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1. Introduction

Financial portfolio selection is the problem of op-
timal allocation of a fixed budget to a collection of
assets (commodities, bonds, securities etc.) which pro-
duces random returns over time. The word optimal,
however, can have different meanings. For instance, one
could define optimal so that a solution to the portfolio
problem maximizes expected or average value of the
return. While this definition is intuitively appealing,
it is also naive because the values of a random pro-
cess can deviate from the expected value. A defini-
tion of optimal should therefore incorporate deviations
from the expected value. In his 1952 paper [4], Harry
Markowitz proposed just such a definition of optimal
for the financial portfolio selection problem. Markowitz
proposed that the problem has an optimal solution when
an investor maximizes expected return and minimizes
variance in the values of the return. In other words, an
investor should look to maximize gain and minimize
risk for a given financial portfolio.

Markowitz’s portfolio selection theory also formal-
izes the wisdom of portfolio diversification, where in-
stead of allocating the largest fractions of the budget to
a select number of assets with largest expected return,
an investor allocates his budget to many assets with the
hope that the fortune of some of these assets will not
be influenced by the misfortune of some others.

Formally, consider a portfolio with n assets. Let ai
be the percentage allocation of the total budget to asset
i and let Ri denote the random variable representing the
return from asset i. Further, let R denote the random
variable for the return from the entire portfolio. Then

R =
∑
i

aiRi

whereby the expected return from the the portfolio is

E(R) =
∑
i

aiE(Ri) (1)

due to the linearity of expectation. Next, consider the
variance of R which is given by

Var(R) =
∑
i,j

aiajCov(Ri, Rj), (2)

where Cov(Ri, Rj) is the co-variance of the random
variables Ri and Rj and which reduces to the variance
of Ri for i = j. An investor working with respect
to Markowitz theory will maximize (1) while mini-
mizing (2). The information that the investor needs
to achieve these two tasks is the pairs of statistics
[E(Ri),Cov(Ri, Rj)]. In his paper, Markowitz refers
to these pairs as (E, V ) combinations and assures that
it is always possible to identify an optimal one.

More mathematically, this is a bi-criteria quadratic
optimization problem [5]–[7] in which the set of all
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optimal solutions yield the so-called efficient frontier or
efficient portfolios. Among all optimal portfolios, the
decision maker will make a choice based on his/her
preferences. In the literature, this formulation is also
known as the mean-variance model.

Note that for a given pair of assets i and j, their
contribution to Var(R) is zero when either ai or aj is
zero, that is, when the investor does not allocate any
budget to asset i or j. However, this contribution can
be made smaller by allocating positive budget to assets
i and j and ensuring that Cov(Ri, Rj) is negative.
A negative value for Cov(Ri, Rj) will imply that the
returns from asset i and j influence each other inversely
and an adverse change in the returns from one asset
will mean a favorable change in the returns from the
other. Hence, not only does Markowitz theory justify
the maxim of diversification mentioned earlier, but it
also provides a measure for diversification.

2. Portfolio Selection as Unconstrained Op-
timization

In a relaxed form, the Markowitz portfolio model
can be formulated as an unconstrained quadratic con-
strained binary optimization (QUBO) problem as fol-
lows [1]–[3]:

Minimize : θ1
∑
i

[−αiE(Ri)]

+ θ2
∑
i,j

αiαjCov(Ri, Rj)

+ θ3

(∑
i

αiAi −B

)2

subject to αi ∈ {0, 1}, Ai is the maximum amount
of money that can be invested in the i-th asset, and
where B is the total budget. In this relaxed formulation
we suppose that fractional shares of stocks can not be
purchased, so the decision maker either invests the total
amount Ai into the i-th asset or nothing.

The objective function is composed by three terms:
the expected return, the volatility of the investment, and
a penalization term that takes into account the difference
between the invested amount of money

∑
i=1Aiαi and

the total budget B. The positive weights θi, i = 1, 2, 3,
describe the relative importance of each criterion in the
decision making process.

The QUBO form for the Markowitz portfolio model
is ideally suited for running on the quantum computer

available from the Canadian technology company, D-
Wave Systems. D-Wave Systems has developed a spe-
cialized quantum processor that uses the principles of
quantum information processing to solve unconstrained
optimization problems. The D-Wave processor uses su-
perconducting technology and the physics of quantum
annealing to find the minimum energy eigenstate of the
above Ising Hamiltonian operator, which corresponds
to the optimal strategy in the Markowitz model. Unlike
a conventional computer, a quantum computer utilizes
quantum bits, or qubits, to encode and process in-
formation. The principles of quantum physics allow
qubits to store information in superposition of logical
basis states. For example, a single qubit can store any
normalized superposition of the logical 0 and logical
1 states simultaneously. A quantum computer manip-
ulates superposition across multiple qubits to process
information. Measurements with a quantum computer
causes these superposition states to collapse into definite
logical states, either 0 or 1, with probabilities given by
the respective coefficients.

3. Classical Programming and Execution

For the purposes of this case study (classical and
quantum), we considered 63 of the 68 securities listed
on the Abu Dhabi Securities Exchange (ADX) website
using the weekly closing value of each over a period
of one year, from December 1, 2015 to November 30,
2016.

The weekly closing values of all the securities from
ADX were formatted into a matrix where each column
corresponded to an equity (indexed by the number
assigned to it) and each row corresponded to the week
of that year (50th-53rd week of 2015, and 2nd- 49th
week of 2016). If there was no closing value listed in
any given week, the value zero was assigned to it. This
makes the results of the optimization problem somewhat
unrealistic; however, this should not be an issue since
the purpose is to optimize the data and compare results
rather than actually use the results.

Moreover, the abundance of zeros does not make the
data set too special from a calculation perspective since
the matrix used in the actual problem is a co-variance
matrix of the data, thus it will have much fewer zeros
given that each security has at least one closing value
in the specified interval.

3.1. The Data

From the data gathered, the expected values and co-
variance matrix were calculated using the columns as
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the random variables, 63 in total. A random vector of
length 63 was generated and used so that each element
corresponded to the individual budget allocated to an
asset. If an equity is recommended by the algorithm,
then its individual budget will be the amount invested
into it. The total budget was set to 1000. This con-
strained the sum of the individual budgets of the equities
recommended to be less than or equal to 1000. The
theta values in the model were set to 1

3 each so that
all components of the model were equally weighted.

3.2. MATLAB Execution

The co-variance matrix and expected values were
read into the mathematical software MATLAB together
with the budgets and the θ values. An anonymous
function f was defined to be minimized by the built-in
genetic algorithm function:

f = @(a)((−θ1) · a · (Expectation)T

+ θ2 · a · Covariance
· aT + θ3 · ((aBi)− TotalBudget)2);

(3)

The genetic algorithm was also constrained to find
only integer solutions on the interval [0, 1]×63 in order
to make the solution binary. The solution would be in
the form of a binary vector of length 63 in which an en-
try of 1 represented the equities that are recommended.

However, since the genetic algorithm is not an exact
method, the solutions vary from one execution to the
next. Therefore, the function was executed n times
(for a suitable n) and the solutions, function values,
and execution time of each trial were recorded. The
number of times each equity was part of the solution
was recorded so that it was clear which equities were
recommended the most number of executions.

Finally, the maximum number of most persistent
equities were chosen, so long as they do not violate
the total budget constraint. The MATLAB code and
data files (in MS Excel format) can be found online
[14]. We also point out that the MATLAB solution has
been compared to a solution obtained using qbsolv, a
heuristic QUBO solver from D-Wave. The next step
is to validate and compare the solutions obtained from
MATLAB with the quantum computer.

4. Quantum processing

We now show how quantum superposition states
within the special purpose D-Wave processor may be

used to effectively sample the space of potential portfo-
lios. Computation then corresponds to finding the opti-
mal portfolio as defined by the objective function above.
The D-Wave processor uses quantum dynamics, namely
quantum annealing, to isolate the portfolio selection,
and we develop an implementation of portfolio selection
using the D-Wave processor to recover the optimal
portfolio. Our approach tests whether the adoption of
the D-Wave quantum computer allows for a meaningful
increment in computational performance for solving
the Markowitz portfolio. We use D-Wave’s quantum
optimizer to find the optimal allocation of funds.

We map the QUBO form of Markowitz’s portfolio
selection problem into the well-known Ising model.

H = −
∑
j

hjZj −
∑
i,j

Ji,jZiZj + γ (4)

where the real-valued coefficients hi and Ji,j define,
respectively, the bias for qubit i and the coupling be-
tween qubits i and j and the Pauli Zi operator is for
the i-th qubit.

Ji,j =
−1
4

(θ2Cov(Ri, Rj) + θ3AiAj) (5)

hi =
−1
2

(
θ2Cov(Ri, Ri) + θ3A

2
i

−θ1E(Ri)− 2Bθ3Ai)
(6)

and γ = θ3B
2.

4.1. Quantum Programming and Execution

Programming the D-Wave processor requires first
reducing the Markowitz model to the Ising form in
Eq. (4) [8]. This logical representation of the optimiza-
tion function must then be encoded into the processor
hardware. The D-Wave processor has a unique hardware
connectivity graph called Chimera that corresponds to
a rectangular array of bipartite unit cells. As shown in
Eq. (5), the i-th and j-th qubits generally posses non-
zero coupling between them. Mapping logical problems
into the Chimera hardware therefore requires an em-
bedding function that uses chains of coupled qubits
to develop equivalent representations of the problem
structure. There are a variety of embedding methods
available [10]. The D-Wave Solver API (SAPI) provides
an implementation of an embedding algorithm search
from Cai, Maccready, and Roy [11], which uses a
probabilistic search to find a valid embedding. We use
the SAPI-provided embedding routine provided to pro-
gram the dense Ising model into the Chimera hardware.
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The resulting parameters for the embedded physical
Ising model are then given in terms of the original
Ising coefficients and an intra-chain coupling constant
J [9]. We set the value of J to be approximately an
order of magnitude greater than the largest value of an
coefficient; this setting is optimized based on empirical
observation.

Execution of the embedded physical program is
based on the time-dependent Hamiltonian H(t) =
A(t)H0 + B(t)H1, where H0 is the transverse field
term and H1 is the physical Ising model. The annealing
schedules A(t) and B(t) have a fixed form within the
hardware but a scalable duration T . Larger values of
T imply a slower schedule. We use an annealing time
T = 20µs. A single program execution returns a binary
string representing the candidate solution for the ground
state of the physical Ising model. We decode this string
into the solution for the QUBO problem. We collect an
ensemble of such strings and generate a list of these
candidate solutions. We then order the list of these
solutions based on the calculated energy and pick the
solution with the lowest energy. Our implementation
of these programming steps rely on the XACC pro-
gramming framework [12]. The XACC framework was
designed to provide an extensible software framework
for integrating novel computational accelerators, like
quantum processors, into conventional scientific appli-
cation codes.

Our implementation of portfolio optimization uses
the D-Wave processor to find the optimal selection
based on real data from the Abu Dhabi Securities
Exchange. The prototype open-source code and data set
are available online [13]. As seen in the data files for
the averages and co-variances, there are a wide array of
values for the selected stocks. As a simplification we
have performed portfolio optimization using a current
price Ai for stock Si that matches the corresponding
average E(Si). We have also assumed a total budget
for investment to be $100. Finally, we have found the
solution to this multi-objective optimization function to
depend on the specific choices for θi. This is a well-
known feature of using the weighted sum method to
represent multi-objective optimization. For our demon-
strations, we have settled on the use of θi = 1/3 for all
i.

For the above definition, we have used adiabatic
quantum optimization with the D-Wave processor to
search for the optimal portfolio. Repeated runs of the
program for the same anneal time of 20 µs returns the
same result of a portfolio selection that costs $121.176.
This cost does not strictly match our budget because the

weight sum method provides only a trade-off between
the different constraints. For example, changing the
weights to θ1 = 0.8, θ2 = 0., and θ3 = 0.2 produces
a portfolio that costs $119.007. However, this choice
has clearly ignored the influence of the co-variance
on minimizing risk. In addition, longer anneal times
(up to 2 ms) yield very similar portfolios but with
slightly lower costs. We find that some selection cannot
be unambiguously determined from the program. This
traces back to the embedded chains that return a strictly
even distribution of the 0 and 1 outcomes. We separate
these stocks from the remainder of the portfolio and
compute this uncertain costs separately. For our problem
set, this spread is typically from $4 to $40.

This data set is too large for direct embedding onto
the D-Wave 128-qubit simulator, and was submitted to
qbsolve. qbsolv divides QUBO problems into chunks
and iterates on sub-QUBOs until either the best solution
is found, or the input time limit runs out. The qbsolv
solution is compared to the MATLAB-derived solution,
with good agreement.

In summary, we have performed Markowitz portfo-
lio optimization using the D-Wave processor.
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