3


*** PORTFOLIO SELECTION
The case of optimal investment for a firm or a household. 
* Case of two Assets: 1 risky asset; 1 riskless asset. 
At the beginning of the period, let I denote initial wealth invested in a risky asset y, and a riskless asset z, where

I = y + z. 
At the end of the period, let C denote consumption (for a household), or terminal wealth (for a firm), where

C = p y + r z,

with p = 1 + (rate of return on y) = a random variable, and r = 1 + (rate of return on z).  Let p = ( + ( e, where μ = E(p) and e is a random variable satisfying E(e) = 0.  Let the preference function of the decision maker be U(C).  Under the EUH, investment decisions are given by

Maxy,z {EU(C): I = y + z, C = p y + r z}

or

Maxy {EU[p y +r (I-y)]},

or

Maxy {EU(r I + p y – r y)}.

This is similar to Sandmo's model (where w = r I and C(r,y) = r y).  Let y*(I,μ,σ,r) denote the optimal choice of y in the above maximization problem.  It follows that Sandmo's results apply to y*(I,μ,σ,r):

1. y*/I  >, =, <  0  under DARA, CARA, IARA.

2. y*/μ = yc/μ + (y*/w) y* > 0 under DARA.  This is the "Slutsky equation" where yc/μ is the substitution effect, and [(y*/w) y*] is the income (or wealth) effect.

3. y*/( < 0 under DARA.

4. Let Y = y/I, implying that the objective function can be written as

MaxY EU[I(r + p Y – r Y)].

This is similar to Sandmo's model with I = 1 - t, t being the tax rate on wealth.  Thus Sandmo's result applies:

Y*/I = (y*/I)/I  >, =, <  0  under DRRA, CRRA, IRRA.

* Case of n risky assets:

Let
. y0 be the risk free asset with rate of return (r - 1),

. yi be the i-th risky asset with rate of return (pi - 1), where pi = μi + σi ei, ei being a random variable with mean zero, i = 1, 2, ..., n.

Let y = (y1, y2, ..., yn)' be the (n(1) vector of risky investments, with the corresponding (n(1) vector p = (p1, p2, ..., pn)'. Under the EUH, the investment decisions are made as follows 

Maxy EU[r I + 
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Let y* denote the optimal choice of y in the above problem.  Then, y* satisfies the Slutsky equation:

 y*/μ = yc/μ + (y*/w) y*' 

where μ = (μ1, μ2, ..., μn)', yc/μ is a (n(n) symmetric, positive semi-definite matrix of substitution effects, and [(y*/w) y*'] is the income (or wealth) effect.

Note that, besides the Slutsky equation, other results do not generalize from the 2-asset case...

1- Mean-Variance Approach: 

Let π = r I + i=1 (pi - r) yi, and A = V(p) = the variance-covariance matrix of p = a (n(n) positive definite matrix.  Assume a mean-variance preference function U(E, V), where U/E > 0, U/V < 0 (implying risk aversion), 

E = E(π) = rI + i=1 (μi - r) yi,

and

V = V(π) = y' A y.

The decision problem thus is

Maxy {U(E,V): E = rI + i=1 (μi - r) yi,V = y' A y}.

Let y* denote the optimal solution to the above problem.

a/ The Separation Theorem:

The first order necessary conditions to the maximization problem are

(U/E) [μ - r] + 2 (U/V) A y = 0,

or

y* = - (UE/2UV) A-1 [μ - r],

where UE = U/E > 0, and UV = U/V < 0.  Equation (1) gives a closed form solution to the optimal investment decisions.  It implies that y* is proportional to (A-1 [μ - r]), where (A-1 [μ - r]) is independent of risk preferences.  This generates the following "Separation Theorem":

If all investors face the same risks, then the relative proportions of the risky assets in any optimal portfolio are independent of risk preferences.

In other words, if all investors face the same risks, then each investor (possibly with different risk preferences) chooses a multiple [-(UE/2UV) > 0] of a standard vector of portfolio proportions (A-1 [μ - r]).

b/ Two-Stage Decomposition:

Stage 1: Choose y conditional on a given level of expected return m.  Under risk aversion (where UV = U/V < 0), this implies:

 W(m) = Miny [y' A y: r I + i=1 (μi - r) yi = m],

where W(m) denotes the mean-variance frontier.  Let y+(m,.) denote the solution to this stage-one problem.

Note: With a riskless asset, it is always possible to drive the variance of the portfolio to zero by investing only in the riskless asset.  This corresponds to choosing y = 0, which generates a return m = rI.

Stage 2: Choose the optimal expected return m: 

Maxm [U(m, W(m)],

which has for first order condition

UE + UV (W/m) = 0,

or

 W/m = - UE/UV.

This states that, at the optimum, the slope of the efficiency frontier W/m, is equal to the marginal rate of substitution between E and V, -UE/UV (= the slope of the indifference curve between E and V).

Let m* denote the solution to the stage-two problem.  Then the optimal solution to the portfolio selection problem is y* = y+(m*).

Note:  Again, solving the stage-one problem is easy since it does not depend on risk preferences.  Thus, deriving the efficiency frontier W(m) can be easily done by solving stage-one problem parametrically for different values of m.  Then, choosing the point m* on the efficiency frontier generates the optimal portfolio choice y* = y+(m*).

* The Capital Asset Pricing Model (CAPM):

Consider the case of

. n firms 

. h investors, each with utility function Ui(Ei, Vi), and initial wealth wi, where Ui/Ei > 0 and Ui/Vi < 0 (implying risk aversion), i = 1, 2, ..., h.

Each firm has a value Pj, j = 1, 2, ..., n, and is owned by the h investors.  At he beginning of the period, each investor i decides:

. the proportion Zij of the j-th firm he wants to own,

. the amount to invest in a riskless asset mi, with a rate of return of (r -1).

The budget constraint for the i-th investor is

wi = mi + j Zij Pj,

or

wi = mi + Zi' P,

where Zi = (Zi1, ..., Zin)' and P = (P1, ..., Pn)'.

The value of each firm, Pj, may change by the end of the period to Xj. Since Xj is not known ahead of time, it is a random variable.  Let X = (X1, ..., Xn)' be a vector of random variables with mean μ = E(X) and variance A = V(X).  

The end-of-period wealth for the i-th investor is: r mi + Zi X.  It follows that the mean end-of-period wealth is: Ei = r mi + Zi μ; and the variance of end-of-period wealth is: Vi = Zi A Zi'. The maximization of utility U(Ei, Vi) for the i-th investor becomes

Maxm,Z {Ui(r mi + Zi' μ, Zi' A Zi): wi = mi + Zi' P}

or

MaxZ {Ui[r (wi - Zi P) + Zi'μ, Zi A Zi].

The optimal investment for the i-th investor, Zi*, satisfies the first order conditions

(Ui/Ei) (μ - r P) + 2(Ui/Vi) A Zi = 0,

or

Zi* = - [(Ui/Ei)/(2 Ui/Vi)] A-1 (μ - r P),  i = 1, ..., h.
(1)

Note: Each investor facing the same risk, Zi* satisfies the separation theorem (stating that each investor holds the same relative proportion of each share in the market).

1- Market equilibrium:

Assuming that each firm is completely owned by the h investors, market equilibrium must satisfy

i Zij = 1, j = 1, ..., n,

or

i Zi = 1,

where 1 = (1, ..., 1)' denotes a (nx1) unit vector.  Substituting equation (1) into the market equilibrium condition yields

i { - [(Ui/Ei)/(2 Ui/Vi)]} A-1 (μ - r P) = 1.

Let ( = {i  - [(Ui/Ei)/(2 Ui/Vi)]}-1 > 0.  The parameter λ can be interpreted as the "market risk aversion parameter".  Substituting λ into the above expression gives

(-1  A-1 (μ - r P) = 1,

or

P = (μ - ( A 1)/r.
(2a)

Expression (2) gives the market equilibrium value of the n firms.  It can be written alternatively as

Pj = [μj - ( (k (jk)]/r,  j = 1, ..., n,
(2b)

where (jk denotes the covariance of Xj with Xk.

Note: At market equilibrium, substituting expression (2) into (1) yields

Zi* = -  [(Ui/Ei)/(2 Ui/Vi)] ( 1.

2- The Rate of Return on Stocks:

Assume that the investors-owners of the j-th firm are stockholders. 

Let rj 
= (1 + rate of return on stock j)

= Xj/Pj = (end-of-period value)/(beginning-of-period value) for the j-th firm, j = 1, ..., n.

Let Xm = j Xj = end-of-period value of all firms, with μm = E(Xm).

Let Pm = j Pj = beginning-of-period value of all firms.

Let rm = Xm/Pm = 1 + "market rate of return".

Using equation (2), we have:

E(rj) = μj/Pj = r + ( (k (jk)/Pj,  j = 1, ..., n,

E(rm) = μm/Pm,

Cov(Xj, Xm) = (jm = k (jk,

and

Cov(rj, rm) = Cov(Xj/Pj, Xm/Pm) = (jm/(Pj Pm).

Combining these results gives

 
E(rj) 
= r + ( σjm/Pj,  j = 1, ..., n,

= r + ( Pm Cov(rj, rm),

= r + ( Pm Var(rm) (j,

 where (j = Cov(rj, rm)/Var(rm) is the regression coefficient of rm on rj.  Note that the above expression holds as well for rm, implying that: E(rm) = r + ( Pm Var(rm), or  [( Pm Var(rm)] = [E(rm) - r].   Substituting this result in the above expression gives

E(rj) = r + [E(rm) - r] (j,  j = 1, ..., n. 

This expression is the Sharpe-Lintner CAPM result.  It states that the equilibrium expected rate of return on the j-th stock is linear in its (j, where (j is the regression coefficient of rj on rm.  The intercept of this linear relationship is the risk free interest rate.  And the slope of the linear relationship is the difference between the expected return on the market and the risk free interest rate.

3- The Case of Leverage: The Miller-Modigliani theorem.

Consider the case where the firms can be financed by debts (i.e. bonds) as well as equity (i.e. stocks). The debt (bonds) is always paid first, and the equity (stocks) is the residual claimant. 

Let the value of debt of firm j at the beginning of the period be Dj.  The debt is repaid with interest at the end of the period, the amount repaid being: Rj = Dj r.  Then the equity return from firm j is: Xj - Rj, with mean E(Xj - Rj) = μj - Rj, and variance Var(Xj - Rj) = Var(Xj).

From equation (2), we have

Pj 
= [μj - Rj - ( (k (jk)]/r,  j = 1, ..., n,

= [μj - ( (k (jk)]/r - Rj/r,

= [μj - ( (k (jk)]/r - Dj,

which implies

Pj + Dj = [μj - ( (k (jk)]/r.

Define the value of the j-th firm to be: Pj + Dj.  Also, define the leverage ratio to be: Dj/(Pj + Dj) = the debt as a proportion of the value of the firm.  Then the above result implies the Miller-Modigliani theorem: 
The value of the firm is independent of its leverage ratio.
Note: Although leverage does not affect the value of the firm, it will affect the rate of return on its equity.  An increase in the leverage ratio will tend to increase the firm's risk (because bonds are paid first and stocks are the residual claimant).  This will tend to increase the firm's (.

PAGE  
4

_1019643650.unknown

