0.593817, t = 0, 1, 2, 3.

The mean-variance efficient frontier in this case is given as follows by using equation
(76):

Var(x4) = 0.02798[E(x4)− 1.1699]2,

where E(x4) ≥ 1.1699.
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The associated optimal portfolio policy is given as follows using equations (69) and
(70):

u∗
t = −Kt xt + vt ,

where

Kt =
 0.4004

0.6496
2.3133

 , t = 0, 1, 2, 3, v0 =
 3.5440

5.7494
20.4751

 ,
v1 =

 3.6858
5.9794
21.2941

 , v2 =
 3.8332

6.2185
22.1459

 , v3 =
 3.9865

6.4673
23.0317

 .
The investment in the riskless asset at period t is equal to

(
xt −∑

uit
)
. The correspond-

ing expected terminal wealth and the risk level are E(x4) = 10.1043 and Var(x4) =
2.2336, respectively, using equations (71) and (72).

example 3. Consider Example 2 again, but this time the investor seeks an optimal
portfolio policy that maximizes the following utility function

U (E(x4) ,Var(x4)) = E2 (x4)− exp [Var(x4)] .

The derivative of U with respect to γ can be obtained from equations (86) and (63),

dU

dγ
= 0.97278 E(x4)

[
1 + exp (Var(x4))

]− 0.48639 exp (Var(x4)) γ.

Adopting the false position method, the optimal value of γ ∗ is found to be equal to
25.8965 at which dU/dγ = 0 and U attains its maximum of 120.0707. The associated
optimal portfolio policy is given by

u∗
t = −Kt xt + vt ,

where

Kt =
 0.4004

0.6496
2.3133

 , t = 0, 1, 2, 3, v0 =
 4.4318

7.1897
25.6044

 ,
v1 =

 4.6091
7.4773
26.6286

 , v2 =
 4.7935

7.7764
27.6937

 , v3 =
 4.9852

8.0874
28.8015

 .
The corresponding expected terminal wealth and the risk are E(x4) = 12.6276 and
Var(x4) = 3.6734, respectively.

8. CONCLUSIONS

The Markowitz mean-variance approach has been extended in this paper to multiperiod
portfolio selection problems. With a solution scheme using embedding, an analytical
solution has been derived for the multiperiod mean-variance formulation that is non-
tractable in its original setting. The derived analytical expression of the efficient frontier
for the multiperiod portfolio selection will definitely enhance investors’ understanding of
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the trade-off between the expected terminal wealth and the risk. At the same time, the
derived analytical optimal multiperiod portfolio policy provides investors with the best
strategy to follow in a dynamic investment environment. The multiperiod mean-variance
formulation in continuous-time is studied in Zhou and Li (1999). A future research sub-
ject is investigation of an efficient solution methodology for the constrained multiperiod
mean-variance formulation using the separation property.

references

Chen, A. H. Y., F. C. Jen, and S. Zionts (1971): The Optimal Portfolio Revision Policy,
Journal of Business 44, 51–61.

Duffie, D., and H. R. Richardson (1991): Mean-Variance Hedging in Continuous Time,
Annals of Applied Probability 1, 1–15.

Dumas, B., and E. Luciano (1991): An Exact Solution to a Dynamic Portfolio Choice
Problem under Transaction Costs, Journal of Finance XLVI, 577–595.

Elton, E. J., and M. J. Gruber (1974a): The Multi-Period Consumption Investment Problem
and Single Period Analysis, Oxford Economics Papers Sept. 1974, 289–301.

Elton, E. J., and M. J. Gruber (1974b): On the Optimality of Some Multiperiod Portfolio
Selection Criteria, Journal of Business 47, 231–243.

Elton, E. J., and M. J. Gruber (1975): Finance as a Dynamic Process. Englewood Cliffs,
NJ: Prentice Hall.

Fama, E. F. (1970): Multiperiod Consumption-Investment Decisions, American Economic
Review 60, 163–174.

Francis, J. C. (1976): Investments: Analysis and Management. New York: McGraw-Hill.

Grauer, R. R., and N. H. Hakansson (1993): On the Use of Mean-Variance and Quadratic
Approximations in Implementing Dynamic Investment Strategies: A Comparison of Returns
and Investment Policies, Management Science 39, 856–871.

Hakansson, N. H. (1971a): Multi-Period Mean-Variance Analysis: Toward a General Theory
of Portfolio Choice, Journal of Finance 26, 857–884.

Hakansson, N. H. (1971b): On Optimal Myopic Portfolio Policies, with and without Serial
Correlation of Yields, Journal of Business 44, 324–334.

Kroll, Y., H. Levy, and H. Markowitz (1984): Mean-Variance versus Direct Utility Max-
imization, Journal of Finance 39, 47–61.

Li, D., T. F. Chan, and W. L. Ng (1998): Safety-First Dynamic Portfolio Selection, Dynamics
of Continuous, Discrete and Impulsive Systems 4, 585–600.

Markowitz, H. M. (1956): The Optimization of a Quadratic Function Subject to Linear
Constraints, Naval Research Logistics Quarterly 3, 111–133.

Markowitz, H. M. (1959): Portfolio Selection: Efficient Diversification of Investment. New
York: John Wiley & Sons.

Markowitz, H. M. (1989): Mean-Variance Analysis in Portfolio Choice and Capital Markets.
Cambridge, MA: Basil Blackwell.

Merton, R. C. (1969): Lifetime Portfolio Selection under Uncertainty: The Continuous-Time
Case, Review of Economics and Statistics 51, 247–257.

Merton, R. C. (1972): An Analytical Derivation of the Efficient Portfolio Frontier, Journal
of Financial and Quantitative Analysis, 1851–1872.

Merton, R. C. (1990): Continuous-Time Finance, Cambridge, MA: Basil Blackwell.



406 d. li and w.-l. ng

Mossin, J. (1968): Optimal Multiperiod Portfolio Policies, Journal of Business 41, 215–229.

Ng, W.-L. (1997): Dynamic Portfolio Analysis: Mean-Variance Formulation and Iterative
Parametric Dynamic Programming, Masters thesis, Department of Systems Engineering
and Engineering Management, Chinese University of Hong Kong.
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