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This paper presents a multilevel variance component analysis of data from 
the pilot year of pretesting of an educational test. The multilevel nature of 
the data is induced by the clustering of students within colleges and by 
having multivariate observations (scores) on students. The presence of a 
multidimensional trait underlying the scores is formulated as a hypothesis 
about the full rank of a variance matrix. 

The need for objective measurement of the quality of general education 
in United States colleges has been appreciated for some time. Colleges are 
facing increasing demand for provision of such information to state govern­
ments, accrediting boards, and organizations assisting in placement of high 
school students. Also, many college administrators are interested in com­
parisons of their freshman and upperclass cohorts, or in longitudinal com­
parisons of freshmen and upperclassmen. Awareness of the competition for 
the same freshman candidates has raised the importance of comparisons 
among colleges. Educational testing organizations in the United States 
have responded to this demand by instituting efforts to develop tests of 
general education outcomes. 

In a typical educational admissions test, such as the SAT, ACT, or GRE, 
students are administered sets of items, the responses to which are scored 
and the scores reported back to students. Test developers usually attempt 
to set the number of items in the test close to a minimum that would make 
the test scores for the examinees sufficiently reliable. The testing time (i.e., 
the time period during which the examinees are exposed to the test items) 
should be set to a minimum in which the majority of students would have 
sufficient time to study and to respond to all the test items, so as to encroach 
to the smallest extent on the time available for (academic) instruction or on 
the free time of the examinees. 

The author has benefited from discussions with Charlie Lewis. Comments of an 
associate editor and of two referees have helped to improve the presentation. 
Secretarial services of Liz Brophy, ETS, are acknowledged. 
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If assessment of colleges is the prime objective, it would be a luxury to 
administer a test instrument that yields a reliable score for each individual 
examinee, because the within-college means of such scores would have 
unnecessarily high reliability. It would be preferable, for example, to ad­
minister discrete sections of the test to randomly selected subgroups of 
examinees (e.g., by spiralling). 

In a more general context, designs in which examinees are administered 
different subsets of the test item pool (i.e., multiple matrix sampling) have 
been suggested by Lord (1962). Sirotnik and Wellington (1977) have de­
scribed a comprehensive statistical method for analysis of data arising from 
such a design. Goldstein and James (1983) have derived efficient computa­
tional procedures for analysis of such data. These methods assume that the 
response patterns of the examinees are uncorrelated. In this paper I extend 
these methods to the case of correlated vectors of subscores. The correla­
tion structure is induced by the random effect vectors associated with 
colleges. I set up a multivariate version of the standard random effects 
model with one-way layout along the lines of Goldstein and McDonald 
(1988), and for model fitting I used computational procedures for max­
imum likelihood estimation based on Longford (1987); for the technical 
details, see Longford (1989), and for further background, Searle (1971) and 
Harville (1977). 

Another method for extracting maximum information within minimum 
testing time is to administer tests consisting of sections (subtests, testlets, 
or cells of items) that tap different, though related, aspects of examinees' 
knowledge, ability, or skills. An important issue with such tests is to estab­
lish discriminant validity of the subscores. The "true" subscores underlying 
the observed subscores are often highly correlated. If two true subscores, 
related to different domains of ability (subtests), are perfectly correlated, 
then the corresponding observed scores are merely two less reliable ver­
sions of the true score underlying the aggregate of the two subtests. Then 
it is preferable to provide only the observed score for the aggregate, thus 
simplifying the format of the score report. 

With examinees clustered within colleges, it is useful to consider these 
issues separately for the scores of examinees within a college and for the 
true college means. For example, the true subscores underlying subtests A 
and B may be correlated .85 within each college in a population of colleges, 
but the within-college means of these true subscores may be perfectly 
correlated. Conversely, the true subscores may be perfectly correlated 
within each college, but the college means may have a lower correlation. 
Hence, a single correlation of the examinees' subscores is an incomplete 
summary of the relevant information contained in the subscores. If the 
clustering of examinees is more complex (e.g., students within grades within 
colleges within states), then each of these four layers of the clustering 
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hierarchy may have a different correlation structure of the true subscores 
(their means). 

This paper presents a multivariate variance component analysis of data 
from the pilot stage of development of a test instrument aimed to provide 
information for colleges, or more generally groups of students, about sev­
eral aspects of general education outcomes. The analysis addresses issues 
of discriminant validity of the subtests and other statistical issues that arise 
in the development of a test instrument with complex test specification. 

The sections of the paper are organized as follows: details of the studied 
test instrument and statement of the principal research problem, overview 
of variance component models, definition of the substantively important 
dimension of the latent trait, data and procedures, results, and conclusions 
and summary. 

The Test Instrument 

The test instrument, in this paper referred to by the acronym GENED, 
involves a matrix design, as depicted in Figure 1. There are three forms of 
the test, each with 48 items. The items within a form are cross-classified into 
three content areas (humanities, social sciences, and natural sciences; the 
rows in Figure 1) and four academic skills (reading, writing, critical think­
ing, and mathematics; the columns in Figure 1). The numbers in Figure 1 
represent the numbers of items within each cell of one of the three forms 
of the test, and the row and column subtotals. Of the 48 items, there are 
16 in each row and 12 in each column; however, the numbers of items within 
cells vary both within a form and from form to form. Each item has four 
alternative responses, one of which is correct. 

The first stage of pretesting of the instrument took place in the academic 
year 1986-87 and involved about 1,000 students from 12 colleges. The 
original pool of 240 items has been reduced to 144 items, and several items 
have been reviewed and amended. The main purpose of the second stage 
of pretesting, the pilot year (1987-88), was to establish content and con­
struct validity of the test and of its components (skills and content areas) to 
decide what kinds of comparisons of college-mean scores can be made and 
to settle the format of the report for participating colleges. 

The test can be administered in two ways. The short form involves 1 hour 
of testing time, and each student has to respond to 48 items of one form. 
The three forms are spiralled (in the order A, B, C, A, B,.. .) so as to 
ensure approximately equal numbers of students and equal distribution of 
ability for all three forms within colleges. Note that the three forms are 
unlikely to be exactly parallel, because that would mean that they have 
matching characteristics either for each cell or at least for the three rows 
and the four columns of the design. However, because individual examinee 
scores are not reported, this stringent condition can be dispensed with. 
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FIGURE 1. An example of the design of a form of the GEN ED test (the cells contain 
the numbers of items; the exact number of items per cell varies from form to form) 

The long form involves 3 hours of testing time, in which each student is 
administered three forms of the test in three separate 1-hour sessions. The 
order of administration of the forms within the long form is balanced to 
enable inference about fatigue and practice effects. The score report for the 
long form administration will contain both individual students' scores and 
college-average scores and subscores. 

Results of the short form administration are intended for colleges, or 
groups of students, only. The college-average number of correct item re­
sponses would be reported for the entire test, for the three subject areas, 
and for the four skills. Suitable minimum numbers of students from a 
college must be recommended, for whom meaningful scores and subscores 
could be provided. Alternatively, the expected standard errors associated 
with these scores, as functions of the number of students in a college, would 
suffice. Colleges may administer the test to a random sample of students, 
and then the choice of the sampling size is important. 

Another important point is to decide which subscore means to report, 
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and in what form. The subscore means are highly correlated, and therefore 
it is more informative to report certain contrasts. Suppose two colleges have 
substantially different values of a given contrast of true subscore means. 
Then this contrast of subscore means is declared to be worth reporting, for 
colleges with n examinees each, if in a future administration with n exam­
inees from each college the observed subscore means are very likely to be 
significantly different, using the conventional t test. 

Variance Component Models 

Data from tests with multichoice items are often analyzed using the 
classical item-response methodology (IRT), implemented in the software 
packages LOGIST (Wingersky, Barton, & Lord, 1982), BILOG (Mislevy 
& Bock, 1983), and others. The IRT approach relies heavily on the uni-
dimensionality of the underlying "examinee-ability" trait, whereas our in­
terest is in establishing multidimensional traits underlying the responses of 
examinees. 

Because we are interested in both the traits underlying student scores and 
college-mean scores, in the standard factor analytical approach we require 
a decomposition of the variance matrix of the subscores into the between-
college and within-college components. 

Variance component methods have been proposed for analysis of multi­
variate data involving clustering by Harville (1977) and, more recently, 
Goldstein (1987). Software for variance component analysis implementing 
the maximum likelihood algorithms of Goldstein (1986) and Longford 
(1987) enables simultaneous modeling of several features of the data that 
can be represented as levels of the nesting hierarchy. 

For illustration, consider first an additive model for the scores in the 12 
cells of the design: 

Yijkh = \^kh + aikh + btjkh + tijkh • (1) 

The term \ikh represents the overall mean score for the cell (k, h), the 
college-specific term aikh represents the deviation of the true college mean 
score \ikh + aikh from the overall mean score for the cell (k, h), and the 
examinee term bijkh stands for the deviation of the examinee's true score 
from the true mean score for his or her college. The random term eijkh is 
included to account for the aggregate of the random influences associated 
with momentary variation in human performance and recall, external influ­
ences, guessing, and so on, and for model inadequacy. 

Differences in the difficulties as well as in the numbers of items in the 
cells of the three forms can be accommodated by form-specific parameters 
\*>khf (f= 1,2,3) in (1). We will assume, however, that the college and 
student deviations, aikh and bijkh, are form-independent. 
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Because each cell contains only 2-6 items, the assumptions of normality 
in (1) are difficult to justify, even after a transformation of the subscores. 
We circumvent these issues by aggregating the subscores to the level of 
content areas and skills. Because the development for content area and skill 
subscores is completely analogous, I describe in detail only the latter. 

For the skill subscores we have an analysis-of-variance type model, 

Yijk. = Mkf + Aik + Bijk + eijk., (2) 

where Mkf=%h\Lkhf, Aik = ^haikhy Bijk = l<hbijkh, and tijk. = ?<hzijkh. The 
assumption of normality of these subscores, or of their suitable transforma­
tions, is now more palatable than in the model (1). Assume that the college 
terms A, = (An,Ai2, Ai3, Ai4), the examinee terms B,7 = (BijU Bij2, Btj^ BijA), 
and €/y* form three mutually independent random samples: 

A,~;v4(o,ao, 

B/;~Ar4(0,flB), 

eijk.~N(0,a2). (3) 

The variance matrix for the four skill subscores of an examinee is equal 
to a21 + ilB + ilA, and the conditional variance matrix, given the college-
level random terms A, (i.e., the within-college variance matrix), is 
ft]? = a21 + ilfl. In absence of any replication for the subscores the com­
ponents a2 and ftB are confounded, and therefore o2 cannot be estimated 
without some data in addition to {Yijk.}. 

An upper bound for a2 can be obtained from the eigenvalue decom­
position of £1%', we have a2^e1 ? where ex is the smallest eigenvalue of 
Us. If a2 < eu then l lB = 11^ - a21 is of full rank; otherwise, the rank of 1XB 

is equal to the number of eigenvalues greater than ex. Thus, an estimate of 
ft]? can provide an estimate of the upper bound for a2. A different 
"guestimate" can be obtained by considering the variation associated with 
binomial outcomes (0/1 responses to 12 items). As a crude approximation 
for the upper bound for a2, we have 12 x (Vi)2 = 3. Note, however, that the 
responses contributing to a subscore are probably positively correlated, 
even after partialling out the college and examinee terms. Reliable infer­
ence about a2 could be obtained only from an experiment involving 
replication, embedded in the administation of the test. 

Because the skill subscores, or their averages, are highly correlated, it is 
advantageous to consider a nonsingular linear transformation of the sub-
scores. I choose the transformation 

Afl = (Al+^2+^/3+A-4)/4, 

Afk = Aik - An for k = 2,3,4, 
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tha t is, A* = A,D 4 , for college-level r a n d o m effects, whe re 

D4 = 

Vi - 1 - 1 - 1 
VA 1 0 0 
V4 0 1 0 

VA 0 0 1. 

and B* = B/;D4 for examinee-level random effects. I will refer to this trans­
formation, given by the matrix D4, as the centered transformation 
(parameterization). The first components of A* and B* are associated with 
the score average, and the others with the respective contrasts of writing, 
critical thinking, and mathematics versus reading. The variance matrices 
for these random effects are XA = Dj flU D4 and XB = DjilB D4. The inverse 
transformation is given by the matrix 

(A,- = A* C4, Bij = B,* C4). 
Explanatory variables, such as background information, can be directly 

incorporated within the systematic (fixed) part Mkf in model (2). We can 
consider variables defined for examinees (age, sex, major, high school 
academic achievement, and so on) and for colleges (public/private, total 
enrollment, and so on). If the test is administered to distinct subgroups of 
students within a college, such as freshmen and upperclassmen, or the four 
grades, the model (2) can be extended by another level of clustering (exam­
inees within grades within colleges) to 

Yigjk. — Mkgf + A i k + Gigk + Bigjk + tigjk' > (4) 

where the assumptions (3) are supplemented by Gig = (Gigu . . . , G/g4) ~ 
N4(0,ftG)- Systematic differences among the grades are accommodated 
within Mkgf, and the within-college deviations from the mean differences 
among the grades are represented by the random vector Gig. Models for 
longitudinal data are obtained by introducing a level of clustering between 
the examinee and subscore levels (subscores within occasions for exam­
inees). Similarly, repeated administrations across years correspond to the 
clustering of students within college-years within colleges (assuming no 
migration). 

The number of colleges taking part in the pilot year is limited; the 
participation is voluntary and recruitment of colleges requires extensive 
efforts. Therefore, only a small number of college-level variables can be 
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used to model the fixed part Mkf (Mkgf). There is more scope for incorpo­
rating examinee-level variables, but it should be borne in mind that such 
variables may be almost constant within colleges. If several college-level 
variables, or variables with small within-college variation, are used, then 
the variance matrix XA may vanish. 

Voluntary participation raises several issues related to sampling. The 
hope is that the colleges taking part in the pilot year are a representative 
sample of the hypothetical population of colleges that will administer the 
test in future. However, the composition of colleges interested in future 
operational administration may change because of various circumstances, 
including the results of the pilot year analysis. Another issue concerns par­
ticipation and motivation of the designated students within participating 
colleges. In the short form administration the examinee's name is not 
entered on the response form, and so he or she is aware that no substantial 
personal stake is involved. The problem arises to a lesser extent in the long 
form administration, where individual examinees' scores are reported. This 
problem relates not only to the pilot year data but also to future operation 
because differential motivation of the examinees may seriously influence 
the intended comparisons. 

Dimensionality of the Observable Trait 

I subscribe to the approach of Goldstein and McDonald (1988) for factor 
analysis with multilevel data, but in the present context it is necessary to 
distinguish between statistical significance and substantive importance. I 
adopt a definition of the underlying multidimensional trait for a normally 
distributed random vector, similar to that used in factor analysis. By an 
m -dimensional normal trait I mean any ra-variate normal vector with mean 
0 and a nonsingular variance matrix. A normal vector z is said to have an 
underlying m -dimensional trait if it can be formed by a nonsingular linear 
transformation of the m -dimensional trait, that is, 

z = T + U8, (5) 

where 8 ~ Nm(0, * ) , * is nonsingular, U is a matrix of rank m, and T is a 
vector of constants. The matrices U and W are not defined uniquely, and 
the analyst can make a choice that facilitates a suitable interpretation. In 
many situations it is useful to restrict the variance matrix * to a unit matrix 
or a diagonal matrix, but this restriction is purely formal. Two random 
vectors are said to have the same trait if the corresponding matrices U in 
their representations (5) span the same linear space. In particular, two 
random vectors of the same length with nonsingular variance matrices have 
the same trait. 

An important issue in the development of the GENED test is in estab­
lishing a four-dimensional trait underlying the four skill subscores (and a 
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three-dimensional trait for the subject-area subscores). It is important to 
consider separately examinee-level and college-level traits (and grade-level 
traits, if applicable). Inference about these traits is related to the eigenvalue 
decompositions of the corresponding variance matrices iiB and iiA (and 
ftG), or, equivalently, those of 2B and XA (and 2G)-

For example, if 2,4 = 0, then there are no differences among the college-
level true subscore means, and consequently there is no point in reporting 
any college-level subscore means. If (XA)n > 0, but all the other elements 
of XA vanish, then the total score represents the sole dimension of the trait 
underlying college-level variation in the subscores. Another hypothesis is 
that reading, writing, and critical thinking represent a single college-level 
trait, and therefore they could be fully described by a single subscore; 
reporting the three separate subscores would not be justified. My analysis 
strongly supports this hypothesis. 

An important caveat must be attached to all the conclusions. My analysis 
assumes that the labels for the rows (subject areas) and the columns (skills) 
of the test are appropriate. That is, items within a cell of the design, a 
combination of a subject area and skill, do not contain elements of other 
content or knowledge areas, or at least that, within certain generally ac­
cepted bounds, knowledge of the subject and possession of the skill consti­
tute (apart from guessing) the major component in the process by which an 
examinee makes a response choice to the items in the cell. 

I emphasize that the main objective of the pretest study is to make 
inference not about the colleges participating in the pretest, but about the 
distribution of the reported scores, subscores, and various contrasts of 
scores in the future operation. For example, reporting a score that a college 
wants to compare with the score for another college, or the average of a 
group of colleges, would be of limited use if most such comparisons would 
be statistically not significant. The higher the number of examinees from a 
college, the higher the utility of the mean subscores because they are less 
affected by the "noise" due to examinee-level variation. An appropriate 
definition of an observable trait should reflect this dependence on the 
administration size. 

More formally, suppose we have two colleges with n examinees each, and 
they are to be compared in a future administration on a contrast of skill 
subscores given by a 4 x 1 vector a. Suppose the true contrasts a rA t and 
a r A2 for the two colleges differ by the amount expected if the two colleges 
were drawn from the population of colleges at random, that is, 

ar(A! - A2) = V2arft^a. (6) 

Conditionally on (6), the difference of the observed contrasts, ar(Yi - Y2), 
has a normal distribution with mean ar(A! - A2) and variance 2arfl* a/w. 
We can interpret (6) as "colleges differ a great deal" on the contrast a. It 
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is desired that the (future) observed contrasts be significantly different (at 
level ai), 

zT(Yl - Y2) > <S>-\\ - ax) • V2a r f t | a/n, (7) 

with high conditional probability: 

Pr{(7)|(6)} = a2, 

where ai and a2 are suitable constraints, and O is the distribution function 
for N(0,1). The latter equation is easy to solve with respect to n, and it 
yields 

arfl» a 

where c = {9'\1 - ax) + $~1(a2)}
2. 

For example, for the choice ax = .10 and a2 = .90, we have c = 6.57. For 
a given contrast a I will refer to the smallest integer satisfying (8) as the 
critical administration size, and if this integer is smaller than the size of 
the administration in a substantial number of the colleges participating in 
the pilot-year data (or expected sizes in future administrations), then I 
declare this contrast as observable. The criterion (8) can be interpreted as 
follows: A contrast is observable if the between-college component of its 
variation, a^ll^a, is greater than a certain multiple of the within-college 
component, a r f l | a. The multiplicative factor is inversely proportional to 
the number of students in the college. 

The desirable outcome for the testing program would be that all dimen­
sions of the (four-dimensional) trait for the skill subscores are observable. 
The choice of the representation for the college-level trait may influence 
the critical administration sizes for the dimensions of the trait, because the 
definition (8) involves the examinee-level variance matrix ft|. However, 
the substantive conclusions about the observable traits, arrived at from my 
analysis, turn out not to depend on this choice because a f̂t̂  a varies much 
more than SJHB a on the sphere ara = 1. 

Data and Procedures 

Approximately 11,000 students from 52 colleges have taken part in the 
pilot-year administration of the test. The short form has been used in 34 
colleges with 6,131 students, and the long form in 18 colleges with 4,835 
students. In the short form administration motivation of examinees was a 
major problem; many examinees apparently gave up or proceeded by 
guessing at random after the first few items. In correspondence with the 
plans of the program directors, I have excluded from my analysis all the 
examinees who have scored 10 points or less (out of 48). More than 16% 
(972) of the examinees were excluded. Because provision of the GENED 
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test and its scoring would be a commercial undertaking, the testing organi­
zation would be committed to provide the college means of the subscores 
even in the presence of substantial attrition, which may drastically affect 
their validity. Therefore, excluding the colleges with substantial attrition 
from the analysis might result in bias of the predicted variation of the 
outcomes in the future operation. The attrition rate in the long form admin­
istration was negligible. In the short form administration the vast majority 
of the examinees were freshmen (91%), and only three colleges had 50 or 
more upperclass examinees. In the long form administration there were 
seven colleges in which the test was administered to both freshmen and 
upperclassmen, in six colleges only freshmen were examined, and in the 
remaining five colleges only upperclassmen took part. Details of the admin­
istration sizes are given in Tables 1 and 2. 

Separate analyses were carried out for short form and long form data and 
for skill subscores and subject-area subscores within forms. Variance com­
ponent models were fitted using the Fisher scoring algorithm of Longford 
(1987) implemented in the software VARCL (Longford, 1988). The cen­
tered parameterization was used, and instead of the variance parameters 
their square roots (sigmas) were estimated. Therefore, the standard errors 
for these sigmas are quoted throughout. 

For model fitting in VARCL I declare, for the analysis of skill subscores 
in the short form, 4 x 5,159 elementary observations (subscores) within 
5,159 examinees, within 34 colleges. For the elementary observations we 
have the categorical explanatory variable, indicating the subscore type (4 
categories), and for the examinees the categorical explanatory variable, 
indicating the form of the test (3 categories). In order to allow a general 
pattern of the between-form differences in the population subscore means, 
the form-by-subscore interaction is considered. The between-college and 
between-examinee covariance structures are declared as associated with the 
subscore type. Model fitting is iterative, but the number of iterations re­
quired in the models fitted was always less than 12. The model parameters 
are the location parameters associated with the form-by-subscore inter­
action (using the centered parameterization), an imputed value for the 
elementary level variance a2, and the variance and covariance elements of 
the matrices XA and 2 5 . The choice of a2 has to be such that the estimate 
of XB be positive definite (if too large a a2 has been chosen, the model has 
to be refitted with a smaller a2). For each estimated parameter its maximum 
likelihood estimate and the associated standard error are obtained, as well 
as the value of - 2 x log-likelihood for the fitted model (useful for likeli­
hood ratio testing). The conditional expectations of the random effects 
(i.e., the residuals corresponding to the random terms Aik and Bijk) are also 
provided. The software VARCL has no requirements for balance of the 
data. 
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TABLE 1 
Numbers of examinees from the colleges in the short form administration by form 

Note. N = 5,159. 
a Examinees who scored less than 10 points (out of 48). 
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Excluded 

College no. Total Form A Form B Form C examinees3 

1 61 21 21 19 2 
2 217 72 72 73 5 
3 400 134 131 135 4 
4 278 105 93 80 80 
5 132 45 43 44 2 
6 183 69 69 45 47 
7 133 44 44 45 1 
8 75 27 25 23 7 
9 81 27 28 26 0 
10 72 47 47 48 1 
11 48 14 20 14 25 
12 100 34 33 33 0 
13 148 49 50 49 5 
14 171 57 56 58 2 
15 176 76 60 40 137 
16 117 39 39 39 0 
17 57 19 19 19 1 
18 40 13 13 14 2 
19 96 33 32 31 4 
20 77 25 27 25 1 
21 151 52 51 48 6 
22 158 54 50 54 5 
23 172 60 55 57 5 
24 93 39 34 26 21 
25 81 22 39 20 13 
26 72 24 24 24 1 
27 132 47 40 45 3 
28 80 30 25 25 11 
29 130 66 63 61 7 
30 242 88 81 78 0 
31 112 37 37 38 2 
32 84 28 27 29 2 
33 517 172 175 170 4 
34 332 116 112 104 66 

Total 5,159 1,785 1,639 1,735 972 
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Results 
The estimates of the college mean subscores are given in Tables 3 and 4. 

They differ from the corresponding arithmetic averages of the subscores by 
.01 or less. The standard errors associated with the variance component 
analysis estimates of the means also differ very little from the standard 
errors associated with the arithmetic averages. For example, the standard 
errors of the within-skill and within-form means in Table 3 are in the range 
.060-.064, whereas the corresponding values for the arithmetic averages 
are .057-.058. 

Examinees in the short form administration appear to score substantially 
higher than in the long form administration. No college has administered 
both the short form and the long form, and so we can distinguish between 
genuine differences between the short form and long form populations on 
one hand and fatigue and loss of interest on the other hand only by looking 
at the results of the first session in the long form administration. There is 
strong evidence of fatigue and loss of interest because the subscores in the 
first session were much higher than in the later sessions. 

TABLE 2 
Numbers of students in the long form administration 

103 

College no. Number of students Freshmen Upperclassmen 

1 332 235 97 
2 163 57 106 
3 468 0 468 
4 61 61 0 
5 445 445 0 
6 66 0 66 
7 263 0 263 
8 387 387 0 
9 182 182 0 

10 209 161 48 
11 206 178 28 
12 177 136 43 
13 194 194 0 
14 69 0 69 
15 812 812 0 
16 131 0 131 
17 41 18 23 
18 629 432 197 

Total 4,835 3,298 1,539 
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TABLE 3 
Mean skill- and content-area subscores in the short form administration 

Social Natural Form 
Reading Writing Critical thinking Mathematics Humanities sciences sciences total 

Form (12 items) (12 items) (12 items) (12 items) (16 items) (16 items) (16 items) (48 items) 

A 6.69 7.51 5.48 5.86 8.86 8.93 7.75 25.54 
B 6.99 6.98 5.41 6.28 8.70 8.24 8.73 25.66 
C 6.91 6.26 5.77 6.26 9.04 7.86 8.30 25.20 

Note. The standard errors are .06 for the skill subscore means (12 items), .07 for the content-area subscore means (16 items), and .12 for 
the form totals (48 items). 
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TABLE 4 
Mean skill- and content-area subscores in the long form administration 

Reading Writing Critical thinking Mathematics Humanities 
Social 

sciences 
Natural 
sciences Total 

18.69 19.02 15.36 16.35 24.31 22.86 22.27 69.42 

Note. The standard errors are .10 for the skill subscore means (36 items), .12 for the content-area subscore means (48 items), and .20 for 
the form totals (144 items). 

i—k o 
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The critical thinking items appear to be the most difficult, followed by 
mathematics. Humanities items are more difficult than the items in the 
other two subject areas. Difficulties across forms A, B, and C are substan­
tially different for writing, social sciences, and natural sciences items. 

Estimates of the variance component matrices are discussed separately 
for the analyses carried out. 

Skill Subscores in the Short Form Administration 

The estimate of the examinee-level variance matrix of the skill subscores 
is given in Table 5. According to the model (2) this variance matrix has two 
components, £lB = u2l+'ilB. The smallest eigenvalue of ft| is 2.43, and it 
is an estimate of the upper bound for or2. The estimates of ilB and 2 B 

depend on the imputed value of a2. For the choice of a2 = 2, we have 

2.484 1 
.106 1.136 

-.007 .325 .928 
-.175 .562 .570 2.003J 

The asymptotic standard errors for the square roots of the variances 
(sigmas) (1.58,1.07, .96,1.42) are (.02, .08, .09, .05), and the standard 
errors for the covariances are in the range .04-.08. Although all the sigmas 
have high t ratios, it is clear that the within-college differences of the 
subscores critical thinking-reading and writing-reading are much smaller 
than for the contrasts involving the mathematics^ subscore. For the extreme 
choice of a2 = 2.43, the student level variance XB becomes singular, 

2.376 1 
.106 .276 

-.007 -.106 .068 
-.175 .132 .139 1.129 J 

and the variance of the contrast critical thinking-reading is very small. 
The estimated college-level variance matrix for the centered parameteri­

zation is 
[".900 1 

A 1.014 .012 
ZA .045 .006 .009 

[.122 -.002 .016 .056J 

The standard errors for the sigmas (.95, .11, .09, .24) are (.11, .04, .03, .04). 
Even the variance for the critical thinking-reading contrast (.009) is signifi­
cantly greater than 0; the data appear to contain abundant information 
about the variationof the skill subscores. The college-level variance matrix 
for the subscores, SlA = C4XA C4, is given in Table 5. Its eigenvalue decom­
position confirms what can be observed from 2^: The total score, or a linear 

XB = Dj(OJ - a21)D4 = D4 111 D4 - a2 D4
rD4 = 

is = 
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TABLE 5 
Eigenvalue decompositions of the estimated variance matrices for the short form 
data, administration, and skill subscores 

Level Eigenvalues Eigenvectors 

Examinee 

"4.96 2.56 2.49 2.00" 11.95 (.50 .53 .50 .46) 

£iB= 
5.30 2.42 

4.96 
2.16 
2.11 

3.15 
2.72 

(.36 
(.21 

.27 
-.76 

.17 

.62 
-.88) 
-.03) 

5.04 2.43 (.76 -.27 -.58 -.12) 

College 

".80 .82 .85 .91" 3.61 ( .47 .48 .50 .54) 

iiA = .84 .87 
.90 

.92 

.97 
.032 
.005 

( .25 
( .84 

.55 
-.49 

.10 
-.22 

-.79) 
.10) 

1.07 .001 (-.10 -.48 .83 -.26) 
^ -* 

combination of the subscores very close to (1,1,1,1), represents the dom­
inant dimension of the trait. The second dimension has a high loading on 
mathematics. 

The critical administration size for the total score is n* = C'tr{Si%)l 
tr{£lA) = ?>32c. If the choice of ai = .10 and a2=.90 is adopted, then 
c = 6.57 and n* = 22. Thus, a college has to administer the short form to at 
least 22 students for the total score differences among colleges to be observ­
able. For representation of the second dimension, the linear contrast 
( -1 , -2 ,0 ,3) is used. The critical administration for the contrast is 
n* = 505. Among the colleges taking part, only one (No. 33 in Table 1) had 
more examinees than n*. Therefore, this linear contrast does not represent 
an observable trait. The critical administration sizes n* for other contrasts 
close to the second eigenvalue of XA are also around 500; their exact choice 
has little influence on n*. They correspond to unrealistically large adminis­
trations. I conclude that in the short form administration college mean 
subscores for the skills do not contain information useful for comparisons 
among colleges. 

Subject-Area Subscores in the Short Form Administration 

The fitted variance matrices for the examinee- and the college-level vari­
ation are given in Table 6. The eigenvalue decomposition of flA suggests 
that the total score represents a dominant dimension of the trait underlying 
the subject-area subscores. The same critical administration size for the 
total score, nf, is obtained as for the skill subscores, because the fitted 
variances for the total score in the two analyses are identical. The second 
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TABLE 6 
Eigenvalue decompositions of the estimated variance matrices for the short form 
administration; subject-area subscores 

Level Eigenvalues Eigenvectors 

Examinee 

ilB = 
'7.95 4.13 

7.76 
3.97" 
4.04 
7.75. 

15.92 
3.88 
3.67 

(.58 
(.70 
(.41 

.58 

.01 
-.82 

.57) 
-.71) 

.41) 

College 

&A = 
'1.41 1.51 

1.64 
1.56" 
1.71 
1.80 

4.82 
.034 
.008 

(.54 
(.71 
(.46 

.58 

.08 
-.81 

.61) 
-.70) 

.37) 

dimension of the trait corresponds to the contrast of natural sciences and 
humanities. The corresponding critical administration size is 552, larger 
than any administration in the pilot year. Therefore, only the total score 
means are worth reporting in the short form administration, and any com­
parison of subscores would only reflect the comparison of the true total 
score means. 

Long Form Administration 

The results from the long form data replicate our findings from the short 
form analysis. For example, the estimated college-level variance matrix in 
the centered parameterization is 

9.62 
-.26 
-.15 
-.66 

.16 

.03 .06 

.34 .20 2.17 

and the total score and the mathematics-reading contrast are reasonable 
choices for the first two dimensions of the trait for the subscores. The 
critical administration size for the total score is 7, and for the mathematics-
reading contrast, 71. The third dimension of the trait can be represented by 
the contrast of critical thinking and writing, but its critical administration 
size is greater than 1,000. Therefore, in the long form administration it is 
useful to report two scores related to skills; the first three skills (reading, 
writing, and critical thinking) could be collapsed into a single category, thus 
simplifying the test design. 
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Conditional Expectations of the Random Effects 

Diagnosis of the model fit in ordinary regression is usually based on 
inspection of the residuals. In variance component models we have "re­
siduals" associated with units at each level of the hierarchy—^colleges 
(grades) and examinees/The separation of the total residual y - M into its 
components A and B + e is obtained by considering the conditional expec­
tations of the random effects given the parameter estimates. The formulae 
and their connection to the EM algorithm are discussed in Longford (1987). 
The college-level conditional expectations {A,} are also useful for com­
parison of the colleges that participated in the pilot year. Colleges at either 
extreme of the scale defined by the fitted variance for the component of the 
vector of residuals are of interest both for diagnostic and substantive rea­
sons. Table 7 lists the residuals for the skill subscores in the short form 
administration for the average of the subscores and the mathematics-
reading contrast. 

Equality of the covariance structure of the subscores across the forms is 
the most important aspect of parallelness. Comparison of the columns in 
Table 7 (in particular for colleges with large numbers of examinees) pro­
vides evidence of parallelness of the three forms. Parallelness of the forms 
can be more formally explored by separate analyses for each form. 

Concluding Remarks 

The analyses indicate that the two-way matrix design of the test is not 
justified. For colleges using the short form administration, only the total 
score is worth reporting; any subscore, or a linear combination of sub-
scores, is indistinguishable from a less reliable version of the total score. In 
the long form administration, there are two observable dimensions of the 
latent trait for the skill subscores; it is meaningful to consider two 
subtests—one containing all the mathematics items and the other all the 
other items of the test (reading, writing, and critical thinking). 

We cannot, on the basis of the analyses, determine why the complex 
factor structure is not observable in the college-mean test subscores. On 
one hand, the items may be an imperfect representation of the domain 
indicated by the label, or they may be heavily contaminated by a "general" 
domain. This problem may be alleviated by careful review and content 
analysis of the test items. On the other hand, the true factorial structure 
underlying the knowledge/skill domains may be genuinely unidimensional, 
in which case the test cannot serve the intended purpose. We can only 
speculate that there may be a multivariate factorial structure underlying 
academic skills (and subject areas), but the traits of the skills defined in 
GENED are all subsumed in a single dimension. 
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TABLE 7 
Conditional expectations of the random effects Afi and A*4; average of subscores 
and mathematics-reading contrast 

Short form 

^ „ Form A Form B Form C All forms College 
No. At, Af4 AK A% AK Ai AR At 

Colleges with fewer than 100 examinees. 
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Short form 

College 
No. 

Form A Form B Form C All fi 

A% 

orms 
College 

No. AH Ai ~ATi Af4 Ati Ai 

All fi 

A% Af4 

la 2.33 .19 1.90 .16 2.70 .14 2.37 .21 
2 .53 - . 14 .74 - .04 .58 .01 .64 - . 06 
3 .21 .12 - .19 - .16 .04 - . 0 1 .02 .01 
4 - .92 - . 04 - . 84 - . 04 - .77 - .04 - .87 - . 01 
5 - . 48 .00 - .59 .10 - .76 - .06 - .65 .02 
6 -1.05 - . 1 1 -1.13 - .32 - .99 - . 23 -1.09 .24 
7 - . 31 - . 22 - .40 .22 .00 - .04 - .25 - .04 
8a .98 .00 .90 .10 .33 - .02 .80 .02 
9 a 1.40 .22 1.24 .29 1.58 .13 1.62 .22 

10 .47 .10 - . 15 - . 03 .45 - . 11 .26 - .07 
I F - . 80 - .09 -1 .21 - . 1 1 -1.21 - .14 -1.25 - .17 
12 .28 .18 .78 .14 .37 .12 .51 .23 
13 -1.55 - .09 -1.38 .10 -1.22 - .04 -1.45 - .02 
14 - .02 - .06 .53 - .50 .01 .01 .18 - .22 
15 -1.23 - . 33 -1.34 - .26 -1.58 .03 -1.44 - .26 
16 1.25 - .02 1.05 .05 .90 .16 1.13 .09 
17a .22 - .05 - .50 - .12 - . 01 - .15 - .12 - .17 
18a 1.22 .09 - .36 - .09 .33 .06 .41 - . 03 
19a - . 4 8 - .06 .19 .02 - .09 - .02 - .14 - . 04 
20a - . 78 - . 1 1 - . 23 - .04 - .25 - .09 - .45 - .04 
21 .20 - . 0 8 - .15 .34 .05 .04 .04 .10 
22 - .30 - .05 - .32 - . 12 - . 53 - . 11 - .40 - .10 
23 - . 6 8 - . 05 - . 1 1 .12 - . 73 - . 1 3 - . 54 - .07 
24a - . 71 - . 12 - . 8 1 - .35 - . 33 - .05 - .66 - . 18 
25a - . 5 8 .01 .16 .27 - . 45 - .14 - . 35 - .02 
26a -1.13 - .17 .38 - . 01 - .42 .12 - .45 - .04 
27 - .09 .02 - . 48 - .07 .19 - .10 - .15 - .07 
28a - .27 .05 .11 - . 28 - .35 .01 - .19 - . 02 
29 -1.20 - . 22 -1.36 - .47 -1.50 - . 3 1 -1 .41 - . 43 
30 1.28 .38 1.60 .45 1.68 .33 1.55 .50 
31 .30 - .09 - .04 - .14 .38 - . 03 .22 - .12 
32 .71 .16 .81 .18 .94 .01 .84 .12 
33 .49 .42 .39 .48 .27 .46 .38 .54 
34 - .27 .15 - . 18 .10 .01 .18 - .15 .21 
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The assumption of normality in our analysis is, of course, contentious. A 
form of sensitivity analysis can be carried out by applying transformations 
to the response variable and then fitting the appropriate variance compo­
nent models. I have considered the arcsine, the logarithm, and the z trans­
form ((y — a)/b, for form and subscore specific a and b). The eigenvalue 
decomposition of the estimated variance matrices and the critical adminis­
tration sizes are remarkably resistant with respect to these transformations. 
For example, for the long form administration the total score is confirmed 
as the dominant dimension of the trait with each transformed response 
variable, and the critical administration sizes all round up to 7. The skill 
contrast mathematics-reading represents an observable dimension of the 
trait underlying the trait subscores with critical administration sizes in the 
range 71-73. 

Another form of sensitivity analysis can be carried out by including in 
the analysis scores of all the examinees who participated in the short 
form administration (see Table 1). The results about the observable traits 
are replicated, although the critical administration sizes are increased by 
about 10%. 
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