
The financial industry is one of the
fastest-growing areas of scientific
computing. Two decades ago, terms
such as financial engineering, com-

putational finance, and financial mathematics did
not exist in common usage. Today, these areas
are distinct and enormously popular academic
disciplines with their own journals, conferences,
and professional societies.

One explanation for this area’s remarkable
growth and the impressive array of mathe-
maticians, computer scientists, physicists, and
economists that are drawn to it is the formida-
ble intellectual challenges intrinsic to financial
markets. Many of the most basic problems in fi-
nancial analysis are unsolved and surprisingly re-
silient to the onslaught of researchers from di-
verse disciplines.

In this article, we hope to give a sense of these
challenges by describing a relatively simple prob-
lem that all investors face when managing a port-
folio of financial securities over time. Such a
problem becomes more complex once real-world

considerations factor into its formulation. We
present the basic dynamic portfolio optimization
problem and then consider three aspects of it:
taxes, investor preferences, and portfolio con-
straints. These three issues are by no means ex-
haustive—they merely illustrate examples of the
kinds of challenges financial engineers face to-
day. Examples of other computational issues in
portfolio optimization appear elsewhere.1,2 

The portfolio optimization problem

Portfolio optimization problems are among
the most studied in modern finance,3 yet they
continue to occupy the attention of financial aca-
demics and industry professionals because of
their practical relevance and their computational
intractabilities. The basic dynamic portfolio op-
timization problem consists of an individual in-
vestor’s decisions for allocating wealth among
various expenditures and investment opportuni-
ties over time, typically the investor’s expected
lifetime. The prices and price dynamics of goods
and financial securities he or she purchases and
any constraints such as tax liabilities, loan re-
payment provisions, income payments, and
other cash inflows and outflows determine the
investor’s overall budget.

For expositional clarity, we start with a simple
framework in which there are only two assets
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available to the investor: a bond that yields a risk-
less rate of return and a stock that yields a ran-
dom return of either 10 percent or –10 percent
with probability p and 1 – p, respectively. We de-
note the prices of the bond and stock at date t
with Bt and St, respectively. Without loss of gen-
erality and for notational simplicity, we assume
that S0 = $1 and the riskless rate of interest is 0
percent, so Bt = 1 for all t ≥ 0. Finally, suppose
that the investor’s horizon spans only three dates,
t = 0, 1, and 2, so that the possible paths for the
evolving stock price St are given as in Figure 1.
Of course, in practice, an investor has many as-
sets to choose from over many dates, and the
price of each asset can take on many values. For
illustrative purposes, though, this simpler speci-
fication is ideal because it contains all the essen-
tial features of the dynamic portfolio optimiza-
tion problem in a basic setting. Nevertheless,
even in this simple framework, it will become ap-
parent that practical considerations such as taxes,
investor preferences, and portfolio constraints
can create surprisingly difficult computational
challenges.

Let Ct denote the value of the investor’s con-
sumption expenditures at date t, and let Wt de-
note the investor’s wealth just prior to date-t
consumption. We assume that the investor has
a lifetime utility function U(C0, C1, C2) defined
over each consumption path {C0, C1, C2} that
summarizes how much he or she values the en-
tire path of consumption expenditures. Then,
ignoring market frictions and assuming that the
investor’s utility function is time-additive and
time-homogenous—for example, 

U(C0,C1, C2) = u(C0) + u(C1) + u(C2), (1)

the investor’s dynamic portfolio optimization
problem at t = 0 is given by

(2)

subject to

Wt – Ct = xtSt + ytBt, t = 0, 1, 2 (3a)
Wt+1 = xtSt+1 + ytBt+1, t = 0, 1 (3b)
Ct ≥ 0, t = 0, 1, 2 (3c)
xt, yt ∈ �+, t = 0, 1, 2 (3d)
x2 = y2 = 0 (3e)

where �+ denotes the nonnegative integers, and xt
and yt are the number of shares of stocks and bonds,
respectively, that the investor holds in his or her

portfolio immediately after
date t. Of course, xt and yt may
only depend on the informa-
tion available at time t, a re-
striction that we impose
throughout this article.

The requirement that xt
and yt are nonnegative means
that borrowing and short
sales are not allowed, a con-
straint that many investors
face. That xt and yt are re-
quired to be integers simply
reflects the fact that it is not possible to purchase
a fractional number of stocks or bonds. The con-
straint in Equation 3b states that Wt+1 is equal to
Wt multiplied by the portfolio’s gross return be-
tween dates t and t + 1.

We can easily solve this problem numerically
by using the standard technique of stochastic dy-
namic programming.4 In particular, because
V2(W2) = u(W2), we can compute V1(W1) using
the Bellman equation so that

(4)

subject to the constraints in Equation 3. An as-
pect of Equation 4 that makes it particularly easy
to solve is the fact that the value function V1(•)
depends on only one state variable, W1. This en-
ables us to solve Equation 4 numerically without
too many computations. Suppose, for example,
that W0 = $1,000. Then, because xt, yt ∈ �+, there
are only 1,100 possible values that W1 can take,
so the right side of Equation 4 must be evaluated
for only these 1,100 values. In contrast, when
there are market frictions or when the investor
has a more complex utility function, the compu-
tational requirements increase dramatically, re-
flecting Bellman’s “curse of dimensionality.”4

Taxes

Most seasoned investors are painfully aware of
the substantial impact that taxes can have on the
performance of their investment portfolio, so
taxes play a major role in most dynamic portfolio
optimization problems.5–7

To see how taxes can increase the computa-
tional complexity of such problems, let trading
profits in the stock be subject to a capital gains tax
in the portfolio optimization problem described
earlier. Because this model has only two future
periods, we do not distinguish between short-

V W u C V W
C

1 1 1 1 2 2
1

( ) ( ) ( )= + [ ]{ }Max E

V W u C u C u C
C C C

0 0 0 0 1 2
0 1 2

( ) ( ) ( ) ( )
, ,

= + +[ ]Max E

t = 0

$1

t = 1 t = 2

$1.1

$.9

$1.21

$.99
$.99

$.81

Figure 1. Stock price evolution.
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term and long-term capital gains. For expositional
simplicity, we also assume that we cannot use cap-
ital losses from one period to offset gains from a
later one. Although these simplifying assumptions
make the problem easier to solve, it will be ap-
parent that the computations are considerably
more involved than in the no-tax case.

To solve the dynamic portfolio optimization
problem with taxes, we use dynamic program-
ming as we did earlier. However, the value func-
tion is now no longer a function of wealth only,
but it also depends on past stock prices and the
number of shares purchased at each of those
prices. In other words, the value function is now
path-dependent. If we use Ns,t to denote the num-
ber of shares of stock purchased at date s ≤ t and
that are still in the investor’s portfolio immedi-
ately after trading at date t, then we can express
the portfolio optimization problem as

(5)

subject to

Wt – Ct –

xtSt + ytBt, t = 0, 1, 2 (6a)

Wt+1 = xtSt+1 + ytBt+1,     t = 0, 1 (6b)

xt = , t = 0, 1, 2 (6c)

Ct ≥ 0, t = 0, 1, 2 (6d)
N0,0 ≥ N0,1 ≥ N0,2 ≥ 0 (6e)
N1,1 ≥ N1,2 ≥ 0 (6f)
xt, yt ∈ �

+, t = 0, 1, 2 (6g)
x2 = y2 = 0 (6h)

where τ is the capital gains tax rate. When t = 2,
the value function depends on (W2, S1, S2, N0,1,
N1,1), and we obtain the relation

(7)

so that date-2 consumption is simply W2 less any
capital gains taxes that must be paid. At t = 1, the
value function depends on (W1, S1, N0,0), and we
can write the Bellman equation as

. (8)

If we compare Equation 8 with Equation 4, we

see that the presence of taxes has made the dy-
namic portfolio optimization problem consider-
ably more difficult. Specifically, in solving Equa-
tion 4 numerically, V1(• ) is computed for only
1,100 possible values of W1. In contrast, solving
Equation 8 numerically requires the evaluation
of V1(•) for all possible combinations of {W1, S1,
N0,0}, of which there are 1,001,000!

(We can verify this by noting the one-to-one
correspondence between {W1, S1, N0,0} and {C0, S1,
N0,0}, and counting the possible combinations of
{C0, S1, N0,0}. Assuming, as before, that W0 =
$1,000, we see that there are 1,001 possible choices
for C0. If C0 = i, then there are 1,000 – i possible
values for N0,0. For each combination of (C0, N0,0),
there are two possible values of S1. This means that
in total, there are combinations
of {W1, S1, N0,0}.)

Even in a simple two-period two-asset model,
the portfolio optimization problem with taxes be-
comes considerably more complex. Indeed, in the
T-period N-asset case, it is easy to see that by
date T, there are O(NT) state variables, and if
each state variable can take m distinct values, then
there will be O(mNT) possible states at date T. For
an investor with a 20-year horizon, an annual
trading interval, and a choice of 25 assets, and as-
suming that the state variables take on only four
distinct values at the end of the horizon, the
number of possible states at the end will be of the
order 10301. (The number of distinct values that a
state variable can take on depends, of course, on
the precise nature of the state variable. For ex-
ample, for a binomial state variable that is not
“recombining,” the number of distinct values it
can take at date t is 2T; if it is recombining, this
is reduced to T + 1. We use four distinct values
only for illustrative purposes; in most practical
applications, the number is considerably larger.)

Preferences

Another important aspect of portfolio opti-
mization problems is the objective function that
represents the investor’s preferences. Tradition-
ally, these preferences are represented by time-
additive time-homogeneous utility functions,
which yield important computational advantages
because they imply that the value function at
date t does not depend on the investor’s con-
sumption choices prior to date t.

Unfortunately, the assumptions of time-additiv-
ity and time-homogeneity seem to be inconsistent
with the empirical evidence on the consumption
and portfolio choices of investors. For example, in-
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dividuals tend to grow accustomed to their level of
consumption over a period of time, implying that
preferences depend not only on today’s consump-
tion level but also on levels of past consumption.8

Commonly known as habit formation, such
preferences imply that the value function Vt(•) is
a function of (C0, C1, ..., Ct–1) in addition to any
other relevant state variables. As in the case with
taxes, these problems quickly become intractable
as the number of time periods increases. Of
course, closed-form solutions are available for a
few highly parameterized models of habit for-
mation,9 but in general these models must be
solved numerically.10 There are many other em-
pirical regularities of investors’ preferences that
can induce path dependence in the value func-
tion, and for each of these cases, the computa-
tional demands quickly become intractable.

Portfolio constraints

When constraints are imposed on a portfolio
optimization problem, their impact on the prob-
lem’s computational complexity is not obvious.
On the one hand, some unconstrained problems
that admit closed-form solutions fail to do so
once constraints are added. In practice, however,
closed-form solutions are rarely available for re-
alistic portfolio optimization problems, with or
without portfolio constraints. We must solve
such problems numerically, in which case, im-
posing constraints can sometimes reduce the
number of computations because they limit the
feasible region over which we must evaluate the
value function. An example of this is the impact
of the constraints in Equation 3 on the basic
portfolio optimization problem. In that case, we
imposed the constraint that xt and yt are non-
negative integers, eliminating the possibility of
borrowing or shortselling. This implies that only
a finite number of values for W1 are possible, and
as a result, the number of computations needed
to evaluate V1(W1) is greatly reduced.

On the other hand, in some cases constraints
can greatly increase the number of computations,
despite the fact that they limit the feasible set.
This typically occurs when the constraints in-
crease the problem’s dimensionality. For exam-
ple, in the basic portfolio optimization problem,
consider imposing the additional constraint that
the cumulative number of shares transacted—
both purchased and sold—up to date t is bounded
by some function, f(t). (If 500 shares were pur-
chased at t = 0 and 200 shares were sold at t = 1,
the cumulative number of shares transacted as of

date t = 1 is 700.)
In practice, these types of constraints are of-

ten imposed on investment funds to reduce
transaction costs and the risk of churning. When
such a constraint is imposed, the value function
is no longer a function of only Wt but also of the
cumulative number of shares transacted up to
date t. By creating path dependence in the value
function, constraints can substantially increase
the computational complexity of even the sim-
plest portfolio optimization problems.

Possible solution techniques 

The most natural technique for solving dy-
namic portfolio optimization problems is sto-
chastic dynamic programming. However, this
approach is often compromised by several fac-
tors such as the curse of dimensionality when too
many state variables are involved. In general,
practical considerations such as taxes, transac-
tions costs, indivisibilities and
integer constraints, non-time-
additive utility functions, and
other institutional features of
financial markets tend to cre-
ate path dependencies in port-
folio optimization problems—
this increases the number of
state variables in the value
function. Such problems are
difficult to solve in all but the
simplest cases, with computa-
tional demands that become
prohibitive as the number of time periods and
assets increases.

Here, we briefly outline an alternative that
might produce good approximate solutions to
otherwise intractable portfolio optimization
problems. This approach—called approximate
dynamic programming, neuro-dynamic pro-
gramming, or reinforcement learning—has had
much success recently in solving challenging dy-
namic optimization problems in several contexts,
including financial economics.11–16 Although
there are many different algorithms that we
could categorize as “approximate dynamic pro-
gramming,” we will look at just one such algo-
rithm: approximate value iteration.

Suppose the optimal value function at date t
of a T-period dynamic optimization problem is
given by Vt(Xt) where Xt ∈ n is an n-dimen-
sional vector of state variables. We assume that
because of the computational intractabilities, it is
impossible to determine Vt(•) exactly. Therefore,

 �

Closed-form solutions

are rarely available for

realistic portfolio

optimization problems.
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we define a parameterized class of functions

(9)

which is called the approximation architecture.
We then select our estimate of Vt from this
class of functions by selecting some from �p,
the space of p-dimensional real-valued vectors.

Now suppose that we have applied the back-
ward recursion of the Bellman equation to ob-
tain estimators . Then we can use an
approximate Bellman equation to compute an
estimator of the value function at time t so that

(10)

where gt(Xt) is the reward at time t, possibly repre-
senting consumption as in our earlier examples,
and where the maximization is with respect to
the decision variables (suppressed for notational
simplicity). Computing  V̂t (•) often entails exten-
sive Monte Carlo simulations because it is gener-
ally not possible to compute expectations over a
high-dimensional space. In these cases, we esti-
mate  V̂t  (•) at a fixed number of “training points”
(P1, ..., Pm), where each Pi ∈ n represents a possi-
ble realization of the state vector Xt at date t. Once
we have estimated for i = 1, ..., m, we obtain~
Vt(•) by solving the following least-squares problem:

. (11)

With now determined, we then proceed to
compute in a similar fashion and continue
in this manner of approximate value iteration
until we find . The computational require-
ments of this algorithm might be considerably
less demanding than if we were to solve the
problem exactly. This is because we now only es-
timate the value function at a small representa-
tive subset of the state space rather than com-
puting it exactly at all points in the state space.

Once we implement an approximate dynamic
programming algorithm, we obtain an estimator

of the value function. The natural question
that follows is whether this estimator is “good.”
Although some theoretical results partially answer
this question,11 it is often difficult in practice to
determine the accuracy of an approximate solu-
tion to a particular problem. One possibility is to
try to derive lower and upper bounds on the true

value function, Vt. Deriving a lower bound is typ-
ically straightforward—the sequence {Vt: t =1,...,T}
defines a feasible trading strategy; therefore, the
value of this strategy, which we can estimate
through simulation, is a lower bound for V0.
However, deriving an upper bound for V0 is gen-
erally not so straightforward. One possibility is
to try to apply stochastic duality theory, which
has already been studied extensively in the con-
text of portfolio optimization.17 In addition,
other researchers have successfully employed
duality theory in conjunction with approximate
dynamic programming to construct lower and
upper bounds on the prices of American op-
tions.18 A similar approach might also work for
portfolio optimization problems, which we are
investigating in ongoing research.

There are many other approximate dy-
namic programming solutions, in-
cluding algorithms based on approx-
imate policy iteration and on

Q-learning.11 These approaches generally share
the common feature of resorting to function ap-
proximation and simulation techniques to deal
with computational intractabilities. As comput-
ing power continues its remarkable growth, we
believe that these techniques will become in-
creasingly important in addressing many of the
challenges of financial computing over the next
few decades.
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