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Chapter 1

General introduction

This doctoral dissertation in management science, entitled “Modelling Financial Data and

Portfolio Optimization Problems”, consists of two independent parts, whose unifying theme

is the construction and solution of mathematical programming models motivated by portfolio

selection problems. As such, this work is located at the interface of operations research and of

finance. It draws heavily on techniques and theoretical results originating in both disciplines.

The first part of the dissertation (Chapter 2) deals with an extension of Markowitz

model and takes into account some of the side-constraints faced by a decision-maker when

composing an investment portfolio, viz. lower and upper bounds on the quantities traded,

and upper bounds on the number of assets included in the portfolio. We focus on the

algorithmic difficulties raised by this model and we describe an original simulated annealing

heuristic for its solution.

The second (and largest) part of the thesis deals with a new multiperiod model for the

optimization of a portfolio of options linked to a single index (Chapters 4-10). The objective

of the model is to maximize the expected return of the portfolio under constraints limiting its

value-at-risk. The model contains several interesting features, like the possibility to rebalance

the portfolio with options introduced at the start of each period, explicit consideration of

transaction costs, realistic pricing of options, consideration of advanced probability models

to represent the future, etc. Some deep theoretical results from the financial literature

are exploited in order to enrich the model and to extend its applicability. In particular,

several available schemes for the generation of scenarios and for option pricing have been

critically examined, and the most appropriate ones have been implemented. Furthermore,

several optimization approaches (heuristic or exact procedures) have also been developed,

implemented and tested.

The models investigated in the dissertation bear on very different portfolio problems, draw

1
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on separate streams of scientific literature, and are handled by distinct algorithmic techniques.

Therefore, the corresponding parts of the dissertation are fully independent, and each part

contains its own specific introduction and literature review.



PART ONE:

Simulated Annealing for

a generalized mean-variance model



Chapter 2

Simulated Annealing for a generalized

mean-variance model

2.1 Introduction

Markowitz’ mean-variance model of portfolio selection is one of the best known models in

finance. In its basic form, this model requires to determine the composition of a portfolio

of assets which minimizes risk while achieving a predetermined level of expected return.

The pioneering role played by this model in the development of modern portfolio theory is

unanimously recognized (see e.g. [11] for a brief historical account).

From a practical point of view, however, the Markowitz model may often be consid-

ered too basic, as it ignores many of the constraints faced by real-world investors: trading

limitations, size of the portfolio, etc. Including such constraints in the formulation results

in a nonlinear mixed integer programming problem which is considerably more difficult to

solve than the original model. Several researchers have attempted to attack this problem

by a variety of techniques (decomposition, cutting planes, interior point methods, ...), but

there appears to be room for much improvement on this front. In particular, exact solution

methods fail to solve large-scale instances of the problem. Therefore, in this chapter, we

investigate the ability of the simulated annealing metaheuristic (SA) to deliver high-quality

solutions for the mean-variance model enriched by additional constraints.

The remainder of this chapter is organized in six sections. Section 2 introduces the portfo-

lio selection model that we want to solve. Section 3 sums up the basic structure of simulated

annealing algorithms. Section 2.4 contains a detailed description of our algorithm. Here,

we make an attempt to underline the difficulties encountered when tailoring the SA meta-

heuristic to the problem at hand. Notice, in particular, that our model involves continuous

4
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as well as discrete variables, contrary to most applications of simulated annealing. Also, the

constraints are of various types and cannot be handled in a uniform way. In Section 5, we

discuss some details of the implementation. Section 6 reports on computational experiments

carried out on a sample of 151 US stocks. Finally, the last section contains a summary of

our work and some conclusions.

2.2 Portfolio selection issues

2.2.1 Generalities

In order to handle portfolio selection problems in a formal framework, three types of questions

(at least) must be explicitly addressed:

1. data modelling, in particular the behavior of asset returns;

2. the choice of the optimization model, including:

• the nature of the objective function;
• the constraints faced by the investor;

3. the choice of the optimization technique.

Although our work focuses mostly on the third step, we briefly discuss the whole approach

since all the steps are interconnected to some extent.

The first requirement is to understand the nature of the data and to be able to correctly

represent them. Markowitz’ model (described in the next section) assumes for instance that

the asset returns follow a multivariate normal distribution. In particular, the first two mo-

ments of the distribution suffice to describe completely the distribution of the asset returns

and the characteristics of the different portfolios. Real markets often exhibit more intrica-

cies, with distributions of returns depending on moments of higher-order (skewness, kurtosis,

etc.), and distribution parameters varying over time. Analyzing and modelling such complex

financial data is a whole subject in itself, which we do not tackle here explicitly. We rather

adopt the classical assumptions of the mean-variance approach, where (pointwise estimates

of) the expected returns and the variance-covariance matrix are supposed to provide a satis-

factory description of the asset returns. Also, we do not address the origin of the numerical

data. Note that some authors rely for instance on factorial models of the asset returns, and

take advantage of the properties of such models to improve the efficiency of the optimization
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techniques (see e.g. [2, 58]). By contrast, the techniques that we develop here do not depend

on any specific properties of the data, so that some changes of the model (especially of the

objective function) can be performed while preserving our main conclusions.

When building an optimization model of portfolio selection, a second requirement consists

in identifying the objective of the investor and the constraints that he is facing. As far as

the objective goes, the quality of the portfolio could be measured using a wide variety of

utility functions. Following again Markowitz’ model, we assume here that the investor is

risk averse and wants to minimize the variance of the investment portfolio subject to the

expected level of final wealth. It should be noted, however, that this assumption does not

play a crucial role in our algorithmic developments, and that the objective could be replaced

by a more general utility function without much impact on the optimization techniques that

we propose.

As far as the constraints of the model go, we are especially interested in two types of

complex constraints limiting the number of assets included in the portfolio (thus reflecting

some behavioral or institutional restrictions faced by the investor), and the minimal quan-

tities which can be traded when rebalancing an existing portfolio (thus reflecting individual

or market restrictions). This topic is covered in more detail in Section 2.2.2.

The final ingredient of a portfolio selection method is an algorithmic technique for the

optimization of the chosen model. This is the main topic of the present chapter. In view

of the complexity of our model (due, to a large extent, to the constraints mentioned in the

previous paragraph), and to the large size of realistic problem instances, we have chosen to

work with a simulated annealing metaheuristic. An in-depth study has been performed to

optimize the speed and the quality of the algorithmic process, and to analyze the impact of

various parameter choices.

In the remainder of this section, we return in more detail to the description of the model,

and we briefly survey previous work on this and related models.

2.2.2 The optimization model

The Markowitz mean-variance model

The problem of optimally selecting a portfolio among n assets was formulated by Markowitz

in 1952 as a constrained quadratic minimization problem (see [50], [26], [48]). In this model,

each asset is characterized by a return varying randomly with time. The risk of each asset is

measured by the variance of its return. If each component xi of the n-vector x represents the

proportion of an investor’s wealth allocated to asset i, then the total return of the portfolio
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is given by the scalar product of x by the vector of individual asset returns. Therefore, if

R = (R1, . . . , Rn) denotes the n-vector of expected returns of the assets and C the n × n
covariance matrix of the returns, we obtain the mean portfolio return by the expression

n
i=1Rixi and its level of risk by

n
i=1

n
j=1Cijxixj.

Markowitz assumes that the aim of the investor is to design a portfolio which mini-

mizes risk while achieving a predetermined expected return, say Rexp. Mathematically, the

problem can be formulated as follows for any value of Rexp:

min
n

i=1

n

j=1

Cijxixj (2.1)

s.t.
n

i=1

Rixi = Rexp

n

i=1

xi = 1

xi ≥ 0 for i = 1, . . . , n.

The first constraint expresses the requirement placed on expected return. The second

constraint, called budget constraint, requires that 100% of the budget be invested in the

portfolio. The nonnegativity constraints express that no short sales are allowed.

The set of optimal solutions of the Markowitz model, parametrized over all possible

values of Rexp, constitutes the mean-variance frontier of the portfolio selection problem.

It is usually displayed as a curve in the plane where the ordinate is the expected portfolio

return and the abscissa is its standard deviation.

If the goal is to draw the whole frontier, an alternative form of the model can also be used

where the constraint defining the required expected return is removed and a new weighted

term representing the portfolio return is included in the objective function. Hereafter, we

shall use the initial formulation involving only the variance of the portfolio in the objective

function.

Extensions of the basic model

In spite of its theoretical interest, the basic mean-variance model is often too simplistic to

represent the complexity of real-world portfolio selection problems in an adequate fashion.

In order to enrich the model, we need to introduce more realistic constraints. The present

section discusses some of them.

Consider the following portfolio selection model (similar to a model described by Perold

[58]).
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Model (PS):

min n
i=1

n
j=1Cijxixj Objective function

s.t. n
i=1Rixi = Rexp Return contraint
n
i=1 xi = 1 Budget constraint

xi ≤ xi ≤ xi (1 ≤ i ≤ n) Floor and ceiling constraints

max(xi − x(0)i , 0) ≤ Bi (1 ≤ i ≤ n) Turnover (purchase) constraints

max(x
(0)
i − xi, 0) ≤ Si (1 ≤ i ≤ n) Turnover (sale) constraints

xi = x
(0)
i or xi ≥ (x(0)i +Bi)

or xi ≤ (x(0)i − Si) (1 ≤ i ≤ n) Trading constraints

|{i ∈ {1, . . . , n} : xi = 0}| ≤ N Maximum number of assets

• Return and budget constraints: These two constraints have already been encountered
in the basic model.

• Floor and ceiling constraints: These constraints define lower and upper limits on the
proportion of each asset which can be held in the portfolio. They may model in-

stitutional restrictions on the composition of the portfolio. They may also rule out

negligible holdings of asset in the portfolio, thus making its control easier. Notice that

the floor contraints generalize the nonnegativity constraints imposed in the original

model.

• Turnover constraints: These constraints impose upper bounds on the variation of the
holdings from one period to the next. Here, x

(0)
i denotes the weight of asset i in the

initial portfolio , Bi denotes the maximum purchase and Si denotes the maximum sale

of asset i during the current period (1 ≤ i ≤ n). Notice that such limitations could
also be modelled, indirectly, by incorporating transaction costs (taxes, commissions,

unliquidity effects, ...) in the objective function or in the constraints.

• Trading constraints: Lower limits on the variations of the holdings can also be imposed
in order to reflect the fact that, typically, an investor may not be able, or may not want,

to modify the portfolio by buying or selling tiny quantities of assets. A first reason

may be that the contracts must bear on significant volumes. Another reason may be

the existence of relatively high fixed costs linked to the transactions. These constraints

are disjunctive in nature: for each asset i, either the holdings are not changed, or a

minimal quantity Bi must be bought, or a minimal quantity Si must be sold.

• Maximum number of assets: This constraint limits to N the number of assets included

in the portfolio, e.g. in order to facilitate its management.
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2.2.3 Solution approaches

The complexity of solving portfolio selection problems is very much related to the type of

constraints that they involve.

The simplest situation is obtained when the nonnegativity constraints are omitted from

the basic model (2.1) (thus allowing short sales; see e.g. [26], [45], [48]). In this case, a closed-

form solution is easily obtained by classical Lagrangian methods and various approaches have

been proposed to increase the speed of resolution for the computation of the whole mean-

variance frontier or the computation of a specific portfolio combined with an investment at

the risk-free interest rate [45].

The problem becomes more complex when nonnegativity constraints are added to the

formulation, as in the Markowitz model (2.1). The resulting quadratic programming problem,

however, can still be solved efficiently by specialized algorithms such as Wolfe’s adaptation of

the simplex method [70]. The same technique allows to handle arbitrary linear constraints,

like the floor and ceiling constraints or the turnover constraints. Notice, however, that even

in this framework, the problem becomes increasingly hard to manage and to solve as the

number of assets increases. As a consequence, ad hoc methods have been developed to take

advantage of the sparsity or of the special structure of the covariance matrix, (e.g., when

factor models of returns are postulated; see [58], [2]).

When the model involves constraints on minimal trading quantities or on the maximum

number of assets in the portfolio, as in model (PS), then we enter the field of mixed integer

nonlinear programming and classical algorithms are typically unable to deliver the optimal

value of the problem. (Actually, very few commercial packages are even able to handle this

class of problems.)

Several researchers took up this challenge, for various versions of the problem. Perold

[58], whose work is most often cited in this context, included a broad class of constraints in

his model, but did not place any limitation on the number of assets in the portfolio. His

optimization approach is explicitly restricted to the consideration of factorial models, which,

while reducing the number of decision variables, lead to other numerical and statistical

difficulties. Moreover, some authors criticize the results obtained when his model is applied

to certain types of markets.

Several other researchers have investigated variants of model (PS) involving only a subset

of the constraints. This is the case for instance of Dembo, Mulvey and Zenios [18] (with

network flow models), Konno and Yamazaki [40] (with an absolute deviation approach to the

measure of risk, embedded in linear programming models), Takehara [65] (with an interior
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point algorithm), and Bienstock [2] (with a ’branch and cut’ approach). Dahl, Meeraus and

Zenios [14], Takehara [65] and Hamza and Janssen [31] discuss some of this work.

Few authors seem to have investigated the application of local search metaheuristics for

the solution of portfolio selection problems. Catanas [6] has investigated some of the the-

oretical properties of a neighborhood structure in this framework. Loraschi, Tettamanzi,

Tomassini and Verda [46] proposed a genetic algorithm approach. Chang, Meade, Beasley

and Sharaiha’s work [8] is closest to ours (and was carried out concurrently). These authors

have experimented with a variety of metaheuristics, including simulated annealing, on model

(PS) without trading and turnover constraints. As we shall see in Section 2.6, the trading

constraints actually turned out to be the hardest to handle in our experiments, and they mo-

tivated much of the sophisticated machinery described in Section 2.4. We also work directly

with the return constraint in equality form, rather than incorporating it as a Lagrangian

term in the objective function. This allows us to avoid some of the difficulties linked to the

fact that, as explained in [8], the efficient frontier cannot possibly be mapped entirely in

the Lagrangian approach, due to its discontinuity. In this sense, our work can be viewed as

complementary to [8].

We propose to investigate the solution of the complete model (PS) presented in Section

2.2.2 by a simulated annealing algorithm. Our goal is to develop an approach which, while

giving up claims to optimality, would display some robustness with respect to various criteria,

including:

• quality of solutions;

• speed;

• ease of addition of new constraints;

• ease of modification of the objective function (e.g. when incorporating higher moments
than the variance, or when considering alternative risk criteria like the semi-variance).

In the next section, we review the basic principles and terminology of the simulated

annealing metaheuristic.

2.3 Simulated annealing

Detailed discussions of simulated annealing can be found in van Laarhoven and Aarts [67],

Aarts and Lenstra [1] or in the survey by Pirlot [59]. We only give here a very brief presen-

tation of the method.
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Simulated annealing is a generic name for a class of optimization heuristics that perform

a stochastic neighborhood search of the solution space. The major advantage of SA over

classical local search methods is its ability to avoid getting trapped in local minima while

searching for a global minimum. The underlying idea of the heuristic arises from an analogy

with certain thermodynamical processes (cooling of a melted solid). Kirkpatrick, Gelatt

and Vecchi [37] and Černý [7] pioneered its use for combinatorial problems. For a generic

problem of the form

min F (x) s.t. x ∈ X,
the basic principle of the SA heuristic can be described as follows. Starting from a current

solution x, another solution y is generated by taking a stochastic step in some neighborhood

of x. If this new proposal improves the value of the objective function, then y replaces x as

the new current solution. Otherwise, the new solution y is accepted with a probability that

decreases with the magnitude of the deterioration and in the course of iterations. (Notice

the difference with classical descent approaches, where only improving moves are allowed

and the algorithm may end up quickly in a local optimum.)

More precisely, the generic simulated annealing algorithm performs the following steps:

• Choose an initial solution x(0) and compute the value of the objective function F (x(0)).
Initialize the incumbent solution (i.e. the best available solution), denoted by (x∗, F ∗),

as: (x∗, F ∗)← (x(0), F (x(0))).

• Until a stopping criterion is fulfilled and for n starting from 0, do:

— Draw a solution x at random in the neighborhood V (x(n)) of x(n).

— If F (x) ≤ F (x(n)) then x(n+1) ← x and

if F (x) ≤ F ∗ then (x∗, F ∗)← (x, F (x)).

If F (x) > F (x(n)) then draw a number p at random in [0, 1] and

if p ≤ p(n, x, x(n)) then x(n+1) ← x

else x(n+1) ← x(n).

The function p(n, x, x(n)) is often taken to be a Boltzmann function inspired from ther-

modynamics models:

p(n, x, x(n)) = exp(− 1
Tn
∆Fn) (2.2)

where ∆Fn = F (x) − F (x(n)) and Tn is the temperature at step n, that is a nonincreasing
function of the iteration counter n. In so-called geometric cooling schedules, the temperature
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is kept unchanged during each successive stage, where a stage consists of a constant number

L of consecutive iterations. After each stage, the temperature is multiplied by a constant

factor α ∈ (0, 1).
Due to the generality of the concepts that it involves, SA can be applied to a wide range

of optimization problems. In particular, no specific requirements need to be imposed on the

objective function (derivability, convexity, ...) nor on the solution space. Moreover, it can

be shown that the metaheuristic converges asymptotically to a global minimum [67].

From a practical point of view, the approach often yields excellent solutions to hard opti-

mization problems. Surveys and descriptions of applications can be found in van Laarhoven

and Aarts [67], Osman and Laporte [57] or Aarts and Lenstra [1].

Most of the original applications of simulated annealing have been made to problems

of a combinatorial nature, where the notions of ‘step’ or ‘neighbor’ usually find a natural

interpretation. Due to the success of simulated annealing in this framework, several re-

searchers have attempted to extend the approach to continuous minimization problems (see

van Laarhoven and Aarts [67], Dekkers and Aarts [15], CSEP [10], Zabinsky et al. [71]).

However, few practical applications appear in the literature. A short list can be found in

the previous references, in particular in Osman and Laporte [57].

We are especially interested in these extensions, since portfolio selection typically involves

a mix of continuous and discrete variables (see Section 2). One of the aims of our work,

therefore, is to gain a better understanding of the difficulties encountered when applying

simulated annealing to mixed integer nonlinear optimization problems and to carry out an

exploratory investigation of the potentialities offered by SA in this framework.

2.4 Simulated annealing for portfolio selection

2.4.1 Generalities: How to handle constraints ...

In order to apply the SA algorithm to problem (PS), we have to undertake an important

tailoring work. Two notions have to be defined in priority, i.e. those of solution (or encoding

thereof) and neighborhood.

We simply encode a solution of (PS) as an n-dimensional vector x, where each variable

xi represents the holdings of asset i in the portfolio. The quality of a solution is measured

by the variance of the portfolio, that is xtCx.

Now, how do we handle the constraints, that is, how do we make sure that the final

solution produced by the SA algorithm satisfies all the constraints of (PS) ?
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The first and most obvious approach enforces feasibility throughout all iterations of

the SA algorithm and forbids the consideration of any solution violating the constraints.

This implies that the neighborhood of a current solution must entirely consist of feasible

solutions. A second approach, by contrast, allows the consideration of infeasible solutions

but adds a penalty term to the objective function for each violated constraint: the larger

the violation of the constraint, the larger the increase in the value of the objective function.

A portfolio which is unacceptable for the investor must be penalized enough to be rejected

by the minimization process.

The “all-feasible” vs. “penalty” debate is classical in the optimization literature. In the

context of the simplex algorithm, for instance, infeasible solutions are temporarily allowed in

the initial phase of the big-M method, while feasibility is enforced thereafter by an adequate

choice of the variable which is to leave the basis at each iteration. For a discussion of this

topic in the framework of local search heuristics, see e.g. the references in Pirlot [59].

Both approaches, however, are not equally convenient in all situations and much of the

discussion in the next subsections will center around the “right” choice to make for each class

of constraints. Before we get to this discussion, let us first line up the respective advantages

and inconvenients of each approach.

When penalties are used, the magnitude of each penalty should depend on the magnitude

of the violation of the corresponding constraint, but must also be scaled relatively to the

variance of the portfolio. A possible expression for the penalties is

a× |violation|p (2.3)

where a and p are scaling factors. For example, the violation of the return constraint can be

represented by the difference between the required portfolio return (Rexp) and the current

solution return (Rtx). The violation of the floor constraint for asset i can be expressed as

the difference between the minimum admissible level xi and the current holdings xi, when

this difference is positive.

The first inconvenient of this method is that it searches a solution space whose size may

be considerably larger than the size of the feasible region. This process may require many

iterations and prohibitive computation time.

The second inconvenient stems from the scaling factors: it may be difficult to define

adequate values for a and p. If these values are too small, then the penalties do not play

their expected role and the final solution may be infeasible. On the other hand, if a and

p are too large, then the term xtCx becomes negligible with respect to the penalty; thus,
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small variations of x can lead to large variations of the penalty term, which mask the effect

of the variance term.

Clearly, the correct choice of a and p depends on the scale of the data, i.e. on the particular

instance at hand! It appears very difficult to automate this choice. For this reason, we use

penalties for “soft” constraints only, and when nothing else works.

In our implementations, we have selected values for a and p as follows. First, we let

a = V/ p, where V is the variance of the most risky asset, that is V = max1≤i≤n Cii, and

is a measure of numerical accuracy. Since the variance of any portfolio lies in the interval

[0, V ], this choice of a guarantees that every feasible portfolio yields a better value of the

objective function than any portfolio which violates a constraint by or more (but notice

that smaller violations are penalized as well). The value of p can now be used to finetune

the magnitude of the penalty as a function of the violation: in our experiments, we have set

p = 2.

Let us now discuss the alternative, all-feasible approach, in which the neighborhood of

the current solution may only contain solutions that satisfy the given subset of constraints.

The idea that we implemented here (following some of the proposals made in the literature

on stochastic global optimization) is to draw a direction at random and to take a small step

in this direction away from the current solution. The important features of such a move is

that both its direction and length are computed so as to respect the constraints. Moreover,

the holdings of only a few assets are changed during the move, meaning that the feasible

direction is chosen in a low-dimensional subspace. This simplifies computations and provides

an immediate translation of the concept of “neighbor”.

The main advantage of this approach is that no time is lost investigating infeasible

solutions. The main disadvantage is that it is not always easy to select a neighbor in this

way, so that the resulting moves may be quite contrived, their computation may be expensive

and the search process may become inflexible. On the other hand, this approach seems to

be the only reasonable one for certain constraints, like for example the trading constraints.

For each class of constraints, we had to ponder the advantages and disadvantages of each

approach. When a constraint must be strictly satisfied or when it is possible to enforce it

efficiently without penalties in the objective function, then we do so. This is the case for the

constraints on budget, return and maximum number of assets. A mixed approach is used

for the trading, floor, ceiling and turnover constraints.

In the next sections, we successively consider each class of constraints, starting with those

that are enforced without penalties.
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2.4.2 Budget and return constraints

Basic principle

The budget constraint must be strictly satisfied, since its unique goal is to norm the solution.

Therefore, it is difficult to implement this constraint through penalties.

The same conclusion applies to the return constraint, albeit for different reasons. Indeed,

our aim is to compute the whole mean-variance frontier. To achieve this aim, we want to let

the expected portfolio return vary uniformly in its feasible range and to determine the optimal

risk associated with each return. In order to obtain meaningful results, the optimal portfolio

computed by the procedure should have the exact required return. In our experience, the

approach relying on penalties was completely inadequate for this purpose.

In view of these comments, we decided to restrict our algorithm to the consideration of

solutions that strictly satisfy the return and the budget constraints. More precisely, given

a portfolio x, the neighborhood of x contains all solutions x with the following property:

there exist three assets, labeled 1, 2 and 3 without loss of generality, such that
x1 = x1 − step
x2 = x2 + step ∗ (R1 − R3)/(R2 −R3)
x3 = x3 + step ∗ (R2 − R1)/(R2 −R3)
xi = xi for all i > 3,

(2.4)

where step is a (small) number to be further specified below. It is straightforward to check

that x satisfies the return and budget constraints when x does so. Geometrically, all neigh-

bors x of the form (2.4) lie on a line passing through x and whose direction is defined by the

intersection of the 3-dimensional subspace associated to assets 1, 2, 3 with the two hyper-

planes associated to the budget constraint and the return constraint, respectively. Thus, the

choice of three assets determines the direction of the move, while the value of step determines

its amplitude.

Observe that, in order to start the local search procedure, it is easy to compute an initial

solution which satisfies the budget and return constraints. Indeed, if x denotes an arbitrary

portfolio and min (resp. max) is the subscript of the asset with minimum (resp. maximum)

expected return, then a feasible solution is obtained upon replacing xmin and xmax by xmin

and xmax, where:

xmin = [Rexp− n
i=min,max xiRi − (xmin + xmax)Rmax]/(Rmin −Rmax)

xmax = xmin + xmax − xmin.
(2.5)
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The resulting solution may violate some of the additional constraints of the problem (trading,

turnover, etc.) and penalties will need to be introduced in order to cope with this difficulty.

This point will be discussed in sections to come.

Direction of moves

Choosing a neighbor of x, as described by (2.4), involves choosing the direction of the move,

i.e. choosing three assets whose holdings are to be modified. In our initial attempts, we

simply drew the indices of these assets randomly and uniformly over {1, . . . , n}. Many of
the corresponding moves, however, were nonimproving, thus resulting in slow convergence

of the algorithm.

We have been able to improve this situation by guiding the choice of the three assets to

be modified. Observe that the assets whose return is closest to the required portfolio return

have (intuitively) a higher probability to appear in the optimal portfolio than the remaining

ones. (This is most obvious for portfolios with “extreme” returns: consider for example the

case where we impose nonnegative holdings and we want to achieve the highest possible

return, i.e. Rmax.)

To account for this phenomenon, we initially sort all the assets by nondecreasing return.

For each required portfolio return Rexp, we determine the asset whose return is closest

to Rexp and we store its position, say q, in the sorted list. At each iteration of the SA

algorithm, we choose the first asset to be modified by computing a random number normally

distributed with mean q and with standard deviation large enough to cover all the list: this

random number points to the position of the first asset in the ordered list. The second and

third assets are then chosen uniformly at random.

Amplitude of moves

Let us now turn to the choice of the step parameter in (2.4). In our early attempts, step

was fixed at a small constant value (so as to explore the solution space with high precision).

The results appeared reasonably good but required extensive computation time (as com-

pared to later implementations and to the quadratic simplex method, when this method was

applicable).

In order to improve the behavior the algorithm, it is useful to realize that, even if a small

value of step necessarily produces a small modification of the holdings of the first asset, it is

more difficult to predict its effect on the other assets (see (2.4)). This may result in poorly

controlled moves, whose amplitude may vary erratically from one iteration to the next.
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As a remedy, we chose to construct a ball around each current solution and to restrict all

neighbors to lie on the surface of this ball (this is inspired by several techniques for random

sampling and global optimization; see e.g. Lovász and Simonovits [47] or Zabinsky et al.

[71]). The euclidean length of each move is now simply determined by the radius of the ball.

Furthermore, in view of equations (2.4), step is connected to the radius by the relation:

step = ± radius ∗ (R2 − R3)
(R2 −R3)2 + (R1 −R3)2 + (R2 − R1)2

, (2.6)

where the ± sign can be picked arbitrarily (we fix it randomly).
Now, how should we choose the radius of the ball? On the one hand, we want this value

to be relatively small, so as to achieve sufficient precision. On the other hand, we can play

with this parameter in order to enforce some of the constraints which have not been explicitly

considered yet (floor, ceiling, trading, etc.). Therefore, we will come back to a discussion of

this point in subsequent sections.

2.4.3 Maximum number of assets constraint

This cardinality constraint is combinatorial in nature. Moreover, a “natural” penalty ap-

proach based on measuring the extent of the violation:

violation = |{i ∈ {1, . . . , n} : xi = 0}|−N

(see model (PS)) does not seem appropriate to handle this constraint: indeed, all the neigh-

bors of a solution are likely to yield the same penalty, except when an asset exceptionally

appears in or disappears from the portfolio. Other types of penalties could conceivably be

considered in order to circumvent the difficulty caused by this “flat landscape” (see e.g.

[35, 59] for a discussion of similar issues arising in graph coloring or partitioning problems).

We rather elected to rely on an all-feasible approach, whereby we restrict the choice of the

three assets whose holdings are to be modified, in such a way as to maintain feasibility at

every iteration. Let us now proceed with a case-by-case discussion of this approach.

First, observe that the initial portfolio only involves two assets (see Section 2.4.2) and

hence is always feasible with respect to the cardinality constraint (we disregard the trivial

case where N = 1).

Now, if the current portfolio involves N − k assets, with k ≥ 1, then we simply make
sure, as we draw the three assets to be modified, that at most k of them are not already in

the current portfolio. This ensures that the new portfolio involves at most N assets.
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The same logic, however, cannot be used innocuously when the current portfolio involves

exactly N assets: indeed, this would lead to a rigid procedure whereby no new asset would

ever be allowed into the portfolio, unless one of the current N assets disappears from the

portfolio by pure chance (that is, as the result of numerical cancelations in equations (2.4)).

Therefore, in this case, we proceed as follows. We draw three assets at random, say assets 1,

2 and 3, in such a way that at most one of them is not in the current portfolio. If all three

assets already are in the portfolio, then we simply determine the new neighbor as usual.

Otherwise, assume for instance that assets 1 and 2 are in the current portfolio, but asset 3 is

not. Then, we set the parameter step equal to x1 in equations (2.4). In this way, x1 = 0 in

the neighbor solution: the move from x to x can be viewed as substituting asset 1 by asset

3 and rebalancing the portfolio through appropriate choices of the holdings x2 and x3.

2.4.4 Floor, ceiling and turnover constraints

The floor, ceiling and turnover constraints are similar to each other, since each of them simply

defines a minimum or maximum bound on holdings. Therefore, our program automatically

converts all turnover purchase constraints into ceiling constraints and all turnover sales

constraints into floor constraints.

Suppose now that we know which three assets (say, 1, 2 and 3) must be modified at the

current move from solution x to solution x , and suppose that the amplitude of the move

has not been determined by the cardinality constraint (see previous subsection). Then, it

is easy to determine conditions on the value of step such that x satisfies the floor and

ceiling constraints. Indeed, combining the latter constraints with equations (2.4) leads to

the following conditions:
x1 − x1 ≤ step ≤ x1 − x1
x2 − x2 ≤ step ∗ (R1 −R3)/(R2 −R3) ≤ x2 − x2
x3 − x3 ≤ step ∗ (R2 −R1)/(R2 −R3) ≤ x3 − x3.

(2.7)

These conditions yield a feasible interval of variation for step and hence (via equation (2.6))

for the radius of the ball limiting the move from x to x . We denote by [lb, ub] the feasible

interval for radius.

Let us first assume that the interval [lb, ub] is non empty (and, for practical purposes,

not too “small”). Then, different strategies are applicable. We could start a linesearch

optimization process to find the optimal value of the radius in [lb, ub] (i.e., the value of the

radius leading to the best neighbor x ). We have not experimented with this approach and

have rather implemented a simpler option. We initially pick a small positive constant ρ. If,
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at any iteration, ρ is an admissible value for the radius, i.e. if ρ ∈ [lb, ub], then we set the
radius of the ball equal to ρ. Otherwise, if ρ is larger than ub (resp. smaller than lb), then

we set the radius equal to ub (resp. lb).

Actually, in practice, we do not work with a single value of ρ but with two values, say

ρ1 > ρ2. The larger value ρ1 is used at the beginning of the algorithm, so as to accelerate the

exploration of the solution space. In a latter phase, i.e. when improving moves can no longer

be found, the radius is decreased to the smaller value ρ2 in order to facilitate convergence

to a local optimum.

Let us now consider the case where the feasibility interval [lb, ub] is either empty or very

narrow, meaning that x is either infeasible or close to the infeasible region. In this case, we

disregard conditions (2.7) and simply set the radius of the ball equal to ρ, thus generating an

infeasible solution x . In order to handle this and other situations where infeasible solutions

arise (see e.g. the end of Section 2.4.2), we introduce a penalty term of the form a×|violation|p
in the objective function for each ceiling or floor constraint, as discussed in Section 2.4.1 and

further specified in Table 1. Notice that the penalty approach appears to be suitable here,

since limited violations of the floor, ceiling or turnover constraints can usually be tolerated

in practice.

Ceiling: if xi > xi, then penalty = a(xi − xi)p
Floor: if xi < xi, then penalty = a(xi − xi)p

Table 2.1: Penalties for floor and ceiling constraints

2.4.5 Trading constraints

The trading constraints are disjunctive: either the holdings of each asset remain at their

current value x(0) or they are modified by a minimum admissible amount. These constraints

are difficult to handle, as they disconnect the solution space into 3n feasible subregions

separated by forbidden subsets.

We use a similar approach as for the previous class of constraints. Denote by x = x+r d

the neighbor of x obtained as explained in Section 2.4.4, where d is the direction of the move

and r is the radius of the ball. If x satisfies the trading constraints, then there is nothing

to be done. Otherwise, we temporarily disregard the floor/ceiling constraints (which are

anyway easier to enforce than the trading constraints) and we compute the smallest value t

in the interval [r,∞) such that x = x + t d satisfies the trading constraints. If t is not too
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large (i.e., if t does not exceed a predetermined threshold), then we retain x as neighbor of

x. On the other hand, if t is larger than the threshold, then we reject the current move and

we draw three new assets to be modified.

Observe, however, that solutions which violate the trading constraints still arise in some

iterations of the algorithm. For instance, the initial solution is usually infeasible, and so

are the solutions which are generated when the portfolio contains exactly N assets (see the

last paragraph of Section 2.4.3). Such infeasibilities are penalized as described in Table 2

(the parameters a and p are fixed as in Section 2.4.1). Observe that penalties are high at

the center of the forbidden zones and decrease in the direction of admissible boundaries

(associated with no trading or with minimum sales/purchases). Therefore, starting from a

forbidden portfolio, the process tends to favor moves toward feasible regions.

Purchase: Qpurchase = xi − x(0)i
if Qpurchase ∈ ]0, Bi[, then

if Qpurchase ≤ Bi/2 then penalty = a Qpurchasep
else penalty = a(Bi −Qpurchase)p

Sale: Qsale = x
(0)
i − xi

if Qsale ∈ ]0, Si[, then
if Qsale ≤ Si/2 then penalty = a Qsalep
else penalty = a(Si −Qsale)p

Table 2.2: Penalties for trading constraints

2.4.6 Summary: Neighbor selection

We can summarize as follows the neighbor selection procedure.

Move direction

• If the current portfolio involves N − k assets, with k ≥ 1, then

— select three assets, say 1, 2 and 3, at random as explained in Section 2.4.2, while

ensuring that at most k of them are outside the current portfolio (see Section

2.4.3);

— go to Case a.

• If the current portfolio involves N assets, then
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— select three assets, say 1, 2 and 3, at random as explained in Section 2.4.2, while

ensuring that at most one of them is outside the current portfolio (see Section

2.4.3);

— if all three selected assets are in the current portfolio, then go to Case a; else go

to Case b.

Step length

Case a.

• Let d be the direction of the move as defined by equations (2.4) (with the sign of step
fixed at random). Compute the feasible interval for the radius of the move, say [lb, ub],

and compute the radius r as explained in Section 2.4.4.

• If x+ r d satisfies the trading constraint, then

— x + r d is the selected neighbor; if necessary, compute penalties for the violation

of the floor and ceiling constraints as in Table 1;

— else, try to extend the move to x + t d, as explained in Section 2.4.5; if t is not

too large, then

- x+t d is the selected neighbor; if necessary, compute penalties for the violation

of the floor and ceiling constraints as in Table 1;

- else, discard direction d and select a new direction.

Case b.

• Let assets 1 and 2 be in the current portfolio and asset 3 be outside. In equations
(2.4), set the parameter step equal to x1, set x1 = 0 and compute the corresponding

values of x2 and x3.

• If necessary, compute penalties for the violation of the floor, ceiling and trading con-
straints as in Tables 1 and 2.

2.5 Cooling schedule, stopping criterion and intensifi-

cation

2.5.1 Cooling schedule and stopping criterion

In our implementation of simulated annealing, we have adopted the geometric cooling sched-

ule defined in Section 2.3. In order to describe more completely this cooling schedule, we
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need to specify the value of the parameters T0 (the initial temperature), L and α.

Following the recommendations of many authors (see e.g. [1, 35, 59]), we set the initial

temperature T0 in such a way that, during the first cooling stage (first L steps), the proba-

bility of acceptation of a move is roughly equal to a predetermined, relatively high value χ0

(in our numerical tests, χ0 = 0.8). In order to achieve this goal, we proceed as follows. In

a preliminary phase, the SA algorithm is run for L steps without rejecting any moves. The

average increase of the objective function over this phase, say ∆, is computed and T0 is set

equal to:

T0 =
−∆
lnχ0

(2.8)

(see equation (2.2)).

After L moves, the temperature is decreased according to the scheme Tk+1 = αTk. We

use here the standard value α = 0.95.

The fundamental trade-offs involved in the determination of the stage length L are well-

known, but difficult to quantify precisely. A large value of L allows to explore the solution

space thoroughly, but results in long execution times. Some studies (see [35, 59]) suggest

to select a value of L roughly equal to the neighborhood size. In our algorithm, this rule

leads to the value L ≈ n

3
, which appeared excessively large in our computational tests.

Therefore, we eventually settled for values of L of the same order of magnitude as n (e.g.,

we let L = 300 when n = 150). We elaborate on this topic in the next section.

In this first, basic version, the algorithm terminates if no moves are accepted during a

given number S of successive stages. In our experiments, we used S = 5.

2.5.2 Intensification

We have experimented with several ways of improving the quality of the solutions computed

by the SA algorithm (at the cost of its running time). In all these attempts, the underly-

ing strategy simply consists in running several times the algorithm described above; in this

framework, we call cycle each execution of the basic algorithm. The main difference between

the various strategies is found in the initialization process of each cycle. Namely, we have

tried to favor the exploration of certain regions of the solution space by re-starting differ-

ent cycles from “promising” solutions encountered in previous cycles. Such intensification

strategies have proved successful in earlier implementations of local search metaheuristics.

Strategy 1. In this naive strategy, we run several (sayM) cycles successively and indepen-

dently of each other, always from the same initial solution. The random nature of each
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cycle implies that this strategy may perform better than the single-start version.

Strategy 2. This second strategy is very similar to strategy 1, except that each cycle uses,

as initial solution, the best solution found within the previous cycle. For all but the

first cycle, the initial temperature is defined by formula (2.8) with χ0 = 0.3 (the idea is

to set the initial temperature relatively low, so as to preserve the features of the start

solution). Also, for all but the last cycle, the stopping criterion is slightly relaxed:

namely, each intermediate cycle terminates after S stages without accepted moves,

where S < S. In our experiments, S = 2.

Strategy 3. In the first cycle, we constitute a list P of promising solutions, where a promis-

ing solution may be

a. either the best solution found during each stage,

b. or the best solution found in any stage where the objective function has dropped

significantly (a drop is significant if it exceeds the average decrease of the objective

function during the previous stage).

Next, we perform |P | additional cycles, where each cycle starts from one of the solutions
in P . For these additional cycles, the initial temperature is computed with χ0 = 0.3

and the cycle terminates after S = 2 stages without accepted moves.

In the next section, we will compare the results produced by the basic strategy (strategy 0),

strategy 1, strategy 2 and strategy 3b. In order to allow meaningful comparisons between

the three multi-start strategies, we restrict the number of cycles performed by strategy 3b

by setting an upper-bound (M −1) on the size of the list P . That is, after completion of the
first cycle, we discard solutions from P by applying the following two rules in succession:

• if several solutions in P imply the same trades (i.e., all these solutions recommend to
buy or to sell exactly the same securities), then we only keep one of these solutions;

the rationale is here that our algorithm is rather good at finding the best solution

complying with any given trading rules, so that all of these solutions yield ‘equivalent’

starting points;

• we only keep the best (M − 1) solutions in P .
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2.6 Computational experiments

2.6.1 Environment and data

The algorithms described above have been implemented in standard C (ANSI C) and run

on a PC Pentium 450MHz under Windows 98. A graphical interface was developed with

Borland C++ Builder. All computation times mentioned in coming sections are approximate

real times, not CPU times. Unless otherwise stated, the parameter settings for the basic SA

algorithm are defined as follows:

• stage size: L = 2n;

• stopping criterion: terminate when no moves are accepted for S = 5 consecutive stages;

• ball radius: ρ1 = 0.005, decreased to ρ2 = 0.001 as soon as fewer than 10 steps are

accepted during a whole stage.

For the sake of constructing realistic problem instances, we have used financial data

extracted from the DataStream database. We have retrieved the weekly prices of n = 151

US stocks covering different traditional sectors for 484 weeks, from January 6, 1988 to April 9,

1997, in order to estimate their mean returns and covariance matrix. The stocks were drawn

at random from a subpopulation involving mostly major stocks. (Note that our goal was not

to draw any conclusions regarding the firms, or the stock market, or even the composition

of optimal portfolios, but only to test the computational performance of the algorithms.)

These data have been used to generate several instances of model (PS) involving different

subsets of constraints.

For each instance, we have approximately computed the mean-variance frontier by letting

the expected portfolio return (Rexp) vary from -0.3688% to 0.737% by steps of 0.01% (110

portfolios). Linear interpolation is used to graph intermediate values. In each graph, the

ordinate represents the expected portfolio return (expressed in basis points) and the abscissa

represents the standard deviation of return.

We now discuss different instances in increasing order of complexity.

2.6.2 The Markowitz mean-variance model

As a first base case, we have used the simulated annealing (SA) algorithm to solve instances

of the Markowitz mean-variance model (see Section 2.2.2) without nonnegativity constraints.

Since these instances can easily be solved to optimality by Lagrangian techniques, we are
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Figure 2.1: Mean-variance frontier with short sales

able to check the quality of the solutions obtained by the SA algorithm. Our algorithm finds

the exact optimal risk for all values of the expected return. The SA algorithm requires 2 or

3 seconds per portfolio of 151 securities with the standard parameter settings.

The mean-risk frontier for this instance is plotted in Figure 2.1. It will also be displayed

in all subsequent figures, in order to provide a comparison with the frontiers obtained for

constrained problems.

For a particular value of the target return, Figure 2 illustrates the evolution of the

portfolio variance in the course of iterations.

Figure 2: Evolution of the portfolio variance

2.6.3 Floor, ceiling and turnover constraints

We solved several instances involving floor, ceiling and turnover constraints. The first in-

stance (Figure 3) imposes nonnegativity constraints on all assets (no short sales). The second
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Figure 3
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Figure 4
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one (Figure 4) adds more restrictions on minimal and maximal holdings allowed: xi = 0 and

xi = 0.2 for each security. The hypotheses and results are more completely described next

to each figure.

Here again, the exact optimal solution can be computed efficiently (e.g., using Wolfe’s

quadratic simplex algorithm [70]) and can be used to validate the results delivered by the SA

algorithm. The quality of the heuristic solutions is usually extremely good. Slight deviations

from optimality are only observed for extreme portfolio returns. Moreover, the solutions

always satisfy all the constraints (penalties vanish). Run times are short and competitive

with those of the quadratic simplex method (less than 4 seconds per portfolio).
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2.6.4 Trading constraints

When the model only involves floor, ceiling and turnover constraints, the mean-variance

frontiers are smooth curves. When we introduce trading constraints, however, sharp dis-

continuities may arise. This is vividly illustrated by Figure 5: here, we have selected three

securities and we have plotted all (mean return,risk)-pairs corresponding to feasible portfolios

of these three securities. Observe that disconnected regions appear. (Similar observations

are made by Chang et al. in [8].) Figure 6 shows the outcome provided by the simulated an-

nealing algorithm: notice that the algorithm perfectly computes the mean-variance frontier

for this small example.

Figure 5: all portfolios
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When the number of securities increases, the optimization problem becomes extremely

difficult to solve. Figure 7 illustrate the results produced by the basic SA algorithm for the

whole set of 151 securities, with trading constraints defined as follows:

• Bi = Si = 0.05 (i = 1, . . . , n);

• the initial portfolio x(0) is the best portfolio of 20 stocks with an expected return of
0.24% (see Section 2.6.5 hereunder).

The computation times remain reasonable (about 10 seconds per portfolio). However,

as expected, the frontier is not as smooth as in the simpler cases. The question is to know

whether we succeeded in computing the actual frontier or whether the SA algorithm erred

in this complex case. The simplex method cannot be used anymore to compute the optimal

solutions, because of the mixed integer constraints. Therefore, we have carried out some

additional experiments in order to better assess the performance of our algorithm.

First, we have used the commercial package LINGO in order to model and to solve a small

instance of the problem. Indeed, LINGO allows to handle nonlinear programming problems

involving both continuous and binary variables and to solve such problems to optimality by
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Figure 7
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Figure 8

Stop if no accepted move

for 5L iterations

#equities n: 30

#portfolios: 30

L = 3n

xi = 0 ∀i
xi = 1 ∀i
x
(0)
i |N = 5

Bi = 0.1 ∀i
ρ1 = 0.005 ρ2 = 0.001

ρ1 → ρ2: ≤ 10 moves
Time < 0.5”/portfolio



Chapter 2. Simulated Annealing for a generalized mean-variance model 29

Figure 9
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branch-and-bound. Computation times, however, increase sharply with the size of problem

instances. We have therefore restricted the set of underlying assets to 30 equities, with

N = 5. A visual comparison between the results obtained by the SA algorithm and by

LINGO is provided in Figure 8. We observe that the SA algorithm obtains near optimal

solutions for all target returns, within short computational times.

For another test, we have run new experiments on the full data set of 151 equities,

using now the three intensification strategies described in the previous section. Globally,

intensification tends to improve the results obtained by the basic algorithm (see Figure 9).

However, there is no clear dominance between the three strategies tested. This is rather

disappointing, if one remembers that strategy 1 simply consists in running several times

the SA algorithm from the same initial solution. This observation suggests that increased

running time, allowing for more exploration of the solution space, may be the key element

in improving the performance of the SA algorithm. (Notice that similar conclusions have

been drawn by other authors working with simulated annealing algorithms; see e.g. [1] or

[35]). On the other hand, restarting the process from promising solutions does not appear to

help much (probably because the features of these solutions are lost in the high-temperature

phase of the SA algorithm).

In order to confirm these tentative conclusions, we have run again the basic SA algorithm

on the same instances without intensification, but with much larger values of the stage length

L, i.e. with L = n2 and L = n3 (see Section 2.5.1). The stopping criterion is adapted for

L = n2 to make sure that is it at least as strict as for L = n3. In this way, we ensure that

the improvement obtained for L = n3 is due to the increase of L and not to the stopping

criterion. The results of this experiment are displayed in Figure 10. On the average, over the

whole range of target values, the standard deviation of the portfolio improves by 7% when

L = n2 and by 13% when L = n3. The largest improvements are attained for intermediate

values of the target return. It should be mentioned, however, that such improvements come

at the expense of extremely long running times (about 8 hours per portfolio when L = n3).

2.6.5 Maximum number of securities

Let us now consider a cardinality constraint limiting the number of assets to be included

in the portfolio. Figure 11 displays the results obtained with the basic SA algorithm when

we only allow N = 20 assets in the portfolio (without any other constraints in the model,

besides the return and budget constraints).

In spite of the combinatorial nature of the cardinality restriction, the computation of the
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Figure 11
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Figure 12
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Figure 13
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mean-variance frontier is rather efficient for this problem. The solutions obtained by the

SA algorithm are always feasible (i.e., no penalties remain when the algorithm terminates).

Moreover, the graph in Figure 11 for L = 2n is very smooth: this suggests that the SA

algorithm may have achieved near-optimal solutions for all values of the target returns. In

order to validate this hypothesis, we performed some experiments with larger stage lengths

(L = n2), and were only able to record minor improvements. We also ran LINGO on a

subsample of 30 assets, with N = 5; for this smaller instance, the SA algorithm perfectly

computed the whole mean-variance frontier (Figure 12).

2.6.6 Complete model

Investigating each class of constraint separately was important in order to understand the

behavior of the algorithm, but our final aim was to develop an approach that could handle

more realistic situations where all the constraints are simultaneously imposed. Figure 13

illustrates the results obtained by the basic SA algorithm with L = 2n or L = n2 for

such a complex instance. Observe that, here again, the results obtained when L = n2 are

significantly better than when L = 2n. Even with the higher value of L, however, the

computation time remains reasonably low.

Figure 14 sums up all the previous results. It illustrates the effect of each class of con-

straints on the problem and allows some comparison of the mean-variance frontiers computed

in each case.

2.7 Conclusions

Portfolio selection gives rise to difficult optimization problems when realistic side-constraints

are added to the fundamental Markowitz model. Exact optimization algorithms cannot deal

efficiently with such complex models. It seems reasonable, therefore, to investigate the

performance of heuristic approaches in this framework.

Simulated annealing is a powerful tool for the solution of many optimization problems. Its

main advantages over other local search methods are its flexibility and its ability to approach

global optimality. Most applications of the SA metaheuristic, however, are to combinatorial

optimization problems. In particular, its applicability to portfolio selection problems is not

fully understood, yet. The main objective of this work was therefore to investigate the

adequacy of simulated annealing for the solution of a difficult portfolio optimization model.

As SA is a metaheuristic, there are quite a lot of choices to make in order to turn it
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into an actual algorithm. We have developed an original way to generate neighbors of a

current solution. We have also proposed specific approaches to deal with each specific class

of constraint, either by explicitly restricting the portfolios to remain in the feasible region

or by penalizing infeasible portfolios.

Let us now try to draw some conclusions from this research. On the positive side, we

can say that the research was successful, in the sense that the resulting algorithm allowed

us to approximate the mean-variance frontier for medium-size problems within acceptable

computing times. The algorithm is able to handle more classes of constraints than most

other approaches found in the literature. Although there is a clear trade-off between the

quality of the solutions and the time required to compute them, the algorithm can be said

to be quite versatile since it does not rely on any restrictive properties of the model. For

instance, the algorithm does not assume any underlying factor model for the generation of

the covariance matrix. Also, the objective function could conceivably be replaced by any

other measure of risk (semi-variance or functions of higher moments) without requiring any

modification of the algorithm. This is to be contrasted with the algorithms of Perold [58] or

Bienstock [2], which explicitly exploit the fact that the objective function is quadratic and

that the covariance matrix is of low rank.

On the negative side, it must be noticed that the tailoring work required to account for

different classes of constraints and to fine-tune the parameters of the algorithm was rather

delicate. The trading constraints, in particular, are especially difficult to handle because of

the discontinuities they introduce in the space of feasible portfolios. Introducing additional

classes of constraints or new features in the model (e.g., transaction costs) would certainly

prove quite difficult again.



PART TWO:

Optimization of a portfolio of options under

Value-At-Risk constraints:

a scenario approach



Chapter 3

Introduction to Part Two

The starting point of the work presented in this second part of the thesis is a portfolio

optimization model proposed by Gielen [29] in 1998. This author summarized the objective

of her work as developing “a systematic method for composing portfolios that best meet

the investor’s specific risk-return preferences. The portfolio can include stock on the AEX,

associated put and call options and cash”.

Similarly, our aim is to develop a systematic framework, based on operations research

models and methods, for helping an investor to construct a portfolio of options. With this

aim, we introduce a new multiperiod model for the optimization of a portfolio of options

linked to a single financial index. The objective of the model is to maximize the expected

return of the portfolio under constraints limiting its Value-at-Risk. The future is flexibly

modelled through a multiperiod scenario approach.

It is a very common approach, in Operations Research, to concentrate on the mathe-

matical structure of an optimization model (characterization of the set of feasible solutions,

properties of the optimal solutions, tailoring of local search metaheuristics, ...), without pay-

ing much attention to the numerical values assumed by the parameters which define a specific

instance of the problem. As an extreme example of this trend, many optimization algorithms

are tested on randomly generated problem instances. In such cases, it is implicitly assumed

that all values of the parameters, within a loosely defined domain, give rise to a meaningful

instance of the problem (for instance, the coefficients appearing in the objective function and

in the constraints of a generic linear programming problem are essentially unrestricted; the

distances defining an instance of the travelling salesman problems are only required to be

nonnegative; etc.). Even when the instances are not random but arise from some real-world

application, it is usually the case that the models under consideration are sufficiently robust

to remain meaningful if small perturbations are applied to their numerical parameters. This

36
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is why, in Chapter 2, we pretty much disregarded the issue of estimating the financial pa-

rameters (expected returns, covariance matrix, etc.) in the generalized Markowitz’ model:

if an independent financial analyst gives us the values of these parameters, then the SA

algorithm that we have developed will usually deliver a heuristic solution of the portfolio

selection problem. (This is not to say that the efficiency of the algorithm, or the quality of

the solution, are not affected by the value of the parameters, but only that the algorithm

will yield meaningful results on most problem instances.)

When working on Gielen’ problem [29], however, it soon became apparent that solving

the original optimization model would be utterly meaningless, unless we could guarantee

that the data sets were financially realistic and internally consistent. For instance, carelessly

generated option prices would lead, almost inevitably, to arbitrage opportunities and/or to

unrealistic (infinite) expected returns. Therefore, we moved rapidly away from our initial,

pure optimization perspective, to focus on a broader modelling challenge: the goal was no

longer restricted to solving the VaR portfolio optimization model, but also to model realis-

tically the financial data required by this model (and, as a matter of fact, by other models

requiring the same type of numerical data). This ultimately lead us to an enriched model

containing several interesting features, like the possibility to rebalance the portfolio with

options introduced at any intermediate period, explicit consideration of transaction costs

and of option bid-ask spreads, advanced schemes to model future index return distributions,

realistic pricing and construction of options, etc.

As we will see in subsequent chapters, developing such a model requires to master a

number of advanced financial concepts and to translate these theoretical concepts into op-

erational ones. This raises a variety of problems of a financial, statistical and numerical

nature, which will be described in subsequent chapters.

Finally, the financial perspective was also helpful in analyzing the theoretical properties

of the model and in developing optimization approaches based on these properties.

The remainder of the thesis is organized as follows. Chapter 4 introduces some of the basic

financial concepts that will be used throughout the dissertation. In Chapter 5, we introduce

models and methods to represent the future, and more specifically the future index returns.

Based on these models, we construct new option pricing models in Chapter 6. We then

consider the VaR portfolio optimization problem itself in Chapters 7-10. Chapter 7 states

the model. In Chapter 8, we examine some results from the financial literature that appear

relevant for the solution of the VaR problem. In Chapter 9, we develop exact and heuristic

optimization methods, based on operations research techniques and on financial theory, to

solve the VaR problem. Finally, in Chapter 10, we present computational results obtained
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with various optimization algorithms on real data sets and under different hypotheses. Let

us now take a deeper look at each of the chapters.

Chapter 4 briefly presents some basic financial concepts. Its aim is to sketch the elemen-

tary theoretical background, for those unfamiliar with these concepts. The material in this

chapter comes essentially from textbooks like Hull [32], Lynch [49], McMillan [51], Gillet and

Minguet [52], or Duffie [24]. This list is far from exhaustive, and lots of other references can

be found in the literature (e.g. see [4, 9, 12, 21, 26, 48, 55, 68]). In particular, in this chapter,

we first define the main characteristics of the financial securities we want to consider, i.e.

stocks, portfolio of stocks, indices, options and risk-free investment (Section 4.2). We explain

how options are typically priced (Section 4.5), and, more generally, we state a no-arbitrage

relation that the security prices should fulfill. (Section 4.4). This no-arbitrage relation is a

key concept that will be used several times in subsequent chapters.

The objective of the portfolio model is to maximize the expected value of the portfolio

over a given horizon, under budget, guarantee and Value-at-Risk constraints. In particular,

as the value of the portfolio depends on the value of the securities it contains, this implies

that we need to be able to predict the possible values of each security at the end of the

horizon. Moreover, we want to consider a dynamic portfolio problem in which the investor

can adjust his portfolio at an intermediate date. Therefore, we also need to model the

security prices at this time. In order to achieve these goals, we first present a two-period

scenario tree model in Section 5.1 of Chapter 5. Each node of a scenario tree corresponds

to a possible state of the world at the corresponding date. Such trees provide very generic

models often used to represent the future in stochastic optimization problems, although we

will only consider them here in a simple form (see e.g. Birge and Louveaux [3] or Prekopa [60]

for a broad introduction to stochastic programming). In finance, especially, trees of scenarios

have been used in numerous applied and theoretical models; see e.g. Dembo [16, 18], Dert

[19], Dybvig [22, 23], Koskosidis and Duarte [41], Mulvey [53] or Prekopa [60]. Note also that

the binomial methods, which are intensively used in finance (e.g. to price the options), rely

on special types of scenario trees. Numerous presentations of binomial trees can be found in

the references cited above; let us also add here a reference to the famous implied binomial

tree method proposed by Rubinstein [63].

Obviously, a tree of scenarios becomes useful only when we are able to characterize

the states of the world at each node. A classical simplifying hypothesis in finance consists

in assuming that stock and index returns follow a Normal probability distribution. We

could make this assumption to define the index prices at each leaf of the tree. However,

we observed in our numerical experiments that the normality hypothesis leads to abnormal
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portoflio returns when we use it in conjunction with the option prices observed on the market.

Moreover, the optimal portfolio returns are also very sensitive to slight perturbations in the

value of some key parameters like the risk-free rate or the index dividend yield. Therefore,

in Sections 5.2-5.3 of Chapter 5, we propose several methods to compute representative

probability distributions of index returns and parameters. The models developed here are

based on statistical distributions proposed by Theodossiou [66], Fernandez and Steel [28],

Lambert and Laurent [42], Breeden and Litzenberger [5], Shimko [64] and Rubinstein [63].

In Section 5.4, the continuous probability density functions are sampled to obtain a set of

discrete values that can be associated to the leaves of the tree of scenarios. Different methods

to perform the sampling are considered [13, 32, 38, 39, 61]. In particular, the stratification

approach allows to construct samples that represent faithfully the corresponding continuous

distribution even for small sample sizes. Finally, in Section 5.5, we return to a discussion of

probability distributions. Indeed, in finance, we are interested in two families of distributions:

the consensus distributions and the risk-neutral distributions. The first ones represent the

index returns in the “real” world as viewed by the investors. The latter ones correspond to a

virtual world where the investors are risk neutral. This is a key financial concept described

in Chapter 4. The consensus distributions are required in order to construct the tree of

scenarios which underlies our model of the VaR problem, and the risk-neutral distributions

are useful in order to price the options and to develop optimization heuristics. As the

probability density functions defined in Section 5.3 belong either to the first world or to the

latter one, we need tools which convert each distribution into a distribution of the other

type. In order to perform the conversion, we develop an operational version of some of

Rubinstein’s results [63].

In Chapter 5, we have defined a tree of scenarios model, together with methods that

allow to instantiate (i.e., to label) the tree with index values. However, we also want to

work with options. Therefore, we need to define the value of each option at each node of

the tree of scenarios. Besides these values, we also would like to model some of the market

rules used to create options. Indeed, we consider explicitly a portfolio problem in which the

investor will be able, at some date in the future, to adjust his portfolio by including some

of the options that will become available at that time. This set of options varies according

to time and scenario, and cannot, by definition, be observed initially. Therefore, in Section

6.2 of Chapter 6, we first review some of the characteristics of the options traded on real

markets. Then, in Section 6.3, we propose new models which can be used to price the

options within our framework. Classical approaches, like binomial methods or the Black

and Scholes formulae, cannot be used here since the hypotheses supporting these models are
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not satisfied within a multinomial tree of scenarios. Therefore, the prices obtained by those

methods usually lead to arbitrage opportunities, which are not acceptable when setting up a

portfolio optimization model. So, we resort to a new model based on the no-arbitrage system

of equations, as stated by Duffie [24]. Moreover, some improvements to this new model are

considered. First, we try to minimize the deviation between the observed prices (or any other

target prices) and the arbitrage-free prices computed from our model. In this process, we

explicitly take into account the bid and ask prices of each option instead of a unique central

price as in typical pricing formulae. Second, the model is modified so as to obtain, after

optimization, valid risk-neutral probabilities for each leaf of the scenario tree. As mentioned

above, these state-prices will be used in heuristics developed to solve the portfolio problem.

In Section 6.4, we develop a simulated annealing heuristic to solve this (nonlinear) option

pricing model. Finally, in Section 6.5, we propose several models to define, for each scenario

at the rebalancing date, a prior guess of the option prices. Indeed, such a prior guess is

required by the option pricing model. We could simply use the Black and Scholes value as

estimate, but we have also defined more advanced methods. The first approach is based on

Shimko’s version [64] of the Black and Scholes formula, which is modified to take into account

the observed volatility smile. Alternative approaches use the risk-neutral probabilities (or

more precisely the state-prices) computed from a subset of options.

In Chapter 7, we turn to the Value-at-Risk portfolio optimization problem itself. The

model proposed in this chapter is inspired from Gielen’s model [29]. It is also related to a

model described by Dert and Oldenkamp [20], with the difference that the latter model is

not based on a scenario approach and considers only one period.

The model imposes a minimal guaranteed return on investment at the end of the horizon.

We describe two possible formulations of this guarantee constraint. The first formulation

is based on a scenario approach, as in Gielen [29], and the second one on a strike-prices

approach, as in Dert and Oldenkamp [20]. In order to be as realistic as possible, the model

also integrates all the features mentioned in previous sections: a two-period tree of scenar-

ios model allowing for dynamic portfolio rebalancing strategies, various probability density

distributions to model the index returns, option pricing models based on the scenario tree,

bid and ask option prices, and transaction costs.

But of course, the core of the model is the Value-at-Risk constraint. This constraint

expresses that the return on the initial investment must reach a predefined level (say, at

least 5%) with a predefined probability (say, at least 95%). In finance, Morgan popularized

the VaR concept as a relevant measure of risk when he introduced it in the RiskMetricsTM

system [62], but similar constraints have also been used in the stochastic programming
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literature for several decades (see e.g. Prekopa [60]). Technical documents and working

papers about VaR can be found on the RiskMetricsTM Internet site. Another presentation

of this measure can be found in Esch, Kieffer and Lopez [27]. From the Operations Research

point of view, modelling VaR constraints within the scenario tree model is challenging, as

it requires to introduce binary variables in the optimization model. Therefore, we end up

with a mixed integer programming (MIP) problem, which is typically much more difficult

to solve than a linear continuous problem of comparable size.

As observed by Dert and Oldenkamp [20] in their one-period continuous model, portfolios

subject to a VaR constraint often have a typical structure. Therefore, we expect that, using

some intrinsic financial properties of the VaR model, we could improve the efficiency of the

optimization process. In Chapter 8, we have explored the possibility to detect a priori (that

is, without solving the optimization model) for which scenarios the VaR lower bound will be

satisfied in the optimal portfolio, i.e. which scenarios will achieve the highest payoffs. If we

could efficiently identify these scenarios, then the formulation of the portfolio optimization

model would be greatly simplified, as the MIP model would actually boil down to a linear

programming problem. This idea is developed in Section 8.3, after we have described some

properties of the optimal portfolio structure in Section 8.2. Next, two financial approaches

are examined to identify the largest portfolio values.

In the strategy approach (Section 8.3), we consider four possible investor’s behaviors:

bullish, bearish, volatility, stability, and we study their impact on the portfolio distibution.

Second, in Dybvig’s approach (Section 8.5), we attemtp to exploit a relation established

by Dybvig [22, 23] between state-prices and optimal consumption patterns (or portfolio

distribution in our model). As the hypotheses underlying Dybvig’s theorem are not always

satisfied in our model, we examine the consequences of the violations and we propose some

possible adjustments on the inputs of the VaR problem in order to reduce their effects

(note that theoretical extensions of Dybvig’s framework have also been investigated in the

literature; see e.g. Jouini and Kallal [36]). Algorithmic implementations of these ideas will

be presented in Chapter 9.

In Chapter 9, we propose an array of algorithmic approaches for the solution of the VaR

portfolio optimization problem. Section 9.2 briefly describes the branch and bound (BB)

approach, a classical method used in Operations Research for solving MIP problems (see e.g.

Nemhauser and Wolsey [56], Winston [69]). Branch and bound can be used in particular to

attack the initial VaR model presented in Chapter 7, but requires very much computing time

to obtain the optimal solution. Therefore, in Section 9.3, we develop some new heuristics,

with the aim to compute rapidly a good feasible solution of the VaR problem, i.e. a “near
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optimal” portfolio. In order to define these heuristics, we cast the two financial approaches

presented in Chapter 8 into equivalent mathematical programming formulations. We also

develop two additional approaches based on the continuous relaxation of the MIP model and

on simple rounding techniques. Finally, Section 9.4 proposes some automated procedures to

construct sets of options which are sufficiently realistic with respect to typical market rules.

One such method attempts to “preselect” a subset of promising options, that is options which

are likely to appear in an optimal portfolio. Applying this method allows to reduce the size

of the portfolio optimization problem, and hence to speed up the optimization process.

Chapter 10 presents our experimental results. We have developed a C++ software which

handles all the models mentioned above. The software contains implementations of several

original procedures, and of some procedures from the textbook Numerical Recipes [61]. It

also calls the simplex and the BB procedures implemented in the CPlex optimization library

[33]. We have made numerous tests and numerical experiments using this software. The

experiments considered the construction of a portfolio of options linked to the S&P500

index. They allowed us to examine the relevance of our models, to compare the efficiency

and the effectiveness of the solution algorithms presented in Chapter 9, and to analyze the

impact of various parameter settings.
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Financial concepts

4.1 Introduction

This chapter introduces some financial topics used in the rest of this work for readers unfa-

miliar with them. The specialists in finance can skip this part without remorse. This chapter

does not claim to be a complete course of finance, and only those matters required in what

follows will be quickly and simply covered. More will be said in the following chapters when

necessary or can be found in the specialised literature ([32, 51, 49, 52]).

4.2 Financial securities

4.2.1 Stocks

Common stocks, which represent the equity of a company, are the basic corporate securities

traded on financial markets. The price of a stock reflects the value of the company as

estimated by the market. Investing in a stock is risky. We cannot predict with certainty how

will evoluate the price in the future and some stocks are more risky than others. Usually,

the larger the expected return in the future, the larger the risk because most investors are

risk-averse; there is a positive relationship between risk and expected returns. A classical

approach to measure the risk is to compute time volatility of the returns and to associate it

with mean value.

4.2.2 Portfolio of stocks

As prices of the different stocks are not perfectly correlated, composing a stock porfolio by

diversifying investments leads to a reduction of total risk. This means that shifts in price
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of some stocks can compensate shifts in the other direction of other stocks. The investor

has to decide what stocks to include in his portfolio and in what proportions to maximize

expected return and to minimize risk. This is called a portfolio selection problem. The

expected return of a portfolio is obtained by weighing the sum of expected returns of the

components by the proportion of each. The portfolio risk is not simply the weighted sum of

the underlying risks. It also takes into account the correlation between all the stocks and is

obtained by weighing the covariance matrix of the stock returns.

4.2.3 Indices

Stocks trade on different markets and in different activity sectors. To assess the quality of

a portfolio and to try to optimize the stock selection, the investor generally compares his

portfolio with a benchmark that has a similar risk. A typical objective is to try to beat

this benchmark. Indices are defined over the different markets and sectors as benchmarks.

An index is a virtual portfolio of stocks. Its value is given by the weighted value of its

components, like for a classical portfolio of stocks. However it is only a virtual financial tool;

it is not possible to buy or sell it. In order to exactly obtain the index return, one needs

to replicate the portfolio by buying all the underlying stocks. Some mini-indices, called

“trackers”, are also traded with the purpose of tracking index with fewer stocks and less

transaction costs. The S&P500 is a major index defined by 500 stocks traded on the New

York Stock Exchange (NYSE), the largest market in the world, and is a good measure of

American market wealth.

The value of an index is a weighted mean of the prices of the underlying stocks, but

an adjustment is required to take dividends into account. The day a dividend of a stock is

payable, its price falls by the same amount. The owner of the security maintains his wealth

because the price reduction is compensated by the dividend income. If this stock happens

to be in the index, the mean of the underlying prices usually takes into account the price

reduction, but not the dividend income! That is why an adjustement is needed in principle

to incorporate dividends. However, it is not possible to correct the index price each time a

dividend is paid. For example, the S&P500 index is composed of 500 underlying stocks with

dividends paid several times per year. Instead we use a continuous dividend yield to model

discrete dividends incomes.
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4.2.4 Options

Options are pure derivative instruments. An option is a contract that gives the owner the

right to buy (call option) or sell (put option) an underlying asset, e.g. a stock or an index, at

a pre-defined price (strike price) at or before a given date in the future (maturity), whatever

the price of the underlying asset is at this time. This is a right and not an obligation. The

owner of a call will only exercise the option if the strike price is lower than the price of the

underlying asset. The option is then said to be in-the-money. In this case, ignoring the

transactions costs and assuming the underlying asset is sold immediately, a positive payoff

equal to the difference between the asset price and the strike price is obtained. Otherwise,

the option is out-of-the-money and payoff is null. The same reasoning can be done for puts.

Figures 4.1 illustrates the payoff pattern at maturity. For index options, as the index is a

virtual tool usually based on a large number of assets whose delivey is difficult, the settlement

is always in cash and corresponds to the payoff.

Index Index
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Call Put

In-the-money In-the-moneyOut-of-the-money Out-of-the-money

Figure 4.1: Option payoff

The price to pay to purchase an option, called a premium, depends on how the price

of the underlying asset will fluctuate in the future. This is a complex subject that will be

studied in more detail later. The option price is usually lower than the underlying asset

price. Moreover, the payoff is a linear function of the underlying asset price at the exercise

date. As the price is low and the payoff large, the investor can, with a small investment,

obtain huge (positive or negative) returns. This phenomenon is known as financial leverage.

Another advantage of the options is due to their typical piecewise affine payoff pattern. By

appropriately combining options, it is possible to shape a portfolio payoff as one wants,

manage the risk and even to completely insure a portfolio. These last two reasons already

explain the reasons for option success.
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4.2.5 Risk-free investment

We will assume that an investor can lend (or borrow) money at a given rate without risk

of default. As there is no risk in this operation, the rate is lower than the expected stock

returns. To find the level of the risk-free rate, a typical approach is to consider treasury

bills. A treasury bill is as safe an investment as one can find. The risk of default is almost

absent. Its return can be used as risk-free rate.

4.3 Continuous compounding

Indices and stocks are characterized by (expected) return rates. Risk-free investment is

defined by the risk-free rate. The index dividend yield is also a rate of return. How can one

handle all these rates?

Continuous compounding is generally used when working with options; this method will

be used here. In this case, the interests of an investment are instantaneously and continuously

reinvested and also produce interests. This is opposed to the simple interest method. The

value of an investment S at a given rate R compounded m times per period at the end of a

given horizon of T periods is

S(1 +
R

m
)
mT

(4.1)

Continuous compounding is the limit of this expression (4.1) as m tends to infinity is the

c and can be reformulated as

SeRT (4.2)

As interests produce interests, the final value is larger with continuous compounding than

with any other compounding frequency. This is illustrated in Table 4.1 for an investment

of 100USD at a rate of 10% during one year. As can been seen, after rounding, continuous

compounding is close to daily compounding.

4.4 Arbitrage

4.4.1 Example

“An arbitrage is a portfolio offering something for nothing”, Duffie [24]. “Arbitrage involves

locking in a riskless profit by entering simultaneously into transactions in two or more mar-
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Frequency m final value

Annually 1 110.00

Quarterly 4 110.38

Monthly 12 110.47

Weekly 52 110.51

Daily 365 110.52

Continuously →∞ 110.52

Table 4.1: Compounded interest

kets”, Hull [32]. “In its simplest form, arbitrage means taking simultaneous positions in

different assets so that one guarantees a riskless profit higher than the riskless return given

by U.S. Treasury bills. If such profits exist, we say that there is an arbitrage opportunity”,

Neftci [55].

One rough definition of arbitrage could also be the possibility, without initial budget, to

make a profit in the future whatever happens. When we consider a portfolio composed of a

risk-free investment, stocks (or indices) and options, such opportunities could then appear if

the price of the options is not carefully fixed. Let’s consider the following example where an

arbitrage opportunity exists due to underevaluation of a call price (thus it is quite interesting

for the investor to buy it):

• Data:
Initial stock price (S) : $20

Strike price (K) of the call : $18

Risk free rate (r) : 10%/period

Call price : $3

• Initially, the investor buys one call (−$3), short sells one stock he doesn’t possess(+$20)
and lends the difference (−$17). Initial cash flow is null.

• At maturity, the risk-free investment value is equal to $17e0.1 = +$18.8 and the value
of the option depends on the stock:

— Stock value ≥ $18:
−$18 (use call and close position) +$18.8 (risk-free investment)
= $0.8 (payoff)
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— Stock value (S1) < $18:

−S1 (buy stock and close position) +$18.8 (risk-free investment)
= $18.8− S1 > $0.8 (payoff)

Thus, without requiring an initial budget, it is possible, whatever happens in the future, to

make a riskless gain of at least $0.8. If there is no adjustment of the call price, nor other

constraints, e.g. on the number of such portfolios that can be created, theoretically the

investor will constitute an infinity of such portfolios to obtain an infinite profit. Of course,

in reality, this is not possible; supply and demand on the market will adjust prices to remove

such opportunities (or at least limit the consequences, as other constraints exist).

Optimization methods are very sensitive to the existence of arbitrage opportunities. We

have seen that if the option price is not well defined and if no limiting constraints are imposed

on traded quantities, then the optimization problem is unbounded and no solution can be

returned. Option pricing is at once a financial problem and an operational one.

4.4.2 State-prices and arbitrage

The concept of risk-neutral valuation allows to characterize those security prices which ex-

clude arbitrage possibilities.

Theorem. Let S ∈ IRN+ be the vector of current prices for a set of N securities, and let

Π ∈ IRN×K+ be the N × K matrix of future payoffs for the N securities under K possible

scenarios. Then, there is no arbitrage opportunity if and only if there exists a positive vector

ψ ∈ IRK+ such that:
S = Πψ (4.3)

We refer to Duffie [24] for a proof.

The vector ψ is called a state-price vector or Arrow-Debreu price vector. Its i-th com-

ponent ψi is the marginal cost of obtaining an additional unit of account in state i. If the

value of the stock becomes 1 in state 1 and 0 in state 2, the current value of the stock is

given by ψ1. Similarly, ψ2 indicates how much investors would be willing to pay if the stock

is worth 1 in state 2 and nothing in state 1. So by spending ψ1 + ψ2, the investor is sure to

receive 1 unit of account in the future, whatever happens. The vector ψ can also be seen as

the discounted risk-neutral probability for each scenario as we will show in the next section.
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4.5 Option pricing

4.5.1 Classical methods

The two most famous methods to evaluate the value of an option are the Black-Scholes

formula and the binomial tree model. The former relies on the continuity of the price of the

underlying security, and the latter uses a discrete model where only two prices are considered

at each given time period. In fact, these may be viewed as two extreme cases of a same model.

It can be shown that letting the time period tend to zero in the binomial method yields the

Black-Scholes model.

We will not develop these theories here, but only present the formulae and hypotheses.

Complete explanations can be found in [32, 51, 49, 52].

4.5.2 Binomial trees

Principles

In a one-period binomial tree, we consider that only two states of the world can happen

at the end of the period considered by the investor. It is possible to compute the initial

option price by constructing a portfolio composed of the option, the underlying asset and

the risk-free investment under the no-arbitrage assumption.

Consider the case of a stock initially priced at $10, whose price at the end of the period

becomes either $12 or $8, a risk-free rate r of 10% per period and a call with a strike price of

$11 and maturing at the end of the period. The value of the call at maturity is immediately

obtained from the stock price at this time. This is illustrated in figure 4.2.

Figure 4.2: Binomial tree

We construct a portfolio including the stock and the option such that there is no un-

certainty about the value of the portfolio at the end of the period; i.e. the portfolio value

should be the same for the two possible states of the world. Suppose we buy ∆ shares of



Chapter 4. Financial concepts 50

stocks and sell one call. We obtain a single linear equation by equating the two portfolio

values:

12∆− 1 = 8∆− 0
or

∆ = 0.25

Whatever state happens in the future, if the portfolio is composed of one quarter of stock

and one call in short position, then its value will always be $2.

Since this portfolio value is without risk, its return must be equal to the risk-free rate;

otherwise an arbitrage opportunity will appear. We can now compute the initial value of the

portfolio by discounting its final value by the risk-free rate: $2e−0.1 = $1.81. As we know

the composition of the portfolio, its initial value and the initial stock price, we then obtain

the following linear equation depending on the unknown call option price :

S∆− call = portfolio value
⇔ 10× 0.25− call = 1.81
⇔ call = 0.69

(4.4)

and the initial call price must be $0.69 to avoid arbitrage opportunities.

Formulae

If u and d are respectively coefficients of increase and decrease of the stock price at the end

of T periods, and fu and fd are respectively the final values of the option at the end of the

T periods in the two corresponding cases, then the initial option price f must satisfy the

equation:

S∆− f = (Su∆− fu)e−rT = (Sd∆− fd)e−rT
where ∆ = fu−fd

Su−Sd
(4.5)

These conditions yield the value of f as:

f = e−rT (pfu + (1− p)fd)
where p = erT−d

u−d
(4.6)

This is the sole possible price to avoid arbitrage opportunities in a one-period binomial

tree model.

The main assumptions formulated here are:
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1. Only two states of the world are possible in the future;

2. No arbitrage opportunity exists.

Multi-period binomial trees

Representing the future by only two leaves of a tree is very restrictive. To increase the

number of states, we can start a new binomial tree at each leaf of the previous one. Usually,

but not necessarily, the lower node of a tree recombines with the upper node of the tree

below it; so that one more state is added each time we add one layer to the binomial tree.

Figure 4.3: Multi-period binomial tree

If we know the risk-free rate for all sub-periods, the stock price at each node of the tree

and the price of the option at the end of the tree (at maturity), then we can compute the

price of the option at each node by backward propagation from the end to the beginning of

the tree.

Construction of the tree

Assume that over the investment horizon, the stock returns are modelled by a normal prob-

ability distribution of parameters µ and σ. The the parameters u and d can be selected

to approximate this distribution. Namely, if the number of sub-periods is large enough (in

practice 30 or more layers) for the whole horizon, then the binomial tree yields a good rep-

resentation of the distribution. It can be shown that a way to obtain this result is to set for

each sub-period of length ∆t:

u = eσ
√
∆t

d = 1
u

(4.7)
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Arbitrage

We can link the binomial approach with the arbitrage equations. As stated before, no

arbitrage opportunities exist if and only if it is possible to find the risk-neutral probabilities.

Indeed, the risk-neutral probabilities (p, 1 − p) can be identified with the variables ψ1,ψ2),
up to a constant factor. To see this, set:

S1 = 1 (the price of $1, representing the risk-free asset).

S2 = the initial price of the stock underlying the option.

S3 = the unknown price of the option.

K = 2 scenarios.

u, d as the coefficients of increase and decrease for the stock price (2 scenarios).

We get:


1

S

option

 =


er er

Sd Su

option(Sd) option(Su)

 ψ1

ψ2
(4.8)

It follows that the risk-neutral probability p of the binomial tree is given by erψ2. The

vector ψ can also be seen as the discounted risk-neutral probability for each scenario.

4.5.3 Black-Scholes formula

Formulae and hypotheses

The Black & Scholes formula assumes that stock prices follow a geometric Brownian motion.

For this model and under some additional assumptions, Black and Scholes (??) derived the

price of derivatives such as options by relying on arguments similar to the ones used for

binomial trees. To define the prices, they construct an instantaneous portfolio composed of

a fraction of the stock and of the option, so as to obtain a riskless portfolio. Full explanations

can be found in [32, 51, 49, 52].

The well known option pricing formulae derived by Black and Scholes for the European

calls an puts are:

call = SN(d1)−Xe−r(T−t)N(d2) (4.9)

put = Xe−r(T−t)N(−d2)− SN(−d1) (4.10)

where S is the current price of the underlying asset, X is the strike price, N(x) is the

cumulative probability distribution function of a standardized Normal variable, T is the
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time of maturity, and d1 and d2 are defined by

d1 =
ln( S

X
) + (r + σ2/2)(T − t)

σ
√
T − t , d2 = d1− σ

√
T − t.

The assumptions made are:

1. Stock returns follow a Normal distribution defined by a mean µ and a constant standard

deviation σ.

2. Short selling (the sale of something one does not possess) is allowed.

3. There are no transaction costs or taxes. All securities are perfectly divisible.

4. There are no dividends during the life of the derivative.

5. There are no arbitrage opportunities.

6. Security trading is continuous.

7. The risk-free rate r is constant and the same for all maturities.

Some of these assumptions can easily be relaxed. In particular, if the underlying asset is

an index characterized by a continuous dividend yield q, then option prices become:

call = Se−q(T−t)N(d1)−Xe−r(T−t)N(d2) (4.11)

put = Xe−r(T−t)N(−d2)− Se−q(T−t)N(−d1) (4.12)

4.6 Risk-neutral valuation

4.6.1 Concept

The risk-neutral approach is one of the most important concepts in finance. In fact, the

binomial option evaluation method and the Black and Scholes formula are two applications

of this approach. We could have first this idea presented, but we preferred, as is usually done

in finance books, to start with examples in order to help understand this central financial

concept.

It is important to notice that, in the computation of option prices for binomial trees, we

have never defined the probabilities attached to the possible states of the world. The option

price is independant of these probabilities! The stock prices defined in the tree, together
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with the risk-free rate, contain all the information required to evaluate the option, even if we

need more information to compute the (real market) expected stock return. Equivalently,

this means we don’t need or use the expected stock price. To construct the tree, this

parameter is not even taken into account.

However, the parameter p in (4.6) can be seen as a probability associated with an upward

movement and (1 − p) as a probability associated with a downward movement. For this
probability distribution, the expression pfu + (1− p)fd in (4.6) then becomes the expected
value of the option which must be discounted by the risk-free rate in order to obtain the

current option price. Moreover, with the same distribution, the expected stock price is given

as :

Expected stock price = pSu+ (1− p)Sd = SerT

Thus, when we use probability p, it appears that the expected return of the risky asset is

the risk-free rate. This means that the investor doesn’t require a compensation for investing

in a risky asset, as if he were indifferent to risk. Such a constructed environment is called a

risk-neutral world. This is a key result in finance. Knowledge of the risk-neutral probabilities

leads to several simplifications of finance work. Here in particular, they allow to directly

obtain the option price, by weighting the final option price and discounting the result by the

risk-free rate. We don’t even need information about the stock. Inversely, we can directly

compute the risk-neutral probabilities from the risk-free rate and the stock prices in the

binomial tree using the second equation in (4.6).

The same statement can be made for Black & Scholes model. It appears from the Black-

Scholes equations that the option value doesn’t depend on the risk preferences of investors.

Indeed, the level of risk the investor can tolerate determines the expected return µ he requires

for the stock. As µ doesn’t appear anymore in equation (4.10), the value of the option remains

the same whatever the risk preferences of investors.

4.7 Complete market

According to Dothan’s definition [21], a market is complete if and only if every consumption

process (portfolio values) is attainable. Mathematically, the market is complete if and only

if rank(Π) = K where Π is the payoff matrix defined previously. Indeed, in this case, all the

columns of the payoff matrix Π are linearly independent. Therefore, for every consumption

vector b selected by the investor, there always exists a solution of the system Πtx = b,

where x represents the quantities to invest in each security. This is of course a very valuable
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property.



Chapter 5

Modelling the future

5.1 A multi-period scenario approach

5.1.1 One-period multinomial model

A natural method to model the future is to use a scenario-tree approach. The root of the

tree represents the current state of the world. The leaves, connected to the root, represent

possible scenarios, or states of the world, or outcomes at the end of the period. More

precisely, each leaf is associated with the values of each of the securities considered in the

corresponding state of the world, and with the probability that this state occurs. We call

such a tree a one-period multinomial tree of scenarios.

Figure 5.1: One-period multinomial tree of scenarios

A tree of scenarios is a flexible model where no constraint are set on how to define the

56
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states of the world. To do it, a possible approach is to instantiate the tree by sampling from

probability density functions; e.g. the possible returns of a stock in the future are often

approximated by a Normal probability density function.

Nevertheless, we are not restricted to this classical Normality assumption to represent

securities in the future. In particular, if the investor has accurate or specific information

about the market and can construct a corresponding probability density function, he will be

able to profit of it by introducing his knowledge into the tree. This topic is covered in more

details in section 5.3.

The uncertainty in this model is represented by the fact that we don’t know which

scenario will materialize.

5.1.2 Two-period multinomial model

In most of the subsequent developments, we will not restrict the representation of the future

to one period, but we will add degrees of freedom by introducing a second period. So, there

are now three distinguished instants in time, say t0, t1, t2. The initial instant is t0. The end

of the first period is t1 and the end of the second period is t2. For each state of the world

at time t1, say S,we consider another set of scenarios which defines all possible states of the

world at time t2 given that state S has occured; i.e. we add one one-period tree to each leaf

of the first period tree. The lengths of the first and second periods do not have to be equal

in this setting.

Figure 5.2: Two-period scenario-tree
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As for the one-period tree, the investor can instantiate each node of the tree according to

a probability density function which takes or not into account his specific knowledge of the

market. Note that all the second period subtrees could be interpenetrated or not, with or

without recombining leaves, with equiprobable or non-equiprobable nodes. Such multinomial

trees of scenarios constitute a larger family than the classical family of binomial trees. As

we will show in section 5.1.4, every (constant) multi-period binomial tree could be replaced

by a multinomial one, but not the converse.

The two-period tree structure models the principle of information being revealed as time

passes. Indeed, the main goal of introducing the second period is to model the fact that, when

an investor is active over a long horizon, he adjusts his portfolio as time goes according to

new available information an to changing conditions; i.e. the investment process is dynamic

over time. The purpose of the second period is typically to model this ability to adjust a

portfolio after some time.

Note that even if a two-period model is used for portfolio optimization, the adjustment

to perform on the portfolio at the beginning of the second period (time t1) will normally

not be implemented according to the optimal solution computed at time t0. Rather, a new

two-period instance of the problem will be formulated and optimized at time t1; i.e. a

suitable roll-over strategy will be adopted. Note also that the length of each period can

change with each roll-over shift. In view of these comments, it is perhaps not optimal to add

more time layers to the tree, as the resulting increase in the problem size and complexity

may not outweigh the improvement in the quality of the solution. But we have not tested

this hypothesis.

5.1.3 Interesting properties

Multiperiod multinomial tree of scenarios have some nice properties. First, the model is

flexible as the investor is not constrained to a specific probability density function to instan-

tiate the tree. Few assumptions are made. Second, the multiperiod construction allows to

handle dynamic multi-period problems. Moreover, each period can be represented by only

one subtree. This is an advantage with respect to binomial trees as a one-period multinomial

tree of scenarios can be substituted to any multi-period binomial tree. Thus, this reduces

the complexity. Third, a tree of scenarios is easily described and handled in contrast with

other stochastic models. Those other models often require more complex set of equations to

model the future and are only valid under simplifying hypotheses. Finally, it is a natural and

easily understandable tool. All investors, even those lacking deep mathematical knowledge,
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are able to understand the principles of a tree of scenarios.

The reader might wonder whether the representation by a finite discrete set of scenarios

does not omit too much information in comparison with a continuous “complete” represen-

tation. We think that if the sampling is performed carefully from an adequate probability

density function, it is useless to consider large sample sizes. In particular, depending on

the problem to solve and especially in the case of the VaR problem considered in the last

chapters, it appears that increasing the number of scenarios in the tree does not modify

significantly the results. The quality of the sampling process and the selection of the den-

sity function are more important than the sample size. These two topics are respectively

presented in sections 5.4 and 5.3.

5.1.4 Binomial tree vs multinomial tree

Introduction

A multinomial tree could be seen as a multiperiod binomial tree where the intermediate

nodes are pruned to keep only the final leaves. If we can construct a multiperiod binomial

tree from the leaves of a multinomial tree, we can directly apply all the results obtained in

finance for binomial trees to multinomial ones. Unfortunately, this is generally not possible

as this is shown by the following two propositions. From these propositions, it is clear that

the binomial family of trees is only a subset of the multinomial one. A third proposition is

given to show that it is possible to create similar trees.

First proposition

It is generally impossible to construct a multiperiod binomial tree with the same leaves as a

one-period multinomial tree.

Proof:

If we are able to construct a multiperiod binomial tree with the same leaves as a one-period

multinomial tree, then the set of possible returns for the two trees are the same. For a

binomial tree, Luenberger [48] defines the following system of equations to characterize the

mean µ and the standard deviation σ of the returns:

pup lnu+ (1− pup) ln d = µ∆t

pup(1− pup)(lnu− ln d)2 = σ2∆t
(5.1)

where pup is the probability of the up branch and ∆t is the size of one period (typically each

period has the same length and ∆t = 1/k).
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To replicate the first two moments observed in the multinomial tree, we have to solve a

set of two equations with three unknowns; i.e. we have one degree of freedom.

We can set u to replicate the largest value of the tree. If the largest value of the multino-

mial tree is Smax then:

S0u
k = Smax

⇔ u = k Smax
S0

(5.2)

By setting u, we also determine a unique solution to the system (5.1); i.e. a unique

possible value for the probabilities attached to the leaves and a unique value for the coefficient

of decrease. This means that there exists only one multi-period binomial tree characterized

by a given mean, volatility, number of final leaves and upper node even if there exists an

infinity of multinomial trees, equiprobable and not equiprobable, that are characterized by

the same properties. []

Second proposition

If the number of states is larger than two then it is impossible to construct a multiperiod (con-

stant) binomial tree with equiprobable leaves, then it is impossible to match an equiprobable

multinomial tree with a multiperiod binomial tree. This is only possible with an unequiprob-

able multinomial tree.

Proof:

Consider the structure of a multiperiod binomial tree. After k periods the number of final

states equals 2k (we suppose here that the increase coefficient u and the decrease coefficient

d along each of the two paths are kept constant through the periods), but we can observe

only (k + 1) different values. Effectively, the final values are given by S0u
id(k−i) where i is

the number of up branches encountered to obtain the value. As i is an integer value and can

vary from 0 to k, we get k+1 different possible values. Moreover, the probability of each of

these values is given by Cikp
i
upp

(k−i)
down .

If the final leaves must be equiprobable, then the value Cikp
i
upp

(k−i)
down must be the same for

each i. If we consider the two extreme values 0 and k, then:

C0kp
0
upp

k
down = C

k
kp
k
upp

0
down

⇔ pkdown = p
k
up

⇔ pdown = pup = 0.5

(5.3)

If k equals one, we face a one-period binomial tree with equiprobable states. However,

as soon as we add just one period, i.e. k is larger than one, the probabilities cannot stay
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equal. We already know the result pdown = pup = 0.5 (independant of k) for i equals to 0

and k. If we consider i equals to 0 and 1, we find another value:

C0kp
0
upp

k
down = C

1
kp
1
upp

(k−1)
down

⇔ pkdown = kpupp
(k−1)
down

⇔ pdown = kpup

⇔ pdown =
k
k+1

= 0.5

(5.4)

[]

The following picture summarizes the two previous results:

Figure 5.3: Binomial and multinomial sets

Third proposition

It is always possible to construct a multi-period binomial tree with the same number of final

leaves, the same mean and the same standard deviation of returns as in any multinomial

tree.

Proof:

By the first proposition, a (n − 1)-period binomial tree with u,d and pup given by (5.1)
satisfies the required properties. []

We know that if the number of periods is large (n > 30 is often considered enough in

finance), the distribution of returns converges to the normal case. The normal distribution

being fully characterized by its mean and its standard deviation, the previous proposition

implies that for large n it is always possible to construct a multi-period binomial tree similar

to any multinomial tree. This considers only the normal distribution function.

For example, consider the following serie of 40 equiprobable returns
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{ -1.13,-0.75,-0.58,-0.45,-0.35,-0.26,-0.19,-0.12,-0.06,0.00,0.05,0.11,0.16,0.21,
0.26, 0.30,0.35,0.39,0.44,0.48,0.52,0.56,0.61,0.65,0.70,0.75,0.79,0.84,0.89,0.95,

1.00,1.06,1.12,1.19,1.26,1.35,1.45,1.58,1.75,2.13}. The mean and the standard deviation are
respectively equal to 0.5 and 0.7. We obtain by (5.1) the 39-period binomial tree (u, d, pup) =

(1.1326, 0.9059, 0.5). By choosing the probability pup equals to one half, we obtained a sym-

metric representation where most of the generated returns are around the mean and the

others split equally around the mean. This is illustrated in Figure 5.4 where the correspond-

ing cumulative distribution functions are very close.

Figure 5.4: Similar binomial and multinomial trees

We are now able to obtain two similar trees. Both have the same distribution of returns

and the same scheme of final leaves can be observed by sorting the final values by decreasing

order.

5.2 Empirical data and implied parameters

5.2.1 Introduction

In order to define a node of the tree, for portfolio problems including options and an index,

we need to define three sets of values: risk-free rate, index value and option values. These

values, especially index and option values, depend on exogenous parameters such as dividend

yield, length of each period and time to maturity. When setting up the tree, we need to

obtain “true” values or extremely good approximations of these parameters. Our initial

numerical experiments showed us that slight perturbations of some parameters lead to large

variations of the results or to model incoherences (e.g. a large volatility spread between puts

and calls if the dividend yield is not sharply adjusted).

The parameters must not only be set to their “true” values, they also need to constitute a

coherent set. In particular, even when using the right exogeneous parameters, the definition
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of option prices must match the model used to define the underlying future index value. For

example, we face serious problems if we try to use the observed S&P500 option prices, which

usually do not perfectly match the Black and Scholes formula based on a Normal distribution,

and model at the same time the S&P500 index return by a Normal probability function. In

this case, in our initial numerical experiments, the expected return of the optimal portfolio

is anormally huge.

Two methods can be considered to set the parameters: either an empirical study of the

past or a prediction of the future based on instantaneous available data. When relying on

past data, we implicitly assume that the past provides a good representation of the future

or at least, that it contains enough information to develop accurate forecasts. That is we

make the hypothesis that what happened in mean or in trend over several years in the past

somehow allows to forecast what will happen in the short term future! E.g, first analyses

for the S&P500 index show that the assumption of stationarity of returns is not satified and

therefore we should be carefull when computing the past moments of the return distribution

if we want to use them to model the future.

The second possibility is to use current available information. In particular, we will

see in section 5.3.5 that it is possible to extract many interesting implied parameters from

the option prices observed at time t0. The market prices of options can be interpreted as

reflecting the investors’ expectations about future market moves. It is interesting to use

market prices because they contain all the relevant information and because they can be

observed directly at the precise time when the investment decision is to be made.

We concentrate here on two sets of important implied parameters: first, the volatility and

the smile effect in section 5.2.2; second, the risk-free rate and the dividend yield in section

5.2.3.

5.2.2 The smile effect

Definition

One of the most important parameters to define is the dispersion of returns. Volatility is

a parameter used in the index return generation process, but is also used for the option

pricing process as prices are usually defined according to index distribution (this can be

viewed directly in the Black-Scholes formula).

As mentioned in the introduction, an adequate method to derive good current estimates

of the parameters, in particular volatility, is to use the option prices observed on the market

at time t0. Black and Scholes have defined option price as a function depending on the index
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volatility and it is possible (using dichotomic search) to inverse the BS formula to obtain

volatility as a function of option price. So, if the BS formula applies (in particular if the

Normal distribution assumption holds), then we can use one observed market option price to

obtain the true instantaneous volatility. When the index return distribution is empirically

close to the normal distribution, we can expect the inversion method to provide a good

approximation of its volatility (better than the historical volatility?).

There is however a well known problem called the smile effect. Black & Scholes made the

assumption that volatility is unique and constant. Therefore, in this model, all the options,

even with different strike prices, are defined according to one same value of volatility : the

index volatility. If the model applies we should obtain the same value for volatility for all

the options observed on the market when we inverse the function. However, in fact, the

volatilities implied by options are not constant, but are a function of option strike prices.

Figure 5.5: Smile effect

The figure 5.5 shows the monthly implied volatilities for calls and puts on the 2nd of

February 2001 (10 o’clock) with maturity in March. 51 calls and 51 puts were observed on

the market. 33 calls and 40 puts were used to compute the smile. The others were rejected

due to too low a price and numerical instabilities. Knowing the value of the volatility as a

function of the strike price is interesting in its own right (e.g., we will use this result in the

next chapter to define some option prices), but our first goal is to extract one specific value
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of the volatiliy to model future index prices. Common practice is to use the mean of the

volatilities implied by the two calls which are nearest-to-the-money, because, by definition

of the BS formula, prices are more sensititive to volatility for at-the-money options than

for deep-out-of-the-money options. However, other weigthing schemes are also possible (see

Hull [32]).

In practice

To compute the smile, we usually use only call options and not puts. Indeed, calls give a

better representation of volatility because they are more traded on the market than puts.

Figure 5.5, based on almost all available calls and puts, clearly illustrates this fact.

The first task is to collect data. Due to the recent development of communication me-

dias, we are no longer restrained to one source. We can use commercial databases or consult

Internet websites. In Europe, DataStream is one of the most used database. The advantage

of using a database is that lots of information, both current and past, is concentrated in one

place. Usual difficulties are that we cannot obtain other data than those defined in the data-

base (e.g. we obtain only option closing prices and not bid and ask prices at different times)

and that we cannot check their validity. Practice shows that some errors and inconsistencies

usually occur. Therefore, we prefer to use as often as possible current observed information

available directly on websites of the markets where the securities are traded.

This also allows us to use prices at different times. When should we collect the data?

There seems to be no consensus in the finance research world. Rubinstein [63] and Shimko

[64] use SP500 option prices at 10 o’clock. DataStream gives us prices at closure of the

markets. However, this appears to have little effects on our results.

Computing the smile is always presented as an easy task as it is a smooth and well-

defined function. In reality it is a little bit more complex for three reasons. First, when

the option is well out-of-the-money, the index price and the option strike price dominate the

sigma parameter in the Black and Scholes formula. In this case, the option price is not very

sensitive to a variation of the volatility; conversely for a given option price, it is difficult to

determine exactly the volatility. Second, the Black and Scholes (BS) formula is an increasing

function of volatility. As volatility is by definition positive, the minimum of this function

is reached when the volatility goes to zero. It appears that for several options, observed

prices are lower than minimal BS prices. This means that the implied volatility does not

exist for these options. Finally, implied volatilities also depend on exogenous parameters:

dividend yield and risk-free rate. As mentioned in the introduction 5.2.1, the value computed
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for the volatility strongly depends on the estimates of these parameters. For example, the

volatility spread between the puts and calls observed in the previous figure is due to the use

of the historical dividend yield. If we replace it by an implied value as defined in the next

section, the spread disappears. At the very least, coherence is required. Using the historical

dividend yield with implied instantaneous volatilities leads to troubles. More generally, we

cannot assume stationarity of the volatility. Historical volatility computed over the last 10

years and represented on the Figure 5.5 is far below the current volatility smile. Solutions to

handle the first and second problems when modelling option prices are presented in section

6.6. The third problem is considered in the next section.

5.2.3 Risk free rate, index price and dividend yield

Definition

In our numerical experiments, we could use the risk-free rate and the dividend yield found in

the databases; but for a non stationarity reason, this should be avoided. We could also use

T-Bills to compute a current risk-free rate. However, slight differences appear depending on

the T-Bill chosen. Moreover, the use of a T-Bill doesn’t guarantee consistency with option

values.

Option prices depend on the distribution of index returns. For this reason, we can extract

from them not only the implied volatility but even the whole index distribution. Shimko [64]

explains the following method to obtain the index price discounted by the dividend yield and

the risk free rate (discount factor). All the options must satisfy the put-call parity relation.

For a given index price (S), strike price (X), time-to-maturity (T − t), dividend yield (q)
and risk free rate (r), the price of a call (c) is a function of the price (p) of the equivalent

put:

c− p = Se−q(T−t) −Xe−r(T−t) (5.5)

In other words, the difference in prices between two options is a linear function of the strike

price. This function intercepts the vertical axis at the index price discounted by the dividend

yield and the angular coefficient is the risk-free discount factor. We can observe prices on

the market (51 sets of call and put for our last dataset). By a linear least-square regression

we obtain values for the intercept (or the index value discounted by the dividend yield) and

angular coefficient (or the risk-free rate), from which we can compute values for q and r.
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Figure 5.6: Call-put parity regression

In practice

First numerical experiments show that the S&P500 option prices nearly perfectly follow

this linear relation. This is illustrated in Figure 5.6 for options with maturity one month

later. The horizontal axis corresponds to the strike prices and the vertical axis measures the

difference between the call price and the put price;i.e. the left term of equation (5.5). Each

dot corresponds to a couple of call-put options with the same strike price observed on the

market. The linear regression is represented by the line. Residuals are small (The coefficient

R2 in the previous example is close to one).

Obtaining the intercept and the angular coefficient is easy to perform. The stability

of these two values seems good even when considering subset of options. This is clear

when considering Figure 5.6. This is important because we could be worried that the deep-

out-of-the-money options would have a negative impact. However, computing the implied

parameters remains troublesome. There are nevertheless small variations. This appears

more clearly when we perform the transformation to obtain the implied rates q and r. This

logarithmic transformation implies that the variation of these rates is larger. The effect on

the montlhy return for the previous example is too large to be accepted. For options observed

in February 2001, the corresponding annual risk-free rate varies from 1 to 6 percent. For

options observed in March 2000, the corresponding annual risk-free rate varies from 4 to 18



Chapter 5. Modelling the future 68

percent. Numerical variations are given in Table 5.1 for different subsets of options with

strike prices equally reparted around the index price.

nbO angular coef. intercept q r R2

2 -1.000000 1 248.50 -0.18198% 0.00000% 1

4 -0.994857 1 242.10 0.33172% 0.51561% 0.999992082

20 -0.999011 1 247.33 -0.08854% 0.09892% 0.999989087

46 -0.997966 1 246.09 0.01122% 0.20359% 0.999998825

63 -0.996260 1 244.00 0.17924% 0.37473% 0.999998755

Table 5.1: Implied dividend yield and risk-free rate

Note that this is not a numerical rounding problem in the logarithmic transformation,

but a problem in the regression process. Indeed, in financial problems, the rates are rarely

used directly but instead almost always in the exponential form. We could then directly

use the intercept and the angular coefficient in the models without performing the loga-

rithmic transformation. However there is no significative loss of information when we first

convert those two coefficients into the implied rates and then, when required, we compute

the exponential values.

At this point, we cannot automatically use the results obtained by the regression over the

whole set of observed options. To obtain valid parameters, we have first to select carefully

the options that will be taken into account during the regression process. The nearest-to-the-

money options are the most representative and are considered in priority. We then construct

the largest possible set of options, but we reject it if the regression result is inconsistent, e.g.

a negative dividend yield, and if the implied parameters q and r are too far from reasonable

values, e.g. with respect to T-Bill rates and historical rates.

5.3 Probability density functions for index returns

5.3.1 Subjective and risk-neutral probabilities

The investor can freely define the tree of scenarios based on his knowledge of the markets,

but it is a complex task to precisely define all the possible future states of the world. In a

more general framework or as a starting point for the investor, we will consider that it is

possible to model the future index return distribution by a probability density function.

Using density functions, we will try to represent what really happen on the market

for index returns. We want to work with consensus subjective (i.e. that depends on the
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investor’s behaviour and risk aversion) probabilities as the final goal is to model and solve

real problems. Besides, in order to define financial tools, financiers work, implicitly or not,

with a (certified) equivalent risk-neutral world, as explained in Chapter 4. This is implied

in the option pricing formulas and also used for example to define state-prices (close to risk-

neutral probabilities). Of course, density functions of index returns in the risky world and

in the risk-neutral world are not the same. However, as Rubinstein observes [63] about his

numerical results : “This tempts me to suggest that, despite warnings to the contrary, we

can justifiably suppose a rough similarity between the risk-neutral probabilities implied in

option prices and subjective beliefs”.

The first three density functions discussed in the next sections (Normal, Theodossiou,

Fernandez and Steel’s density functions) are consensus subjective density functions. The

following two (Shimko and Rubinstein) are certified equivalent risk-neutral density functions.

The subjective density function cannot be directly inferred from the risk-neutral one.

However, by using utility functions it is possible to convert the first one to the latter one.

The converse transformation is more complex, but also possible. We propose a method to

do this. It will turn out to be a useful tool when optimizing the option pricing model (OP2)

to be presented in Section 6.3.7.

5.3.2 Normal distribution

This is the basic density function presented until now. Its expression is given by:

f(x) =
1√
2πσ

e−
1
2
(x−µ

σ
)2 (5.6)

where µ and σ are respectively the mean and the standard deviation of the distribution.

These two parameters fully describe the shape of the function.

This function is essentially used for theoretical reasons as a benchmark. The analytical

definition of the density function is well known. We work with the standardized version

(µ = 0 and σ = 1) and use the historical mean and deviation to adjust it afterwards. We

have not defined here a likelihood procedure to find the best value for the two parameters.

The main criticisms of this function are that it does not take into account a possible skewness

and kurtosis usually observed on a real market. In particular, financial distribution are often

characterized by fat tails. For the construction of the tree, due to the nature of the normal

density function, we have to use either the analytical expression and numerical procedures

or an interpolation technique over a pre-computed table.
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5.3.3 Theodossiou’s skewed distributions

The Student t function is a first improvement to represent the consensus distribution. It is

close to the Normal distribution but uses one more parameter to allow to model a kurtosis

effect (thickness of the tails). It is still unable to represent a skewness effect. Some authors

have proposed an adaptation of the Student function with one more parameter to add this

skewness property. We present here Theodossiou’s version [66] and in the next section,

Fernandez and Steel’s version ([28]).

The idea is to split the density function in two areas around the null mode. We can

rewrite Theodossiou’s equations as:

f(x|k, n,λ,σ2) = f1 = C(1 +
k
n−2(

|x|
(1−λ)θ|σ|)

k)
−(n+1)

k for x < 0

f2 = C(1 +
k
n−2(

|x|
(1+λ)θ|σ|)

k)
−(n+1)

k for x ≥ 0 (5.7)

with:

C =
S(λ)

2σ

B( 3
k
, n−2

k
)

B( 1
k
, n
k
)
3 (5.8)

θ = S(λ) k k

n− 2
B( 1

k
, n
k
)

B( 3
k
, n−2

k
)

(5.9)

S(λ) = 1 + 3λ2 − 4λ2 B( 2
k
, n−1

k
)
2

B( 1
k
, n
k
)B( 3

k
, n−2

k
)

(5.10)

where B(·) is the beta function, C and θ are normalizing constants ensuring that f(·) is a
proper density function, k and n control the height and tails, λ measures the skewness (f1

and f2 have identical expressions except for the coefficient (1± λ)) and σ2 is the volatility.

The parameters are defined only over specific domains. Depending on their values, we

obtain other classical density functions: Normal pdf (λ = 0, k = 2 and n =∞), Student’s t
distribution (λ = 0, k = 2), Cauchy distribution... The four parameters don’t correspond to

the first four moments as we could hope. σ is the sole parameter corresponding to the theo-

retical standard deviation of the underlying random variable. Theodossiou gives (complex)

analytical expressions to obtain the three other corresponding moments (mean, skewness and

kurtosis) from its four parameters, but not the converse. It implies that it is not possible

to perform an empirical study over the historical data to completely define Theodossiou’s

pdf as we cannot convert historical moments into Theodossiou’s parameters. Therefore, a

likelihood estimation must be performed to obtain the adequate values. However, as Theo-

dossiou himself said, “the maximization of the log-likelihood function is troublesome”. On



Chapter 5. Modelling the future 71

many occasions, the iterative algorithm “overshoots” and assigns impossible values (nega-

tive variance, |λ| larger than one...), resulting in a breakdown of the algorithm. Theodossiou
suggests a slight modification of the likelihood function and the use of Berndt’s algorithm

to avoid these problems. Even using this approach or other methods, we were unable to

develop a general and always succesful method to perform likelihood maximization for our

datasets.

We also have other problems with the domain of definition of some parameters as defined

by Theodossiou, as they don’t always seem to be valid for some analytical expressions where

it should be the case (even taking into account that some moments could not always exist

and so some analytical expressions should not be used in some specific cases). So we set

aside Theodossiou’s method to concentrate on Fernandez and Steel’s [28] approach.

5.3.4 Fernandez and Steel’s skewed distributions

Fernandez and Steel ([28]) have proposed a general method to add a skewness parameter to

every unimodal and symmetric density functions. In particular, they illustrate the approach

for the Student’s t distribution. The general formula used for a univariate pdf f(·), where
f(·) is unimodal and symmetric around zero, is given by:

p(ε|γ) =


2
γ+ 1

γ

f( ε
γ
) for ε ≥ 0

2
γ+ 1

γ

f(εγ) for ε < 0
(5.11)

where γ ∈ (0,∞] is the added skewness parameter. The basic idea is simply to introduce a
scaling factor in the negative orthant and its inverse in the positive orthant. The coefficient

ensures that the result is a proper pdf. The mode is preserved, but the skewness is modified

when γ is not equal to one.

It is also possible to obtain Er, the moment of order r of this new pdf, from the corre-

sponding “absolute” moments Mr of f(·):

Er = E(ε
r|γ) =Mr

γr+1 + (−1)r
γr+1

γ + 1
γ

(5.12)

where

Mr = 2
∞

0

srf(s)ds

Fernandez and Steel develop the case where f(·) is a general Student’s t function. The
expression becomes :
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p(ε|m, s, ν, γ) =


2

γ+ 1
γ

Γ( ν+1
2
)

s
√
ΠνΓ( ν

2
)
(1 + (ε−m)2

νs2γ2
)
−(ν+1)

2
for ε−m ≥ 0

2
γ+ 1

γ

Γ( ν+1
2
)

s
√
ΠνΓ( ν

2
)
(1 + γ2(ε−m)2

νs2
)
−(ν+1)

2
for ε−m < 0

(5.13)

where:

• m, as the mode, models only the location. It is the mean of the underlying student’s
t distribution, but no longer the mean of the skewed pdf;

• s2 models only the dispersion. It is the variance of the underlying student’s distribution,
but not of the skewed version;

• γ > 0 models only the skewness;

• ν > 0 models only the kurtosis.

We can see here that each of the four parameters models only one aspect of distribution.

This pdf is easier to interpret than Theodossiou’s. However, the four parameters still don’t

correspond to the first four moments of the distribution. In particular, if there is skewness,

then the mean shifts away from the mode m.

For simplicity, we use here the “classical” standardized Student’s t function by setting

m to 0 and s to 1 in the previous formula. We can use the standardized version because

centering and reducing the data do not affect skewness and kurtosis (especially, changing

the mean shifts the function but does not modify the shape). When we find these last two

parameters, we can adjust the first two to match the real data. Instead of looking for four

values, we now have only two to compute. A log-likelihood optimization by Powell’s method

([61]) is performed to obtain the two adequate values for the parameters based on historical

data. We also tried using a conjugate gradient maximization algorithm to do it where the

gradient is computed numerically by Ridder’s method, but the use of numerical derivatives in

the process is not suitable here as it is time consuming and also leads to new approximations.

To avoid a breakdown of the algorithm due to out-of-domain errors (negative values of the

parameters), we substitute ν by exp(ν) and γ by exp(γ); i.e. by two monotonic functions

defined on IR with values in IR+.

When we know the two parameters of interest we can obtain the first four centered

moments of the final distribution as follows:
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m1 = E1 =M1(γ − 1
γ
) µ = m1

m2 = E2 − µ2 σ2 = m2

m3 = E3 − 3µσ2 − µ3 skewness = m3/σ
3 = γ

m4 = E4 − 4µ3 − 6µ2σ2 − µ4 kurtosis = m4/σ
4 = ν

(5.14)

An alternative to the likelihood maximization method would be to use Lambert and

Laurent’s approach. Lambert and Laurent [42] use Fernandez and Steel’s function with the

standardized Student’s t function (with an adjustement of ν). Their paper shows how to

find the two parameters of Fernandez and Steel’s function thanks to a GARCH (predictive)

model. However, we did not use this method until now as it would haven taken us in a

completely new direction.

5.3.5 Breeden, Litzenberger and Shimko’s implied distributions

Introduction

Using Fernandez and Steel’s function is already a great improvement over the Normal dis-

tribution approach, though this approach still has two drawbacks. First, in order to fit the

distribution to the real world, we have to rely on historical data. So we use past information

to model the current market and to help to make a decision today. A improvement could use

a GARCH model to make a prediction of the future, but this would remain an estimation

of a future period based on old information. In all cases, we do not use (essentially) the

information describing the current market. Second, it is not enough for our purpose to per-

fectly model the index distribution. We need to ensure coherence between option prices and

index distribution. From our first numerical experiments, it appears that we obtain coherent

results if we use a normal option pricing process when index returns are normally distrib-

uted. However, this is no longer the case if we use non normally distributed market option

prices in conjunction with the normally distributed index returns. The expected return of

the optimal solution becomes unrealistically large.

If we observe the whole set of options on the market, then it is possible to retrieve lots

of parameters of the index distribution. The current prices of the options reflect what the

investors expect todays about the future index returns. If we can obtain implied index

distribution parameters from option prices, then we solve our two previous problems: time

adequation and coherency.

Breeden and Litzenberger [5] elicited the relation between option prices and the pdf of the

underlying index. They illustrated it by using the Black and Scholes option pricing formula.
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Shimko [64] improved their method by using observed option prices. His approach consists

of three steps. First, define a continous function of the strike price to model (observed)

option prices. Second, use Breeden and Litzenberger’s theorem to define the density function

between the lowest and largest observed strike prices. Third, adjust the tails of the pdf. We

now describe these steps in more detail.

Option pricing function

Before applying Breeden and Litzenberger’s theorem, we first need to define a continous

function of the strike price which models (observed) option prices; i.e. a function of the form

C(X) where X is the strike price and C(X) is the corresponding option price. We could use

the discrete set of prices observed on the market and use a linear interpolation technique to

obtain intermediate values. Shimko proposed a tighter model based on the option smile. He

first computes the implied volatilities of the observed calls using the inverse BS formula and

then fits the observations with a second degree equation by the least-square method:

σ(X) = A0 +A1X +A2X
2 (5.15)

By reapplying the BS formula in the opposite sense adapted using this definition of σ(X)

instead of the constant σ, we obtain a continuous option pricing function over the strike

prices which takes into account the observed smile effect. The result is a smoother function

than the one obtained by direct interpolation. Note that the BS formula is only used as a

conversion tool from option prices to volatilities (and conversely). It is just a mathematical

translation formula. We could define other tools. The properties and assumptions behind

the BS formula don’t affect or limit the final results. From our numerical experiments on

the S&P500 and the AEX, the fitting curve closely mimics the observed option prices. The

result is illustrated in Figure 5.7.

The pdf around the mode

Second, Breeden and Litzenberger have demonstrated that partial derivatives of the option

price C(X) with respect to strike price (X) are related to the distribution function F (S)

and the density function f(S) of the index prices in the following manner:

C(X) = e−r(T−t) ∞
X
(S −X)f(S)dS Cox, Ross and Rubinstein’s definition

∂C(X)
∂X

= −e−r(T−t)(1− F (S|S = X))
∂2C(X)
∂X

= e−r(T−t)f(S|S = X)
(5.16)
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Figure 5.7: Option pricing function

No assumptions are made as to the stochastic processing governing the movement of the

underlying security price or the option price. The only requirement here is that the option

pricing formula be twice differentiable.

If we consider now the BS option pricing formula adjusted by Shimko to take into account

the volatility, we can express C(X) as follows:

C(X) = Se−q(T−t)N(d1)−Xe−r(T−t)N(d2) Black and Scholes’ formula

d1 =
ln( S

X
+(r−q+σ2(X)

2
)(T−t)

σ(X)
√
T−t Shimko’s σ(X) defined in (5.15)

d2 = d1 − σ(X)
√
T − t

(5.17)

where N(·) is the cumulative normal distribution and n(·) is the normal density function.
When we take the second partial derivative of (5.17 and adjust it by the risk-free rate as

stated in (5.16), we obtain the probability density function of the index prices f(S). The

cumulative distribution is obtained by adjusting the first derivative.

f(S|S = X) = −n(d2)(d2X − (A1 + 2A2X)(1− d2d2X)− 2A2X)
F (S|S = X) = 1 +Xn(d2)(A1 + 2A2X)−N(d2)

(5.18)

with:
d1X =

−1
Xv
+ (1− d1

v
)(A1 + 2A2X)

d2X = d1X − (A1 + 2A2X)
v = σ(X)

√
T − t

(5.19)
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where N(·) is the cumulative normal distribution, n(·) is the normal density function and
A0, A1, A2 are the coefficients used in the volatility model (5.15).

The result is a well defined analytical expression because it is possible to analytically

derive the BS option pricing formula. Of course, working with an analytical expression is

always easier than working with a numerical derivative. However, if we want to consider

another pricing function, the latter approach is also valid and could be the sole solution if

no analytical (or simple) expression exists for the derivatives.

We face some problems because it appears that there is at least one typing error in

Shimko’s paper (the pdf is negative). Moreover, even after changing the sign, the final ex-

pressions mentioned by Shimko do not match the analytical (or numerical) derivatives we

have computed. Our analytical developments were checked using Wolfram Mathematica

software package and also by implementing numerical procedures in C language. The result-

ing equations are long and complex and so we prefer to illustrate, for our previous numerical

example, in Figure 5.8 the differences between the two 2nd-order derivatives . In the rest of

this work, we use the derivatives we have computed and not Shimko’s ones.

Figure 5.8: Differences between second partial derivatives

Adjusting the tails

Shimko performs a third step. He has defined the function σ(X) between the minimal and

maximal strike prices observed on the market. Outside this range, he assumes that the

implied volatility is constant. Indeed, outside this range of values, we cannot guarantee the

quality of the regression. Especially for large strike prices, the option pricing function is
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increasing due to the fact that the sigma function is quadratic (see figure 5.7). This leaves

the technical problem: what should we do with probabilities beyond the range of strike prices

associated with traded options?

We cannot arbitrarily construct the tails, but must face several constraints:

• The sum of densities must equal one.

• The cdf is a smooth function without breakpoints at the extreme strike prices.

• The expected return of the whole implied pdf should be equal to the risk-free return
as the construction is made under a risk-neutral world hypothesis.

To obtain the lower tail, we could view the index price as an option with null strike price

and use it in the regression. In this way, the whole lowest tail is defined. However, the lowest

strike price for the options is typically much larger than zero; thus the index price is far from

the option data cloud. This “outlier” value is likely to influence strongly the regression.

Instead, Shimko [64] assumes that the tail distributions of index prices are lognormal

(returns normally distributed) and suggest to match the frequency and cumulative frequency

of the distribution with a lognormal distribution in each tail. The idea is attractive, but

Shimko [64] provides no further information about the procedure to follow. Therefore, we

had to fill in the details by ourselves. Here is how we proceed. For each tail, we have to

find the two parameters defining the lognormal pdf subject to the cdf and pdf constraints.

We proceed in two steps. First we define two functions that, for a given mean, return the

volatility satisfying respectively the cdf constraint and the pdf constraint. Second, we search

the value of the mean such that the two values of sigma returned by the two functions are

the same.

In order to define the two functions, we suppose that there are enough options to cover

a large part of the pdf and that only the tails have to be computed. In this case, for a given

value of the mean µ, the following two properties hold. Note that these properties are not

true around the mode.

• The normal pdf is an increasing function of σ;

• The normal cumulative density function (cdf) increases (decreases) in the lower (upper)
tail when σ increases .

For a given mean, using these two properties and a dichotomic search, we can easily find

the two values of sigma satisfying respectively the pdf and cdf constraints. The difficulty
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is now to find the mean for which these two values are identical. We execute a bracketing

procedure. We set a lower bound and an upper bound around the mean. The lowest and

highest strike prices are good candidates if the pdf is largely represented by Breeden and

Litzenberger’s method (we only have to compute the tails). At these two points, the differ-

ences of the implied values of sigma (computed as described just before) have an opposite

sign. By successively reducing the size of the interval preserving the opposite signs at the

bounds, we quickly obtain the mean and the corresponding unique volatility.

Figure 5.9: Volatilities for a given mean

Some difficulties appear in practice. Some of the numerical results in Shimko’s paper

are actually bizarre. The sum of densities under the pdf found by Shimko is larger than

one, so that he needs to apply a normalizing coefficient to compute the moments. This

indicates that the tails he has constructed don’t match the cumulative frequencies of the

normal distribution as they should. Moreover the first moment, which should be equal to

the expected value of the index in a risk-free world as demonstrated by Shimko, doesn’t

match it. This could be due to an error in the formulae he used to construct the pdf but

also to problems to define the tails.

We face such difficulties in our numerical experiments, because matching the frequency

and cumulative frequency of the distribution is not an easy task. These two constraints are

nonlinear lognormal functions of the volatility for a given mean. There is no proof of the

existence and unicity of a solution! Graphically, when index prices follow a perfect lognormal

distribution, a solution is easy to find. However, we observe in practice skewness and kurtosis
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effects. For the S&P500, the tails are fatter than the tails of a normal distribution with the

same mean and volatility. Therefore, to obtain the same fat lower tail, we have to shift the

mean of the lognormal pdf far from the largest strike price. This is illustrated in Figure 5.10

for the lower tail. In this figure, the horizontal axis represents the index returns and not the

prices. Therefore the adjustement is made with a Normal distribution. The conversion from

prices to returns is done as explained in section 5.3.5. This is done for consistency with the

other distributions presented in the previous sections.

This means that the extreme strike prices are not good bounds as we said before. There-

fore we have modified the procedure for computing µ as follows. We start from the extreme

strike prices and increase them by steps until the sign of the difference between sigmas

changes. It is very important to well tune the bounds over the mean as there exists up

to three values of sigma satisfying the pdf constraint for a same mean. The first one is

obtained when the index price is the lowest strike price. In this case, sigma goes to zero as

it is illustrated in Figure 5.9. This value is clearly not valid. The second one is found when

sigma is very large. In this case, the pdf becomes flat and we cannot anymore say that we

adjust with the tail of a distribution. The third one is obtained between the two previous

one and corresponds to a well shaped distribution.

Figure 5.10: Adjusting the lower tail
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The pdf as a function of the index returns

We perform a fourth step. As for the distributions presented in the previous sections, to

preserve consistency, we would like to work with the distribution of the index returns instead

of the distribution of index prices. So, we convert the pdf computed in the first three steps,

which is a function of the index prices, into a pdf which is a function of the index returns.

For this purpose, we use the general formulas:

y = g(x)

h(y) = f(g−1(y))|dx
dy
| (5.20)

where f(x) and h(y) are respectively the pdfs for arbitrary random variables x and y.

Since returnT = return(ST ) =
ln

ST
St

T−t
this leads to h(returnT ) = f(ST )(T − t)StereturnT (T−t)

(5.21)

where t is the initial time, T is the end of the period, St is the initial index price, ST is the

considered value of the index at time T and returnT the corresponding return, f(·) is the
pdf for index prices and h(·) is the pdf for index returns,

Risk-neutral world vs consensus world

A fifth step is required. Breeden and Litzenberger’s demonstration is based on risk-neutral

valuation and the pdf constructed by the implied approach is a certified equivalent risk-

neutral world pdf. This pdf is different (even if Rubinstein thinks that the shape should

be close and the location just shifted) from the consensus subjective real distribution. The

mean is located at the risk-free rate and not at the mean index return and the two volatilities

should converge. To construct the tree of scenarios, we still need to introduce a conversion

function from risk-neutral world to risky world. This is presented in the next section.

Remarks

We formulate several more remarks. First, consistent with the implied approach, Shimko

does not use the historical risk free rate and dividend yield, but instead uses the implied

values described in the first section.

Second, it is interesting to notice that the pdfs computed by Shimko (and Rubinstein;

see next section) are not always unimodal. A small hump sometimes appears for low returns

in their results. We don’t observe it in our numerical results.
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Third, we can wonder if it is always meaningful to use a normal distribution to construct

the tails. The normal pdf used just before to represent the lower tail is difficult to interpret

because it is far from the main pdf. If the sum of densities for the pdf obtained by Shimko’s

method is close to one (99% in our numerical experiment), then the method we use should

make little difference. Otherwise, we could face serious troubles as the tails influence directly

the moments of the whole distribution. Indeed, a bad representation of the tails leads to

a degradation of the implied mean and volatility. Theoretically, the mean should be equal

to the risk-free rate. So, alternatively, we would suggest using a Student distribution or

interpolate directly with a cubic spline (interpolation of the cdf points with a matching of

the derivative given by the pdf) to give more freedom when adjusting the tails. Note however

than in our case, even with a good representation (99%) of the central pdf, the expected

return can be different from the risk-free rate depending on the option set and the implied

rates.

Fourth, another advantage of this method is that we know the analytical form of both

the cdf and the pdf. As we will explain further on, the cdf is required to construct future

index values and the pdf is only used to compute statistics about the moments. For the

distributions presented before, we numerically integrate the pdf to obtain the cdf. However,

this numerical conversion is not necessary here.

5.3.6 Rubinstein’s implied distribution

Rubinstein has proposed another approach to construct a risk-neutral pdf that matches the

observed option prices; i.e. that rejects arbitrage opportunities. We will not apply this

method to construct a pdf. But, we present it here because it is a well known method that

could effectively be used, and in order to show analogies with the option pricing process we

will present further on.

Let Sb (Sa) be the current bid (ask) price of the underlying asset and Cbi (C
a
i ) the bid

(ask) price simultaneously observed at time t on a European call i maturing at T . If we

know for each scenario j a prior guess Pj of the risk-neutral probability, then Rubinstein

suggests to obtain a discrete representation {Pj} of the risk-neutral pdf by optimizing the
following model:
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min j(Pj − Pj)2
subject to j Pj = 1

Ser(T−t) = e−q(T−t) j PjSj

Sb ≤ S ≤ Sa
Cie

r(T−t) = j Pj max[0, Sj −Ki]

Cbi ≤ Ci ≤ Cai
Pj ≥ 0

(5.22)

This model is close to our option pricing model which will be presented in detail in section

6.3.7. The constraints are essentially the no-arbitrage equations. If a solution exists, then

there is no arbitrage opportunity on the market due to the observed option prices. These

equations involve a unique option price, not two (observed bid and ask prices). Rubinstein

allows any price between the bid and ask prices. Indeed, by adding a spread on each side of

the optimal price, we can obtain the bid and ask prices without losing the free-arbitrage prop-

erty. The objective function can be interpreted directly: it simply minimizes the difference

between the optimized pdf and the target pdf.

In principle, we can use any prior distribution {Pj}. This could be for example Shimko’s
pdf. Rubinstein suggests to construct an n-step standard binomial tree (under the normality

assumption) using the average of the BS implied volatilities of the two call options nearest-

to-the-money and then calculate the risk-neutral probability for each of the final node .

Two issues are sensitive. First, what it the best objective function? Rubinstein uses a

sum of squares function, but lists other possibilities. Second, what is the best prior guess?

For Rubinstein, if a solution exists and other things being equal, then the denser the set of

options, the less sensitive Pj will be to the prior guess (more constrained problems, fewer

feasible solutions). A relatively large set of scenarios is required to have a fine representation

of the future. If we want to reduce the impact of the prior guess, we will also proportionaly

need a large set of calls. However, it is difficult to collect and to handle large set of options

and so we consider that the prior guess is a relevant problem. This appears clearly in our

initial numerical experiments.

We do not directly use this method to construct the pdf due to the two problems noted

in the previous paragraph and especially the second one. Indeed, as we expect that the pdf

obtained by this approach is closely related to the prior guess, i.e. to a target pdf, we have

to construct carefully this target pdf; i.e. we should ideally initially know the optimal pdf

we are looking for. There is also a third problem with Rubinstein’s approach: he supposes

that a solution exists; i.e. that the observed prices are without arbitrage!
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Despite these comments, we use in the next chapter a similar approach based on the

no-arbitrage equations. The main goal is not to construct a risk-neutral density but to price

the options. In this case, we first construct a pdf to model the future and then we use it

as a prior guess in the objective function of the option pricing process. The first and third

problems are also considered.

5.3.7 Numerical results

Figure 5.11 illustrates the Normal, skewed Student and Shimko’s pdf’s for the S&P500. For

the Normal and skewed Student pdfs, the parameters were computed from monthly returns

over the last 10 years. Shimko’s pdf’s was computed from a set of options observed on the

18th of March 2000 and on the 23rd of February 2001 (with maturity one month later). The

horizontal axe corresponds to the monthly returns.

The skewed Student pdf is close to the Normal one, but is negatively skewed and slightly

leptokurtic. There is little difference using the first or the second one. At the converse, the

shape of the implied “instantaneous” pdfs is very different from the “10 years” pdfs and

has even significantly changed over a period of one year. However, we cannot draw many

conclusions for the moment as the implied pdfs are defined in the context of a risk-neutral

world and the two first pdfs in the context of a consensus world. More comments are done

in section 5.6.

5.4 Sampling

5.4.1 Introduction

In this section, our goal is to define the index return (or equivalently the index price) for

each node of a multinomial tree. In the previous section we used a continuous pdf to model

the index return. We need a method to sample from such a continuous function in order to

produce a representative discrete set of returns.

5.4.2 Monte-Carlo generator

The most straighforward method is to use a random Monte-Carlo generator. We have

implemented the generator described in Numerical Recipes [61]. The principle is first to use

a uniform random Monter-Carlo generator and then to convert the uniform deviates into

deviates following the target distribution. In the case of normal distribution, we first draw
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Figure 5.11: Probability density functions
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at random two uniform deviates x1 and x2 between zero and one and we convert them into

two normal deviates y1 and y2 by the trigonometric transformation:

y1 = −2 lnx1 cos 2πx2
y2 = −2 lnx1 sin 2πx2 (5.23)

A seed is needed to initialize the pseudo-random sequence and a different sample of the

Normal distribution is obtained each time a different seed is used. For someone who does

not know the initial seed, the sequence looks as random.

Note that when generating n return estimates, according to a distribution with mean µ

and standard deviation σ, the standard error of the estimate is σ√
n
. Therefore, to double the

accuracy, we must quadruple the sample size.

5.4.3 A grid generator

We propose here a small improvement over the previous generator. The Monte-Carlo gen-

erator needs two uniform deviates and so resorts to a uniform generator. Our goal is to

obtain the sample of a given size (the number of scenarios) for which the moments are as

close as possible to the moments of the continuous Normal distribution to represent. We

are not interested in the random property of this sample. The idea is to replace the random

uniform generator of the previous method by another (deterministic) uniform generator of

better quality.

This type of method is described in Kleijnen [38, 39]. If we know in advance the sample

size n, the best possible representation of the uniform distribution is obtained by dividing

the range into n equally spaced points. Other methods have been developed for unknown

sample sizes (Antonov&Salev [38]).

The situation is a little bit more complex in our case because we need two uniform

deviates at the same time in order to construct two normal deviates. Therefore, we work

in dimension two instead of dimension one. A direct adaptation is to lay a grid (equally

spaced) on the (0, 1) × (0, 1) area, and to interpret the coordinates of the center of each
subsquare as defining the two uniform deviates. We face the problem that there is a square

number of subsquares, which is not necessarily the case of the sample size. We use a grid of

size slightly in excess of
√
n×√n, and remove afterwards superflous deviates.
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5.4.4 Stratification

A method to convert a continuous pdf into a discrete set of values is presented in Hull[32]

under the name “stratified sampling”. Hampel et al. [31] used the name “stylized sampling”

for a similar method. Curran [13] developped this approach for option valuation.

In order to stratify the continuous distribution, we partition the area under the density

curve. Each zone will correspond to one leaf of the tree of scenarios. A natural idea is to

define equiprobable zones (equal areas). In this case, all the leaves are equiprobable, each

future state of the world has the same weight and information is fairly distributed. In each

zone, one value is chosen to represent the whole zone. Thus, to obtain a set of nbS leaves, we

have to define nbS zones, each with the probability given by the area of the corresponding

zone (1/nbS for an equiprobable tree).

To define the partition, we need to be able to compute the areas below the density

function; i.e. to compute the cumulative distribution function. The density functions we

will use are very complex and it is not always possible to analytically describe the cumulative

function. When we don’t know the cdf analytically, we use Romberg’s numerical method

[61] to compute the integral of the given density function.

When we know the cdf, we still need to find the lower and upper bounds of each zone. Of

course, the upper bound of a zone is the lower bound of the following one. So, we just need

to find the upper bound of each one, as well as the lower bound of the very first zone. The

distribution of returns range from minus infinity to infinity. However, numerically, the value

minus infinity is not defined and a huge negative number cannot be used due to numerical

problems (domain of definition) with the logarithmic functions used to define the density

functions. This problem is easily solved by performing a quick search in the negative domain

to find an adequate value for which the density function can be considered as null. The same

is performed for the largest upper bound. When computing the upper bound of each zone,

it is not possible to invert the numerical cumulative function in order to obtain a function

of the required probability giving as result the corresponding return. Therefore we perform

a dichotomic search over the returns.

When the zones are defined, we have to choose a representative return for each one.

Several choices are possible: the mean of the area, the median of the area, the mean of the

bounds, the upper bound, the lower bound... Each is a possible representative, but some are

perhaps better than others. For example, in the case of the symmetric normal distribution,

using the mean for each zone preserves the global mean. By contrast, using a bound shifts

the global mean. However computing the mean of a zone could be troublesome because if
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we don’t know the analytical expression of the mean, we again need to compute a numerical

integral over a small area. The median is easier to compute but also needs a dichotomic

search to divide the original zone into two equiprobable areas. The easiest method is to use

the mean of the bounds. In the rest of the work, we prefer to use the mean of each zone.

The stratification process is illustrated in Figure 5.12. The vertical plain lines represent

the partition in equiprobable zones under the density curve and the dashed lines represent

the mean of each zone.

Figure 5.12: Stratification

5.4.5 Quality of the sample

To check the quality of the stratification, we have computed the moments of several den-

sity functions, both from their continuous representation, and from their discretization. We

applied the Wilk-Shapiro test to compare the samples with the theoretical Normal distri-

bution. We have not here defined other tests to compare the sample with other possible

distributions.

The stratification method gives an excellent representation of the distribution. The mean

of the sample exactly equals the theoretical mean by construction. The standard deviation

quickly tends to its theoretical value. The disadvantage of the method is the increased

difficulty to compute it with respect to a random generation, but numerically it remains an

easy problem that is far much easier to solve than a portfolio optimization problem like the

one described later.

This method also has the major advantage to give extremely good representations of a

distribution even for a small number of sampled points. A random Monte-Carlo generator

requires larger sample size to reach the same quality. Therefore, the stratification method

allows to reduce the size of the problems to optimize.
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5.4.6 Numerical results

Figure 5.13 illustrates Shimko’s pdf for the S&P500. Thirty equiprobable areas are defined

and the mean of each plotted.

Numerically, for each continuous probability density function described previously, table

5.24 describes the moments for a stratification in 30 equiprobable zones. The results of the

Wilk-Shapiro tests are also included. Those give the probability that the sample corresponds

to a Normal distribution. The first line indicates the historical moments extracted from

the database. The risk-free rate is equal to 0.42% and the dividend yield to 0.096% for

all models. For the two implied pdf’s, the tails constructed thanks to the normal density

function represent about 10% of the probability distribution.

Consensus world

µ σ skewness kurtosis WS

10 years historical data 1.131% 3.658% −0.214 3.816

Normal pdf 1.131% 3.658% 0 3

Normal Monte-Carlo1 1.156% 3.616% 0.015 2.546 100%

extreme values −0.422% 2.629% 1.095 4.533 100%

Normal stratification 1.131% 3.679% 0 2.490 100%

Skewed T pdf 1.131% 3.658% −0.025 3.612

Skewed T stratification 1.131% 3.694% −0.025 2.710 100%
1 mean values over 100 simulations

Risk-neutral world

µ σ skewness kurtosis WS

implied pdf 18/2/2000 0.448% 6.49% −1.183 5.640

implied strat. 18/2/2000 0.448% 6.43% −1.027 4.414 12%

implied pdf 23/2/2001 0.165% 5.927% −0.721 4.129

implied strat. 23/2/2001 0.167% 5.885% −0.622 3.396 32%

(5.24)

The stratification process preserves quite well the first four moments. The fourth moment

is not perfectly estimated, but still close to the moment of the continuous distribution.

Better estimation could be obtained by increasing the sampling size (only 30 scenarios for

this example).

In the case of the Normal distribution, we can compare the moments of the stratified

sample with the moments of the random sample. We have generated 100 random samples and

computed the mean of the four moments. In mean, the fourth moments are well preserved
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Figure 5.13: Stratification
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and close to the moments of the continuous distribution. However, the moments vary greatly

from one random sample to another. When we look at the extreme values encountered, the

fourth moments can be very different from the moments of the continuous distribution. At

the converse, the stratified sample, obtained by the deterministic process presented before,

matches the moments.

Note also that according to the Wilk-Shaphiro test, all the samples constructed from the

Normal distribution and from the skewed t distribution are considered normally distributed.

This shows that we should be very carefull when interpretating such statistical probability

tests. Indeed, the sample size is probably too small to draw rigorous conclusions. Note

however that for the implied pdfs, which have a very different shape, the Wilk-Shapiro test

rejects the normality assumption.

5.5 Probability conversions

5.5.1 Introduction

We want to model the future with a multinomial tree of scenarios representing the consensus

world. Indeed, our final goal is to model a portfolio problem subject to consensus constraints.

So, in order to define the future index returns in each leaf, we will stratify a consensus pdf.

If we consider that the index returns in the world follows a Normal distribution or a

skewed t distribution, we can use directly the pdfs described before. Otherwise, if we con-

struct an implied risk-neutral pdf from the options, then we need to define a translation

method in order to convert this risk-neutral pdf into a consensus pdf.

Conversely, it is also usefull to define a conversion method from consensus pdfs to risk-

neutral pdfs. Indeed, as explained in chapter 4, the risk-neutral probabilities, or their close

cousins the state-prices, are intensively used in finance. In particular, we will use them in

this work to improve the quality of the option pricing process (section 6.3.7) and to define

heuristics to solve portfolio problems (sections 8.5 and 9.3).

5.5.2 From risk-neutral to consensus probabilities

Model

We present here some of Rubinstein’s results [63] to convert risk-neutral probabilities into

consensus ones. There is no such direct tool. However, as Rubinstein notes about his numer-

ical results and the implied tree, “(...) despite warnings to the contrary, we can justifiably
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suppose a rough similarity between the risk-neutral probabilities implied in option prices

and subjective belief. In the diffusion continuous-time limit, the move volatility calculated

from risk-neutral probabilities and the move volatility calculated from the “true” market-

wide (consensus) subjective probabilities converge to the same number as the move size

approaches zero. However, this is not true for the mean. The risk-neutral mean for a single

move is obviously the risk-free rate”. According to these results, the subjective probabilities

could be obtained by shifting the risk-neutral ones by the difference between the risk-neutral

rate and the expected subjective return.

More formally, again according to Rubinstein’s conclusions, it is possible to do the con-

version in a fully specified utility theory framework. Rubinstein gives a classic example

([63]). He considers a complete market economy with a representative investor with con-

stant relative risk aversion who maximizes the expected utility of his terminal wealth subject

to the usual budget constraint that he invests all his wealth. Assume that if the investor

has a initial wealth of one, and a utility function U(·). Let Ri be the return associated to
the scenario i and let q be the continuous dividend yield. Then the investor chooses Ri by

solving the following Lagrangian problem:

max
i

QiU(e
qTRi)− λ(

i

Pi
erT
eqTRi − 1)

where Qi > 0 is the subjective probability and Pi > 0 is the risk-neutral probability (
Pi
erT

=

ψi) associated to scenario i and T is time to the end of the period.

Solving the first order conditions that arise after differentiating with respect to Ri:

Qi = λ
Pi

erTU (eqTRi)
(5.25)

where

λ =
1

i
Pi

erTU (eqTRi)

Assuming a given expression of the utility function (e.g. a logarithmic utility func-

tion U(x) = lnx or a power function U(x) = −(x)−0.65) and knowing the returns Ri and
risk-neutral probabilities Pi for each scenario i, it is now possible to obtain the subjective

probabilities Qi.
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Equiprobable trees

Thanks to the set of equations (5.25), we can convert the real probabilities associated to a

set of returns into risk-neutral probabilities. Risk exists on real markets and so the resulting

probabilities are not equal to the original ones. This also implies that if the returns have

equiprobable risk-neutral probabilities, the subjective ones are no longer equiprobable. So,

when we stratify the implied risk-neutral pdf into equiprobable zones, this results in a non-

equiprobable consensus sample and we cannot use it to construct an equiprobable tree. Four

possibilites are considered now to handle this case.

First, we could do nothing. We decided to use an equiprobable tree to simplify the

explanations, but in fact, this is not a must. We could work without any problem with

arbitrary set of probabilities. By this way, without any other data manipulations, we can

use directly the consensus sample to model the future and the risk-neutral pdf to price the

options.

Second, we could approximate the consensus continuous pdf, not using equations in

(5.25), but by shifting the risk-neutral distribution to the real historical mean. The equiprob-

able returns would then be obtained by stratification. This is not a careful approach as the

validity of the shift translation it not proved but is only an assumption (Rubinstein [63]).

Third, we could approximate the consensus cumulative distribution function using equa-

tions (5.25). The first step is to convert the risk-neutral continuous pdf into a discrete set of

(equiprobable) returns as well as possible. The larger the set, the better the representation.

The second step is to convert the probabilities into subjective probabilities using equations

(5.25). The third step is to perform partial sums of the equiprobable probabilities for each

of the consensus returns of the sorted list so as to obtain an approximated cdf. A linear

interpolation can be used to define the intermediate returns. When the size of the initial

sample tends to infinity, we get the perfect continuous distribution. Finally, a stratified

equiprobable sample can be drawn from this cdf.

Fourth, we could try to obtain an exact solution by inverting equations (5.25). If we

set each Qi to the equiprobable probability 1/nbS, then we obtain a set of nbS nonlinear

equations with 2 nbS unknowns. Moreover, each Ri is a function of Pi by stratification of the

risk-neutral cdf considered. We can add nbS nonlinear equations to fully define the system.

It is extremely difficult to solve systems of more than one nonlinear equation. We could try

using Newton-Raphson’s method starting from the approximation presented just above. The

difficulty to work with the equations (especially the last ones based on stratification) and

the solving method itself (requiring derivatives) make this approach very time consuming.
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Moreover, we have no guarantee that a global optimum will be found. For these reasons, we

prefer to first concentrate on the previous approximation scheme.

5.5.3 From subjective to risk-neutral probabilities

The approach

The subjective pdf is required to construct a real tree, but the risk-neutral one is also

useful in some contexts, e.g. in the option pricing process. If we have constructed the

consensus pdf from the implied risk-neutral pdf, we have the advantage to possess both.

Otherwise, when we work with a Normal distribution or with a skewed Student distribution,

we have to define a translation algorithm if we need to work with the risk-neutral world.

We will not consider here a translation tool between the continuous functions, but between

discrete representations. This is not a restriction because our goal is to work with discrete

multinomial trees of scenarios.

To obtain (prior guess) risk-neutral probabilities starting from subjective probabilities,

Rubinstein constructs a standard binomial tree and computes the state-prices (or discounted

risk-neutral probabilities) associated with each leaf. We cannot construct such a multiperiod

binomial tree because, as demonstrated in section 5.1.4, it is not possible to match the index

prices at the leaves of a multinomial equiprobable tree with the index values at the leaves of a

standard multiperiod binomial one. In fact, such a matching does not exist if all parameters

of the binomial tree are required to remain constant at each period, but it exists if we allow

a variation of the parameters (increase u and decrease d) for each possible binomial subtree.

Rubinstein [63] developed a related approach in another context and with other inputs.

For a set of possible future index prices and corresponding risk-neutral probabilities,

Rubinstein [63] shows how to construct a variable multiperiod binomial tree in which each

leaf matches one of the elements of the set. From this tree, he can compute several interesting

option parameters. Note however that he needs as input the risk-neutral probabilities we

are looking for, whereas our goal is to compute them. Our idea is to develop a similar

algorithm but where we replace the risk-neutral probabilities by the consensus subjective

ones as obtained from our pdf. Rubinstein’s process requires probabilities to work on, but

is not able to distinguish between real and subjective ones.

Once we have obtained a multi-period binomial tree with leaves corresponding to the

future index prices for given real probabilities, we can use it to compute the corresponding

required risk-neutral probabilities by following each path to the leaves and applying at each

node the binomial formula for risk-neutral probabilities. Under Rubinstein’s assumptions,
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there is only one implied tree and so only one risk-neutral probability distribution. However,

some of these assumptions were artificially fixed to allow the unicity of the solution.

Rubinstein’s implied tree

Rubinstein constructs a recombining binomial tree where the ending nodal values are or-

dered from lowest to highest. For each binomial subtree, by working backwards, we have to

find the adequate increase and decrease subperiod returns u and d and the corresponding

probabilities in agreement with the final returns and the final risk-neutral probabilities. To

define completely the process, we arbitrarily decide that the risk-free rate is constant per

unit of time. In short, the solution is a “One-Two-Three” procedure, as Rubinstein says :

1. P = P− + P+

2. p = P+/P

3. R = ((1− p)R− + pR+)/rb

where P+, P− are the path probabilities, R+, R− are the node returns and rb is the risk-free

rate over the period.

We quote from Rubinstein: “To start everything rolling, go to the end of the tree and

attach to each node its nodal value Rj and nodal probability Pj. Now take each ending nodal

probability and divide it by the number of paths to that node to get the path probability,

which is in general:

Pj/C
j
n

Also, define the interest return rb as the nth root of the sum of PjRj, so that:

rnb =
j

PjRj

”

The first step shows that the probabilities at the leaves of the binomial subtree sum to

the probability at the root. The second step defines the upward path probability. The last

step defines the return at the root, in a risk-neutral world, as the discounted return expected

value.



Chapter 5. Modelling the future 95

Target state-prices ψj

As mentioned above in our application of Rubinstein’s method, we replace risk-neutral prob-

abilities by real ones. The first step still splits the probabilities between the two leaves. At

the second step, p is the subjective probability of an up move. Finally, the weighted sum is

the expected return at the end of the subtree in a real world and no longer in a risk-neutral

one. The discount factor rb is no longer the risk-free rate, but has to be interpreted as the

expected return required for the period in this real world. R is the interior nodal value of

the return in the true and risk-neutral worlds. In this way, we obtain a binomial tree where

we know the return value for each node.

Let us now see how we can compute the state-prices associated to the tree. By definition

of the state-prices, we have:

1

R
=

erb erb

R− R+
ψ−

ψ+
(5.26)

In this way, we can compute the state-prices at each node. For each possible path to a

leave, we multiply the nodal state-prices encountered. By summing all these products along

paths leading to a same leaf, we obtain the final state-price of this leaf. It directly gives the

risk-neutral probability associated to the leaf return.

It may be tempting to think that, as the binomial tree is recombining, we just have to

compute the final-state price along one complete path and to multiply it by the number

of paths leading to the node. But this is false! Rubinstein has formulated an assumption

that all paths that lead to the same ending node have the same risk-neutral probability.

In our approach, risk-neutral probabilities are replaced by real ones and the risk-neutral

probabilities that we reconstruct do no longer satisfy this property. Consider for instance

the following two-period binomial tree:

Rubinstein’s implied tree is recombining (Rud = Rdu). It was possible to construct it because

the increase and decrease factor are not constant (u = uu = du = d = ud = dd) for each
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period as for a classical binomial tree. As these coefficients define the nodal returns and the

nodal returns define the state-prices, there is no reason to obtain constant state-prices over

time. So, for the computation of the final state-prices, an up move followed by a down move

is not equivalent to a down move followed by an up move:

ψuψud = ψdψdu

We have shown that already for a 2-step binomial tree, depending on the path followed to

a same leaf, we obtain products of nodal state-prices that are different. Of course, when

the number of stages increases, we obtain more and more different paths. So, we cannot

compute the product along one path and multiply it by the number of paths.

The sole solution is to consider every possible path and to perform the products along

each of them. Of course, some shorcuts can be implemented. The partial product obtained

at a given intermediate node can be used for all paths sharing the same initial path to this

node, splitting only afterwards. A recursive procedure is then used to compute the partial

product only once at each node of the tree. This is easy to do, but it gives rise to an

intensive numerical process. If we consider only 30 scenarios at the end of the tree, the

implied binomial tree consists of 230+1 − 1 nodes; more than two thousand million products
to perform! Moreover, we want to model two periods; i.e. 31 subtrees of 30 scenarios.

Fortunately, as the same process with the same parameters is used to create all the subtrees

of the second period, we only have one implied tree to consider to represent the 30 subtrees

of the second period. It is even better when the length of the first and second periods are

identical then only one implied tree is required. In this ideal case, the process takes between

5 and 10 minutes on a PIII600 computer. There is an explosion of the required CPU time if

the sample size is increased as the size of the implied multiperiod binomial tree grows very

fast.

Results and remarks

By this procedure we were able to convert a subjective probability distribution into a risk-

neutral one. This was done by permuting the risk-neutral input with the real one. Could

we do the inverse using the same method : convert a risk-neutral pdf into a real one? The

answer is clearly not. The first conversion was possible because we know a relation between

the risk-neutral probabilities and the returns: the free-arbitrage equations. But there is no

such relation between the real probabilities and the returns.
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5.5.4 Numerical results

Risk-neutral to consensus

Figure 5.14 and Table 5.28 show how the implied risk-neutral pdf measured on the 18th of

March 2000 was converted into a consensus distribution. The three real pdf’s were obtained

respectively by shifting the risk-neutral one, using the logarithmic utility function and the

power utility function. The moments are computed over a sample of 400 returns obtained

by stratification (third method discusses in section 5.5.2).

µ σ skewness kurtosis

risk-neutral 0.449% 6.500% −1.176 5.576

consensus shift 1.131% 6.501% −1.171 5.548

consensus ln 0.856% 6.265% −1.139 5.587

consensus power 1.105% 6.124% −1.112 5.571

(5.27)

We obtain results similar to Rubinstein [63]. There are slight differences between the three

consensus pdfs, but the shapes are very close. Moreover, the shapes of the consensus pdfs

are close to the risk-neutral one. As already mentioned by Rubinstein, the main difference

between a risk-neutral pdf and the corresponding consensus pdf is a modification of the first

moment.

In this sense and as the index return is equal to 1.131%, the logarithmic utility function

gives the worst results. Also, we prefer not to use in the rest of this work the shifted

consensus pdf. Indeed, we prefer not to base the validity of this approach on only one

numerical experiment and on beliefs. So, the last consensus pdf and transformation method

have our preference. We have now all required information to compare all the pdfs presented

in this chapter. This is done in the final section 5.6.

By the way, note also that the stratification of the shifted consensus pdf in 400 zones has

preserved perfectly the last three moments of the distribution (and also the first one but it

cannot be seen in Table 5.28 due to the shift of the mean). This illustrates that an increase

of the sample size leads to improvement of the representation of the moments. Indeed, we

could have wondered if the fourth moment could be exactly represented by a finite sample.

Real to risk-neutral

Table 5.28 gives the results of the conversion of consensus pdf’s into risk-neutral ones. Figure

5.15 illustrates the case of normal distribution. The moments are computed over a sample
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Figure 5.14: Risk-neutral to consensus world
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of 30 returns obtained by stratification. Larger sets of returns require too much time to

construct the adapted Rubinstein’s implied tree.

µ σ skewness kurtosis

consensus normal pdf 1.131% 3.679% 0.000 2.487

risk-neutral normal pdf 0.355% 3.606% 0.104 2.668

consensus skewed T pdf 1.130% 3.694% −0.025 2.712

risk-neutral skewed T pdf 0.354% 3.622% −0.075 2.901

consensus power implied pdf 1.048% 6.224% −0.961 4.160

risk-neutral power implied pdf 0.236% 6.128% −0.947 4.242

(5.28)

Once again, we observe here that the shape of the distributions is preserved, but that

the mean is reduced to come closer to the risk-free rate. However, there is not a perfect

match between the expected return and the historical risk-free rate (0.42%). This is even

more visible for the implied distribution for which the double conversion (first risk-neutral

to consensus then consensus to risk-neutral) returns approximately to the original shape

shifted to the left (lower mean). Small differences in the last moments are essentially due

to the reduced size of the stratification. This is probably due to an underestimation of the

risk-free rate by the conversion process, but could also be partially due to an inadequate

computation of the risk-free rate. As the difference is not huge, that this conversion process

is only used later to illustrate some cases with only the Normal distribution and that this

risk-neutral pdf is only used as a prior guess in the option pricing process, we do not care

too much with the difference.

5.6 Numerical results and conclusions

In this section, in order to compare the different pdfs we can define to construct the tree of

scenarios, we put together the partial results obtained in the previous parts of this chapter. In

section 5.3, we have shown how to construct continuous pdfs to model future index returns.

The two first pdfs, the Normal pdf and the skewed Student t pdf, are constructed using

historical data and are correspond to a consensus world. At the opposite, the implied pdf is

based on option prices observed at time t0. This last pdf is defined in a risk-neutral world.

In section 5.4, we have proposed methods to sample those continuous pdf into discrete sets of

values in order to instantiate the tree of scenarios. Finally, in section 5.5, we have presented

methods to convert the risk-neutral pdfs into consensus ones and the converse. In particular,
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Figure 5.15: Consensus to risk-neutral world
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if we want to use the risk-neutral implied pdf to construct the consensus tree of scenarios,

we first need to convert this pdf into a consensus one. Numerical results corresponding to

these topics were presented at the end of each of the corresponding sections.

For our S&P500 example, Figure 5.14 represents, in the consensus world, all the pdfs we

could use to model the future. As explained in section 5.3.7 and from numerical values in

Table 5.24 of section 5.4.6, there is little difference between the Normal probability distri-

bution and the skewed Student t distribution. As the skewed Student t distribution family

includes the Normal probability distribution, we should prefer to use the skewed Student

t pdf. However, in the context of a theoretical study based on normality assumptions, we

nevertheless should use the Normal pdf in order to be consistent.

Also, there is little difference between the consensus pdfs obtained from the risk-neutral

implied pdf. As stated by Rubinstein, the conversion consists essentially in a shift of the

shape to let change the first moment from the risk-neutral rate to the consensus expected

return. This is illustrated graphically in Figure 5.14 and numerically in Table 5.28 of section

5.5.4. As explained in this section 5.5.4, we have a preference for the power utility function

between the three methods proposed to convert the risk-neutral pdf.

Should we use one of the first two pdfs or the implied one? It is important to remember

that the first two pdfs are computed from past data. For the S&P500, the moments, which

define the two probability distributions, are computed over a 10-year period. This approach

cannot model all the variations in the returns during subperiods but only tracks the trend

over the 10 years. Therefore, when we consider short term periods in the tree of scenarios

and when we use these parameters, we make first an approximation and second a strong

hypothese. First, we probably miss the short term variations and second, we also consider

that the long term past trend represents well the short term future. Of course, there exists

some econometric approaches, e.g. the GARCH model proposed by Lambert and Laurent

[42], to better predict the parameters of these pdfs. By contrast, the implied pdf is based on

instantaneous information: the option prices at t0. As mentioned before, the current option

prices reflect what the investor expects today about the future index returns. Figure 5.11

shows clearly the difference between the two “historical” pdfs and implied ones. We see also

in this figure, that the shape of the implied pdfs change depending on the period. So, this

approach already seems more appealing.

Moreover, the implied pdf is not a parametric function defined by only a few moments.

It can take any shape according to the option prices. Rubinstein [63] and Shimko [64] even

obtained implied pdfs with two modes. This cannot be represented by the first two pdfs.

Finally, there is one important more reason to use the implied pdf, but it does not
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yet appear in these numerical results. The implied pdf is defined according to the options

observed on the market. Therefore, there is a strong relation between both of them and so

the pdf and the options define a coherent set. At the opposite, we will show in the numerical

results about portfolio optimization, that using at once a Normal pdf and market option

prices lead to incoherencies and abnormal returns.

For these reasons, we prefer to use an implied pdf. However, we make the same com-

ment as in the second paragraph: in the context of a theoretical study based on normality

assumptions, we nevertheless should use the Normal pdf in order to be consistent



Chapter 6

Modelling option prices

6.1 Introduction

We would like to consider not only indices and stocks in the tree of scenarios but options as

well. Large investment societies intensively use options because options are very powerful

tools. Thanks to their low prices, options provide financial leverages and also allow to

precisely shape portfolio values and insure portfolios, due to their typical piecewise linear

payoff pattern.

Options are complex tools. They are defined by several parameters which depend on

the underlying asset. We have already presented the main characteristics of options in the

introductory chapter on finance. To go further in the modelling process, we will now develop

this subject in the next section.

One of the main modelling issues when working with options is to define their price. If

we are interested in the option price today, we can simply oberve it on the market. We can

also use the Black and Scholes formula or construct a binomial tree; which link the option

price to the price and the distribution of the underlying asset as mentioned in Chapter 4. It

is likely that the three corresponding values will be different. This is due to the hypotheses

behind each model : continuity, normal return distribution, market... It is also likely that

these three values will not be coherent with a tree of scenarios model, because the hypotheses

underlying the construction of the tree and the computation of the option prices are not the

same. Section 6.3 will specify the conditions of no-arbitrage to satisfy in order to obtain

valid prices for the scenario model.

The conditions stated to price options in the case of a multinomial tree of scenarios are

not enough to uniquely define the option prices, as is the case for the binomial tree approach.

We will present some additional constraints and objective functions to improve the quality

103
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of the prices and to fit closer to real market observations. This is explained in the next

subsections of Section 6.3.

We have discussed until now a one-period option pricing model. However in order to ob-

tain more flexibility, we would like to work with multi-period multinomial trees of scenarios.

This leads to several difficulties because the last periods depend on the previous ones; so

available information is partitioned over the whole tree. In Section 6.4, we present how to

compute prices for a multi-period tree. More generally this section is devoted to numerical

optimization issues. Exact methods and heuristics are proposed there.

So Sections 6.3-6.4 explain how to compute option prices in a multi-period tree of sce-

narios. The quality of the results depends on our ability to model the future. Especially,

it is more difficult to model option prices for periods far in the future than for the initial

one, since we have less information. The quality of the representation of the risk-neutral

world for each period is determinant to solve this problem. Section 6.5 explains how to de-

fine the risk-neutral probabilities as well as possible in agreement with the observed option

prices and the distribution of the underlying asset. As a result, the optimization process

returns information about the risk-neutral world that will be useful to model real problems,

especially the Value-at-Risk model presented in the next chapter.

We have considered several models to price options and represent the future. We need to

check the quality of the solutions. Also, to improve the results or simply to help the investor,

it could be useful to perform some option cleaning processes. This is developed in Section

6.6.

Finally, in Section 6.7, some numerical results illustrate the theoretical developments

explained in this chapter.

6.2 Definitions

6.2.1 Introduction

All options cannot be handled the same way. To be able to fully define the model, we

have to review some characteristics of options not presented in Chapter 4. In the following

subsections, we will present the most interesting contract specifications of the exchange-

traded options and consequences for the scenario model. As stocks and indices do not have

the same characteristics and behaviors, some distinctions must be made. More details can

be found in [32, 51, 49, 52].
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6.2.2 European and American options

There exist two main families of options : European and American ones, distinghished

by the time at which the owner can exercise his option. “American exercise” means that

the option may be exercised at any time between the day of the purchase and the strike

date. “European exercise” means that the option may only be exercised on its expiration

day. Many of the cash-based index options (the most popular type) have the European

style (cash-based options are options for which the settlement is made in cash rather than

by providing all the equities of the index, which is often impossible due to the number of

equities in the index). Some index options have the American exercise feature. For example,

options on the S&P500 and on the NYSE index are cash-based European options. However,

the option on the S&P100 is a cash-based American option.

It can be shown that it is not optimal to exercise an American call before maturity.

Therefore American and European calls can be handled uniformly. Only the American put

has to be treated differently.

In this work, we will consider models where the options can be exercised at one predefined

date; i.e. we will focus on European options.

6.2.3 Strike price

It is important to know the strike price scheme to be able to model options that cannot be

observed today (because they don’t yet exist), but will appear sometime in the future (in the

second and subsequent periods of the tree of scenarios). Based on this scheme, an automatic

procedure to construct options over each period can be developped. We now present some

of the features of the scheme:

• When creating options, the usual rules followed by markets is to space strike prices
depending on the underlying stock price S as follows:

— S ≤ $25 : $21
2
spacing;

— S ∈ ]$25, $200] : $5 spacing;

— S > $200 : $10 spacing;

For indices, the strike prices vary depending on the underlying instrument. Typically,

index option contracts will have strike price intervals of 2 1/2 points or 5 points (e.g.

S&P100 and S&P500) when time to maturity is close by and 10 points (i.e. S&P100)

or 25 points (i.e. S&P500) for later expiration months.
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• When an option with a new expiration date is introduced, the two strike prices closest
to the current stock price are usually selected for this option. A third one may also be

selected if one of the first two strike prices is very close to the existing stock price.

For indices, in-the-money, at-the-money and several out-of-the-money strike prices will

be proposed;

• If the stock price rises above the highest current strike price, a new, higher strike price
is usually introduced. The same is true if the stock price falls below the lowest current

strike price.

6.2.4 Expiration date

To construct the multi-period tree of scenarios we have to define the beginning and the end

of each period. An optimal choice takes into account expiration dates of the options. Again,

it is useful to know the rules used in practice:

• For a given expiration month, there is only one expiration date: the Saturday imme-
diately following the third Friday of the month;

• Usually, options last less than one year. For a given stock, options follow a specific
cycle of expiration months:

— January cycle: January, April, July, October;

— February cycle: February, May, August, November;

— March cycle: March, June, September, December.

On a given day, the stock options traded are those with the next two coming expiration

dates (on Saturday of each month of the year) and the next two months coming after-

wards in the cycle. This implies that at a given day, there exist only four expiration

dates.

For example, IBM is on a January cycle. At the beginning of February, options are

traded with expiration dates in February, March, April and July.

For indices, it is more complex, and depends on the underlying instrument. For exam-

ple, the S&P100 is characterized by four consecutive expiration months. The S&P500

trades with the three near-term expiration months plus three months of the March cycle

(or equivalently expires each of the months of the March cycle plus the two near-term
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months not in the cycle). At the beginning of February, S&P500 options are traded

with expiration dates in February, March, April, June, September and December.

• When an option expires on a Saturday, a new one is created the following Monday.

• There exist longer-dated stock options: LEAPS (long-term equity anticipation securi-

ties). For stocks, these can have one expiration date in January up to two years into

the future. For indices, they can have one expiration date in December up to three

years into the future.

In our models, problems appear when expiration dates fall before the end of a period.

These problems could be solved by using discounted cash-flows. However, we prefer to avoid

them altogether by imposing that the creation and expiration of options should be possible

only before the initial period of the model, at the end of each period, or after the last period.

There is only one key date per month for each option and, except for the special case of

LEAPS, about 10 key dates during the life of an option (investment horizon less than one

year for an option).

6.2.5 Settlement price and date

• As explained above, for an option on an index, the settlement is in cash rather than
by providing the underlying portfolio of stocks. The settlement procedure is different

for European and American style options.

• For American index options:

— Last trading date: third Friday of the expiration month;

— Settlement price computed each day with the last (closure) trading prices reported

for each of the underlying stocks. Last possible “settlement” date: third Friday

of the expiration month;

— Expiration date: the Saturday (not a business day) following the third Friday.

• For European index options:

— Last trading date: the Thursday (if it’s a business day) preceding the third Friday

of the expiration month;

— Settlement price computed on the basis of the opening prices of each of the un-

derlying stocks (even if the underlying markets do not open at the same time)

the third Friday of the expiration month;
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Figure 6.1: Intrinsic value and option value

— Expiration date: the Saturday (not a business day) following the third Friday.

It is important to note that the amount received by the investor at the expiration of the

option is not the difference between the index value and the strike price, but the difference

between the settlement price and the strike price. Of course, we can expect difference to be

very small. We only model the index price in a tree of scenarios so as to avoid complexity

of computation of the settlement price.

6.2.6 Intrinsic, time and volatility values

The intrinsic value of an option is its payoff at maturity. Options out-of-the-money have

value zero. The payoff of options in-the-money is the difference between the price of the

underlying asset and the strike price. Thus, the intrinsic value is a piecewise linear function.

To obtain the value of an option at some instant before maturity, we have to add two other

components: time value and volatility value. The time value is a positive (negative) constant

for calls (puts) in-the-money and zero otherwise. The volatility value is a nonlinear function

of the underlying value. This value can be negative or positive.

As a result, the option value is either a piecewise affine function of the stock price or a

more general non linear function. This is illustrated in Figure 6.1. The affine function has

nicer properties and could lead to simplifications when solving real problems. In particular,

these properties will be used to handle the guarantee constraint in the next chapter.

6.2.7 Ask and bid prices

Each option is defined by two prices. The ask price is the price the investor has to pay to

purchase the option. When he sells the option, he receives the bid price. The bid price

is always smaller than the ask price. The difference between the two prices is the bid-ask

spread.
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Option price Maximal spread

≤ $0.5 $0.25

]$0.50,$10] $0.5

]$10,$20] $0.75

> $20 $1.00

Table 6.1: Bid-ask spread limits

Usual option pricing methods define only one price for each option, even if both prices

are required to match reality. We will show in Section 6.3.5 how to construct such prices to

be as close as possible to real values observed on markets.

6.2.8 Size of a contract

One option contract gives the holder the right to buy or sell 100 shares at the specified strike

price. This is convenient since the shares themselves are normally traded in lots of 100. Note

that the quoted option price is the price of an option for one share; i.e. one contract costs

100 times the quoted price.

For LEAPS on indices, one contract is an option on 100 times one-tenth of the index;

i.e. the index is divided by 10 for the purposes of quoting the strike price and the option

price (otherwise a contract would be too expensive). Our model makes no difference between

short-dated and long term contracts.

The fact that we work with indivisible lots of options must be taken into account when

defining a model for real problems.

6.2.9 Market limits

Each exchange specifies a position limit for each stock. This defines the maximum number

of option contracts that an investor can hold on one side of the market (e.g. 8000 contracts).

Long calls (a positive quantity) and short puts (a negative quantity) are considered to be on

the same side. Short calls and long puts are on the other side.

The exercise limit defines the maximum number of contracts that can be exercised by

any individual in any period of five consecutive business days.

The exchange also sets upper limits for the bid-ask spread with respect to the option

price. Typical limits are given in Table 6.1.

These real constraints are easy to integrate in models based on a scenario tree.
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6.2.10 Commissions and taxes

Commissions

For the retail investor, commissions vary significantly from broker to broker. Discount

brokers generally charge lower commissions. The actual amount charged is usually calculated

as a fixed cost plus a proportion of the dollar amount on the trade. For example:

• Trade ≤ $2500 : $20 + 0.02 of the dollar amount;

• Trade∈]$2500, $10000] : $45 + 0.01 of the dollar amount;

• Trade > $10000 : $120 + 0.0025 of the dollar amount.

The typical maximum commission is $30 per contract for the first five contracts plus

$20 per contract for each additional contract. The minimum commission is $30 for the first

contract plus $2 per contract for each additional contract.

The commission must be paid each time the investor sells or buys a contract. When the

option is exercised, the investor pays the same commission that he pay would when placing

an order to buy or sell the underlying stock. In general the commission system tends to push

investors in the direction of selling options rather than exercising them.

Taxes

The taxes are complex and impossible to describe in full generality. All these character-

istics are not useful to price options and construct the tree of scenarios, but are important

to model before trying to solve a realistic problem.

6.3 Option pricing models

6.3.1 Introduction

To define an option price at the root of the tree of scenarios, we can observe its price on

the market. At each possible date and node of the tree, we can use either the Black-Scholes

formula or a binomial tree approach. These classical methods are briefly described in Chapter

4. Unfortunately, when used in our multinomial representation of the future, these prices

usually lead to numerical, artificial arbitrage opportunities, which in turn lead to unbounded

solutions for the optimization model. This difficulty disappears if we set bounds on the

variables involved in the optimization model, but then the optimal solution becomes an

artificial one, where some or all quantities reach their bounds. A more satisfactory solution
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consisits in finding prices that satisfy the arbitrage equations. This will be discussed in

subsections 6.3.2-6.3.7.

The market represented by a multinomial tree (involving more than two scenarios) is not

complete, as there are more unknowns than equations in the no-arbitrage conditions and

so, in general, an infinity of solutions satisfying the no-arbitrage equations. We will develop

here several models to select the solution corresponding best to reality.

In this section, we will only consider one-period trees of scenarios. The generalization is

left for Section 6.4.

6.3.2 Arbitrage equations

Definition

The arbitrage equations were presented in section (4.4). We reformulate them here for the

case of a one-period tree of scenarios. To exclude arbitrage opportunities in a one-period

tree of scenarios, there must exist a positive vector ψ such that:

1

St
˜popt1
...

˜poptnbOpt


=



er(T−t) . . . er(T−t)

ST1e
q(T−t) . . . STnbSe

q(T−t)

popt1,T1 . . . popt1,TnbS
...

...
...

poptnbOpt,T1 . . . poptnbOpt,TnbS





ψ̃1

ψ̃2

ψ̃3
...

ψ̃nbS


(6.1)

where t is the beginning of the period, T is the end of the period, r is the risk-free rate,

q is the dividend yield, St is the initial price of the underlying asset, STj is the final price

of the asset in scenario j, ˜poptk is the initial price of option k, poptk,Tj is the final value

of option k in scenario j, nbOpt is the number of options considered, nbS is the number of

scenarios in the tree.

The notation x̃ means that x is an unknown. We suppose that all the option prices

are known at time T either because they are at maturity or otherwise by using a suitable

option pricing method (as will be shown further on). This implies that (6.1) is a set of linear

constraints where the unknowns are only the initial option prices and the quantities ψ.

The vector ψ is the state-price vector. Its elements are the risk-neutral probabilities

discounted by the risk-free rate.

Note that, if nbS > 2, then there are more unknowns than equations in (6.1). So that,

in general, the system is under-determined. We are now going to see how we can compute

“reasonable” option prices which satisfy (6.1).
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6.3.3 The model

If we consider that Black-Scholes gives a good approximation of what the price should be, we

can try to minimize the deviation between the Black-Scholes prices and the ones satisfying

equations (6.1). This is achieved by the following model:

min k(poptk − BSk)2
subject to (6.1)

ψj ≥ 0
poptk ≥ 0

(6.2)

Of course, instead of the Black-Scholes estimates, we could use the observed option price

when available. More generally, we will assume we know an ideal target price for each option.

In Section 6.5, we shall discuss how to obtain such target prices. Then the option pricing

model becomes:

min k(poptk − targetk)2
subject to (6.1)

ψj ≥ 0
poptk ≥ 0

(6.3)

6.3.4 First improvement:

absolute relative objective function

The objective function in (6.3) is the square of the difference between the target price and

the unknown price. We used a squared difference function because it is classic and also

easily optimized by commercial software. However, the errors are amplified by this objective

function. When using market prices as target, the largest differences are observed for options

far in-the-money (liquidity problem), i.e. for options that are very costly and “mispriced”

(overpriced) on the market. By using a squared function, we give more weight to these

options. This implies that we try to adjust all the option prices to match as well as possible

the amplified abnormal extreme prices. It is precisely to avoid similar difficulties that the

implied volatility is usually not computed over all the call options, but only with the ones

nearly at-the-money, or by using some more advanced weighting schemes.

For these reasons, a linear objective function seems more suitable (and this also allows

some pre and post-processing as presented in Section 6.6). As the differences can be positive

or negative, we replace the square deviations by absolute deviations. An sum of absolute
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deviations cannot be handled directly by linear programming methods, but after adding

nbOpt variables which measure the absolute value of each difference, and 2nbOpt constraints

which model these absolute values, we obtain a linear model solvable by the simplex method.

The resulting model is larger than the previous one but still easily and quickly solvable.

Another improvement is to adjust the weight of each option by using a relative difference

instead of an absolute one. Indeed, the target option prices vary from zero to large values.

The absolute differences tend to be larger when the target price is large, and so the highly

priced options are heavily taken into account by the model. This inequity can be removed

by using relative differences; i.e. by expressing each error as a percentage of the target price.

Altogether, we obtain the following linear model:

min k
AbsDifOptk
targetk

= k
|poptk−targetk|

targetk

subject to (6.1)

AbsDifOptk ≥ poptk − targetk
AbsDifOptk ≥ targetk − poptk
ψj ≥ 0
poptk ≥ 0

(6.4)

Another way to weigh the options was suggested to us by Oldenkamp. The idea is to

introduce the option vega (the rate of change of the value with respect to the volatility of

the underlying asset: ∂price/∂σ) to weigh the differences. The goal is to reduce the impact

of some difficult to handle options (deep in-the money), which are typically overpriced on

markets due to liquidity problems.

6.3.5 Second improvement: bid and ask prices

Construction of the prices

Classical option pricing methods give only one price for each option. Also, databases like

DataStream store only one daily price per option. However, on the real market, there is

a difference between the purchasing price (ask price) and selling price (bid price) of each

option. The difference between the two prices is called the bid-ask spread. The typical

market approach is to add (remove) a small sum to the option value to obtain the ask (bid)

price.

In the previous model, we only used one target price for each option and not the cor-

responding bid and ask prices. It is easy to adapt the optimal prices obtained from the

optimization process to define the two prices without losing the no-arbitrage property. Ar-
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bitrage opportunities can only come from two reasons, and to each corresponds only one

investor reaction: either the option price is too low and the investor should buy the option,

or the option price is too high and the investor should sell the option. From this observation,

it easy to show that if {popt1, popt2, . . . , poptnbOpt} is an arbitrage-free system of prices, and

the ask price (resp. bid price) for option k is higher (resp. lower) than poptk, then the

system of ask and bid prices offer no arbitrage opportunities. So, for instance, adding (resp.

removing) a typical market half-spread to the optimal prices derived from (6.4) yields valid

ask-bid prices.

We use this approach as it is not possible to adapt the free-arbitrage equations to take the

bid and ask prices into account. If we look at the arbitrage equations (6.1) we see that there

is no variable to measure the quantities purchased or sold. That is, the arbitrage equations

don’t take into account the operation performed by the investor, and there is no way to split

the option values between the purchase case and the sale case.

Improvement

It is important to understand that the target price is only used in the option pricing process

and will not be used afterwards to model real cases. Instead, the only prices of interest will

be the computed bid and ask prices. This suggests that, setting a precise target price for

each option in the model is not required, but that we can, as in Rubinstein’s implied tree

model [63], relax the target price between the observed ask and bid prices. In this improved

model, the target price becomes an unknown variable constrained between an upper bound

(the target bid price) and a lower bound (the target ask price).

Rubinstein’s constraints are strict. He requires that the optimal option prices fall between

the two corresponding observed bid and ask prices. If such prices do not exist, then the

problem has no solution, meaning that the observed prices allow arbitrage opportunities.

We expect arbitrage opportunities to exist on real markets, even if they are limited!

By contrast, since we cannot tolerate arbitrage opportunities in our optimization models,

our philosophy is to find the closest optimal prices without these opportunities. The idea is

to define the objective function as a sum of penalty terms. If it possible to find an optimal

option price which falls between the bid and ask prices, then there is no penalty. Otherwise,

a penalty term corresponding to the distance between the optimal price and either the bid or

ask price is added to the objective function. Note that at most one penalty term is incurred

per option. As the bid price is always smaller than the ask price, and the constraints impose

that the optimal price should be smaller than the ask price and larger than the bid price,
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there is only one possible violation for each option: either the optimal price is smaller than

the bid price (and there is no problem with the ask price) or the optimal price is larger than

the ask price (and there is no problem with the bid price).

After optimization, we adjust the prices depending on the value. When the optimal

prices fall in the target bid-ask range, we set the (arbitrage-free) bid and ask prices equal to

the target bid and ask prices, respectively. For other options, we increase the total spread.

When the optimal price is less than the target bid price, then we set the (arbitrage-free)

bid price equal to the optimal price, and the (arbitrage-free) ask price to the target ask

price. Therefore the resulting spread is larger than the target spread. A similar procedure

is applied for the opposite case. In other words, for most options, the bid and ask prices

correspond to the observed bid and ask prices. For the others, at least one of the bid or

the ask is set to the target value, and the other is set as close as possible without arbitrage

opportunities. This approach leads to smaller deviations between the optimal and target

prices than in the previous models.

A second advantage of this approach is to allow compensations between options. Indeed,

in this approach and for each option p, there are an infinity of target prices between the

target bid and ask prices by comparison to the unique target price in the previous models.

For each value which satisfies the no-arbitrage equations in this range, there is no penalty

term and each value is an optimal solution for the option pricing problem (at a local option

optimization level). Therefore, the optimization process can select indifferently one or an-

other value. As however this value influates on the other option values by the no-arbitrage

system of equations, this set of optimal values for option p gives more freedom to define the

other option prices. Therefore, the optimal price of option p can be selected in the range of

the target bid and ask prices by the optimization process such as to reduce the deviations

for other options.

In this improved model we maintain the relative measure of the errors. This new formu-

lation requires 2nbOpt more constraints than in model (6.3) to define the absolute values (as

for model (6.4)) and 2nbOpt more variables (more than for model (6.4)). This gives:
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Model(OP1) :

min min k
errbid,k+errask,k

targetk

subject to (6.1)

errbid,k ≥ bidk − poptk
errbid,k ≥ 0
errask,k ≥ poptk − askk
errask,k ≥ 0
ψj ≥ 0
poptk ≥ 0

(6.5)

where bidk and askk are respectively the target bid price and the target ask price of the k
th

option, errbid,k and errask,k are respectively the errors measured with respect to those bid

and ask prices. The first two constraints after the arbitrage equations state that the bid error

is null if the price is larger than the bid price, and equal to the positive difference otherwise.

The next two constraints define the error with respect to the ask price. By definition of the

ask and the bid prices, at least one of the two errors is always null for each option.

6.3.6 Third improvement: parity equations

By the arbitrage equations it is possible to express the price of a call as a function of price

of the corresponding put.

c− p = Se−q(T−t) −Xe−r(T−t) (6.6)

Since these two sets of prices are not independent, it is redundant to use both of them in

the model. This is true only if we know with certainty all the parameters. In particular, we

know from the previous chapter that it is difficult to compute the dividend yield q and the

risk-free rate r. This appears clearly in the numerical results for the smile effect presented in

the last section of this chapter. Note also that if we know with certainty all the parameters,

then the put equations are redundant with the call ones but have no impact on the quality of

final solution. For these reasons, we did not modify the software to take the parity equations

into account.
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6.3.7 Fourth improvement: state-prices

The model

Finally, we propose a last modification which is not really aimed at improving the quality of

the option pricing process, but rather at improving the quality of the corresponding state-

prices.

Indeed, a side result of the computation of the arbitrage-free option prices using (6.1) is

the computation of positive state-prices for each scenario. We have defined an optimization

model because we know that if a solution exists, then typically an infinite number of solutions

exist, since our representation of the market is usually not complete. We have chosen to

minimize the deviation of the option prices with respect to target prices, but we have specified

nothing about the other unknowns: i.e. the state-prices.

However, when we look at numerical results obtained with this model (6.5), we observe

that the risk-neutral probabilities are chaotic! They absolutely do not coincide with the risk-

neutral pdf defined in the previous chapter. Since the value of the state-prices will be used

in our models, it is natural to require that the values obtained through different methods be

coherent with each others.

The idea that we have implemented to achieve this purpose, is to add a penalty term to

the objective function, so as to minimize the difference between the risk-neutral probabilities

associated with our tree of scenarios and the “true” target probabilities obtained as described

in the previous chapter. This new term corresponds to the objective function defined by

Rubinstein in the construction of an implied binomial tree (see model (5.22) in Section

5.3.6). However, the main objective must remain the computation of the most suitable

option prices, so that more weight should be attached to the corresponding terms. In fact,

as state-prices are adjusted probabilities, the sum of their values is always smaller than unity

and the sum of the errors tends to be even smaller. If the error on the bid and ask prices are

measured in relative terms, their order of magnitude is similar but the range of values tends

to be larger. Hence, we have not increased the weight of the target penalty term, as when a

significative price on the prices appears, it usually dominates in the objective function.

We maintain a linear model by adding a linear absolute term to reflect the penalty on the

state-price errors. This adds nbS variables and 2nbS constraints and leads to the following

model:
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Model(OP2) :

min k
errbid,k+errask,k

targetk
+ j AbsDifProbaj

subject to (6.1)

errbid,k ≥ bidk − poptk
errbid,k ≥ 0
errask,k ≥ poptk − askk
errask,k ≥ 0
AbsDifProbaj ≥ ψj − ψj

AbsDifProbaj ≥ ψj − ψj

ψj ≥ 0
poptk ≥ 0

(6.7)

6.4 Option pricing optimization

6.4.1 Introduction

In this section, we are going to extend the above option pricing models to a multiperiod

framework. We describe appropriate optimization procedures (Sections 6.4.3-6.4.4).

6.4.2 Optimization over one period

The arbitrage equations (6.1) used in the previous sections are adequate for one-period

models. They take into account the values of the securities at the beginning and at the end

of a period, and this corresponds perfectly with a one-period multinomial tree of scenarios.

By using the values defined in the tree, we can easily instantiate the equations.

Moreover all the constraints are linear, and the objective function is either quadratic or

linear. Classical optimization methods, such as the barrier method or the simplex algorithm,

can easily and efficiently compute optimal solutions. In our implementations, we have used

the professional CPlex optimization library. In this way, we benefit from a large set of

optimized and reliable procedures.

6.4.3 Optimization over two periods

Tree of trees

Difficulties appear when we use more than one period to model the future. We consider here

especially the case of a two-period tree of scenarios. The results will remain valid for more
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periods.

As stated in the previous subsection, the arbitrage equations (6.1) don’t take into account

intermediate dates. Only the beginning and the end of a same period are defined. In order

to handle two-period models, we can consider the multi-period tree of scenarios as a tree of

one-period trees. Indeed, in our construction, the subtrees are not recombining and the tree

is constructed from the root to the leaves by adding a one-period subtree to each leaf of the

previous one-period subtree. This may suggest that the pricing process can be performed

locally for each subtree.

However, in a multi-period tree, the price of an option at each node of the tree depends

on the prices at previous nodes and has an impact on the prices at the nodes of the next

subtrees. Therefore, pricing cannot be done independently at each node or within each

subtree. Let us see this in more detail.

Backward procedure

In the case of an option maturing at the end of the second period, its value at the end of the

first period depends on its value at maturity, i.e. at the leaves of the second period subtrees.

This means that in the arbitrage equations (6.1) for the first period, the final option values

popti,T j are also unknowns. The problem is non linear and cannot be solved due to lack of

information.

However, if we first consider the trees of the second period, then all the information is

available and the option pricing problem can be solved. We then obtain the option prices at

the beginning of the second period, for each subtree. As the root of each second period tree

corresponds to a leaf of the first period tree, these options prices are also the final option

prices at the end of the first period, so that the option pricing problem for the first subtree

can now be solved. In conclusion, a multi-period tree of scenarios can be handled by a

backward procedure.

Note that the set of options can be divided into three parts: options covering only the first

period, options covering at least the two periods and also options that do no exist initially

and that appear only at the beginning of the second period. The backward procedure is only

required if options are defined over several periods. If we consider options covering only the

first period or/and options covering only the second period, then the problems can be solved

separately.

Moreover the set of options covering only the second period is particularly interesting

because it allows to model the future according to realistic market rules (some options will
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exist only if some future states occur and so only in some subtrees). This also implies that,

in a multi-period tree, we can model options that do not initially exist on the market but

that will appear later!

6.4.4 Simulated Annealing algorithm

The backward procedure (first optimize for each of the subtrees of the second period and

next, use the optimal prices found to optimize for the first period) is a local optimization

method. More precisely, as option prices are computed from the end to the beginning of

the tree, initial ones are strongly constrained by final ones. Minimization of errors is still

performed locally at each subtree and there is no global minimization. This implies that

a sub-optimal solution for a second period subtree could lead to an improved first period

solution, which in turn could improve the global solution. In other words, perturbing the

option prices at the end of the second period, while still satisfying the arbitrage equations

for this period, could lead to an improvement of the global solution. A simulated annealing

heuristic has been developed for this purpose.

The idea is to first compute an initial solution by the backward procedure described in

the previous section and then try to improve it by a simulated annealing process (SA). The

outcome of this procedure are option prices at the root and at the leaves of the first-period

subtree.

At each step, SA tries to improve the current solution by changing one option price for

one scenario at the end of the first period. The dimension of the space is nbS x nbOpt. A

list of all these possibilities is constructed and randomized at each stage of the SA process,

so that all the nbS x nbOpt possibilities are considered during a stage.

For the option selected, the price is modified by a tiny value (10 basis points) in the

best direction; i.e. it is reduced (increased) if the current price is larger (smaller) than

the target price. This price is then corrected if necessary to the nearest value in the same

direction leading to no arbitrage. This is done by constructing and solving a new linear

minimization problem in which the objective function measures the difference between the

unknown arbitrage-free price and the SA price, and the constraints are the no-arbitrage

equations (6.1) for the corresponding second-period subtree and a bound equal to the SA

price on the option price to restrain the direction. If such a value exists (i.e. if the problem

is feasible), a new initial option price is computed by locally reoptimizing the first subtree

with the new value of the option.

When a new solution is obtained, its quality is analyzed. There is an improvement if the
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current option price has moved closer to the target option price and if the option prices at the

intermediate date remain close to the target prices (if the second-period penalty increases,

then the increase must be less than a fraction of the improvement of the initial price).

The process stops if the best solution is achieved (penalty for the first period less than a

user-given precision), if no more improvements take place or if a user-given delay is elapsed.

6.4.5 Arbitrage and numerical instabilities

To avoid the arbitrage problem, we should find option prices and state prices which exactly

satisfy the arbitrage equations. These equations divide the solution space in two parts: with

and without arbitrage opportunities.

This could lead to a numerical problem. Indeed, the option prices computed by the

above-mentioned procedure, and declared to be “arbitrage-free”, but however close to the

arbitrage frontier, could possibly lead to arbitrage opportunities when used in subsequent

models and procedures only due to numerical approximations (as the precision of a computer

is by definition limited).

In fact, this problem generally does not appear because we never use directly the optimal

option price, but rather the bid and ask prices obtained by applying a spread around this

optimal value. As the spread is typically far larger than computer precision, this removes

the numerical rounding error and the arbitrage opportunities. The same conclusion can also

be obtained when modelling a transaction cost for each option.

If we want however to model a problem without spread or option transaction cost, then

we could simply fix an artificial spread equal to a tiny value larger than computer precision.

This implies nothing for the investor, who in practice sees no difference between the original

value and the original value plus epsilon, but this removes the numerical differences.

6.5 Target option prices and probabilities

6.5.1 First and second periods

Using more than one period adds some new difficulties. In order to price options using model

(6.7), we need to know the bid and ask prices for each option, and the risk-neutral target

probabilities of the underlying asset. Initially, prices and distribution of probability can be

observed or derived from market data, but this is no longer the case for periods in the future.

Defining target prices for the first period is easily done if the root of the tree corresponds

to the present time. The most natural targets are then the prices observed on the market. It
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is also relatively easy to define target risk-neutral probabilities. If we compute the implied

risk-neutral pdf to construct the tree of scenarios (or use a consensus pdf converted into a

risk-neutral one), then we have more information than required. The stratification of the

risk-neutral pdf directly gives the index value and the state-price corresponding to each leaf.

For the second and subsequent periods, things are more complex, as we cannot observe

future prices on the market. In a theoretical context, under the usual normality assumption,

the Black and Scholes (BS) formula is a good choice to define target prices because most

of its assumptions are satisfied. Even if the true return distribution is not Normal, this

already gives a good estimate. Improved approaches are presented in Sections 6.5.2-6.5.3.

For the target probabilities, there is a solution similar to the one used for the first period. To

construct subtrees of the second period, we need to define the distribution of the underlying

asset, and so we can use the corresponding risk-neutral pdf to define target state-prices.

6.5.2 Improved Black and Scholes formula for the target option

prices

Even if we know that the assumptions behind the BS formula are usually violated on real

markets and in our model, the BS formula has also proved, in practice, to generally give

good approximations of market value. Its main drawback comes from constant volatility

assumption and the inability to match the observed volatility smile.

As we have seen for construction of the index distribution, most improved approaches do

not totally reject the BS formula, but rather modify it to better correspond to reality. In

particular, Shimko [64] has proposed a quadratic approximation of the volatility as a function

of the index price (equation (5.15)) and used this function in the BS formula instead of the

constant volatility σ (equations (5.17)). In single-period models, this improved BS pricing

process yields prices very close to observed prices (nearly exactly equal in our numerical

experiments).

For the second period, we do not have enough information to estimate the volatility of the

tree model. However, we typically expect a similar structure for each subtree of the second

and first periods (we use the same rates, returns...) and so we can expect a similar volatility

smile in each subtree. Therefore, instead of using the classical BS formula to construct a

target price at the beginning of the second period, we should use the improved BS formula

defined with respect to the initial observed smile. In this way, we also introduce a smile

property in the prices of the second period. The smile used is probably not the one we

will observe at this time, but is a good approximation (far better than the constant initial
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volatility).

In conclusion, we use as target prices at the beginning of the first period, the observed

option prices, and at the beginning of the second period, a first possibility is to use the

improved BS prices, as adapted by Shimko, but using the volatility smile estimated at time

t0. A second approach is proposed in Section 6.5.3.

6.5.3 Target option prices from state-prices

Principle

Another approach to define target option prices at the root of a subtree is to use the state-

prices corresponding to this subtree. By definition, to avoid arbitrage opportunities, the

option price at the beginning of a period is given by the sum, over all possible scenarios for

this subtree, of the option price multiplied by the corresponding state-price:

˜popti =
nbS

j=1

ψjpopti,j (6.8)

If we know the state-prices for all periods, then it is easy to compute target prices.

Moreover, we already have a prior guess of these state-prices by sampling the risk-neutral

version of the pdf used to model the period. We will propose in the rest of this section two

methods to adjust the prior guess in order to compute target prices. If these methods cannot

be applied, e.g. if a different pdf is used to model the future in each subtree, then we can

only use the prior guess.

It is important to notice that this principle is a similar approach to the one used until now

to price the options. Indeed, the option pricing model uses this system of equations to define

prices since (6.8) is a subsystem of (6.1) and therefore a subsystem of the constraints of the

pricing model (6.7). Therefore if the state-prices we compute by using one of the methods

presented in this section, match the state-prices which are solution of the pricing process (6.7)

performed afterwards, then the option prices obtained by (6.8) and the pricing model (6.7)

are the same. Moreover, as the state-prices obtained from the optimization pricing process

are the optimal state-prices that match the assumptions and constraints of the model with

respect to the prior guess (sampled from the risk-neutral pdf modelling the period), the

methods presented in this section should try to estimate a priori these state-prices.

This leads to two conclusions. First, the target option prices and target risk-neutral

probabilities are highly correlated. Second, the prediction of second period (target) option

prices could be improved if we were able to tune the discrete set of state-prices. Two
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algorithms are now presented for this purpose.

State-prices replication

Typically, the same probability distribution is used at each period to construct the tree

of scenarios. We expect that in the short term the same distribution remains valid. This

implies that we expect to be in the same (consensus and risk-neutral) world for each subtree.

This also implies that we can learn from the results of the first initial and observable period

and draw useful conclusions for other periods.

Especially, if we compute the optimal option prices for the first period by considering

only options covering this period (so we don’t require the full backard procedure), we obtain

adjusted state-prices that could be used for the other periods. These new state-prices satisfy

the assumptions behind the model and take into account the properties of the options initially

observed on the market, such as the implied smile effect. These properties are then replicated

by the state-prices for the second period.

Clearly, this set of state-prices is compatible with the second-period subtrees. Indeed, let

{reti} be the set of returns sampled from the consensus pdf used to model all the periods,

then the set of index prices {ST i} at the end of one period is given by:

ST i = Ste
reti(T−t) (6.9)

where as before t is the beginning of the period, T is the end of the period and St is the

initial index price. From (6.9), we can reformulate the arbitrage equations (eqarbitmod2) as

follows: 

1

1

˜popt1
...

˜poptnbOpt


=



er(T−t) . . . er(T−t)

e(ret1−q)(T−t) . . . e(retTnbS−q)(T−t)

popt1,T1 . . . popt1,TnbS
...

...
...

poptnbOpt,T1 . . . poptnbOpt,TnbS





ψ̃1

ψ̃2

ψ̃3
...

ψ̃nbS


(6.10)

Note that the first two lines of the payoff matrix, representing respectively the risk-free asset

and the index, are the same for all the subtrees. Therefore, the state-prices solving the first-

period problem, satisfy, for all the periods and all the subtrees, the subsystem composed by

these first two lines. Moreover, the other lines of the system (6.10) define the prices of the

options considered in each specific subtree. All the remaining components of the initial price

vector are the unknown option prices ˜popti and they are directly defined by the state-prices
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using the relation (6.8) of the system (6.10). So, the set of state-prices of the first-period

subtree is a solution satisfying the arbitrage equations (6.10) for all the subtrees.

The complete replication procedure requires two steps. First, we compute the option

prices and state-prices for the first period by considering only the options covering the first

period. Second, we start the backward procedure. We first run the optimization process

for all the subtrees of the second period and for all options (covering only the first period,

both periods and only the second period) using the state-prices obtained at the first step

to define the target option prices. Finally, if there exists options covering the two periods,

we restart the optimization for the first period, but this time with all the options covering

the first period; oterwhise, if there exists no options covering the two periods, the optimal

solution found at the first step remains valid.

State-prices from options with different maturities

In the previous procedure, we have not used all available information. To construct state-

prices for the first and second period, we have only used options with a maturity at the end

of the first period. We do not use options initially available with a maturity at the end of

the second period.

The final state-price for a given leaf of the two-period multinomial tree is given by the

product of the state-price for the first period with the state-price for the second period, along

the unique path from the root to the leaf. Thanks to the options maturing at the end of

the first period and the option pricing model, we are able to obtain state-prices for the first

period. We can now perform the same kind of optimization over the two periods by hiding

the intermediate layer and using only options available today with maturity at the end of

the second period. This will give a final state-price for each leaf. For each node at the end

of the second period, dividing the latter by the corresponding state-price of the first period

yields the target state-price to use for the second period.

The quality of this solution partially depends on the target state-prices for the two-

period model, but also on the representativity (quantity and quality) of the options initially

observed.

This last approach seems better than all the previous ones because it takes into account

both the index distribution and the observed option prices over two periods (with the initial

smile effect). However, one difficult problem remains to be solved: how can we compute the

state-prices over the two periods for each leaf of the two-period tree? We cannot simply hide

the intermediate layer and construct an equivalent one-period tree. Indeed, remember that
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the tree is not recombining, and so that several final leaves can be defined with a same index

price. As when we construct a one-period tree, we can only attach one index price to each

leaf, it means that we have to associate several leaves, characterized by a unique index price

but different state-prices, of the two-period tree to one leaf, characterized by one index price

and one state-price, of the one-period tree. If we solve the pricing problem corresponding

to the one-period tree, we have no way to know afterwards how to split the values of the

state-prices between the leaves of the two-period tree.

Therefore, in order to obtain the two-period state-prices, we only know the two-period

tree and, without using other system of equations than the arbitrage equations (6.1), the

two-period state-prices can only be obtained by the product of the first-period state-prices

by the second-period state-prices that we are looking for. This approach is temporarily let

aside.

6.6 Pre and post-processing

6.6.1 Statistics

We have defined models to compute arbitrage-free option prices. A priori, we cannot predict

if these prices are good estimations of the option prices observed if the corresponding scenario

materializes. Before the pricing process, we can even not predict if the arbitrage-free option

prices are close to the target option prices. We only have the guarantee that the optimal

solution minimizes the bias, first between target prices and free-arbitrage ones, and secondly

between risk-neutral probabilities. Here we suggest performing post-processing to study the

quality of the solution with respect to the target values.

The first set of statistics concerns the bias between target and optimal option prices. We

consider target prices as the best piece of information available to represent the market. For

each option, we measure the absolute difference between the prices. This is consistent with

the linear absolute objective function used in the option pricing model. Moreover, as we will

use bid and ask prices in portofolio optimization problems instead of the target and optimal

prices defined in the option pricing model, and as we have decided to adapt the spread to

match as much as possible the bid and ask target prices, we compute the bias between the

target and optimal bid prices and the same for the ask prices. Numerical results are provided

in the next section.

The second piece of available information consists of the risk-neutral pdf. We have

constructed a pdf to model the future market as we imagine it. We should obtain a close
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representation from the optimal state-prices. We have decided to graphically compare the

target and optimal pdf’s. The risk-neutral optimal pdf is only a rough approximation. There

is no way to convert a discrete set of probabilities into a continuous pdf.

6.6.2 Option cleaning

Unwanted options

We use option prices to model the future and to compute optimal portfolios, but working

with options could be tricky. As option prices greatly influence the results and that some

options can be mispriced on the market, we need to take great care regarding the set of

options to use. Problems will essentially come from options not at-the-money. We consider

here three sources of problems.

First, with respect to what was said in Section 6.6.1, we could face large differences

between target prices and arbitrage-free prices. This is a problem if the target prices are

the market prices, as we will not be able to use the arbitrage-free solution to perform real

investments. In particular, if the optimal solution for a portfolio optimization problem

contains at least one option for which the free-arbitrage price is very different from the

observed market one, then the optimal portfolio value could become suboptimal on the real

market when using the market price. The problems come from the fact that the prices

are defined by complex market operations which cannot all be modelled. However, this

does not mean that the model is not reach enough. Often, such options should not be

considered in real investment problems, e.g. for options deeply in-the-money as explained

in the next paragraph, and therefore should simply be rejected before solving a portfolio

problem. To detect them, we first need to optimize the option pricing problem to be able to

check differences between the prices.

Second, we know that options deeply in-the-money are less traded on the market. This

affects the option price. Numerical computation of the price should take into account this

problem of liquidity, but this is not the case in our model nor in usual methods. It implies

that larger biases between target and free-arbitrage prices will generally appear for these

options. Conversely, we must be careful before using such options, as the prices are only

valid for small exchanged quantities. If the optimal solution of a portfolio problem implies a

large investment in deeply in-the-money option, we could expect that the price on the real

market will be adjusted, and will then modify the inputs of the problem and so change the

optimal investment solution. Once again, if these options are not fully traded on the market,

we should not take them into account.
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The difficulty is to define when an option is not enough at-the-money. We suggest as

a first rule to consider the implied volatility. By inverting the Black and Scholes formula,

we can compute an implied volatility from the option price. Everything else kept constant,

volatility increases with the price. The minimal price is obtained for the limit to zero of the

volatility. If the market price is smaller than the minimal BS price, then it is impossible to

compute an implied volatility. This means that the market price depends on other factors

than the ones modelled in the BS formula and that we must be suspicious with this option.

Three solutions are considered here:

1. Do nothing. We consider that the target price is valid and we use it.

2. We do not consider the option anymore. This is the recommended approach.

3. We adjust the target price. If we are only interested in a theoretical study, we could

replace the target price by either the BS one, or better, by using the adjusted BS

formula taking the smile effect into account.

Third, a problem arises when the optimal or target prices are null or numerically close

to null. This could happen as prices are only constrained to positive values. This will be the

case for example when the option is out-of-the-money in the future in nearly all scenarios,

but slightly in-the-money for one scenario. A null price doesn’t mean that we can buy or sell

an option for zero monetary unit, but that the option does not exist on the market and so

that we cannot invest in this option. Therefore, we here have two possible interpretations of

the option price depending on its value. If we do not take this second meaning into account,

then an optimal portfolio solution could contain a quantity of non-existing options, or worse

could be influated by numerical errors arising from investing huge quantities in nearly free

options. Either we take this into account when defining the model for problems handling

options, or, better, we simply remove these options beforehand.

Pre and post-processing with two optimization steps

The three problems presented just before can be detected at different times. The bias

between prices can only be measured after option pricing optimization. The implied volatily

is measured for the target prices before optimization. The null target price can be detected

before optimization and the null optimal prices afterwards. The option cleaning process is

then divided in two steps: one before optimization and one afterwards.

Moreover, the options removed after the option pricing optimization were used during

this optimization and influate on all the other securities by the arbitrage equations (6.1).
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Thus, these options have a large impact on the optimal solution as the bias is typically large

for them and as the objective function is the sum of the biases. Therefore these options can

occult the others. If we had not considered them initially, we would probably have obtained

a lower bias for the other options.

For this reason, we improve the option pricing algorithm by starting a second option

pricing optimization without these options after the first optimization. Ideally, we should

do it several times until no more changes are observed. In practice, this is not optimal as it

is time consuming and as one pass is enough to detect the “mispriced” options (as they are

not mispriced by the optimization process, but by the market).

One more remark can be made. Post-processing results give an indication about the

adequation between index and options prices. If the index probability distribution used to

model the future is not coherent with the final option prices, it is more difficult to minimize

the bias between the optimal prices and the target prices. Indeed, the state-prices, which

represent the risk-neutral pdf, are used at once to price the initial index price and the initial

option prices. In this case, more options will be removed by the cleaning post-process.

Conversely, few or no options are removed in the post-process when the index distribution

is computed implicitly, and so coherently, from the option prices. This will clearly appear

in the numerical results of Section 6.7.

6.6.3 Selection of options

Initially, we can observe the set of available options on the market. Therefore, it is easy to

define the inputs of the problem for the first period. It is however more complex when we

have to define the second-period set of options. Moreover, this set depends on the scenarios.

The options that will appear on the market depend on the underlying asset. Thanks to

the tree of scenarios, we know for each node all we need about the index. As explained in

Sections 6.2.3, the strike prices can then be deduced automatically. It is important to notice

that the set of options is defined independently for each scenario, so that each set is probably

different. Option prices are obtained by the optimization process defined previously.

Another improvement could be made. The automatic procedure described above could

lead to large set of options, to large sizes of problems and so to long computing times. This

is because all the options are considered, even if a specialist would be able to immediately

say that several options are probably not interesting for the portfolio optimization problem

to be solved. With respect to the VaR portfolio problem discussed in the next chapter, we

propose a pre-processing approach to initially detect the most promising options. As this is
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defined according to the portfolio problem, it will be dealt with in Chapter 9.

6.7 Numerical results

6.7.1 Introduction

In this section we present some preliminary numerical results. The aim is to give a feeling

about the methods presented until now. In Sections 6.7.2-6.7.3, we present numerical results

for the pre and post-processing described in Section 6.6. In Section 6.7.4, we show that the

volatility smile exists on the S&P500 market and so that we will need the developments made

in Section 6.5. Finally, in Section 6.7.5, we compare the option pricing models (6.5) and

(6.7) with respect to the state-prices. Throughout all this numerical section, links are made

with several parts of this work. At the end of each section, we draw some more conclusions

on which models we should use and with wich inputs.

6.7.2 Option cleaning

We consider here the S&P500 index, the same set of 48 options observed on the market

during one month as before, the different density functions defined in Section 5.3 and a

stratification into 30 scenarios. We use the advanced option pricing model (6.7).

In the next table we give the number of options removed during the pre and post-processes

for the different densities. We have decided not to remove options due to large biases between

target and free-arbitrage prices and to study this problem in the subsection 6.7.3.

Density functions Pre-processing Post-processing

Null price No volatility Null price

Normal pdf 0 6 13

Skewed T pdf 0 6 11

Implied pdf 0 6 0

(6.11)

The pre-processing requires as inputs only the target option prices and, to compute the

implied volatilities, the parameters used in the BS formula. As it does not take into account

the density functions used to model the index returns, the results are the same for each pdf.

It is also interesting to say that the removed options are essentially put options (11 over

25 options) and that the options without implied volatilities are the deepest in-the-money

options. This one pass pre-processing filter worked well as no more options are removed

when we restart a new optimization process.
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In the post-process, we observe that the more complex the density function, the fewer

the options removed. This is an indication that the implied pdf seems to better match the

observed option prices. This is not a proof that this implied pdf is the best model to use to

represent the market, but only an indication of adequation between the index distribution

and the option prices! Indeed, we could artificially create “mispriced” target option prices,

construct from them the implied pdf and still obtain a good adequation between them.

These first results tends to suggest that we effectively should not use all the options

observed on the market to model the future and to price the options according to the tree

of scenarios.

6.7.3 Mean deviation

Still using the S&P500 set of data and the same different density probability distributions as

before, Tables 6.12-6.13 give the mean percentage of absolute error between target prices (ob-

served market prices or Black and Scholes prices) and free-arbitrage optimal prices obtained

after considering either the model (6.7) (with risk-neutral probabilities in the objective func-

tion) or the model (6.5) (without risk-neutral probabilities in the objective function). The

differences are expressed in a relative percentage form instead of an absolute dollar bias.

To be able to make valid comparisons, we have decided to work with exactly the same

set of options for all the pdfs and so we have removed the 13 options rejected by the normal

pdf post-processing. Therefore, we work with a clean set of options where the largest biases

between target and optimal prices have already been removed.

With Market/ BS/

risk-neutral targets Optimum Optimum

Normal pdf 4.20% 0.14%

Skewed T pdf 3.63% 0.00%

Implied pdf 1.10% −

(6.12)

Without Market/ BS/

risk-neutral targets Optimum Optimum

Normal pdf 4.13% 0.14%

Skewed T pdf 3.45% 0.00%

Implied pdf 0.96% −

(6.13)

The mean difference between the observed market price and the BS price is about 153%.

This explains why we do not obtain the same results in the last two columns of Tables
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6.12-6.13.

The smallest biases are obtained when the option prices are generated by the BS formula.

In this case, it is not surprising that the index representation by the Normal probability

distribution gives very small residues (because of the coherency between the index pdf and

the option prices). Moreover, for both market and BS targets, we again observe a decrease

in error when we use more complex density distributions. Finally, it is important to notice

that even if we add constraints when we set also risk-neutral targets, we do not observe a

significant decrease in quality.

Figure 6.2 illustrates the complete results for option pricing model (6.7) and the implied

pdf. The option prices are given on the vertical axis with respect to the strike prices on the

horizontal axis. The spread around the prices is about 1.25USD; so you cannot distinguish

on the figure between ask, middle and bid prices. For each option, three prices (three marks)

are considered: the market price, the arbitrage-free price obtained when the target price is

the market price, and the BS price. The prices are linearly interpolated between the strike

prices. We observe the typical decreasing pattern for the calls and increasing pattern for

the puts. In this numerical example, the BS formula always underestimates the prices with

respect to the target and free-arbitrage prices. As described in Table 6.12, the free-arbitrage

curves are close to the target curves.

These numerical experiments confirm our previous conclusions. First, the implied dis-

tribution allows to better match the target option prices than any other considered pdf. It

should be used excepted in the case of a theoretical study based on normality assumptions.

Second, the option pricing model (6.7) allows us to construct arbitrage-free option prices

close to the target prices. Moreover, there are few variations of the option prices when using

the model (6.7) instead of the model (6.5). We will however see in Section 6.7.5 that there is

a large increase in the quality of the state-prices. In consequence, we will in priority consider

the option pricing model (6.7) in the portfolio optimization problems discussed later.

6.7.4 Smile effect

Let’s also have a look at the implied volatilities. The call and put market implied volatilities

are represented in the Figure 6.3 as well as the free-arbitrage ones, first for the historical

values of the dividend yield and risk-free rate and then for the implied values. The plot is

very instructive for different reasons.

First, we know that under the BS hypothesis, volatility should be the same for all options.

This is not the case, and the smile effect appears clearly in the market implied volatility
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Figure 6.2: Option prices
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Figure 6.3: Volatility smile
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curves. More important is to notice that the optimal arbitrage-free prices we have computed

are characterized by a similar smile. The option pricing process has preserved this property.

Second, due to the smile convex shape, we already know that it is difficult to represent

volatility by a unique value. But even if we use the most representative one, the at-the-

money implied call volatility, there is still a large difference between the mean historical

index volatility and this instantaneous one. This is a first example to show how difficult it

is to define the parameters to use to instantiate a model.

Third, we observe a spread between the put and call implied volatilities. We know how-

ever that prices of calls and puts are linked by the put-call (arbitrage-free) parity equations.

Everything else kept constant, if the parameters in the BS formula are well defined, we

should then obtain the same implied volatility for the calls and puts defined with the same

strike price. This property is verified for the optimal arbitrage-free prices, which by defin-

ition satisfy the free-arbitrage equations and so the put-call parity relation. Indeed, these

two curves are merged in the plot. We conclude that the parameters used are not perfectly

defined. Effectively, if we use the dividend yield and the risk-free rate implied by the put-call

parity equations instead of the historical rates, we obtain the second plot in Figure 6.3 where

the spread disappears for nearly all the strike prices. However, we still face the difficulty

to compute these implied parameters. In this case, the implied risk-free rate is close to the

historical one but the implied dividend yield is slightly negative which is impossible.

Note also that the free-arbitrage smile lies always between the market put and call volatil-

ity smiles. Moreover, if we consider only calls or only puts during the option pricing process,

then, whatever the dividend yield and risk-free rate, the market and free-arbitrage implied

volatilities are close to each other (we no longer face a put-call parity problem).

This also has an effect on the quality of the prices. For the historical yield and rate,

the observed option prices and the index prices cannot satisfy the arbitrage equations as the

parity equations are not satisfied. Therefore, the option pricing process cannot construct

arbitrage-free prices equal to the target values at the same time for the calls and the corre-

sponding puts; i.e. the process cannot suppress all deviations. This shows once again how

important tuning of the parameters is.

As conclusion, we observe that market prices are effectively subject to the volatility smile

effect and so that we have to use the advanced schemes presented in Section 6.5 to construct

target option prices for the subsequent periods. We observe also that all the results depends

greatly on the quality of the estimation of the inputs. Especially, the dividend yield and the

risk-free rate are two difficult parameters to tune. As explained in Section 5.2.3, we do not

have a perfect solution to this problem.
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6.7.5 Density functions

Figure 6.4 illustrates the pdfs corresponding to the state-prices obtained using option pricing

model (6.7) (with risk-neutral probability targets) and model (6.5) (without risk-neutral

probability targets). The risk-neutral pdfs are only rough approximations. Indeed, in order

to obtain a continuous representation from the discrete set of probabilities given by the option

pricing process, we have linearly interpolated the cumulative distribution between the points

of the discrete risk-neutral set of probabilities, then used the angular coefficient of each of

the lines at the middle return to construct a density value. A complete pdf is obtained by a

second linear interpolation between the density values. This rough procedure could partially

explain some bad shapes in the figures. Moreover, we work with only (nbS = 30) scenarios;

i.e. discrete probabilities.

The pdf constructed from the state-prices obtained by model (6.5) looks chaotic. At the

opposite, the pdf constructed from the state-prices obtained by model (6.7) is closer to the

target risk-neutral pdf. Clearly, we cannot use these state-prices in the subsequent models if

we do not specify targets in the option pricing model. It could also be useful to improve the

weighting scheme between the price term and the probability term in the objective function

to reduce remaining errors.
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Figure 6.4: Risk-neutral pdfs



Chapter 7

Modelling Value-at-Risk constraints

7.1 Introduction

In this chapter, we introduce a new multiperiod model for the optimization of a portfolio of

options linked to a single index. This model is a variant of two models due respectively to

Dert and Oldenkamp [20], and to Gielen [29]. The objective of the model is to maximize

the expected return of the portfolio under constraints limiting its Value-At-Risk. The future

is flexibly modeled through a multiperiod scenario approach. The current model contains

several interesting features, like the possibility to rebalance the portfolio with options intro-

duced at the start of each period, explicit consideration of transaction costs and of option

bid-ask spreads, realistic pricing and construction of options, etc. Section 7.2 presents the

goals and constraints. The resulting mathematical model is described in Section 7.3.

7.2 The portfolio optimization problem

7.2.1 Introduction

Before presenting its mathematical programming formulation (see Section 7.3), we first pro-

pose a verbal description of the portfolio optimization model, and we discuss some of its

subtleties.

7.2.2 Framework

Modelling the future and the securities

On a financial market, an investor has to take several decisions. First, he has to select

the family of securities in which he will invest. He is not limited to only bonds or only

138
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stocks; e.g. he could also consider options. Second, the securities considered, but also

the amounts invested in each, will depend on his risk aversion. The investor can develop

specific strategies to precisely model the shape of the future payoff of his portfolio investment

(insurance strategies) or to obtain some guarantees; e.g. he could want to limit the expected

volatility of the future returns of his portfolio, or require, with certainty, at least a given

return in the future. To do it, due to their typical payoff pattern (see Section 4.2.4), options

are intensively used.

In this work, we want to give the possibility to the investor to consider all these tools

and strategies and to help him to construct the optimal portfolio. We are interested in

complex portfolios composed with a risk-free investment (one bond or a cash investment), a

diversified portfolio of stocks (represented by an index) and options (on the index). Each of

these securities has been described in Chapter 4.

We will assume, as is often the case, that the investor’s main goal is to maximize the

expected value of the portfolio in the future. The first task is to model the possible future

events in a natural way depending on what seems judicious to the investor, in agreement

with reality. So we resort to the scenario model and all the methods presented in Chapter 5.

We do not want to limit our study to a one-shot investment. Indeed, in many practical

situations, it is not reasonable to assume that an investor will construct a portfolio and then

leave it aside until a given date in the future. It is more likely that the investor will regularly

check the performance of his investment and rebalance his portfolio to take into account new

available information. However, due to various reasons (transaction costs, opening hours of

markets ...), it is usually impractical to do so continuously. A discrete multiperiod model

seems therefore suitable. We restrict our attention in this thesis to a two-period model, but

the model could easily be generalized.

To be able to achieve a given objective at the end of the second period, the investor has to

take some decisions at the beginning of the first period. Clearly, the initial and rebalancing

decisions are not independent. Therefore, our model tries to optimize the decisions over the

whole portfolio life time with respect to the possible rebalancing dates. As mentioned in

Section 5.1.2, the first aim of the two-period approach is to model the degree of freedom

given to the investor when he can dynamicaly rebalance his portfolio. Of course, in practice,

the investor would not rebalance his portfolio at the end of the first period according to

the optimal solution found initially, but he would restart a new optimization by taking into

account all available information and for the next two periods. In other words, he would

adopt a roll-over strategy. For this reason, we feel that considering more than two periods at

a time adds complexity to the model without necessarily improving significantly the quality
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of the initial investment. This hypothesis will not be tested in our work, but could become

the subject of further investigations.

As we want to model the future by a two-period tree of scenarios and to consider options,

all the material presented in Chapter 6 will be clearly of interest in this portfolio optimization

model.

Modelling the risk and the investment limits

We want to consider investor strategies currently used in practice. Until now we have defined

the global goal: maximizing the expected value of the portfolio. Of course, the investor faces

a variety of constraints which restricts his possibilities. The main ones are first, to be limited

by a given budget, and second, to limit the exposure to risk, especially when the investor

works with client’s budgets. To reduce the risk, the classical Markowitz’ approach is to

impose an upper bound (or is to minimize) the volatility of the portfolio, i.e. the standard

deviation of the returns. This method has several drawbacks. In particular, the standard

deviation makes no difference between returns which are higher or lower than the expected

return, even if only the lower returns are actually bad news for the investor. In other words,

the standard deviation is a symmetric tool used to measure a disymmetric financial concept.

Also, the standard deviation is by definition the expected deviation of the returns from the

mean value. Therefore, even if the investor sets an upper bound on the standard deviation,

i.e. on the mean deviation, the final portfolio return could be any value. In worst cases, the

deviation between the final return and the expected one can be far larger than the standard

deviation. In other words, the investor cannot limit his loss using only the standard deviation

as measure of risk.

For the previous reasons, lots of investors prefer to use Value-at-Risk (VaR) measures

of the risk. Value-at-Risk is defined as the maximal loss of the portfolio value with a given

probability and over a specific horizon. This concepts, already presented by Edgeworth

[25] in 1888, becomes very popular when introduced by JP Morgan in RiskMetricsTM [62] in

October 1994 (RiskMetricsTM is a set of tools allowing the users to estimate their exposure to

market risk under the “Value-at-Risk framework”). This measure of risk has the advantages

to only measure the negative deviation of the portfolio values, and to be defined according to

a probability and a time period, which is not the case of typical measures of risk. However,

VaR has also some “drawbacks”. First, it is an incomplete measure of risk. It is possible to

obtain two optimal portfolios with the same expected value, and which both satisfy the VaR

constraint, but however have very different payoffs. In particular, the investor could face
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huge losses for some index prices if they are compensated by large enough profits for other

index prices. It is why we will also add a guarantee constraint. Secondly, as we will show in

Chapter 8 and Chapter 10, the porfolios subject to VaR constraints have typical flat payoff

structures coinciding with the lower bounds defined by the constraints.

In short, the main constraints we set in the model are:

- Budget: the initial cost of settlement is less than a given initial

budget. Moreover, at the beginning of the second period,

the investor cannot invest in a new portfolio more than the

value of the current one. There is no new cash-flow.

- Guarantee: the final value of the portfolio cannot be less than a

predefined fraction of the initial budget under any circumstances.

- Value-at-Risk: with a predefined probability, the final value of the portfolio

cannot be less than a predefined fraction of the initial budget.
Note already that the guarantee constraint is a special case of the Value-at-Risk constraint

where the probability is set to 100%. We could actually impose several VaR constraints in

the model. The methodology would be about the same for each of them, even if the process

could be optimized (several VaR constraints would imply overlapping lower bounds).

Note also that these VaR constraints are only applied at the end of the second period.

We are ready to accept more risk at the end of the first period if we are certain that we

can finally control it. However, obviously, the VaR constraints have consequences for all the

periods, since the decisions taken for the first period must ensure that all the constraints can

be satisfied at the end of the second period. This is a kind of backpropagation of the VaR.

The budget constraint is applied initially and at each leaf of the first period tree of

scenarios. Initially, it can be viewed as a normalizing constraint. At the beginning of the

second period, we have not allowed any new extra cash-flow wich would increase the budget.

Allowing this possibility could be done easily but is without interest if the extra cash-flow is

the same for each second-period subtree. Indeed, in this case, the corresponding amount can

be discounted at the risk-free rate and added to the initial budget. Otherwise, if the extra

cash-flow depends on the scenario at the end of the first period, extensions of the model can

be considered, but difficulties arise to define the extra cash-flow as a function of the scenario.

In some situations, we add one more constraint on the index. Indeed, we are essentially

interested by handling portfolios of options. The index, which is not traded on markets, has

been presented because the options we consider are defined according to it. Therefore, we

will construct models where the index can appear or not in the portfolio.
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Excepted in the previous particular case, we did not add bounds on the quantities in-

vested although this is often applied on financial markets. These constraints could be easily

modelled.

Modelling additional features of the market

In order to model some additional features of real markets, we take into account the trans-

action costs for the index and the options when necessary. We also define a bid and a ask

price for the options.

7.2.3 Time of creation and maturity of the options

Initially, we can observe the options available on the market and introduce their definition in

the optimization model to be solved. However, we would also like to determine initially what

options will be available on the market at the end of the first period. Indeed, in Section

7.2.2, we have decided that the investor can adjust his portfolio at the beginning of the

second period. Therefore, we need to know, for each subtree of the second period, the set of

securities that are available at this time on the market. This will lead to an extension of the

model where new options can be purchased or sale at the beginning of the second period,

and where different options could be handled for each subtree of the second period.

Also, we do not want to restrict the choice of options to those with maturity at the end

of the first or of the second period: the model can handle options with a maturity after the

end of the second period (t2). All we need to know is a value for these options at t2 which

we obtain by applying for example the BS method.

Thus, we consider three sets of options in the model : those covering only the first period,

those covering (at least) the two periods, and those which do not appear until the beginning

of the second period. We make no difference here between options with maturity exactly at

t2 or those with maturity after t2.

Working with options which cover only the second period has several advantages:

• It is realistic to model the possibility to adapt the portfolio with securities which are
not available initially but will be available at the rebalancing date.

• This allows to consider a different set of options for each tree of scenarios of the second
period. This is realistic since the set of options found on real markets depends on the

price of the underlying stock or index.
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• If we consider options only for the second period (or/and only for the first one), the
option pricing processes, performed locally at each subtree, returns optimal solutions

over the two-periods. In this case, we do not need to resort to the SA heuristic

presented in Section 6.4.4. It is not true anymore when we consider options covering

both periods.

• Some specific financial tools and theorems can be used when we deal with complete
market to improve the optimization methods. As, each subtree of the second period

corresponds to a market problem, it is easier to complete all or some subtrees thanks

to options covering only the second period than with options covering both ones.

7.2.4 The costs of transaction

Basically, the portfolio value is obtained by adding up the values of each of its components.

But things become in fact a little bit more complex in the presence of transaction costs and

bid-ask price spreads.

As explained in Section 6.2.10, commissions consist of a fixed value and a variable rate.

They vary between predetermined minimum and maximum values. Moreover, the commis-

sion value depends on the absolute dollar amount exchanged, and not on the quantities of

securities traded. Our model is specially intended for large investments and we will use this

property to simplify the reality. If the initial budget is big, then the fixed commission cost

is small with respect to the whole amount invested and it can be neglected. For the same

reason, as the amount invested in each option can be considered as large, we can use only

one variable rate of taxation; i.e. the rate which applies to the largest trading amounts.

Such a percentage is applied on the options and on the index (which can be viewed as an

option with a null strike price) at each of the three dates of interest in the model (t0, t1, t2).

However, a first complication occurs because the costs of transaction must not always be

applied to the options at maturity. When the investor has a long position on an option for

which, due to the minimal absolute cost of transaction, the price to receive is smaller than

the cost of transaction to pay, then this investor will not exercise the option but trash it.

So, for long positions, we have to model the option value at maturity not only with respect

to the index price, but also with respect to the cost of transaction. In the case of a short

position, we consider that the investor will pay the due amount to the counterpart and the

transaction costs only when the option is in-the-money, i.e. has a positive value. We do

not consider here that the investor on the other side of the transaction, and so with a long

position, could trash the option, and so not required the amount due, even when the option
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is slightly in-the-money, due to transaction costs larger than the option value. Indeed, this

would imply increasing the complexity of the model to include the possible behaviours of

the different investors on the market and to handle very small amounts.

The minima and maxima on commissions are applied on the basis of a one hundred size

contract. But in our models, we consider that we can divide the contracts and that we can

buy or sell individuals options. Indeed, if, as we suppose, the quantities of options traded

in the optimal portfolio are large, then the one hundred size of the contract is small with

respect to these quantities and the divisibility assumption is a small approximation. So, we

simply divide the minima and maxima by one hundred to obtain the values per option for

our model.

The costs of transaction are obviously linked to the dollar amounts traded, and not to

the resulting positions. This is important for options covering the two periods. For instance,

if we modify the position in one option at the beginning of the second period (sell at t0

and purchase at t1 or the converse), then we have to compute the transaction cost on the

basis of the modification and not on the basis of the new position. This implies that, in the

mathematical formulations, we have to distinguish between the (absolute) quantities traded

initially and those traded at the beginning of the second period.

Bid and ask prices

In order to be realistic, we need to define different prices for each option depending on

whether the investor wants to sell the option (bid price) or buy it (ask price). The bid price

is always smaller than the ask price. We have explained in Chapter 6 how these prices are

set in our models.

The existence of bid and ask prices has of course direct consequences on the portfolio

value, but also on the model itself. In particular, we need to be able to make a distinction

between sales and purchases of options. This is most difficult for options covering both

periods, because we can purchase them and sell them at two different dates. Thus, we have

to take into account the absolute positions, and exclude to hold simultaneously a short and a

long position on a same option. In the mathematical formulations, we have to work with one

sum of the quantities traded initially and at the beginning of the second period, and we must

be able to distinguish whether the absolute final position is short or long. Remember also

that in order to handle the transaction costs, we must distinguish between the the quantities

traded at t0 and t1 and not only the absolute positions.

We also have to model the fact that the bid and ask prices are not used to evaluate
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the value of the options at maturity. Instead, the value of each option at this time is given

directly by the difference between its strike price and the index price (see Section 4.2.4).

We model the spread as a percentage of the option value, but we also impose that its

absolute value cannot become smaller than a given minimal constant. This is financially

realistic and also numerically attractive, as it allows us to avoid numerical arbitrage oppor-

tunities as explained in Section 6.4.5.

7.2.5 Other option features

As explained in the previous chapter, the other characteristics of the options, e.g. the

strike-price and the maturity, can be determined by the market rules. Especially, we can

automaticaly define the options and the corresponding strike prices that should appear on

the market for each of the subtrees of the second period.

We will also describe in Section 9.4.3, a heuristic which allows to preselect promising

options to consider in each specific problem instance and so to reduce the problem size.

7.2.6 The guarantee constraint

Basic approach

The guarantee constraint requires that whatever happens in the future, the portfolio value

cannot become smaller than a given guaranteed level. The easiest way to model this con-

straint is to impose it for every possible scenario at the end of the second period (t2), thus

creating a number of constraints equal to the number of scenarios at t2. A subtle, but

bothering, drawback of this approach is that it does not ensure that the constraint will be

satisfied if the future state of the world turns out to be different from those explicitly con-

sidered in the tree, even if this actual outcome only represents a slight modification of one

of the explicit scenarios. This is illustrated in Figure 7.1.

Figure 7.1: Leak in the guarantee constraint
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This is especially true if the representation of the future is poor because the number

of scenarios is too small, or because the sample distribution is bad. When the sample size

increases, the probability that the guarantee constraint is always satisfied also increases, but

the size of the problem and the numerical difficulties explode. In our preliminary exper-

iments, sample sizes smaller than 50 proved insufficient and gave rise to the phenomenon

displayed in Figure 7.1, while sample sizes larger than 100 were numerically intractable.

Therefore, we had to turn to alternative modelling approaches.

Improved approach

Dert and Oldenkamp [20] proposed another model. If none of the options comes to maturity

after the end of the second period, then the portfolio value is a linear combination of the

values of its components. Indeed, the components are the risk-free asset (which is indepen-

dent of the index), the index and the options. A call (put) option has no value if the index

price is lower (higher) than the strike price, and its value increases (decreases) linearly if the

index price is higher (lower) than the strike price; i.e. the option value is a piecewise linear

function of the index. This implies that the portfolio value also is a piecewise linear function

of the index, with break points at each option strike price (see Figure 7.2).

Consequently, if the guarantee constraint is satisfied at two consecutive strike prices,

then it is also satisfied for all intermediate prices. This only leaves us with the two extreme

possible values of the index (zero and infinity) to worry about. For index prices lower than

the smallest strike price, we need to make sure that the portfolio value remains above the

guarantee level. As the lowest possible index value is zero, we can simply add a virtual

strike price of zero. For index prices higher than the largest strike price, we must make sure

that the portfolio value is not a decreasing function of the index value, since otherwise, the

portfolio value will tend to minus infinity when the index value tends to infinity. Note that

for this last case, all the put options are out-of-the-money (valueless) and all the call options

are in-the-money (valuable). This is illustrated in Figure 7.2.

This model has several advantages over the previous one. First, it ensures that the

guarantee constraint is always satisfied even for small trees of scenarios, which allows to

reduce the numerical complexity of theproblem. The number of constraints required in this

model is also typically (when the market is uncomplete) smaller than in the previous case,

since the number of strike prices (linked to the number of options) is typically smaller than

the number of scenarios.

Unfortunately, Dert and Oldenkamp [20] made the strong assumption that all the options
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Figure 7.2: Portfolio value as a piecewise linear function of the index

expire at the investment horizon. Indeed, the payoff function an option is a piecewise linear

function of the underlying asset at maturity only. Before this time, the value of an option

is the sum of its intrisic value (the piecewise linear function), its time value (a constant)

and its volatility value (a nonlinear function) as explained in Section 6.2.6. The result is a

nonlinear function. If we consider options with maturities after the end of the investment

horizon, Dert and Oldenkamp’s model cannot be used. Figure 7.3 illustrates the problem

for a portfolio composed of one call and one put. The constraints at the strike prices are

satisfied, but however the portfolio value is under the guarantee level for infinitely many

index values between two strike prices.

Figure 7.3: Non linear leak

If all the options expire at time t2, Dert and Oldenkamp’s model is clearly better than

the first model. Otherwise, if some options come to maturity after t2, both approaches do

not perfectly model the guarantee constraint. We have not performed in-depth analyses to

decide which one leads to the smallest leaks, but some comments can be made. In Figure

7.3 representing Dert and Oldenkamp’s model, the leak is not as sharp as in Figure 7.1

representing the scenario approach. Therefore, we could expect that the leaks are smaller

with Dert and Oldenkamp’s model. However, the depth of the leak first comes from the
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quantities of options in the portfolio. If we keep the same portfolio as the one described to

construct Figure 7.1, but that we increase the quantities of the two options by a same factor,

then the violation increases. Second, the importance of the violation also depends on the

distance between the prices where the guarantee level is imposed. In Dert and Oldenkamp’s

model, the prices considered correspond to the strike prices of the options, and, in the other

approach, to the prices of the index at the leaves of the tree. As stated previously, when

the market is uncomplete, the number of options is smaller than the number of scenarios.

Therefore, the strike prices leave more space to the violations. For these reasons, in the

sequel, we use Dert and Oldenkamp’s model if all the options expire at time t2, and we

otherwise prefer the other model, with a large number of scenarios.

A second problem appears with the cost of transactions. These costs reduce the payoffs

and this should be taken into account in order to satisfy strictly the guarantee constraint.

Moreover, due to the minimum and maximum limits on the transaction costs, the reduction

depends on the option value. Modelling this effect induces an increase in complexity. As

this remains a side effect, we propose two simplified models in Section 7.3.10.

7.2.7 The Value-at-Risk constraints

In our model, we will consider that the VaR constraint is satisfied when the sum of the

probabilities of the leaves of the tree where the portfolio value is larger than the VaR lower

bound, is larger than the VaR probability. As in the basic approach developed for the

guarantee constraint, the lower bound associated with the VaR constraint is only checked at

the leaves of the tree.

As the lower bound must no longer be satisfied at all the leaves as in the guarantee

constraint, but only at some such as to obtain the minimal VaR probability, the optimization

problem is to decide at which leaf of the tree to apply the lower bound on the portfolio value.

Indeed, it is not optimal to apply it at all the nodes, or at more nodes than required, as this

results in a more constrained problem. This allocation problem can be reformulated as to

decide, for each scenario, whether or not to apply the lower bound. Due to the binary choice

to perform at each leaf, this becomes a Mixed Integer Problem (MIP).

We face the same problem of leaks than for the guarantee constraint, especially if the

number of scenarios is small. However this problem is reduced by the fact that the constraint

must only be satisfied for a portion of the probability distribution of the portfolio values

(according to the VaR probability), and as the guarantee constraint defines a second lower

bound under the VaR constraint (which is a strict lower bound when Dert and Oldenkamp’s



Chapter 7. Modelling Value-at-Risk constraints 149

model is used). In our preliminary experiments, the results are very promising when, after

the portfolio optimization process, we construct a new tree with a larger set of leaves to

only check if the VaR constraint is still satisfied when considering more index values than

the ones used during the optimization. Indeed, in conjunction with Dert and Oldenkamp’s

guarantee model, the VaR probability is always close to the required probability.

Note that a model similar to Dert and Oldenkamp’s guarantee model cannot be devel-

oped for the VaR constraint. Indeed, this approach was defined to ensure a strict (100%

probability) lower bound on the portfolio values and cannot be directly relaxed to a given

VaR probability.

7.3 The mathematical programming model

7.3.1 Introduction

We are now ready for a mathematical programming formulation of the portfolio optimization

model which we went to tackle. This model is inspired by a similar model due to Gielen [29],

but presents some added features as the possibility to consider options covering only the

second period, the definition of trees with unequiprobable leaves, the use of the improved

model for the guarantee constraint, and the construction of more realistic transaction costs

and bid-ask spreads. Also, all the models presented in Chapter 5 and Chapter 6 were

developed to construct valid and realistic inputs for the model presented in this chapter.

Finally, in Chapter 8 and Chapter 9, we propose additional constraints to this model to

construct optimization heuristics.

7.3.2 Notations

Parameters:

Modelling the future

t0: beginning of the first period: time of the initial investment

t1: end of the first period and beginning of the second one:

rebalancing of the portfolio

t2: end of the second period: horizon of investment

nbS: number of scenarios per subtree in each period

Pri : probability of scenario i
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r: risk-free rate

s0: index prices at time t0 in scenario i as defined in Chapter 5

s1i: index prices at time t1 in scenario i as defined in Chapter 5

s2ij: index prices at time t2 in scenario j of subtree j as defined in Chapter 5

q1, q2: index dividend yield for the first and the second period

tstock: transaction cost for the index (rate)

Modelling the options

O1: set of options covering only the first period.

O2i: set of options covering only the second period in subtree i.

O12: set of options covering both periods.

nbO1, nbO2i,

nbO12: number of options in O1, O2i and O12.

popt: option price without spread nor transaction cost.

cost: option costs (transaction and spread).

vopt1{ab}tki: ask or bid price of option k (k ∈ O1) in scenario i at time t
with transaction costs (as defined in Chapter 6).

vopt2{ab}tki: ask or bid price of option k (k ∈ O2) in scenario i at time t
with transactioncosts (as defined in Chapter 6).

vopt12{ab}tki: ask or bid price of option k (k ∈ O12) in scenario i at time t
with transaction costs (as defined in Chapter 6).

popt12tki: price of option k (k ∈ O12) without spread nor transaction cost.
in scenario i at time t

cost12{ab}tki: costs (transaction and spread) of option k (k ∈ O12) in scenario i
at time t in the case of a purchase (a) or a sale (b) .

spread{ab}k: spread to be applied to the option value in order to obtain the ask

and the bid price; expressed as a percentage of the option value.

spreadmin: absolute minimal bid-ask spread price

topt: transaction cost for the options (rate)

tmin: minimal transaction cost (abolute value per option)

tmax: maximal transaction cost (abolute value per option)
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Modelling the constraints

B: initial budget

θ: percentage of the initial budget to be guaranteed at t2

u: minimal probability defining the VaR constraint

λ: percentage of the initial budget to be guaranteed at t2

with probability u

Variables:

Modelling the index

y0a: quantity of the index purchased (ask) at t0.

y0b: quantity of the index sold (bid) at t0.

y1ai: quantity of the index to be purchased at t1 if scenario i materializes.

y1bi: quantity of the index to be sold at t1 if scenario i materializes.

absyi: absolute index quantity owned during the second period

= |y0a+ y1ai − y0b− y1bi|.

Modelling the risk-free asset

z0: amount invested in the risk-free asset at t0.

z1i: amount invested in the risk-free asset at t1 if scenario i materializes.

Modelling the options

x1{ab}k: quantity of the option k (k ∈ O1) purchased (ask) or sold (bid) at t0.
x12{ab}0k: quantity of the option k (k ∈ O12) at t0.
x12{ab}1ki: quantity of the option k (k ∈ O12) purchased or sold at t1 in scenario i.
absx12aki : long position of option k (k ∈ O12) in scenario i.

= max(0, x12a0k + x12a1ki − x12b0k − x12b1ki).
absx12bki : short position of option k (k ∈ O12) in scenario i.

= max(0, x12b0k + x12b1ki − x12a0k − x12a1ki).
x2{ab}ki: quantity of the option k (k ∈ O2) purchased or sold at t1 in scenario i.

Modelling the VaR constraint

αi: equals one if the VaR lower bound is applied in scenario i

and equals zero otherwise
Note that all decision variables, with the exceptions of z0 and z1i, will be constrained to

assume nonnegative values only.
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Ask price:

If at maturity then vspread:=0; //No spread at maturity

Else if popt ∗ (spreada+ spreadb) < spreadmin then { //Minimal spread

dif=(spreadmin− popt ∗ (spreada+ spreadb))/2; (see Section 6.4.5)

vspread=popt ∗ spreada + dif;
} Else vspread=popt ∗ spreada; //Standard spread

price := popt + vspread; //Ask price

ctransac := price ∗topt; //Costs of transaction

If ctransac < tmin then ctransac := tmin; //Lower bound on costs

Else if ctransac > tmax then ctransac := tmax; //Upper bound on costs

If at maturity and price <= 0 then costa := -popt; //Trash option

Else costa := vspread + ctransac; //Option costs

vopta := popt + costa; //Option value

Table 7.1: Ask price

7.3.3 Computation of the bid-ask spread and costs of transaction

The value of an option takes into account the bid-ask spread and the commissions. We have

to define a procedure to compute all these extra costs in every possible case. This includes

the suppression of the spread at maturity, the consideration of bounds on the transaction

costs and the rejection of options with negligeable value. In the case of the purchase of an

option or the settlement of a short position at maturity, the computation of the option value

and of the sum of the costs is performed as described in Table 7.1. Note that to trash a

valueless option, we simply set its value to zero by adjusting the costs. Comments are added

on the right.

The same is done in Table 7.2 for the computation of the bid price in the case of the sale

of an option or for the exercice of a long position at maturity. The main differences is that

we remove the costs of transaction to the price we receive when selling the option and that

we trash options for which the cost of transaction to pay is larger than the price to receive.

7.3.4 The budget constraints

Initially, the price that the investor pays to acquire his portfolio must be smaller than or

equal to his budget.

To compute the cost of the investment in each security, we need to make a distinction

between the purchases and the sales. This is because the bid and ask prices are different and

because we need to identify the kind of position, short or long, in order to apply correctly
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Bid price:

If at maturity then vspread:=0; //No spread at maturity

Else if popt ∗ (spreada+ spreadb) < spreadmin then { //Minimal spread

dif=(spreadmin− popt ∗ (spreada+ spreadb))/2; (see Section 6.4.5)

vspread=popt ∗ spreadb + dif;
} Else vspread=popt ∗ spreadb; //Standard spread

price := popt - vspread; //Bid price

ctransac := price ∗topt; //Costs of transaction

If ctransac < tmin then ctransac := tmin; //Lower bound on costs

Else if ctransac > tmax then ctransac := tmax; //Upper bound on costs

If at maturity and price < ctransac then costb := popt; //Trash option

Else costb := vspread + ctransac; //Option costs

voptb := popt - costb; //Option value

Table 7.2: Bid price

the costs of transaction. For the index and for the options, we define two sets of positive

variables which model the bid and ask transactions. This could be done also for the risk-free

investement if we want to define two risk-free rates (lending or borrowing). Of course, the

optimal solution will be such that, for each particular asset, short and long positions will

not be simultaneously taken.

The initial budget constraint is modelled hereafter:

budget0 (1) :

(y0a− y0b)s0 + (y0a+ y0b)s0 tstock + z0 +
nbO1

k

(x1ak vopt1a0k − x1bk vopt1b0k)

+
k∈O12

(x12a0k vopt12a0k − x12b0k vopt12b0k) ≤ B
(7.1)

Note that as explained in the previous subsection, the parameters vopt include the bid-ask

spread and the transaction costs, with respect to the bid or ask move. No option covering

only the second period, nor dividend yield appear in t0.

Let us now turn to the budget constraint at time t1, when the situation is a little bit

more complex. There is no new external budget to invest at t1, but some funds are provided

by the initial portfolio. First, there is an extra amount available provided by the options

at maturity at the end of the first period. Second, the index provides dividends. Finally,

as there is only one risk-free rate and no cost of transaction on the risk-free investment, we

artificially decide to close the risk-free position (with a payoff of z0er(t1−t0)) and to open a
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new one (z1) for the second period.

For each of the scenarios at the end of the first period, we can rebalance differently

the portfolio while preserving the budget. The left hand term in each of the equations 7.2

models the new investment decisions. The right hand term models the new available budget

provided by the initial portfolio.

The investor can rebalance the portfolio by buying or selling the index, by buying or

selling options, and by lending or borrowing. The transaction costs must be applied only

to the new quantities exchanged on the market and not to the global quantities in the

portfolio. Indeed, transaction costs have already been paid for the first period. Moreover,

the investments can be different for each scenario and so one set of variables is not enough.

For these reasons, we need to define new vectors of variables to model the new quantities

purchased or sold at t1 for each of the subtrees of the second period. It is also why the initial

vectors of quantities y0{ab} and x12{ab}0k do not appear to measure the index and option
contributions to the portfolio value in these budget equations, as they are “maintained” in

the portfolio without any change (and so without any effect on the budget). Note however,

that y0{ab} still appears to measure the dividend yield perceived at the end of the first
period. For each security, the new global quantities are expressed by the sum of the four

variables: bid and ask quantities exchanged at t0 and at t1. Note also that at t1, we close

the positions for the options at maturity. This implies that the vopt1b values are used to

close the long positions (x1a) and the vopt1a values for the short positions (x1b).

budget1 (nbS) :∀i ∈ [1, nbS]
(y1ai − y1bi)s1i + (y1ai + y1bi)s1i tstock + z1
+
k∈O2i

(x2a1ki vopt2a1ki − x2b1ki vopt2b1ki)

+
k∈O12

(x12a1ki vopt12a1ki − x12b1ki vopt12b1ki)

≤ (y0a− y0b)s1i(eq1(t1−t0) − 1) + z0er(t1−t0) +
k∈O1

(x1ak vopt1b1ki − x1bk vopt1a1ki)
(7.2)

7.3.5 The guarantee constraint: first approach

In this first approach, in order to satisfy the constraint, the portfolio value must be larger

than the guarantee level θB for each of the nbS scenarios of each of the nbS subtrees of the

second period. To compute the portfolio value, we consider that the investor sells it at t2.
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If the investor has purchased some amount of the index at t0 and sold some amount at

t1, his goal must have been to reduce the position and not to have two opposite positions

in the same portfolio. Similar statements hold for the opposite transactions and for the

options covering the two periods. This implies that at t2, we must not close separately the

two positionsat t0 and t1 by two separate transactions, but only by one. That is, we must

apply the new costs of transaction to only one closing transaction for a quantity given by the

absolute value of the sum of the previous quantities exchanged. The absolute position for

the index is modelled by the variables absyi, the nbOpt12 options are modelled by variables

absx12aki and absx12bki. Model 7.3 is correct. Indeed, when optimizing the objective

function 7.5, each of the variables absyi, absx12aki and absx12bki will be minimized, and

therefore, in conjunction with their defining constraints in 7.3, will take the correct absolute

values.

final index position (nbS) :∀i ∈ [1, nbS] :
y0a+ y1ai − y0b− y1bi ≤ absyi
− (y0a+ y1ai − y0b− y1bi) ≤ absyi

final option position (nbS.nbO12) :∀i ∈ [1, nbS],∀k ∈ O12 :
x12a0k + x12a1ki − x12b0k − x12b1ki ≤ absx12aki
− (x12a0k + x12a1ki − x12b0k − x12b1ki) ≤ absx12bki

guarantee (nbS2) :∀i ∈ [1, nbS], ∀j ∈ [1, nbS]
(y0a+ y1ai − y0b− y1bi)s2ij eq2(t2−t1) − absyi s2ij tstock + z1i er(t2−t1)
+
k∈O12

(absx12aki vopt12b2kij − absx12bki vopt12a2kij)

+
k∈O2i

(x2a1ki vopt2b2kij − x2b1ki vopt2a2kij) ≥ θB

(7.3)

7.3.6 The VaR constraint

The VaR constraint is similar to a guarantee constraint, but must hold in probability only.

At each of the final leaves, we check if the portfolio value is larger than the given VaR level

λB. If all the leaves are equiprobable, the constraint must be satisfied at least for a fraction

u of scenarios. Conversely, the VaR lower bound can be violated at most a fraction (1− u)
of all scenarios. If each leaf has a distinct probability, then we have to adjust the number of

scenarios according to these probabilities.

We model this constraint by associating a binary decision variable αi to each scenario

i. If αi equals zero, then the lower bound holds for scenario i. Otherwise, the constraint
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is relaxed and the lower bound may hold or not. In order to relax the constraint when αi

equals one, we add a term Mαi to the portfolio value, where M is large enough to satisfy

the VaR lower bound irrespective of the portfolio value. On the other hand, the value M

is chosen as small as possible, so as to tighten the problem formulation (as in [?, Nem]. As

the smallest possible value of the portfolio is given by the guarantee level θB, the minimal

amount M required to satisfy the VaR bound is given by the difference between the two

levels; i.e. (λ− θ)B.

Mathematically, we obtain:

VaR (nbS2) :∀i ∈ [1, nbS], ∀j ∈ [1, nbS]
(y0a+ y1ai − y0b− y1bi)s2ij eq2(t2−t1) − absyi s2ij tstock + z1i er(t2−t1)
+
k∈O12

(absx12aki vopt12b2kij − absx12bki vopt12a2kij)

+
k∈O2i

(x2a1ki vopt2b2kij − x2b1ki vopt2a2kij) + (λ− θ) B αij ≥ λB

VaR sum (1) :
nbS

i=1

nbS

j=1

Prijαij ≤ 1− u

(7.4)

7.3.7 The objective function

The goal is to maximize the expected value of the portfolio at t2; i.e. the weighted sum

of the portfolio values for all scenarios at t2, where the weights are the probabilities of the

scenarios.

objective :

max
nbS

i

nbS

j

Prij(e
q2(t2−t1)(y0a− y0b+ y1ai − y1bi)s2ij − absyi s2ij tstock + er(t2−t1)z1i

+
k∈O12

(x12a0k + x12a1ki − x12b0k − x12b1ki)popt122kij

−
k∈O12

(absx12aki cost12b2kij + absx12bki cost12a2kij)

+
k∈O2i

(x2aki vopt2b2kij − x2bki vopt2a2kij))

(7.5)

There is slight variation in the formulation used to compute the portfolio value in each

scenario by contrast to the one used for the guarantee constraint. The parameters vopt12, i.e.
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the values of options in O12, cannot be used in the objective function, and the parameters

popt12 and cost12, that define vopt12, must be used instead. Indeed, as stated in Section

7.3.5, in order to ensure that the variables absx12bki represent the final short positions

of options in O12, the optimization process must minimize their values. This is only the

case when the coefficients of absx12bki are negative in the objective function, which is not

the case when we use the fomulation with vopt12. At the converse, when we split this last

parameter in its two components popt12 and cost12, the variables absx12bki are only required

in conjunction with the parameters cost12, to reduce the portfolio value by the corresponding

costs. So, as required, this results in a negative coefficient for the variables absx12bki.

7.3.8 Mathematical programming model M1

Putting all the pieces together, we finally obtain the following mixed integer programming

model. In order to formulate it in a standard form, we have inversed the sign of some of the

constraints.

objective :

max
nbS

i

nbS

j

Prij(e
q2(t2−t1)(y0a− y0b+ y1ai − y1bi)s2ij − absyi s2ij tstock + er(t2−t1)z1i

+
k∈O12

(x12a0k + x12a1ki − x12b0k − x12b1ki)popt122kij

−
k∈O12

(absx12aki cost12b2kij + absx12bki cost12a2kij)

+
k∈O2i

(x2aki vopt2b2kij − x2bki vopt2a2kij))

budget0 (1) :

(y0a− y0b)s0 + (y0a+ y0b)s0 tstock + z0 +
nbO1

k

(x1ak vopt1a0k − x1bk vopt1b0k)

+
k∈O12

(x12a0k vopt12a0k − x12b0k vopt12b0k) ≤ B
(7.6)
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budget1 (nbS) :∀i ∈ [1, nbS]
(y1ai − y1bi)s1i + (y1ai + y1bi)s1i tstock + z1
+
k∈O2i

(x2a1ki vopt2a1ki − x2b1ki vopt2b1ki)

+
k∈O12

(x12a1ki vopt12a1ki − x12b1ki vopt12b1ki)

≤ (y0a− y0b)s1i(eq1(t1−t0) − 1) + z0er(t1−t0) +
k∈O1

(x1ak vopt1b1ki − x1bk vopt1a1ki)

guarantee (nbS2) :∀i ∈ [1, nbS], ∀j ∈ [1, nbS]
− (y0a+ y1ai − y0b− y1bi)s2ij eq2(t2−t1) + absyi s2ij tstock − z1i er(t2−t1)
−
k∈O12

(absx12aki vopt12b2kij − absx12bki vopt12a2kij)

−
k∈O2i

(x2a1ki vopt2b2kij − x2b1ki vopt2a2kij) ≤ −θB

VaR (nbS2) :∀i ∈ [1, nbS], ∀j ∈ [1, nbS]
− (y0a+ y1ai − y0b− y1bi)s2ij eq2(t2−t1) + absyi s2ij tstock − z1i er(t2−t1)
−
k∈O12

(absx12aki vopt12b2kij − absx12bki vopt12a2kij)

−
k∈O2i

(x2a1ki vopt2b2kij − x2b1ki vopt2a2kij) + (λ− θ) B αij ≤ −λB

VaR sum (1) :
nbS

i=1

nbS

j=1

Prijαij ≤ 1− u

final index position (nbS) :∀i ∈ [1, nbS] :
y0a+ y1ai − y0b− y1bi ≤ absyi
− (y0a+ y1ai − y0b− y1bi) ≤ absyi

final option position (nbS.nbO12) :∀i ∈ [1, nbS], ∀k ∈ O12 :
x12a0k + x12a1ki − x12b0k − x12b1ki ≤ absx12aki
− (x12a0k + x12a1ki − x12b0k − x12b1ki) ≤ absx12bki

y0a, y0b ∈ IR+
z0 ∈ IR
x1ak, x1bk ∈ IR+ ∀k ∈ O1
x12a0k, x12b0k ∈ IR+ ∀k ∈ O12
y1ai, y1bi, absyi ∈ IR+ ∀i ∈ [1, nbS]
z1i ∈ IR ∀i ∈ [1, nbS]
x12a1ki, x12b1ki, abs12aki, abs12bki ∈ IR+ ∀i ∈ [1, nbS],∀k ∈ O12
x2aki, x2bki ∈ IR+ ∀i ∈ [1, nbS],∀k ∈ O2
αij ∈ {0, 1} ∀i, j ∈ [1, nbS]
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7.3.9 Mathematical programming model M2

A second mathematical programming model M2 is considered here. It only is a slight vari-

ation of model M1. In order to obtain M2, we simply replace the two VaR constraints (7.4)

in M1 by the following ones:

VaR ij (nbS2) :∀s2ij (∀i ∈ [1, nbS], ∀j ∈ [1, nbS])
− (y0a− y0b+ y1ai − y1bi)s2ijeq2(t2−t1) + absyitstock − z1ier(t2−t1)

−
nbO12

k

(absx12aki vopt12b2kij + absx12bki vopt12a2kij)

−
nbO2i

k

(x2a1kivopt2b2kij − x2b1kivopt2a2kij)−Mβij ≤ −λB

VaR i (nbS) :∀i ∈ [1, nbS]
nbS

j

Prijβij ≤ γi

VaR sum (1) :
nbS

i

γi ≤ 1− u

βij ∈ IB ∀i ∈ [1, nbS], ∀j ∈ [1, nbS]
γi ∈ IR + ∀i ∈ [1, nbS]

(7.7)

This model is obtained by splitting into two parts the sum of binary variables appear-

ing in (7.4). Thus, (7.7) is clearly equivalent to (7.4). As we have added a number of

continuous variables, this new model may appear (uselessly) more complex. However, this

new formulation splits in two distinct parts the optimization of the VaR variables: one part

at the whole model level (variables γi) and another part at the level of the second period

only (variables βij). This model will be useful to develop an optimization method based on

Dybvig’s theorem.

7.3.10 The guarantee constraint: improved approach

In model M1, we have formulated the guarantee constraint by checking that it is satisfied

for each scenario. But, as discussed in Section 7.2.6, we have no proof that the guarantee

remains satisfied for other states of the world.

If no option expires after t2, we have also seen that an exact formulation is obtained

by only imposing two simplified constraints. First, the guaranteed lower bound must be
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satisfied when the index price is equal to zero or to one of the strike prices. Second, the

portfolio value must be an increasing function of the index price for prices larger than the

largest strike price; equivalently, the first derivative of the portfolio value with respect to

the index price must be nonnegative in this interval. Some small adaptations are required

to handle the costs of transaction.

If we simplify the notations by considering only one period, no transaction cost and no

spread for the index and the options, the portfolio value is given by one expression of the

form:

V (S) = yS + zerT +

nbOpt

i=1

xipopti

where:

popti = max(0, S −Ki) for a call with strike price Ki

popti = max(0,Ki − S) for a put with strike price Ki

(7.8)

The derivative is easy to compute as all the calls are in-the-money and all the puts are

out-of-the-money when the index value is larger than the largest strike price. The guarantee

constraint can be modelled as:
V (0) ≥ θB

V (Ki) ≥ θB i = 1, .., nbStrike

y + nbCall
j=1 xj ≥ 0

(7.9)

where nbStrike is the number of different option strike prices, which is typically smaller

than the number of options when puts and calls are simultaneously considered.

Let us now see what happens when we introduce transaction costs in the model. There

is no special difficulty when the costs of transaction are computed as a percentage of the

amount invested: this just adds a term in the derivative. But if minimum and maximum

levels are introduced, then the cost of transaction becomes a piecewise linear function. This

is illustrated in Figure 7.4 for a long position in a call option.

Ideally, to ensure a strict constraint, we should consider the additional breakpoints for

each strike price and for each position of the option. Note that the cost of transaction is

removed from the payoff of an option for long positions as for short positions. This implies

that extra breakpoints appear for each of the four cases: short and long positions in calls and

puts. Considering all these breakpoints would enlarge considerably the size of the problem,

and one can wonder if this added complexity is useful. Indeed, differences will appear only
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Figure 7.4: Minimal and maximal transaction costs

when the options are in-the-money, and for transaction costs that are typically small with

respect to the payoff of the portfolio.

In view of these comments, we propose two intermediate, simpler approaches. Either we

consider that the bounds on transaction costs have little effect in-between the strike prices,

and we allow the guarantee constraint to be slightly violated. In this case, the transaction

costs are always computed as a percentage of the amount invested. Or we strengthen the

constraint by considering that, when a transaction cost is applied, it is always equal to the

constant upper bound. By this trick, the option payoff is again linear between the strike

prices. This also implies that the transaction cost is never underestimated, but rather, is,

for each option, slightly overestimated for index values close to the corresponding strike

price. Once again, as the final value of the portfolio is driven essentially by the payoff of

the securities and not by the transaction costs, either method leads to similar quite realistic

results. The first approach is no longer considered in the sequel.

So, if all the options expire at the horizon investment, using the second approach, the

guarantee constraint of the model M1 (7.3.5) can be replaced by the following strong ones:



Chapter 7. Modelling Value-at-Risk constraints 162

guarantee low (nbS. nbStrikei + nbS)) :∀i ∈ [1, nbS], ∀j ∈ [0, nbStrikei]
− (y0a− y0b+ y1ai − y1bi)Kij e

q2(t2−t1) + absyi Kij tstock − z1i er(t2−t1)
−

k∈O12
((absx12aki − absx12bki) popt12K2kij − (absx12aki + absx12bki)costGkij)

−
k∈O2i

((x2a1ki − x2b1ki)popt2K2kij − (x2a1ki + x2b1ki)costGkij) ≤ −θB

guarantee up (nbS) :∀i ∈ [1, nbS]

− (y0a− y0b+ y1ai − y1bi)eq2(t2−t1) −
nbO2ci

k

(x2a1ki − x2b1ki)

−
k∈O12c

(x12a0k − x12b0k + x12a1ki − x12b1ki) ≤ 0.0
(7.10)

where:
nbStrikei : the number of different strike prices in scenario i.

Kij: option strike price, ∀j ∈ [1, nbStrikei].
K0: virtual strike price at zero.

popt12Ktkij: as before but for the strike price Kij instead of the index price.

popt2Kkij: as before but for the strike price Kij instead of the index price.

costGkij: equals tmax if option k is in-the-money when the index value is Kij.

and zero otherwise.

O12c: set of call options covering both periods.

O2ci: set of call options covering only the second period.
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Handling Value-at-Risk constraints

8.1 Introduction

In this chapter, we explore the possibility to detect for which scenarios the VaR lower bound

will be satisfied in the optimal portfolio without performing the optimization of the problem

as described in Chapter 7. Therefore, if we know a priori these scenarios, we do no longer

need the binary variables α in model M1 to detect them, and the problem becomes easy to

solve.

Section 8.2 analyzes the structure of VaR portfolio. First numerical experiments let ex-

pect that the optimal portfolios subject to VaR constraints have typical payoff patterns.

Understanding the structure of the optimal portfolio could help to define improved opti-

mization approaches.

In Section 8.3, we explain how we can simplify the optimization of model M1, if we know

a priori how are distributed the optimal portfolio payoffs over the scenarios.

In Sections 8.4-8.5, we consider two approaches to detect a priori how are distributed

these optimal portfolio payoffs. Both approaches are based on financial concepts. The first

one, in Section 8.4, analyzes common trading strategies involving options. The second one,

in Section 8.5, is based on a theorem due to Dybvig [22, 23].

8.2 Structure of the portfolio

8.2.1 Introduction

The investor wants to maximize the expected portfolio return without violating the guarantee

constraint. Risk is measured here by a Value At Risk constraint. Either it is satisfied or not.

163
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We do not try to minimize a risk measure like the variance in Markowitz’s model.

This has important consequences on the structure of feasible portfolios and the opti-

mal one. It is useful to well understand the portfolio structure before starting to study

improvements of the maximization process.

8.2.2 Theoretical structure

Short position in the index

With a short position in the index, the payoff is negative and the loss becomes huge as

the index price increases. To be sure to satisfy the guarantee constraint we must cover the

position by a long position in a call (with a strike price low enough to satisfy the guarantee

or 100% VaR constraint ).

However, a short position in the index and a long position in a call has the same payoff as

a put with the same strike price. By the put-call parity equations, if there are no transaction

costs, the synthetic put has the same price as the real put. When there are transaction costs,

as in our case, the synthetic put costs more than the real put. So if there exists a put with

the same strike price as the call, we should never take a short position in the index, but

rather take a long position in a put.

Figure 8.1: Short index

Long position in the index

With a long position in the index, the worst case happens when the index value becomes

null. The loss is total but is limited. Two strategies are possible to satisfy the guarantee

constraint, even for this worst case. Either we take a long position in a put to limit the loss

for small index prices or we make a risk free investment to be sure to compensate the loss

in the future. The first solution is not optimal for the same reason as in the case of a short

position: a long position in the index and a long position in a put corresponds to a long
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position in a call. Because of transaction costs, it is better to purchase a call than purchase

the index. The second solution is acceptable. However, we should remember that a long

index is equivalent to a long call with a null strike price. Before choosing this possibility, we

should consider the solution with no index and with calls. The leverage effect of the options

could lead to a better alternative.

Figure 8.2: Long index

No index and long position in calls

If the index value in the future becomes smaller than the strike price, the call is valueless.

A risk-free investment is the first solution to satisfy the guarantee constraint. The amount

invested should at least correspond to the current value of the guarantee bound. The second

possibility is to take a long position in a put with a large enough strike price. Note that this

structure doesn’t reject the possibility of short positions in calls at the same time.

Figure 8.3: Long call

No index and long position in puts

If the index value in the future becomes larger than the strike price, the put is valueless.

A risk-free investment is again the first possibility to satisfy the guarantee constraint. The
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amount invested should at least correspond at the current value of the guarantee bound.

Note that in this case the expected portfolio return is bounded. A long position in a call

with a small enough strike price is the alternative. Note that this structure doesn’t reject

the possibility of short positions in puts at the same time.

Figure 8.4: Long put

No index and short position in calls

This position leads to two problems: total loss if the index price becomes lower than the

exercise price and huge loss (to infinity) if the index prices highly increase. We need to take

a long position in the index or in a call to avoid the second problem. This means that a

short position in calls never happens alone and is only a subcase of a long position on the

index or in the calls.

No index and short position in puts

The risk of total loss can only be covered by a long position in a put or by a large risk-free

investment.

Conclusions

A short position in the index can never happen if all the described options are available. A

long position in the index could theoretically happen, but only in very special situations. The

classical optimal value consists of long positions on options, with or without short positions,

and a cash investment to satisfy the guarantee constraint.

The objective is to maximize the expected return under minimal guarantees. The first

point is that the constraints can ever be satisfied if the portfolio consists of risk-free invest-

ments and long positions in options. Secondly, the highest return can only be achieved with

long positions on options.
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8.2.3 Empirical structure

The theoretical structure presented just above is based on the continuous range of index

values. The whole distribution is considered. In our scenario model, we model the future by

a discrete set of scenarios (prices). This means that the smallest value of the index price is

known (and is generally larger than zero) as well as the largest value (large value, but not

infinity).

This has some consequences on the previous conclusions in the cases of a short position

on the index or in calls. It is now possible to cover a short position in the index by a large

risk free investment because the maximal loss is not anymore the infinity but a large value.

That is still unrealistic. The same is true for a short position in calls.

There are no fundamental changes in the other cases. Theoretically, the worst is to lose

everything. Numerically, the worst is to lose nearly everything (but less). The strategies

stay the same.

8.3 Optimal VaR allocation

8.3.1 Introduction

As already noticed in Dert and Oldenkamp’s paper [19] under specific hypotheses, and also

observed more generally in our preliminary computational tests, the limitation of the risk

by a VaR constraint often results in typical payoff patterns for the optimal portfolio. For

instance, when performing experiments with the S&P500 index, which is characterized by

a large expected return, the optimal portfolio value typically coincides with the guarantee

level when the future index value is low (due to the presence of a risk free investment in

the portfolio), then increases to the VaR level (due to the presence of a few options), and

eventually increases linearly for the largest index values. The content of the optimal portfolio

is a function of the different scenarios, and differs accordingly for each of the portfolios

adjusted at the end of the first period, but the general payoff pattern described here remains

valid.

This pattern appears only because the expected return of the S&P500 is large and its

volatility is reasonably small. By contrast, if a decrease of the index value is expected in

the future (for example if we change the sign of the expected return before computing the

probability density function), then the payoff pattern is reversed.

These observations suggest that, if we were able to understand a priori the structure of

the optimal solution, then the corresponding solution could be simple enough to be computed
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directly without resorting to complex optimization procedures, or at least, the knowledge of

its structure could be used to improve the optimization process. In particular, if we had prior

knowledge about the distribution of the portfolio payoffs in the tree of scenarios, then we

could decide immediately to which leaves of the tree we should apply the VaR lower bound,

and this would result in a model without binary variables which could be solved easily and

quickly by the simplex algorithm. Let us now develop more precisely this idea, which will

play a central role in the remainder of the chapter.

8.3.2 Relaxation of the VaR constraint

Because of the guarantee constraint, every optimal solution of the portfolio optimization

model M1 (see Section 7.3.8) is such that, in all scenarios, the final value of the portfolio is

at least equal to θB. Moreover, because of the VaR constraint, the final value of the portfolio

is at least equal to λB in a fraction u of all the scenarios (assuming that all scenarios are

equiprobable). Note that, in every practical application, λ ≥ θ.

Consider now what would happen if we knew a priori the set of scenarios where the

VaR requirement is satisfied, i.e. where the portfolio value is at least λB. For an arbitrary

portfolio, and for every scenario j = 1, 2, . . . , nbS2, let us denote by V (j) the final value of

the portfolio under scenario j. Moreover, let S be a set of scenarios of size |S| ≥ u× nbS2,
for which we know beforehand (i.e., before solving the optimization model) that they should

satisfy the VaR requirement. Under this assumption, we could safely simplify model M1 as

follows: we would impose the guarantee constraints

V (j) ≥ θB (8.1)

only for the scenarios not in S (compare with constraints 7.3 in model M1), we would impose
the VaR constraints

V (j) ≥ λB (8.2)

only for the scenarios in S (compare with constraints 7.4 in model M1), and we would remove
all binary variables αij from model M1 (i.e., set them to 0). Let us denote by M1(S) this
simplified model. We claim that the optimal value of M1 is equal to the optimal value of

M1(S). Indeed, on one hand, the previous optimal solution of M1 satisfies all the constraints
in M1(S), by construction. On the other hand, any feasible solution of M1(S) is also feasible
for M1, since it necessarily satisfies the VaR requirement for all scenarios in S and it satisfies
the guarantee constraint for all scenarios (due to the inequality λ ≥ θ). This establishes the

claim.
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So, M1 and M1(S) are equivalent. Note, however, that model M1(S) is more attractive
than model M1, because it contains fewer contraints and, even more importantly, because

it does not involve any binary variables. Therefore, we expect M1(S) to be much easier to
solve than M1 (as a rule, linear programming problems are “easy”, while 0-1 mixed integer

programming problems may turn out to be extremely hard to solve optimally).

Of course, in general, we do not know how to set up model M1(S) a priori, since we do
not know beforehand the set S of scenarios where the VaR requirement will be eventually
satisfied (in case the model has several alternative optimal solutions, the set S may even
vary from one solution to the next). Conceptually, however, the idea remains appealing, and

can be cast in a broader framework: if we have prior information about the structure of the

optimal portfolio, then this information could prove useful in simplifying the formulation

and the solution of the mathematical programming model. Alternatively, the same idea can

also be used to develop heuristic solution approaches for the solution of model M1. To see

this, consider now any set S of scenarios such that |S| ≥ u× nbS2, and consider again the
linear programming model M1(S) associated to S as explained above. Then, of course, it is
no longer true that M1 and M1(S) are equivalent. However, every feasible solution of M1(S)
remains a feasible solution of M1, and therefore, the optimal solution of M1(S) provides a
heuristic solution of M1. The quality of this heuristic solution can be expected to be high if

our “guess” concerning S is reasonably good.
In the following sections, we propose to pursue systematically these ideas by investigating

the structure of optimal portfolios in connection with popular investment strategies used in

practice (see Section 8.4), and with related results obtained by Dybvig in a theoretical

framework (see Section 8.5).

8.4 Optimal VaR allocation vs. investment strategies

8.4.1 Trading strategies involving options

In this section, we examine to what extent the structure of an optimal portfolio is consis-

tent with the structures which would emerge from the use of common, intuitive investment

strategies involving options, as considered in the literature (see for example [32]). We con-

centrate on four such strategies which appear to be suitable in different market environments,

characterized by different mean-variance combinations of the index distribution: bullish (in

case of large positive expected returns), bearish (in case of large negative expected returns),

butterfly (in case of high volatility of the returns), and stability (in case of low expected
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returns and low volatility).

Bullish portfolios

Ideally, the investor would like to constitute a portfolio which guarantees a very high return

in every possible state of the world. But unfortunately, there is no free lunch on the financial

marketplace, and every portfolio is usually characterized by a distribution of returns ranging

from (relatively) low to (relatively) high, depending on the scenario that unfolds over the

investment horizon. In practice, therefore, investors, try to match this distribution of returns

to their expectations regarding the future.

To express this notion somewhat more formally, consider any solution of our portfolio

optimization model. As before, let us denote by V (j) the final value of the portfolio in

scenario j, and let s(j) be the price of the index in scenario j. We call a portfolio bullish if

V (j) is a non decreasing function of the value of the index in scenario j, i.e. if

s(j1) ≤ s(j2) =⇒ V (j1) ≤ V (j2)

for all pairs of scenarios j1, j2.

Observe that, if an investor expects that the index price will be high in the future,

then he is likely to construct an agressive portfolio which yields its highest returns when

the index price is high and which, conversely, achieves the lowest returns when the index

price decreases instead of increasing as expected. More precisely, we qualify an investment

strategy as bullish if it produces a bullish portfolio. Such strategies are commonplace in

practice. Implicitly, Dert and Oldenkamp [20] only consider bullish strategies in his work.

If we have reasons to believe that the optimal solution of the portfolio model M1 is bullish,

then M1 can be simplified along the lines described in Section 8.3. Indeed, in this case, the

VaR requirement only needs to be applied to the fraction u of leaves with the highest index

values, since these correspond to the scenarios where the portfolio value will be highest and

hence, where it is easiest to satisfy the VaR requirement (see constraint (8.2)). Also, as

explained above, the guarantee constraint only needs to be applied to the remaining fraction

(1− u) of leaves associated with the lowest values of the index.
Note that the index price at which the portfolio “jumps” from satisfying the guarantee

constraint to satisfying the VaR constraint can be determined (if the distribution is well

represented by the tree) by inverting the index distribution function. Indeed, it is simply

the value for which the distribution function equals (1− u).
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Bearish portfolios

Conversely, when an investor expects that the index price will be low in the future, then his

natural strategy is to construct a protective portfolio to take advantages of low index prices.

We say that a portfolio is bearish if its value V (j) is a nonincreasing function of the price of

the index in scenario j, i.e. if

s(j1) ≤ s(j2) =⇒ V (j1) ≥ V (j2),

and we say that a strategy is bearish if it produces bearish portfolios.

Again, if we know beforehand that the optimal portfolio is bearish, then we can replace

M1 by the simpler model M1(S), where S is the smallest set of scenarios of size at least
u× nbS2 containing the lowest index prices.

Butterfly portfolio

We say that a portfolio is a butterfly when V (j) is a nondecreasing (respectively nonincreas-

ing) function of the index for values of the index lower (respectively larger) than a certain

threshold, i.e. if there exists a price s∗ such that

s(j1) ≤ s(j2) ≤ s∗ =⇒ V (j1) ≤ V (j2)

and

s∗ ≤ s(j1) ≤ s(j2) =⇒ V (j1) ≥ V (j2).
The investor adopts a butterfly strategy (that is, invests in a butterfly portfolio) when he

believes that the future value of the index price should be close to the threshold value s∗,

and is unlikely to assume extreme values (either very high or very low).

When this is the case, we can simplify model M1 by applying the VaR constraints only to

a subset of scenarios around the threshold value, and by applying the guarantee constraint

only for extreme index prices. Note, however, that the correct choice of the set S may

depend on several parameters like the risk free rate, the expected return or the volatility of

the prices. In particular, there is no reason to choose S symmetrically around s∗, nor to
define it by excluding the same number of scenarios with low and with high index value.

Therefore, even under the assumption that the optimal portfolio is a butterfly, selecting S
and computing the optimal portfolio remains more complex than in the bullish or bearish

cases.
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Volatility

A volatility portfolio has the opposite shape of a butterfly: first decreasing, then increasing

as a function of the index price (in financial parlance, this is the shape of inverse butterflies,

straddles, strangles, strips and straps; see [32] for details). Buying this type of portfolio

is justified when the investor thinks that the future value of the index price will deviate

significantly from its expected value. As far as model M1 goes, this situation also is opposite

to the previous one: here, the VaR requirement should be imposed on extreme scenarios,

and the guarantee constraint on central ones. Again, the problem remains of correctly

determining the corresponding set S.

8.4.2 Selection of a strategy

If we can determine when to apply one of the above four strategies, and how to define the

set S in case of the butterfly or of the volatility strategy, then we can transform the mixed

integer problem M1 into a linear programming model which can be solved efficiently by the

simplex algorithm.

If we only know that the optimal portfolio is a butterfly or has the volatility structure,

then the problem of determining the correct choice of the set S remains. Of course, we could
try all possible choices for S. Note that choosing S amounts to choosing an interval of index
prices, and therefore the number of possible choices is of the order of the number of final

states of the world. Since this number is usually quite large, this enumerative approach is not

feasible in practice. We will see in Chapter 9 how a compact and more efficient formulation

of M1 can be derived in this case.

Conversely, if we do not know how to select the optimal strategy, but we know how to

pick the set S, then we could at worst apply the simplex algorithm once for each of the four
strategies and keep the best solution found in the process.

In an attempt to choose, at least heuristically, between the four available strategies, we

have developped two distinct approaches. The first (and most powerful one) is based on

Dybvig’s theorem and will be presented in Section 8.5. We now proceed to describe another,

more primitive approach, which relies on partitioning the space of index returns into four

zones, which we put in correspondence with the four investment strategies. Denote by µ and

σ the expected value and the standard deviation of the index returns, and denote by r the

risk free return. Then, our partitioning criterion goes like this:

(a) if µ is large with respect to r and σ is small with respect to |µ− r|, construct a bullish
portfolio;
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(b) if µ is small with respect to r and σ is small with respect to |µ−r|, construct a bearish
portfolio;

(c) if µ is close to r and σ is small with respect to |µ− r|, construct a butterfly portfolio;

(d) if σ is large with respect to |µ− r|, construct a volatility portfolio.

The criterion can be further operationalized, for example, by specifying

(a) if µ > r + σ/2 then bullish;

(b) else if µ < r − σ/2 then bearish;

(c) else if σ < |µ− r|/4 then butterfly;

(d) in all other cases: volatility (case d)

(see Figure 8.4.2).

Note that these criteria are purely heuristic, as they simply translate the intuitive idea

that the expected “level” of returns forms a reasonable basis for the choice an investment

strategy. But in general, we do not know how to rigorously define a partition of the (µ,σ)-

space in such a way that the resulting choice of strategy would necessarily be optimal (and

actually, even the existence of a partition with this property is very doubtful).

The numerical experiments presented in Chapter 10 consider only the S&P500 index for

a given period. For this dataset, the strategy is clearly bullish (large expected return). We

have not test the approach of this section with other indices.

8.4.3 One-period strategy vs. two-period strategy

All the trading strategies presented above define a relation between the portfolios and the

index values. Obviously, these approaches can be directly applied to the final leaves of the

two-period tree of scenarios. Moreover, they also can be applied locally for each one-period

subtree of the second period. Indeed, the investor can adjust the portfolio at t1, and so

constitute a specific portfolio for each subtree.
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In fact, as discussed more in detail in Section 9.3.2 of Chapter 9, applying locally the

strategies leads to a more general approach, which includes the strategies globally applied

at the final leaves. The drawback is an increase of the complexity.

8.5 Optimal VaR allocation vs. Dybvig’s theorem

8.5.1 Introduction

Let us return once again to the ideas presented in Section 8.3. For simplicity, we will consider

that the scenarios are equiprobable (the generalization would be immediate). So, our goal is

to impose the VaR constraint on exactly (u× nbS2) scenarios, in such a way as to minimize
the effect of this simplification on model M1.

It follows from the discussion in Section 8.3 that, if we could sort the nbS2 portfolio

values of the optimal portfolio by increasing order, then we could simply apply the VaR

constraint on the set of scenarios, say S, corresponding to the highest portfolio values, and
this would yield a model M1(S) perfectly equivalent to M1. Note that in order to implement
this approach, we only need to be able to order the scenarios in agreement with the optimal

portfolio values, but we do not need to know the portfolio values themselves. In some cases, a

theorem due to Dybvig will allow us to perform this sorting without solving the optimization

problem. We will discuss Dybvig’s theorem in the remainder of this section.

8.5.2 Dybvig’s theorem

Dybvig [22, 23] considers the pricing problem for a consumption bundle, which we can

interpret as a tree of scenarios together with the value of a good (or asset, or portfolio)

attached at each leaf of the tree. More precisely, he states the following hypotheses:

H1. Agents’ preferences depend only on the probability distribution of consumption of a

single good.

H2. Agents prefer more to less.

H3. The market is arbitrage-free, perfect (no taxes, no transaction costs, no information

asymmetries) and is complete over finitely many equally probable terminal states or

over an atomless continuum of states. Such a market allows short sales without penalty.

Let us introduce a new definition: if we denote the state price of a scenario j by ψ(j), and

its probability by Pr(j), then the Arrow-Debreu density, or state-price density of scenario j
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is by definition the quantity

ϕ(j) = ψ(j)/Pr(j).

Under the above hypotheses, Dybvig [22, 23] proved that a consumption bundle is efficient if

and only if it provides at least as much consumption in scenarios with lower Arrow-Debreu

densities than in scenarios with higher Arrow-Debreu densities.

In our usual portfolio terminology, Dybvig’s result can be rephrased as follows: if the

portfolio values for all scenarios are not in reverse order of the Arrow-Debreu densities, then

the investor pays too much for this portfolio. Indeed, it is always possible to construct

a cheaper portfolio by switching the final scenario payoffs in such a way as to obtain the

inverse relation with the Arrow-Debreu densities, without changing the probabilities of final

payoffs. Conversely, if the investor is able to save money by buying this new portfolio, then

he can subsequently increase the final expected value of his portfolio by investing the amount

that he saved. Thus, the optimal portfolio is such that there is an inverse relation between

portfolio values and state-price densities.

Of course, the property established by Dybvig is exactly what we need for our purpose,

since we know the probability of each scenario (by construction of our model) and we also

know the corresponding state-prices (we have shown how to compute the vector ψ in Chapter

6, when dealing with the option pricing problem). So, we can sort the Arrow-Debreu densities

by increasing order, invert this sequence so as to rank the scenarios by increasing order of

optimal portfolio values (without knowing these values), and deduce from this the adequate

reformulation of model M1 into a linear programming model. One application of the simplex

method is then enough to obtain the optimal portfolio.

In a sense, Dybvig’s theorem is valid in a much more general settings than required for our

specific portfolio model: if its hypotheses are satisfied, then it can be applied regardless of

the presence of very special constraints like budget, guarantee and VaR constraints. Indeed,

Dybvig’s proof is based on permuting the final payoffs, i.e. the scenarios, and this has no

consequence on the guarantee constraint (model (7.3)) and VaR constraint. The guarantee

constraint defined in (7.10) is more complex and will be presented in Section 8.5.3. Also,

since the proof works by reducing the initial cost of the portfolio, it certainly maintains the

budget constraint.

Unfortunately, some of Dybvig’s hypotheses are not necessarily satisfied in our framework.

We now turn to a discussion of these hypotheses.



Chapter 8. Handling Value-at-Risk constraints 176

8.5.3 Validity of Dybvig’s hypotheses

Dybvig’s hypotheses H1 and H2 are clearly valid in our portfolio optmization model, but

the hypothesis H3 is more troublesome. Moreover there is a problem with the formulation

(7.10) of the guarantee constraint. Let us examine their ingredients in detail.

Hypothesis H3: Equiprobable states

The part of hypothesis H3 concerning “equally probable terminal states” does not raise

any real difficulty. Indeed, in our model, we could sample the distribution of index returns

by various methods, but we have decided, for simplicity and without loss of generality, to

assign, in the explanations of this section, the same probability to each scenario. Moreover,

Dybvig’s theorem remains actually valid when the states have unequal probabilities, under

the additional hypothesis that agents are risk averse; see Dybvig [23].

Hypothesis H3: Market completeness

In our model, the market is usually not complete. Remember that a market is complete if and

only if every consumption process (portfolio values) is attainable on this market (see Dothan

[21] and Chapter 4). Mathematically, the market is complete if and only if rank(Π) = K,

where Π is the N ×K (securities × scenarios) payoff matrix defined in Chapter 4, Section
4.4.2.

In order to obtain a good representation of the future, we need to choose a large value for

K, namely a value which is typically much larger than the number of securities considered

in the portfolio. Then, rank(Π) is at most equal to the number of securities, and hence is

smaller than K.

What does it imply? Dybvig’s theorem is based on the observation that, everything else

being kept constant, one can switch the final portfolio values of two scenarios because, due

to the completeness of the market, it is always possible to reconstruct a new portfolio with

this new distribution of final values. More formally, if we denote by x ∈ IRN the vector

whose components represent the quantity of each security in an accessible portfolio, and by

V ∈ IRK the vector whose components represent the final value of this portfolio in each

scenario, then we have the relation:

Πtx = V.

Under the assumption of market completeness, if we construct a new vector V by per-
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muting some elements of V , then there always exists a vector x such that:

Πtx = V .

This is obvious by definition of a complete market, but does not necessarily hold anymore

when there are more scenarios than securities. In this case, there is no guarantee that the

new portfolio is attainable.

When considering incomplete markets, another drawback is that the state-prices, and

hence the state-price densities, are no longer uniquely determined. As a result, even just

interpreting the statement of Dybvig’s theorem becomes troublesome. Jouini and Kallal

[36], for instance, have examined extensions of Dyvig’s results to incomplete markets, and

have proposed adequate generalizations of the concept of state prices. In our framework,

however, this issue is slightly easier to resolve. Indeed, even though our representation of

the market via scenario trees is incomplete, we may still assume that the underlying market

itself is complete. This is in fact the assumption which justifies our computations of state

prices, in Chapter 5, Section 5.3.1: we assume that the tree of scenarios provides a partial

representation of the “real” complete market, where the state prices are uniquely defined —

in the same sense as a sample from a statistical distribution gives a partial representation of

the population.

Note that if we use a binomial tree, in which the investor could adjust the portfolio at

each period, as we consider at least two independent securities (cash and index), the market

is complete and Dybvig’s theorem can be used (if the other hypotheses are satisfied).

Hypothesis H3: Frictions

The market that we consider in our portfolio model is not frictionless, since it involves

transaction costs and bid-ask spreads. Due to these market frictions, there is no guarantee

that we can still switch the porfolio values to construct a cheaper portfolio, and hence

Dybvig’s argument breaks down. Jouini and Kallal [36] (and other authors cited in their

paper) have considered extensions of Dybvig’s theorem for imperfect markets, but it is not

clear at this point whether, and how, their findings could be integrated in our work.

Guarantee constraint

Dybvig’s proof is based on permuting the final payoffs, i.e. the scenarios. In the first formu-

lation (7.3) of the guarantee constraint, the portfolio value is only computed for the index

values at the leaves of the tree. The sequence of scenarios does not matter, and therefore
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the guarantee constraint remains satisfied even for Dybvig’s optimal portfolio obtained by

permuting some leaves.

This is no longer true for the second formulation (7.10) of the guarantee constraint using

the strike-prices method. This model is stronger than the previous one since the constraint is

satisfied for any index values, rather than only the index values at the leaves. Therefore, the

new portfolio constructed using Dybvig’s theorem must also satisfy the guarantee constraint

“between” the leaves and for larger index values than the largest one of the tree. However,

Dybvig’s approach considers only the portfolio values at the leaves, and therefore nothing

can prevent us to obtain an inadequate portfolio; i.e. an infeasible solution.

8.5.4 Handling Dybvig’s hypotheses

The previous section has established that Dybvig’s theorem cannot be applied directly to

our portfolio investment model. We are now going to describe a few possible approaches to

resolve the difficulties that have been identified, and examine their pros and cons.

Hypothesis H3: Market completeness

The financial market in our model is typically incomplete. It is theoretically possible to

overcome this difficulty by completing the market, that is by creating as many artificial

options as there are scenarios in the model, with the objective to satisfy the condition that

the rank of Π is equal to the total number of scenarios. For instance, we could create for

each scenario an option (either a call or a put) with a strike price equal to the index value

of the scenario.

This approach has obvious advantages: it allows to satisfy one of Dybvig’s hypotheses

and, as a side effect, it also simplifies the computation of the option prices (because the state-

prices are now unique, we do not need anymore to solve the minimization pricing models

described in Section 6.3).

On the other hand, the approach also has major inconvenients: it introduces options that

the investor perhaps does not want to consider (although they can always be constructed over

the market), and, much more importantly, it increases considerably the size of the model.

To understand that the latter feature could translate into very serious numerical difficulties,

let us pause a moment to contemplate the size of our optimization model.

Each time the investor can adjust his portfolio, i.e. at each of the nbS subtrees, the

matrix Π has nbS columns and should possess at least the same number of rows to satisfy

rank(Π) = nbS. To obtain a good representation of the future, we need to consider a large
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number of scenarios (at least nbS = 30 per period with a stratification process). With 30

subtrees of each 30 scenarios, we need to consider about 900 options to complete the market.

This would imply the construction of an enormous amount of “synthetic” options and the

solution of various questions linked with this operation (determination of transaction costs,

pricing, ...).

Moreover, if we consider the simplex table at any one node of the branch and bound

solution process, the number of elements to put in memory (in our simplest model) is ap-

proximately 8×nbS4. With nbS = 30, this gives at worst 6.5 millions elements or, in double
precision, about 49MB of memory at each one node! For nbS = 100 scenarios, the memory

required to input the constraint matrix, before even starting the optimization process, is

about 6.1GB. Even with careful programming, problems of this size cannot be handled by

traditional methods on ordinary computers!

From a practical point of view, and considering only this computer memory problem, we

deem it very difficult, or even plainly impossible to complete the market in our model when

the number of scenarios is large.

Hypothesis H3: Frictions

Even if we consider a complete market, we still face the problem caused by market fric-

tions (transaction costs and spreads). These frictions exist on real markets and cannot be

disregarded. It would be interesting, however, to know whether they alter significantly the

optimal solutions. Jouini and Kallal [36] discuss, in general terms, the impact of frictions on

market efficiency. They mention that market frictions usually modify, and typically shrink,

the set of efficient investment strategies, shifting investors away from well-diversified strate-

gies into low cost ones, and, in case of large frictions, into no trading at all. Hence, we

can observe strategies that become inefficient in the presence of market frictions, as well as

strategies that are rationalized by their presence.

More specifically, frictions translate into costs in the optimization model M1, and so

decrease the budget available to buy or sell the securities. Consider the portfolio model MD

(with D for Dybvig) obtained by removing all transactions costs and spreads from model

M1, denote by UD its optimal value, and denote by XD its optimal solution. Then, it is clear

that UD is an upper bound on the optimal value of M1. Moreover, XD can be viewed as a

feasible solution of M1 (if the guarantee constraint is expressed by (7.3)), although there is

no guarantee that this solution is optimal for M1. If we compute the value of the objective

function of M1 (taking all real costs into account) for the feasible solution XD, then this
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value provides a lower bound on the optimal value of M1. Denote this lower bound by LD.

Intuitively, the smaller the frictions, the closer MD should be to the true model M1 and

hence, the closer UD and LD should be to the optimal value of M1. It would be interesting

to know how tight these bounds are in practice, and whether they could be useful to speed

up a branch and bound process. In particular, we would like to know how they compare

to the bound obtained by relaxing the integrality conditions αij ∈ {0, 1} in M1. Dybvig’s
solution is an integer solution, i.e. lower than the corresponding relaxation, but increased

due to the supression of the frictions. Numerical results are given in Chapter 10.

In practice, we will not construct the pure model MD, but rather use directly Dybvig’s

state-prices relation in model M1. The method is to define the set S such as to contain
the scenarios with the lowest Arrow-Debreu densities, and then to apply the VaR constraint

only to this set (as described in Section 8.3.2). This new model is presented in Section 9.3.3.

Guarantee constraint

The guarantee constraint expressed by (7.10) reduces the set of portfolio payoffs that can be

considered by Dybvig’s approaches. This is the same consequence as the problem of market

incompleteness. However, we cannot simply use here a different or extended set of data to

overcome the difficulty. In order to apply efficiently Dybvig’s theorem, we must use the first

formulation (7.3) of the guarantee constraint.

If we use the first formulation (7.3), then the number of scenarios nbS should be large

enough to avoid the problems of “leaks” described in Section 7.2.6, and therefore the problem

size is larger and the problem is harder to solve.

So, without relaxing the guarantee constraint by using (7.3) and a reasonable number

of scenarios, there is no way to reduce the penalties due to the guarantee constraint. We

have considered that it is more suitable to satisfy strictly the guarantee constraint than

reducing the penalties. Therefore, the model (7.10) for the guarantee constraint is used in

the sequel. In Section 10.4.4 of Chapter 10 however, the results obtained for the two models

are compared.

Conclusion

In conclusion, there are several reasons why Dybvig’s theorem cannot be used directly to find

an optimal solution of model M1, as we may have hoped originally. If we want to obtain an

exact optimal solution of M1, then we still have to rely on the mixed integer programming

formulation of the model, and on a generic algorithm (like branch and bound) for the solution
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of this formulation. However, in Chapter 9, we will be able to propose heuristic approaches

using Dybvig’s theorem, in order to compute quickly lower bounds on the optimal solution

of M1.

8.5.5 Index values and Dybvig’s theorem

Introduction

It is commonly assumed, both in the financial literature and in investment practice, that

the value of the optimal portfolio based on an index should be an increasing function of

the value of the index. In our previous terminology, this translates into the assumption

that an optimal portfolio is necessarily bullish. For instance, Dert and Oldenkamp [20] refer

to Dybvig’s theorem to derive that, for a continuous normal distribution of index returns,

“payoff patterns that are not monotonically increasing in the index are suboptimal”.

However, as we have already discussed in Section (8.4.2), bullish portfolios are not nec-

essarily optimal under all possible circumstances, and a distinction between different cases

could possibly be established on the basis of the index distribution. In this section, we would

like to draw on Dybvig’s theorem to analyze somewhat further the relation between index

values and the final optimal portfolio values.

Binomial trees

First, we would like to prove that, if the distribution of returns is modelled by a one-period

binomial tree and if the world is risk-averse, then the state-price densities are a nonincreasing

function of the index values. Under the assumption of Dybvig’s theorem, this immediately

implies that the optimal portfolio value is an increasing function of the index values, i.e. that

the optimal portfolio is bullish.

Proposition. Let Sup and Sdown be the two possible future values of an index, and let ϕup

and ϕdown denote the corresponding state-price densities. Assume further that the expected

return of the index is larger than the risk-free return. If Sup > Sdown, then ϕup < ϕdown. So,

under these assumptions, the optimal portfolio is always bullish.

Proof.

Consider a market with only two possible investments: cash and index. We get the following

relation between the Arrow-Debreu prices ψup and ψdown and the future values of the index:
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1

S
=

1 + r 1 + r

Sdown Sup

ψdown

ψup
. (8.3)

The unique solution of this system is
ψdown = (Sup − S(1 + r))/c
ψup = (−Sdown + S(1 + r))/c
c = (1 + r)(Sup − Sdown)

(8.4)

From Sup > Sdown, we deduce c > 0.

Let now pup and pdown denote the probabilities of the two possible states of the world.

For an initial investment of S monetary units, the hypothesis that the expected return of

the index exceeds the risk-free returns implies:

Erisky invest(S) > Erisk free invest(S)

⇔ pupSup + pdownSdown > (pup + pdown)S(1 + r)

⇔ pup(Sup − S(1 + r)) > pdown(−Sdown + S(1 + r))
⇔ pup(Sup − S(1 + r))/c > pdown(−Sdown + S(1 + r))/c (since c > 0)

⇔ pupψdown > pdownψup

⇔ ψdown/pdown > ψup/pup

⇔ ϕdown > ϕup.

(8.5)

Note that we can add other securities (such as options) in the model without modifying

the relation between the state-prices and the index values. Indeed, adding securities amounts

to adding rows in the payoff matrix of equation (8.3). If a state-price vector still exists, then

it must be identical to the vector obtained from (8.3) without the additional securities. This

completes the proof of the Proposition. []

Observe that, in a risk-averse world, the expected return of the index is certainly larger

than the risk-free return. Therefore, this hypothesis is rather weak.

However, perhaps surprisingly, the above Proposition cannot be extended to multiperiod

equiprobable binomial trees. Indeed, when we consider a n-period recombining binomial

tree, the set of final index values is given by Suidn−i, for i = 1..n, where u (resp. d) is

the coefficient of the increase (resp. decrease) of S in each period, and the set of final

state-price densities is given by Cin ϕ
i
upϕ

n−i
down, where C

i
n is the combinatorial number of paths

leading to the corresponding final leaf. It can be shown that when u is larger than d,

the mathematical expression Suidn−i is increasing with i, and the mathematical expression
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ϕiupϕ
n−i
down is decreasing, similarly as observed for the one-period case. However, the coefficient

Cin, which is first increasing and then decreasing with respect to i, no longer guarantees that

the relation always holds.

Multinomial trees and Arrow-Debreu prices

Ideally, we would like to extend the previous proposition to the multinomial case. Namely,

we would like to prove that in a multinomial tree

Si < Si+1 ⇒ ψi
pi
>
ψi+1
pi+1

for every scenario i, (8.6)

where Si, ψi and pi respectively denote the price of the index, the state-price and the

probability of scenario i.

However, we can provide numerical examples showing that the relations (8.6) do not hold

for all multinomial trees. We will give two such counterexamples, involving scenarios which

are equiprobable or not.

In order to describe these examples, we display the arbitrage equations defining the state-

prices. As usual, the first equation is associated with the risk-free asset, the second one with

the index, and the next (n − 1) equations correspond to (n − 1) options with strike prices
equal to the (n− 1) lowest possible future values of the index (the largest future value is not
interesting because its payoff is always null). So, the arbitrage equations have the following

form: 

1

S0

o1

o2
...

on−1


=



1 + r 1 + r . . . 1 + r

S1 S2 . . . Sn

0 S2 − S1 . . . Sn − S1
0 0 . . . Sn − S2
...

...
. . .

...

0 0 . . . Sn − Sn−1




ψ1
...

ψn

 (8.7)

where the payoff of option j for the scenario i is given by max(0, Si − Sj) and the present
value of this option is the constant oj. (One of these equations is redundant, but we are not

going to worry about it.)

As before, we also want to impose the condition that the expected return of the investment

in any risky asset must be larger than the return of the risk-free asset.

Unequiprobable case

The following system satisfies all the previous conditions:
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1

10

0.202

0.089

0.013


=



1.393 1.393 1.393 1.393

13.653 14.957 18.174 19.91

0 1.304 4.521 6.256

0 0 3.217 4.953

0 0 0 1.736




0.631

0.0632

0.016

0.008

 . (8.8)

If the probabilities of each leaf are respectively given by (9/10, 1/30, 1/30, 1/30) then the

vector of state-price densities is given by

ϕ =


ψ1/p1

ψ2/p2

ψ3/p3

ψ4/p4

 =

0.701

1.895

0.474

0.229

 ,
and the relations (8.6) fail.

Equiprobable case

In the previous example, the state-prices (ψ1,ψ2,ψ3,ψ4) were in reverse order of the index

prices, and the probabilities had to be chosen carefully in order to obtain the required

counterexample. However, even in the equiprobable case, it is possible to find an example

in contradiction with (8.6). For instance, the following arbitrage equations define such an

example: 
1

0.799

0.403

0.4

 =


2.5 2.5 2.5

0.99 1 5

0 0.01 4.01

0 0 4



0.1

0.2

0.1

 . (8.9)

Conclusions

We have shown here that there is no apparent monotone relation between the index value

and the optimal portfolio value when we consider multinomial trees of scenarios. Clearly,

bullish portfolios are not necessarily optimal.

In the next section, we show how we could select one of the possible strategies using

Dybvig’s theorem with respect to the index values.
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8.5.6 Strategies and Dybvig’s theorem

One-period subtrees

Some points are interesting if we look at the state-price as a function of the index price. To

illustrate this, we plot in Figure 8.5 the Arrow-Debreu densities (and the set of probabilities

used to define them) as a function of the index price. As above, we here use only the normal

distribution and the BS formula to avoid the problems due to incoherencies between the

data. We use the S&P500 set, the 29 options for the first period and no option for the

second one, and we model the future with an equiprobable two-period tree.

For each of the two periods, the target risk-neutral curves are the same. They are perfectly

smooth and decreasing. For the first period, the optimal risk-neutral curve is close to the

target one with only deviations at the extremities. For the second period, as we consider

no option, the problem is nearly not constrained and the optimal curve matches the target

one. This is the reason why we have decided to not consider options for this period. This

simplifies the analysis.

In the previous example and for each period, we obtain a smooth decreasing density

function for increasing index values. According to Dybvig’s theorem, the optimal portfolio

values should be increasing when the index values increases. In other words, a bullish strategy

is optimal for this subtree.

For each subtree of the second period, if the frictions are not too large or with few

effects, we can decide what the optimal strategy to apply is (and the set of corresponding

constraints) by only analyzing the state-price density curve. There is a strong link between

the strategy and Dybvig’s approaches.

Two-period tree

If the curve is smooth over the first period, it is no longer true over two periods. This is

still a decreasing function but slightly oscillating. For each leaf of the tree of scenarios, the

state-prices over two periods are obtained by the product of the state-prices of the first and

the second periods and then are recombined for each distinct index return.

The oscillation comes from the errors between target probabilities and optimal ones at

the first period. As the two-period risk-neutral probabilities are obtained by the product of

the two one-period probabilities, errors are propagated.

Remember that Dybvig’s theorem is defined according to the Arrow-Debreu densities,

which are obtained by dividing the state-prices probabilities by the real probabilities of each

index value. We could be tempted to use directly the state-prices for equiprobable trees,
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Figure 8.5: Arrow-Debreu densities vs. index prices
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as done in Dybvig [22, 23], instead of the densities, but this is not correct for two-period

trees. Even when the leaves of the tree are equiprobable, the density curves are usually not

similar to the risk-neutral curves. Indeed, the second-period subtrees overlap each other,

and therefore, typically, several leaves are defined with the same index value (a kind of

implied recombination). So, equiprobable leaves do not imply equiprobable index values.

This appears clearly in the second plot of Figure 8.5, in which the risk-neutral curves and

real probabilities are highly oscillating. Of course, this effect does not appear in one-period

tree, and therefore equiprobable leaves of one-period tree imply equiprobable index values.

Using density curves and Dybvig’s theorem, we can now say how optimal portfolio values

with respect to index returns are distributed over the two periods.

8.5.7 One-period trees vs. two-period tree

As trading strategies can be applied globally at the final leaves or locally in each subtree,

Dybvig’s theorem can also technically be applied to the two-period tree or in each one-period

subtree. If Dybvig’s hypotheses are satisfied, the global use is a specific case of the set of

local optimizations. However, when we face some violations, the local approaches can lead

to better results. The advantage of the global approach, as for the trading strategies, is that

all binary variables α can be define a priori, and so the problem is easy to solve. At the

opposite, the local approaches first require to split the VaR probability between the subtrees,

which is difficult to do optimally a priori.

8.5.8 Remark

In order to use Dybvig’s theorem, we need to obtain valid state-prices. This is not the case

when using the option pricing model OP1 (6.5). We must use the second model OP2 (6.7).



Chapter 9

Solving Value-at-Risk problems

9.1 Introduction

In this chapter, we focus on the development of algorithmic procedures for the solution of

the portfolio optimization models presented in Chapter 7.

Section 9.2 provides a brief sketch of the classical branch and bound scheme, which is

classically used in operations research for the solution of mathematical programming models

involving a mix of continuous and integer variables.

In Section 9.3, we return to the financial properties of the VaR model discussed in Chap-

ter 8, and we show how they can be used in order to derive several (heuristic or exact

procedures) optimization approaches. We also present two heuristics based on numerical

rounding techniques.

Finally, in Section 9.4, we describe pre-processing methods which can be used to instan-

tiate coherently the optimization model, as well as to preselect a promising subset of options

for inclusion in the model.

All the procedures described in this chapter have been implemented and tested on bench-

mark instances. The results of these experiments will be discussed in Chapter 10.

9.2 The branch and bound method

Mathematical programming problems involving both continuous and integer (in our case,

binary) variables are usually solved by some version of the branch and bound (BB) algorithm.

We rely on a state-of-the-art commercial implementation of the BB method for the solution

of our portfolio optimization models. More precisely, we have used the CPlex optimization

library, which is open and flexible enough to allow us to tune its parameters in various ways,

188
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and even to interfere quite extensively with the logical structure of the BB procedure itself.

Therefore, for a good understanding of this and the next chapter, some familiarity with

the basic ingredients of the BB method will be necessary. We are now going to review the

method very briefly. More details can be found in numerous textbooks, for instance in [56],

[69].

We restrict ourselves to the consideration of mixed 0-1 linear programming problems,

that is problems requiring the maximization of a linear objective function subject to linear

inequality constraints, where each variable is either continuous or restricted to take 0-1 values

only.

The BB method considers implicitly all the possible values of the integer variables, but

attempts to curtail the enumeration by applying various tests of optimality at intermediate

stages. The process is illustrated in the following figure for our binary problem.

The BB process constructs a tree by assigning one of its two possible value to each binary

variable. The root of the tree represents the original optimization problem, say IP , and each

other node of the tree represents a subproblem of the original problem, say SP , where SP

is obtained by fixing a subset of binary variables to specific 0-1 values. At each node, one

of three basic procedures can be applied (and typically, all three are applied in succession):

we can compute an upper bound U(SP ) on the optimal value of the current subproblem, we

can compute a lower bound L(SP ) on this value, and we can select a new binary variable to

be fixed to either 0 or 1 (this is called branching). Let us see this in more detail for a generic

node and for the corresponding optimization subproblem SP .
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For this subproblem SP , all the binary variables (which have not yet been fixed) can be

relaxed, i.e. considered as continuous ones. The resulting relaxed problem at this node is

continuous and linear, so that it can be easily solved. This yields an upper bound U(SP ) on

the optimal value of SP . If this upper bound is smaller than the best available lower bound

on IP , i.e. U(SP ) ≤ L(IP ), then the node SP can be fathomed (closed), and the procedure
can be repeated with another subproblem.

If, in the optimal solution of the relaxed subproblem, all the binary variables turn out

(by chance) to assume a binary value, then this solution is optimal for SP and it is feasible

for IP . Therefore, the node SP can again be fathomed, and its value provides a lower

bound on the optimal value of IP . This will typically happen at the bottom of the tree,

where the number of binary variables is strongly reduced. Otherwise, a lower bound L(SP )

on the optimal value of SP and of IP can be obtained by applying a heuristic solution

procedure in order to compute a feasible, but typically suboptimal solution of SP . Again, if

L(SP ) = U(SP ), then SP is completely solved and the corresponding node can be fathomed

(in practice, the node is fathomed as soon as the gap between these two bounds becomes

small enough). If L(SP ) > L(IP ), then we have improved the best available solution of IP ,

and the lower bound L(IP ) can be updated accordingly.

Finally, if the node SP cannot be fathomed on the basis of the bounds L(SP ) and U(SP ),

then branching can be performed by selecting a binary variable α in SP , and by creating

two new subproblems (or nodes) associated to the possible values of α. Then, a new node is

selected and the whole process can be repeated.

Note that several branching strategies are possible. Each time a subproblem is selected,

we have to decide if we first consider the previous nodes not yet optimized (jumptracking

approach) or if we want to follow first the current branch down to its leaves before going

back (backtracking approach). Also, each time we want to create two new subproblems, we

have to decide on which variable to branch.

Note that, since the number of binary variables is finite, the BB process eventually

terminates. Of course, we hope that it will terminate without enumerating all possible

binary vectors. But it is important to realize that in practice, mixed integer programming

problems involving a large number of 0-1 variables can turn out to be extremey difficult,

or even impossible to solve exactly to optimality (remember the extension of Markowitz’

model that we tackled in Chapter 2). Although a general statement is difficult to make,

since the complexity of each problem is very much influenced by its structure and/or by the

numerical value of the parameters in any specific instance, it is safe to say that the solution

of problems containing a few hundred binary variables is frequently out of reach, even for
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the most efficient optimization algorithms.

9.3 Improvements of the BB process and heuristics

9.3.1 Introduction

From the description of the BB method, it should be intuitively clear that its efficiency is

strongly determined by the tightness of the bounds L(SP ) and U(SP ) which are computed

for every subproblem SP (we say that a bound is tight if it is close to the true optimal

value of SP ). We observed empirically that, when running on the initial formulation of

our portfolio optimization models, the heuristic implemented in CPlex often finds quickly

a nearly optimal solution of the problem, although CPlex spends a lot of time in the BB

process in order to prove that this solution is actually optimal. We have little information

about the exact nature of the CPlex heuristic.

In the following sections, we would like to propose some efficient heuristics for the solution

of the portfolio optimization models M1-M2. If the solutions obtained are of high quality,

they could be adopted by the investor and suppress the need for the whole branch and bound

process. Alternatively, these initial feasible solutions could be used as lower bounds in the

BB process, so as to fathom the nodes of the BB tree as soon as possible and to speed up

the optimization process. In order to tailor some heuristics for the solution of our models,

we will rely on the theoretical insights gained in Chapter 8 (strategies, Dybvig’s theorem),

as well as on some classical techniques from operations research (rounding and relaxation,

BB tuning).

9.3.2 Investment strategies

Principle

In Chapter, Sections 8.3 and 8.4, we have already explained how prior information about

the structure of the optimal portfolio could be used to simplify the formulation of model

M1. When we know beforehand which strategy is optimal (bullish, bearish, butterfly or

volatility), then new constraints can be introduced in order to model the strategy and to

reduce the feasible solution space. We have also mentioned, however, that it is usually

difficult to predict whether the optimal portfolio displays a bullish, bearish, butterfly or

volatility structure (see also Section 8.5.5).

In case we do not know which strategy is best, we can still rely on the same idea to solve
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the problem heuristically, by picking one of the strategies and solving the corresponding

simplified model, or successively considering all four strategies. Let us see how this can be

implemented computationally.

Bullish strategies

If we assume that a bullish portfolio is optimal, then the portfolio value is an increasing

function of the index values at t2. Then, as explained in Section 8.4, we can simplify the

optimization problem by selecting a set S containing the fraction u of scenarios associated
with the highest index prices, and by formulating an equivalent linear programming model

M1(S), where the VaR constraint is only applied to the scenarios in S. (It may be interesting
to stress, at this point, that the optimal solution of M1(S) is not necessarily bullish. Simply,
we can claim that every bullish portfolio remains feasible for M1(S).)
Now, even if we do not know anything about the structure of the optimal solution of M1,

we can still formulate and solve the linear program M1(S): in this case, its optimal solution
provides a heuristic solution of model M1. We will refer to this heuristic (and/or to the

underlying model, when no confusion arises) by the name M1(bullish), and we will report

on its performance in Chapter 10.

Let us also note that a slightly tighter formulation can be obtained by observing that,

when a bullish portfolio is optimal, then the portfolio value should actually be an increasing

function of the index value for each of the nbS portfolios considered at t1. Therefore, in each

of the corresponding subtrees, we can sort the leaves by increasing index values, and the

VaR requirement will partition each such list into (at most) two parts: for higher values of

the index, the VaR lower bound λB must be satisfied, while it can be violated for smaller

values. Globally, at t2, the VaR lower bound must be satisfied by a fraction u of the leaves,

but this fraction can be different from u for each particular subtree. As a result, we do not

know exactly for which leaves of each subtree the Var lower bound λB should hold. However,

all we need to know is that, if the constraint is applied for one index value, then it must be

applied for all the index values larger than this one in the subtree. This observation can be

exploited as follows.

Remember that in model M1, the VaR lower bound must hold in scenario (i, j) (defined

as the succession of scenario i in period 1 and scenario j in period 2) when the corresponding

binary variable αij is null (see model M1 in Section 7.3.8). If the scenarios of each subtree

are sorted so that the index value is at least as high in scenario (i, j) as in scenario (i, j− 1),
then the following constraints can be added to model M1:
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local bullish strategy (nbS.(nbS− 1)) : ∀i ∈ [1, nbS], ∀j ∈ [2, nbS],
αij − αi,j−1 ≤ 0.

(9.1)

Let us call the resulting model M1(local bullish) (it is “local” in the sense that only the

second-period portfolios are required to be bullish). This model has the following property:

if one of the optimal solutions of model M1 is bullish at time t2, then this solution satisfies

constraints (9.1), and hence M1(local bullish) has the same optimal value as M1.

But even when we do not know anything about the optimal solution of M1, we can still

impose (9.1) and solve M1(local bullish) to obtain a heuristic solution of model M1. The

value of this heuristic solution is at least as tight as the value provided by M1(bullish).

However, M1(local bullish) involves binary variables and hence, must be solved by BB. Our

hope is that, because of the constraints (9.1), model M1(local bullish) may be easier to solve

than M1 (for instance, when a variable is fixed to 0 in the branching process, constraints

(9.1) automatically force other variables to 0 as well). Actually, as the goal is to find

(quickly) a good lower bound and not the optimal value, parameters of the BB method can

be fixed to stop the enumeration process after a given time, or as soon as the best available

feasible solution is “good enough” (i.e. as soon as its value comes within a predefined gap,

or percentage, of the optimal solution value). Preliminary experiments indicate that it is

not useful to spend too much time computing this lower bound, as this slows the main

optimization process.

Again, this will be tested empirically in Chapter 10.

Bearish strategies

The case of the bearish strategy is similar to the previous one. A model M1(local bearish)

is obtained upon replacing the constraints (9.1) by the following ones:

local bearish strategy (nbS.(nbS− 1)) : ∀i ∈ [1, nbS], ∀j ∈ [1, nbS − 1],
αij − αi,j+1 ≤ 0.

(9.2)

Volatility and butterfly strategies

When the optimal portfolio has a volatility structure, the VaR constraint can be applied to

the scenarios associated with the smallest and the largest index prices, so that the appropri-

ate set S consists of two separate blocks. So, when the scenarios are sorted by nondecreasing
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index price, the α-variables take successively value 0, then 1, then 0, as represented schemat-

ically in Figure 9.1.

Figure 9.1: Volatility and butterfly strategies

As already mentioned in Section 8.4.2, a difficulty with this approach is that the set S is
not as easily determined as in the bullish or in the bearish case. To obtain a workable model,

let us first sort the scenarios by increasing index values, and let us view the thresholds b1

and b2 as two decision variables (see Figure 9.1). It is enough to impose that the α-variables

should be zero to the left of b1 and should be nonincreasing to the right of b1 (this implicitly

determines the value of b2).

So, for each subtree i, let us introduce two variables b1i and voli, where b1i is the position

in the sorted list of scenarios corresponding to the upper bound of the first block, and voli is

a binary variable which is null for the scenarios on the right of b1i. Then, we can formulate

the following constraints for each scenario (i, j).

local volatility strategy (3nbS2 − nbS) : ∀i ∈ [1, nbS], ∀j ∈ [1, nbS]
b1i − j ≤ nbS(1− αij) //j < b1i ⇒ αij = 0

j − b1i + 1 ≤ (nbS + 1)(1− voli) //j ≥ b1i ⇒ voli = 0

αij − αi,j−1 ≤ voli //voli = 0⇒ αij ≤ αi,j−1
voli ∈ {0, 1}.

(9.3)

We will call M1(local volatility) the model obtained by adding these constraints to M1.

Clearly, the same approach can be used for the butterfly strategy except that the VaR

constraint should be applied between b1 and b2 (see Figure 9.1) rather than at the end of

the interval. This gives rise to a model M1(local butterfly), obtained by assing the following

constraints to M1.

local butterfly strategy (3nbS2 − nbS) : ∀i ∈ [1, nbS], ∀j ∈ [1, nbS]
b1i − j ≤ nbSαij //j < b1i ⇒ αij = 1

j − b1i + 1 ≤ (nbS + 1)(1− voli) //j ≥ b1i ⇒ voli = 0

αij − αi,j+1 ≤ voli //voli = 0⇒ αij ≤ αi,j+1

voli ∈ {0, 1}.
(9.4)
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Remarks

Notice that the bullish and bearish strategies are extreme cases of the volatility strategy:

the bullish strategy is obtained by setting b1 to minus infinity, and the bearish strategy

by setting b2 to infinity in Figure 9.1. Therefore, model M1(local volatility) subsumes

both M1(local bullish) and M1(local bearish). Therefore, in principle, only the models

M1(local volatility) and M1(local butterfly) need to be solved in a heuristic approach. These

models cover all possible ways to apply the VaR lower bound to scenarios associated either

with extreme values, or with an interval of intermediate values within the range of index

prices.

9.3.3 Uses of Dybvig’s theorem

Two-period approach

A heuristic approach to the solution of model M1 can be derived by “pretending” that

Dybvig’s theorem is valid for M1. Namely, we can sort the scenarios (i, j) according to their

two-period state-price density ϕij, determine the set S containing the fraction u of scenarios
with the lowest values of ϕij, set up the associated model M1(S), and solve it by the simplex
method (or any other LP optimization technique). We will denote this heuristic approach

as M1(Dybvig).

Note that we could bring the model closer to respecting Dybvig’s hypothesis by complet-

ing the “market”, as previously discussed in Section 8.5.4. But we have already mentioned

that this would increase the size of the optimization model. As far as market imperfections

go, we expect that, the smaller the frictions, the closer the optimal value of M1(Dybvig) will

be to the optimal value of M1.

Local approach

Just as we did when working with investment strategies, we can also take as a starting

point that the inverse relation between portfolio values and state-price densities should hold

individually and independently for each of the nbS portfolios formed at time t1, but not

necessarily for the whole range of portfolio values at t2. In this “local” approach, the state-

prices should be computed over the second period only.

There are several ways to implement this basic idea.

A rather straightforward (though not very promising) approach consists in imposing

that the VaR constraint should be satisfied with the same probability u by each of the nbS
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second-period portfolios subtree. Then, for each subtree, it suffices to collect the smallest

u × nbS state price densities ϕ2 into a set S, and to replace the model M1 by the linear
programming model M1(S) in the usual way. We call M1(Dybvig:equipartition) the resulting
model. Although we cannot expect this simplistic heuristic to be very tight, we will use it

as simple benchmark in Chapter 10.

A less trivial approach consists in repeating what we did in Section 9.3.2 for the bullish

and the bearish strategy. Namely, assume now that the scenarios are sorted by nonincreasing

state price density: i.e., assume that the state price density of scenario (i, j) is at least as

large as the state price density of scenario (i, j + 1). Then we can add the following set of

constraints to model M1:

local Dybvig M1 (nbS.(nbS− 1)) : ∀i ∈ [1, nbS], ∀j ∈ [1, nbS − 1],
αij − αi,j+1 ≥ 0.

(9.5)

We denote the resulting mixed 0-1 linear programming model as M1(local Dybvig). The

constraints of M1(local Dybvig) ensure that, in each subtree, the values αij are a monotone

function of the state price densities and hence, that the VaR lower bound λB is satisfied

for the scenarios with the lowest state price densities. Therefore, the optimal value of

M1(local Dybvig) coincides with the optimal value of M1 when Dybvig’s conclusions hold.

Otherwise, the optimal solution of M1(local Dybvig) provides a heuristic solution of M1.

Finally, let us mention another “local” approach based on model M2 rather than M1 (see

Section 7.3.9). Model M2 splits the optimization process into two parts: the partition of the

VaR probability u among second-period subtrees on one hand, and the satisfaction of the

resulting VaR constraint within each subtree on the other hand. Accordingly, in model M2,

the variables γi represent the maximal fraction of scenarios which may violate the VaR lower

bound within subtree i (i = 1, 2, . . . , nbS). If the values γi are available, then we can rely

(heuristically) on Dybvig’s theorem to fix the variables βij in M2. Formally, assume that the

scenarios are sorted by nonincreasing state price density, as in equation (9.5), and denote by

Prij the probability of scenario (i, j). Then, we can formulate a new model M2(local Dybvig)

by adding the following constraints to model M2:

local Dybvig M2 (nbS2) : ∀i ∈ [1, nbS], ∀j ∈ [1, nbS],

γi −
j

k=1

Prik ≤ βij.
(9.6)

These constraints express that, as long as the cumulated probability of scenarios (i, 1) to

(i, j) does not exceed γi, the corresponding variable βij must be set equal to 1. Thus, the
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VaR lower bound is again satisfied for those scenarios associated with the lowest values of

the state price densities, in agreement with the conclusions of Dybvig’s theorem.

Observe that both M1(local Dybvig) and M2(local Dybvig) are mixed integer programs

and hence, must be solved by branch and bound. As was the case for the models based on

intuitive investment strategies (M1(local bullish), M1(local bearish), etc.), it is sufficient to

solve these models approximately in order to produce a heuristic solution of the portfolio

optimization problem.

Note also that, both in M1(local Dybvig) and in M2(local Dybvig), the method is to

apply Dybvig’s theorem locally. Even if the formulations are different, the constraints have

the same effect; i.e. they locally define the binary variables according to the sequence of

state-price densities. Moreover, M2(local Dybvig) requires one more set of control variables

(γ) and more constraints. Therefore, in the sequel, we no longer consider M2(local Dybvig),

but we rather prefer to use M1(local Dybvig).

9.3.4 Rounding approach

In this section, we turn to heuristic optimization procedures based on rounding techniques.

Procedures of this nature are well-known in the integer programming literature, but the

reader should note that they do not exploit explicitly the structure nor the economic inter-

pretation of the optimization model.

Complete rounding

If, in model M1, we replace the integrality constraints

αij ∈ {0, 1} ∀i, j ∈ [1, nbS]

by the weaker contraints

0 ≤ αij ≤ 1 ∀i, j ∈ [1, nbS],
we obtain a linear programming model which we call the linear relaxation of M1, and which

we denote by M1Relaxed. Since M1Relaxed is a linear programming problem, it can be

solved quite efficiently. Let U∗ be its optimal value, and let α∗ denote the values assumed

by the variables α in the optimal solution of M1Relaxed.

We have already noted in Section 9.2 that U∗ is an upper bound on the optimal value of

M1. We have also observed that, if (by chance) α∗ij ∈ {0, 1} for all scenarios (i, j), then the
optimal solution of M1Relaxed is also optimal for M1.
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When some of the values α∗ij are fractional, however, the optimal solution of M1Relaxed

does not have an immediate economic interpretation. But even in this case, we can still hope

that a good heuristic solution of M1 can be obtained by rounding each α∗ij to the closest

binary value. Intuitively, this solution should be especially tight if all values α∗ij are already

close to zero or one (although there is no theoretical guarantee that it should be so).

When implementing this approach, some care should be exercised in order to make sure

that the rounding operation preserves the VaR constraints: we cannot simply set each vari-

able to the nearest binary value, otherwise the VaR lower bound could be violated by too

many few scenarios. To solve this difficulty, we have developed the following procedure

M1(rounding):

1. Solve the linear programming problem M1Relaxed by the simplex method and record

the optimal values α∗ij.

2. Sort all scenarios (i, j) in nondecreasing order of the difference min{α∗ij, 1 − α∗ij}, i.e.
the difference between α∗ij and the nearest binary integer.

3. Consider successively each scenario (i, j) in the previous list, and set the corresponding

variable αij to the binary value α
∗∗
ij nearest to α

∗
ij: i.e., set α

∗∗
ij = [α

∗
ij]. As soon as the

VaR probability is attained by this assignment (i.e., as soon as (i,j) Prij (1−α∗∗ij ) ≥ u),
set all remaining variables to 1, irrespective of their initial value.

4. If the VaR probability cannot be attained, then set to 0 some of the αij’s already fixed

to 1 among those with the initial highest values min{α∗ij, 1− α∗ij}.

5. Solve M1 with all binary variables fixed at the value α∗∗ij determined in Step 3.

A few comments are in order regarding the procedure M1(rounding). Note that by

working with a sorted list in Step 3, we give priority to the values which are already very

close to either one or zero, and not to the “fuzziest” ones. Moreover, as long as the VaR

constraint
nbS

i=1

nbS

j=1

Prij (1− α∗∗ij ) ≥ u

is satisfied, the solution produced by the procedure is feasible for the original problem M1.

In fact, if we denote by S the set of scenarios for which α∗∗ij is set to 0 in Step 3, then Step 4
amounts exactly to solving the linear programming model M1(S), as we defined it in Section
8.3.
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Partial rounding

In Step 3 of the previous approach, all the variables are successively set to a binary value.

It could happen, however, that most of the values α∗ij are close to 1/2, in which case it is

less likely that the optimal assignment should necessarily be to the nearest binary value.

Therefore, it makes sense to define an alternative heuristic, whereby we only round those

values which are initially close to one or zero, and we use a reduce BB process to optimize

the remaining values.

In order to be able to control the efficiency of the reduced BB process, we specify be-

forehand a parameter fd, which represents the percentage of variables to be fixed in Step 3

prior to entering the BB phase. Now, we need again some care if we want to preserve simul-

taneously the VaR requirement and the percentage f . We have implemented the following

heuristic M1(Rounding & BB, f%):

0. Define the parameter 0 ≤ f ≤ 100.

1. Solve the linear programming problem M1Relaxed by the simplex method and record

the optimal values α∗ij.

2. Sort all scenarios (i, j) in nondecreasing order of the difference min{α∗ij, 1 − α∗ij}, i.e.
the difference between α∗ij and the nearest binary integer.

3. While at most f% of the variables have been assigned, and while the VaR probability

is not attained, consider successively each scenario (i, j) in the previous list, and set

the corresponding variable αij to the binary value α
∗∗
ij nearest to α

∗
ij.

4. If the VaR probability has been attained by setting less than f% of the variables,

then set the free variables to the value 1, in decreasing order of α∗ij, until the required

percentage is reached.

5. If the VaR probability cannot be attained , even by setting all remaining free variables

to 0 (i.e., if the current assignment is infeasible), then set to 0 some of the αij’s already

fixed to 1 among those with the initial highest values min{α∗ij, 1 − α∗ij}, and set all
remaining free variables to 0.

6. Solve M1 by BB, with the binary variables fixed as determined in Steps 3-5.

Typically, the computational time required by this procedure decreases when f increases,

but so does the quality of the solution that it produces.

Note that M1(Rounding & BB, 1) is equivalent to M1(rounding).
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9.4 Preselection of options

9.4.1 Introduction

In this section, we would like to examine whether we can automatically determine a priori

(i.e., before the portfolio model is optimized) a subset of “promising” options which are likely

to appear in the optimal portfolio. Preselecting the options would allow to reduce the size

of the optimization model, and hence to speed up the optimization process.

Before we get to this point, however, we first need to explain what type of options are

included in the basic formulation of the model. We handle this issue in the next subsection.

9.4.2 Constructing the “universe” of options

As an underlying guiding principle, we would like our models to reproduce (automatically)

many of the conditions faced by an investor on a real-world financial market. In particular,

the models should involve options displaying realistic features.

In our computer implementations, we provide several ways to select the universe of op-

tions to be considered during the optimization process. The options are grouped in three

sets: those covering only the first period, those covering both periods (and possibly extending

beyond the horizon), and those created at the beginning of the second period. The options

in each set can be defined by a variety of different methods.

The most straightforward method is to provide, in an input file, the list of all the options

to be considered. As input, the user must encode the type (call or put), the strike price,

the maturity time, and the bid and ask prices of each option. For the options covering only

the second period, the input is more complex since the user must also specify for which

subtree(s) of the second period these options exist. For such options, other input methods

appear desirable.

A second way to generate options requires only to specify the total number of options, as

well as their class (only calls, only puts, or calls and puts). Then, an automated procedure

can be used to generate a given number of options displaying certain predefined features. In

our implementation, the strike prices are uniformly distributed over a range [lS, uS] of index

values. The range of index values can be defined so as to avoid extreme strike prices, for

which the option would be out-of-the-money with very high probability at the end of the

period. We set the lower endpoint lS equal to the expected index price minus one standard

deviation. Similarly, the upper bound uS is defined by adding one standard deviation to the

expected price.
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The third method, defined for options available at t0, creates a number of options equal

to the number of scenarios nbS (this number is doubled if both calls and puts are required).

For options covering only the first period, the strike prices coincide with the index values of

the first-period subtree. For options covering both periods, the strike prices are given by the

median index value of each second-period subtree. The investor can still decide if he wants

only calls, only puts, or calls and puts.

The fourth method concerns the options covering only the second period: it creates nbS

options in each of the nbS second-period subtrees (or a total of 2nbS2 options if the user

wants both calls and puts) by introducing a strike price for each index value at the end of the

subtrees. This approach is attractive to the extent that it completes the market (as required

by Dybvig’s theorem), but it creates a large number of options, and hence, it tends to slow

down the optimization process.

Our last method is probably the most realistic and interesting one. Here, the user

specifies the number of options required and their type (only calls, only puts or calls and

puts). Then, a procedure automatically generates the given number of options, with strike

prices computed according to the usual market rules (based on the time series of index values;

see Section 6.2.3). For the options covering only the second period, the user can leave it to

the procedure to decide how many options should be created for each set of scenarios. In

this case, the procedure analyzes the past index values and constructs the strike prices based

on each specific time series, according again to usual market rules.

9.4.3 Advanced selection of options

The above methods allow to construct a wide variety of options, but there is no way to know

whether any of these options is interesting for the investor until the end of the optimization

process. So, on one hand, the investor may be tempted to include a very large number of

options in the optimization model, in order not to forego any profit opportunity. But on

the other hand, considering too many options increases the complexity of the optimization

problem and decreases the efficiency of solution algorithms. Hence, it would be very useful

to be able to select a set of promising options before the main optimization takes place, and

to consider only this reduced set in the portfolio model.

Since it is difficult to know before the optimization whether an option is promising or not,

our idea is to make the decision on the basis of a reduced branch and bound optimization

process. Initially we decide how many options will be considered, and how many will be

eventually selected. As usual, we also fix the type of the options and the bid-ask spread.
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The other characteristics are automatically defined by the procedure. In particular, the

strike prices are fixed according to the usual market rules.

Then, the full portfolio optimization model is passed to the reduced BB procedure. Note

that this model is exactly the model that we wish to optimize, but we limit the execution of

the BB procedure, both in precision (gap) and in running time. The other CPlex parameters

BB are set as usual.

Now, the idea is to track all feasible intermediate solutions generated by the reduced BB

process. Each time an improved feasible solution is found at a node, the quantities of all

options that appear in the portfolio are recorded. At the end of the reduced BB process,

the options which have appeared frequently and in significant quantities, i.e. those with the

largest total recorded quantities, are deemed to be most “promising” and are selected. The

user is also allowed to add his own choice of options to this selection.

Finally, all selected options are used to set up again the portfolio model, and the main

optimization procedure is run on this smaller model.



Chapter 10

Computational experiments

10.1 Introduction

In this chapter, several parameters of th VaR models are numerically considered and ana-

lyzed. The aim is essentially to illustrate and discuss the models presented in Chapters 7-9.

Therefore, no more experiments are performed here to study how to represent the future,

and how to price the options (see Sections 5.6 and 6.7 for the respective numerical results).

In Section 10.2, we first define the general framework; i.e. the market conditions faced

by the investor, and the objectives of this investor. As, according to the results obtained in

Sections 5.6 and 6.7, the future and option pricing models have to be considered beforehand

to instantiate the VaR model, the construction of the tree of scenarios is also explained.

Section 10.3 briefly presents in which computer environment the numerical experiments

were performed. In particular, we make a short description of the software that we have

written in order to handle all the models described in the part two of this thesis.

The numerical experiments, and the corresponding results, are discussed in Section 10.4.

In Section 10.4.1, we first look for the optimal number of scenarios to construct in order

to obtain, in a reasonable computation time, coherent and stable portfolio returns. The

computation time also depends on the precision required by the investor; i.e. the maximal

difference that he accepts between the optimal solution of the problem and the best solution

found by the optimization process. This is presented in Section 10.4.2. Then, in Section

10.4.3, the structure of the optimal portfolio is studied to illustrate this typical portfolio

payoff pattern, which is often encountered when considering VaR constraints, and which

justifies the development of specific heuristics in order to solve the problem. Those heuristics

are presented and commented in Section 10.4.4. In Section 10.4.5, we show how the optimal

expected portfolio return evolves when different sets of options are considered at t0 and

203
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Parameter Value

Market CBOE

Options SPX (S&P500)

Period 0: t0=0 19/2/2001

Period 1: t1=1 19/3/2001

Period 2: t2=2 23/4/2001

Number of observed options (first period) 126

Initial index price 1246.23 USD

Index dividend yield 0.1058%

Index transaction cost 0.30%

Risk free rate 0.42%

Historical index return 1.131%

Historical index volatility 3.658%

Options transaction cost 0.30%

minimal cost per option 2 USD

maximal cost per option 20 USD

Table 10.1: Market data

t1. This is only possible thanks to the dynamic property of the two-period VaR model.

Similarly, when no adjustments of the portfolio are allowed at t1, i.e. when we consider a

static “one-period” tree of scenarios, the portfolio performances are highly affected. This

comparison of dynamic two-period trees vs. one-period trees, is described in Section 10.4.6.

Throughout this work, we have also stressed that the option prices used in the problem must

be coherent with the index return distribution. An example of what happens when this is

not the case is given in Section 10.4.7. Finally, in Section 10.4.8, some modifications of the

financial parameters are considered.

In the last Section 10.5, we draw some conclusions.

10.2 The financial problem

10.2.1 Market

On February 2001, on the CBOE, an investor would like to invest in a portfolio of options on

S&P500. He considers only the options on this major US index, and the risk-free asset. The

index is not integrated in the portfolio because the investor wants to avoid the additional

work implied by the construction of a stock portfolio which mimics the index.
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The future is modelled by a two-period tree of scenarios. The length of each period is

equal to one month in order to allow the investor to adjust his portfolio when new options

appear on the market. Two probability density functions are considered to model the future

index returns: the implied pdf constructed from the observed option prices, and the Normal

pdf. We expect to have a better representation of the future with the first pdf than with the

second one. However, this will allow us to compare the classical Normal model with a more

advanced one.

The investor can purchase options covering each of the two periods. For the first period,

the bid and ask option prices as well as the strike prices are observed on the CBOE. In

order to be coherent, the target option prices at t0 are either the observed prices if we use

the implied distribution, or, otherwise, the Black and Scholes prices. For the second period,

options are created artificially according to usual market rules. Therefore, the sets of options

vary from one subtree to another. This time, the target option prices are either the improved

BS prices, which take into account the smile effect of the first period, when the implied pdf

is used, or simply the classical BS prices otherwise.

The target bid and ask option prices, the initial index price and the index dividend

yield are taken from the CBOE internet site. The index expected return and volatility are

computed over the last 10 years from prices extracted from DataStream.

The bid and ask prices, as well as the risk-neutral probabilities, which are required by the

heuristics based on Dybvig’s theorem, are computed using the option pricing model OP2.

Table 10.1 summarizes the market parameters. The parameters defined to model the

future and the options are given in Table 10.2. In the next sections, we consider some

perturbations of these parameters and the consequences on the optimization results.

10.2.2 Investor’s decisions

Table 10.3 summarizes the investor’s decisions for the VaR portfolio problem. He defines a

minimal guaranteed level of 95% after two months; i.e. he accepts to face the risk to lose 5%

of his initial investment after two months in the worst case. This corresponds to a maximal

loss of 26% over one year. However, he requires at the same time, that, with a probability

of 95%, the return on his investment will be positive and larger than 5.15% per year (0.84%

over the two months); i.e. larger than the return of the safest investment (return of the

risk-free asset). This is a protective portfolio strategy.
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Parameter Value

Modelling the future

PDF

Implied distribution

utility function Power

subsampling size 400

equiprobable leaves No

Normal distribution

equiprobable leaves Yes

Number of scenarios

one-period subtree 30

full two-period tree 900

Modelling option prices

Model OP2

2nd period

number per subtree 30 (15 calls & 15 puts)

number for the 2nd period 900

target price BSsmile/BS

strike price Market rule

spread 2%

Cleaning Applied

Modelling VaR constraints

Model M1

Guarantee Strong

BB backtracking Deep

Table 10.2: Parameters of the models

Parameter Value

Initial budget 1 000 000 USD

Guarantee level 95%

VaR level 100.84%

VaR probability 95%

Adjustment of the portfolio at t1 Allowed

Investment in the index Unallowed

Quality of the solution (gap) 0.01%

Table 10.3: Investor’s decisions
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10.3 Computer environment

10.3.1 The software

All the numerical experiments were made on a 600MHz notebook computer with 128Mb

RAM. The operating system is MS Windows 98 and all the times given in the results are

real time.

A software was written in language C++ to solve the problems described in the pre-

ceding chapters. The software is highly customizable, and can handle all the models and

parameters presented above. In order to achieve this, the software is initialized by reading

a file containing numerous parameters. This file is described in the second appendix.

The two optimization processes, i.e. option pricing and portfolio optimization, are per-

formed by calls to routines of the professional CPlex 6.6 library. Therefore, we take advan-

tage of improved versions of optimization methods. Moreover, these routines can also be

customized according to our goals. The next section presents some of the CPlex parameters.

The instantiation of all the models presented in this work, and their conversion in CPlex

format is performed by the software. Also, the software handles the construction of the

probability density functions, the definition of the option strike prices and target prices, the

cleaning and preselection of options, the simulated annealing process to improve the prices

of options, and the treatment of the results.

10.3.2 CPlex parameters

The speed of the BB process, as well as the quality of the solution that it produces, can be

improved by tuning several CPlex parameters. We consider especially the following ones:

1. Branching. We can impose a priority order for branching on the variables. Instead of

letting CPlex fix this order (for instance, according to the magnitude of the coefficients),

we can impose to branch first on the value 0 for those VaR variables associated with a

low state-price density (cf. Dybvig’s theorem).

2. Jumptracking. Two basic branching strategies are available: either backtracking or

jumptracking. With backtracking, CPlex performs a depth-first traversal of the tree,

in the hope to find as quickly as possible a valid lower bound. With jumptracking, the

algorithm moves from one node to another node at the same level before going down

the tree. Each time a level of the tree has been fully considered, we obtain a new

smaller upper bound on the optimal value. Since the CPlex heuristic tends to provide
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a good lower bound, we prefer to rely on a jumptracking strategy in order to reduce

quickly the gap before the best available upper and lower bounds.

3. Root heuristic. We can force CPlex to use its root heuristic (a reduced BB process,

probably similar to our partial rounding heuristic).

4. Advanced starting solution. If we know an initial integer feasible solution (as it

is the case when we compute an initial heuristic solution), we can give it as input to

CPlex before starting the BB process. This provides an initial lower bound which can

be useful to trim down the enumeration tree.

5. Storage management. If the problem size is large, then the memory required during

the BB process can become huge. In our experiments, using the Windows virtual

memory resulted in dramatic performance improvements (use of the processor was

brought down from 98% to 10% in some cases). Most of the computing time is actually

spent in disk swaps. A way to control this phenomenon is to fix a CPlex limit to the

physical memory that can be used to store the BB tree. If this limit is reached, then

CPlex write the current tree (the part it does not need immediately) to disk and

continues with the next nodes.

6. Gap. CPlex stops the BB enumeration when the best available lower bound comes

within a predetermined percentage (called gap) of the best available upper bound.

Reducing the gap translates usually into much longer computing times. Since, in our

case, the objective function is the expected portfolio value, and since this value only

provides a rough summary (point-estimate) of the quality of the future portfolio value,

it does not seem necessary to impose a very tight gap.

7. Other parameters. CPlex provides other control parameters, such as the number

and the nature of cuts used, a variety of heuristics, etc.

10.4 Numerical results

10.4.1 Number of scenarios and pdfs

The first task which has to be performed for handling the portfolio problem described in

Section 10.2, is to construct the tree of scenarios. In order to do it, as described in Chapter

5, the implied and Normal probability density functions are stratified. The larger the sample

size, i.e. the number of scenarios per subtree, the better the representation of the continuous
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distribution. Moreover, large sample sizes are safer to avoid “leaks” in the VaR and guarantee

constraints. However, this also leads to larger problems and larger computation times.

When at least 30 scenarios are considered, the sample is a good representation of the

continuous distribution. This was already observed in Section 5.4.6. Moreover, for all sample

sizes equal to or larger than 30 scenarios, the VaR constraint and the guarantee constraints

are nearly perfectly satisfied. In order to check this, we compute the value of the optimal

portfolio at the leaves of a new two-period tree with 50 times more nodes at each second-

period subtree. Obviously, as expected, both constraints are more violated when using the

scenario approach (7.3) to model the guarantee constraint than when using the strike-price

model (7.10).

nbS Leaves Tree BB Expected return First gap Final gap

Normal distribution

20 400 2” 7’02” 0.58% ([7.16%,7.23%[) 0.44% 0.01%

30 900 2’05” 5h 0.54% ([6.69%,8.01%[) 0.43% 0.21%

401 1 600 4” 5h 0.54% ([6.75%,8.49%[) 0.42% 0.27%

501 2 500 6” 5h 0.52% ([6.44%,8.85%[) 0.47% 0.37%

1001 10 000 8” 10h 0.52% ([6.47%,9.40%[) 0.47% 0.45%

Implied distribution

20 400 3” 22” 0.63% ([7.90%,7.97%[) 0.05% 0.01%

30 900 4” 3h30’51” 0.61% ([7.56%,7.62%[) 0.09% 0.01%

40 1 600 4” 5h 0.61% ([7.61%,7.81%[) 0.26% 0.03%

50 2 500 5” 5h 0.60% ([7.43%,7.81%[) 0.19% 0.06%

100 10 000 15” 10h 0.56% ( [6.98%,7.88%[) 0.23% 0.14%
1 model OP1 is used to price the options

Table 10.4: Number of scenarios

Table 10.4 gives some effects of the sample size on the optimization process. The first

two columns give respectively the sample size and the resulting number of leaves at t2. The

third column indicates the time required to prepare the data for the VaR problem; i.e. time

spent in the pdf construction, stratification, probability conversions, option pricing and pre-

processes. The fourth column is the time spent in the branch and bound optimization of

the VaR problem. The BB process was not allowed to work more than 5 hours (10 hours for

the largest sample size). The best expected portfolio return found is indicated in the fifth

column. This is a monthly return. The corresponding yearly return, and the upper bound

on the optimal solution, are given between brackets. The gaps between the best feasible
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solution found and the best possible solution (the optimal solution of the relaxed problem)

vary depending on the number of scenarios. The first and final gaps are given in the last two

columns. Note that the gap is measured with respect to the objective function expressed as

a portfolio payoff and not as a portfolio return. Thus, there is no linear relation between the

expected returns in column five and the final gap.

The construction of the tree of scenarios only requires a few seconds for each sample size

and both pdfs. Most time is spent in the conversion of the Normal consensus pdf into the

risk-neutral counterpart. The computation time increases exponentially with the number

of scenarios. Therefore, it was not possible to compute the converted pdf for sample sizes

larger than 30 scenarios and the Normal distribution. Thus, the option pricing model (OP1)

is used for large sample sizes.

The optimization of the VaR problems requires more time and blows up when the number

of scenarios increases. For larger sample sizes, it was even impossible to precisely compute

the optimal portfolio within the time limit of 5 hours. This appears also clearly when we

look at the first and final gaps. The first gap is obtained at the first iteration by CPlex

heuristic (note that the time required varies from a few second to several minutes according

to the number of scenarios). Comparing the first and the final gap shows how quickly the

optimization process progresses. This is fast for few scenarios and very slow for large sizes.

Note also that the problem seems more difficult when the future is represented by the Normal

distribution.

In order to represent correctly the continuous pdf and to avoid troubles with the VaR

constraints, sample sizes sizes smaller than 30 are not adequate. Moreover, since we wanted

small problems leading quickly to optimal solutions, 30 scenarios turned out to be suitable.

We would be more confident if the optimal returns are stable when more scenarios are

constructed. Indeed, it would mean that 30 scenarios already represent precisely enough

the future for the VaR problem. We have to be careful before drawing conclusions from the

figures in Table 10.4. First, one should not forget that each problem, i.e. for each number of

scenarios, is different. Indeed, the options covering the second period are defined according

to market rules. Each time we increase the number of scenarios, additional subtrees are

defined in the second period; each with a new set of options. However, as each set of options

is defined according to the same set of market rules, this should not have a large impact

on the optimal objective value. Secondly, the increase of the number of scenarios implies

that we were not able to compute precise optimal solutions in a reasonable laps of time. We

could expect that the optimal solution obtained for trees with large numbers of scenarios

can be improved when more time is provided. However, it appears in Table 10.4 that all
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Gap Time Expected return

Normal distribution

0.43% * 23” 0.54% ([6.69%,9.47%[)

0.30% 17’18” 0.54% ([6.69%,8.59%[)

0.21% 5h 0.54% ([6.69%,8.01%[)

Implied distribution

0.09% 56” 0.60% ([7.46%,8.02%[)

0.08% 1’26” 0.60% ([7.49%,7.97%[)

0.07% 1’36” 0.61% ([7.55%,7.96%[)

0.06% 2’50” 0.61% ([7.55%,7.91%[)

0.05% 6’31” 0.61% ([7.55%,7.84%[)

0.04% 15’11” 0.61% ([7.55%,7.78%[)

0.03+% * 20’04” 0.61% ([7.56%,7.76%[)

0.03% 38’10” 0.61% ([7.56%,7.72%[)

0.02% 1h53’47” 0.61% ([7.56%,7.66%[)

0.01% 3h30’51” 0.61% ([7.56%,7.62%[)

Table 10.5: Computation time

the optimal results are close and that the range of optimal returns, for a given number of

scenarios, is always nearly a subrange of the results obtained for more scenarios. Therefore all

the results are compatible, and we consider that 30 scenarios is enough for all the subsequent

experiments.

10.4.2 Computation time

Even for 30 scenarios, the computation times given in Table 10.4 are disappointing. The

investor would certainly like to obtain more rapidly a solution. In fact, the computation time

also depends on the precision required by the investor. It is well known that the branch and

bound process requires more and more time to reduce the gap obtained for the successive

solutions. This is due to the explosion of nodes in the bottom of the branch and bound tree.

This is shown clearly in the first two columns of Table 10.5.

Even more frustrating for the investor, the best feasible solution is usually found well

before the end of the optimization process. The branch and bound optimization takes time

to check that the best feasible solution encountered is really the best one (within the required

gap). The time spent before obtaining the best portfolios, is marked with a star in Table
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10.5. For the Normal pdf, the best solution is the first one computed, 5 hours before the end

of the process. For the implied pdf, the best solution is found 3 hours before the end of the

optimization process.

In the numerical experiments presented in Table 10.4, the branch and bound process

stops either when the time limit has expired, or when the gap between the best feasible

solution and the upper bound, becomes smaller than 0.01%. This gap implies that the best

feasible yearly return obtained is at most about 0.05% smaller than the best possible feasible

solution of the problem. A feasible solution within this gap can be considered perfect by the

investor. However, the investor could already be satisfied with a 0.05% gap. Indeed, this

corresponds to an upper bound on the optimal yearly return of about 0.30% more. In the

case of the implied distribution, the optimization process requires only 6 minutes instead of

more than 3 hours. Therefore, in the sequel, we set the required gap to 0.05%.

10.4.3 Structure of optimal portfolios

Dert and Oldenkamp [20] observed, for one-period problems with guarantee and VaR con-

straints, that the portfolio consists of few options. Therefore, we have investigated the

structure of the portfolio and derived heuristics to solve the problem. For the problem

presented in Section 10.2, typical results also are observed. In this section, the results are

detailed for the implied distribution. The same conclusions also hold for the Normal pdf.

First, let us have a look at Figures 10.1-10.2. Each plot illustrates the portfolio payoff

for a subtree of the second period. The horizontal axis represents the portfolio values at t2.

The corresponding portfolio value is reported on the vertical axis. A mark is plotted on the

portfolio payoff line for each index value corresponding to a leaf of the subtree. Also, the

guaranteed level (θB) and the VaR level (λB) are indicated. Note that it is impossible to

plot such a figure for the whole tree, since the initial portfolio is adjusted at the root of each

subtree, and therefore it constitutes a new independent portfolio each time.

We observe that the payoff line matches the guaranteed level for the 30th subtree, i.e.

for the smallest index values, then progressively shifts to the VaR level when upper subtrees

(subtrees 28-27) are considered, to match perfectly the VaR level for upper subtrees (subtree

26). The pattern of subtrees 7 to 26 are identical to the pattern of subtree 26; i.e. the

portfolio payoff is equal to the VaR lower bound. Finally, when the largest index values are

considered, the portfolio payoff increases linearly (subtrees 5 to 1).

This increasing piecewise payoff can first be explained by the first moments of the index

return distribution. As for the example given by Dert and Oldenkamp [20], the expected
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Figure 10.1: Optimal portfolio payoff: scenarios 27-38
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Figure 10.2: Optimal portfolio payoff: scenarios 1-26
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mean of the S&P500 is large while the volatility is reasonable. As explained in Section 8.4.2,

the investors expect an increase of the index value and are quite confident in the size of this

increase. Therefore, they will invest such as to maximize the portfolio payoff when the index

is large; this corresponds to a bullish strategy. As they do not expect small index values in

the future, this also implies that they are indifferent to the portfolio payoff in those cases,

and that they will not pay more to obtain larger payoffs. Therefore, the optimal portfolio

values are close to the Var and guarantee lower bounds for small index values.

Dert and Oldenkamp [20] are particularly interested by the “step” pattern that we observe

in subtrees 27 and 28. In the VaR problem that we consider here, the VaR probability is high,

and therefore, few subtrees and index values are constrained by the guarantee constraint.

So, the step appears in few subtrees. Note however that such steps can be created by using

a trading strategy called in finance “bull spread”. This strategy involves two calls or two

puts (see Hull [32] for details).

Figures 10.1-10.2 also show that each payoff line is flat for most of the subtrees. It is

piecewise in four parts in subtrees 27 and 28 to define the “VaR step”, and is piecewise in

two parts for the uppest subtrees. In Section 7.2.6, we have shown that the portfolio payoff

is a piecewise linear function with breakpoints at the option strike prices. Therefore, Figures

10.1-10.2 indicate that at most 4 option strike-prices, and so 8 options (calls and puts), are

required in each subtree to obtain the corresponding portfolio payoff. This is indeed the

case when we look at the exact composition of the optimal portfolios. For subtrees 1-26,

the optimal portfolio consists of a risk-free investment that provides the VaR level at t2.

Options do not appear in the portfolio before scenario 6, when one long call is required to

create the breakpoint in the piecewise pattern. For subtrees 27-29, the risk-free investment

provides at least the guaranteed level. Up to 8 options are used in short and long positions

to create the steps. In subtree 30, the portfolio is only a risk-free investment. Note also that

this implies a block structure in most of the subtrees.

A similar analysis can be performed for the first period. The budget constraint is the

sole constraint applied at t1. This is a normalizing constraint and so, it does not imply a

particular portfolio payoff pattern at the end of the first period. The VaR and guarantee

constraints, which shape the portfolio, are only applied at t2. Therefore, the portfolio values

at t1 are computed such as to define the optimal budget in each second-period subtree in

order to maximize the final expected portfolio payoff (with respect to the final constraints).

As a bullish strategy appears optimal for this problem, it implies that larger budgets should

be available in the upper subtrees than in the lower ones. This is actually observed in the

numerical results. This is depicted in Figure 10.3. Note that we consider no index and no
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option covering both periods, and so the budget available at the root of each subtree is equal

to the portfolio value.

Figure 10.3: Budgets at t1

Again, since the portfolio payoff is a piecewise linear function with breakpoints at the

option strike prices, and since the shape of the payoff in Figure 10.3 is simple, few options are

required. Numerically, only 3 options, with maturity at t1, appear in the optimal portfolio.

This structure is observed because all the options initially purchased mature at t1. We can

expect more complex portfolio shapes when we consider options covering both periods (and

also because options initially purchased and maturing at t2 are directly considered in the

VaR and guarantee constraints (see Section 10.4.6)).

Of course, we cannot draw general conclusions only from this specific example. It would

be interesting to consider an example in which the bullish strategy is not so efficient. How-

ever, even for other strategies, similar results in which the portfolio payoff is close to the

Var and guaranteed levels in some subtrees are expected, to allow larger payoffs in the other

subtrees. Therefore, we think it should be possible to speed up the optimization process by

using specific heuristics.

10.4.4 Initial bounds

For the VaR problem described in Section 10.2, computation times and optimal expected

returns are given in Sections 10.4.1-10.4.2. Even if the structure of the optimal solution,
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described in Section 10.4.3, is “simple”, the branch and bound process requires time to com-

pute a satisfying solution. Therefore, we analyze in this section if the heuristics, presented

in Chapters 8-9, speed up the process.

The heuristic results are given in Table 10.6 for the two pdfs. Each line corresponds to

the results of the heuristic identified in the first column. The second column corresponds

to the best expected yearly return of each heuristic. A symbol plus is added in front of

those returns which are the lower bounds of the branch and bound process used by the

heuristic. All the other returns are exact optimal returns since they are obtained by the

simplex method. The third column gives the gap between the heuristic portfolio payoff and

the upper bound initially obtained by the simplex method over the relaxed problem. The

last column gives the time spent in the heuristic process. As the investor wants to obtain

quickly a solution, the computation time for each heuristic is limited to 2 minutes. The

heuristics are sorted by decreasing expected returns.

Nearly all the heuristics presented in Table 10.6 are discussed in Chapter 9. One addi-

tional heuristic named M1(Dybvig:bullish) is considered. In M1(Dybvig:bullish), the VaR

probability is split between the second-period subtrees according to the final index values

and a bullish strategy. First, all the leaves are sorted by decreasing index values. Then we

split the list into two parts with probabilities u and (1 − u). Finally, the VaR probability
associated to each subtree is given by the sum of the leaf probabilities corresponding to the

subtree in the first part of the list.

We have also added to the table the upper bound obtained by the relaxation of the VaR

problem, and the portfolio which consists only in the risk-free asset. This gives the two

extreme possible portfolio values. Finally, we indicate the best solution obtained without

heuristics, and the best upper bound that we know (returned by the branch and bound

process at the end of the optimization of M1).

The three families of heuristics perform similarly for both the Normal and implied distri-

butions. Indeed, when considering only the expected returns, the best solutions are obtained

by the rounding heuristics, then by the strategy approaches, and finally by the heuristics

using Dybvig’s theorem. All the heuristics using the simplex method only require a few sec-

onds. The rounding heuristics need less than one minute and the other branch and bound

processes are stopped after two minutes.

The rounding heuristic with a reduced branch and bound process performs particularly

well, since it provides nearly the optimal solution for the implied distribution in 26 seconds

instead of more than 4 minutes. The solution, obtained in 9 seconds, is even better in the

case of the normal distribution, since the branch and bound optimization over the VaR



Chapter 10. Scenarios and VAR: computational experiments 218

Heuristic Bound Gap upper bound Time

Normal distribution

Upper bound (relaxation) 9.47% 1”

Upper bound (BB, gap 0.21%) 8.01% 5h00’00”

Upper bound (BB, gap 0.06%) 7.32% One week

M1(Rounding & BB,800/900) +6.96% 0.39% 47”

M1(Rounding & BB,850/900) +6.96% 0.39% 9”

Optimal solution (gap 0.21%) 6.69% % 5h00’00”

CPlex heuristic 6.69% 0.43% 23”

M1(local bullish) +6.57% 0.45% 2’00”

M1(bullish) 5.95% 0.55% 2”

M1(Dybvig:bullish) 5.95% 0.55% 2”

M1(local Dybvig) +5.95% 0.55% 2’00”

M1(Dybvig) 5.67% 0.59% 1”

M1(Dybvig:equirepartition) 5.19% 0.67% 2”

M1(Rounding & BB,900/900) 5.19% 0.67% 3”

Risk-free investment 5.169% 0.67% 0”

M1(local volatility) - - 2’00”

Implied distribution

Upper bound (relaxation) 8.02% 2”

Upper bound (BB, gap 0.01%) 7.62% 3h30’51”

Optimal solution (gap 0.05%) 7.55% 0.07% 6’31”

M1(Rounding & BB,800/900) +7.55% 0.07% 26”

M1(Rounding & BB,850/900) +7.47% 0.08% 12”

CPlex heuristic 7.46% 0.09% 56”

M1(bullish) 6.19% 0.29% 1”

M1(Dybvig:bullish) 6.19% 0.29% 1”

M1(local bullish) +6.11% 0.30% 2’00”

M1(Dybvig) 5.45% 0.40% 2”

M1(local Dybvig) +5.38% 0.41% 2’00”

M1(Rounding & BB,900/900) 5.23% 0.44% 3”

M1(Dybvig:equirepartition) 5.20% 0.44% 1”

Risk-free investment 5.169% 0.45% 0”

Local strategy: volatility - - 2’00”

Table 10.6: Heuristics to compute a lower bound
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problem was unable to provide a feasible solution in the required gap in less than 5 hours,

nor even to improve this heuristic solution in one week! Note also that Cplex heuristic,

which is probably based on the same approach, gives similar results, but in more time. The

investor could be tempted to only use the rounding heuristic. However, the upper bound

obtained by relaxing the problem is still very far from the heuristic solution, and the upper

bound provided by the branch and bound performed by the heuristic is not applied to the

original problem. Therefore, we have no guarantee that the heuristic solution is close to the

optimal one without performing a complete optimization. This is true for all the heuristics

presented here.

It would be very useful to define heuristics to compute low upper bounds on the optimal

solution. A typical approach is to consider cuts during the branch and bound process.

However, when CPlex is asked to use all the classical cuts available in its library, none is

applied. This suggests that classical cuts are not efficient for the VaR problem and that

specific financial ones have to be defined.

The heuristics based on strategies give poor results. This could be partially explained

by the fact that the assumptions behind these heuristics (bullish, volatility, stability) are

stronger than in the rounding heuristics. Especially, when we apply these approaches to

the final leaves, only one set of values is possible for the binary variables α . However, in

Section 10.4.3, we have observed that the optimal portfolio payoff is an increasing function

of the index value in each subtree. This seems to indicate that the bullish strategy is

optimal. However, this does not prove that the global bullish strategy is optimal, but this

only provides indications locally at the subtrees. This would imply that the global approach

cannot integrate the possibility to adjust the portfolio at t1. This freedom results clearly in

a complication since the subtrees typically overlap each other, and thus there exist several

leaves defined with the same index value, but with different portfolio values. The poor

results obtained when using the bullish strategy locally at each subtree do not contradict

this explanation. Indeed, the optimal solution found in this case is provided by a branch

and bound process, whose execution has been stopped after 2 minutes. Therefore, this is

only a rough lower bound on the optimal solution. When the process is not stopped before

completion (gap 0.01%), the yearly return, 7.51%, is close to the optimum, but it requires

3’46”.

Dybvig’s results are even more disappointing. However, the reasons are evident in this

case: Dybvig’s hypotheses are not satisfied. Indeed, the market is uncomplete in each subtree

(less than 16 independent securities for 30 scenarios) and not perfect (transaction costs and

spreads are applied). Moreover, the guarantee constraint is modelled by the strike price
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Heuristic Bound Gap upper bound Time

Implied distribution

Upper bound (relaxation) 8.26% 2”

Optimal solution (gap 0.05%) 7.68% 0.09% 22’25”

Dybvig: bullish 6.49% 0.28% 1”

Dybvig 5.86% 0.38% 1”

Dybvig: BB model 1 +5.78% 0.39% 2’00”

Dybvig: equirepartition 5.45% 0.44% 1”

Table 10.7: Dybvig’s approaches and the guarantee constraint

approach, and therefore the constraint is satisfied for all possible index values and not only

for the values associated to each leaf of the tree. Therefore, we can expect that this heuristic

will give better results for other problems with less violations of Dybvig’s hypotheses.

It would be interesting to determine, for each violation, the effect on the quality of the

heuristic solution. However, this cannot generally be computed. Indeed, completing the

market or removing the costs modify the problem, and lead to larger optimal expected

payoffs. It becomes impossible to compare the gaps between the heuristic solutions and

the optimal ones, since the latter are different for each new problem. Therefore, we only

provide, in this section, results when the guarantee constraint is modelled by the alternative

formulation (7.3). In this case, and for the 900 scenarios at t2, the portfolio payoff is not

too much affected. Results are given in Table 10.7. Note first that the upper bound and

the optimal expected return are slightly larger than with formulation (7.10) of the guarantee

constraint. The difference is not significative and the new optimal value is in the gap of

the old one. Also, as was expected, the heuristic’s results are improved. The increase in

the yearly return is not large, but already significative. However, due to the violations of

Dybvig’s hypotheses, these heuristic returns remain low even when using this alternative

formulation of the guarantee constraint.

Finally, note that Dybvig’s heuristics based on a bullish strategy, returns exactly the

same solution as the global bullish strategy. Indeed, as observed in Section 8.5.6, there is

a perfect inverse relation between the one-period state price densities and the index prices.

Therefore, in each subtree, it is equivalent to define the VaR variables according to the

decreasing index values or the increasing state price densities. Since the VaR probability is

also defined in each subtree according to the decreasing index values, the two heuristics are

identical.
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ID Index Options t0 Options t1 Time Expected return

Normal distribution

NE1 No 126 30x30subtrees 5h 0.54% ([6.69%,8.01%[)

NE2 No 126 60x30subtrees 5h 0.54% ([ 6.74%,7.83%[))

NE3 No 126 60 5h 0.61% ([7.65%,8.62%[))

NE4 No 0 30x30subtrees 4’22” 0.50% ([6.16%,6.48%[))

NE5 No 126 0 11’12” 0.42% ([5.18%,5.49%[))

NE6 Yes 126 30x30subtrees 5h 0.56% ([ 6.96%, 7.81%[)

Implied distribution

NE7 No 126 30x30subtrees 6’31” 0.61% ([7.55%,7.84%[)

NE8 No 126 60x30subtrees 16’26” 0.64% ([8.02%,8.32%[)

NE9 No 126 60 10’26” 0.67% ([8.39%,8.72%[)

NE10 No 0 30x30subtrees 4’26” 0.61% ([7.55%,7.88%[)

NE11 No 126 0 57” 0.46% ([5.74%,6.05%[)

NE12 Yes 126 30x30subtrees 5’14” 0.61% ([7.55%,7.88%[)

Table 10.8: Number of options

10.4.5 Options and index

Until now, we have always considered the same number of options. We would like to know

how the optimal portfolio payoff and the computation time vary when we change the number

of options, or when we consider the index. This is especially interesting since we work with

a two-period model in which we can change the number of options in each period. This is, to

our point of view, a first advantage of a dynamic two-period model vs the static one-period

approach.

The results are given in Table 10.8. The first column identifies each numerical experiment.

The next three columns indicate which securities are considered. The fifth column gives the

total time spent in the optimization process. Finally, the last column gives the optimal

expected returns. In the numerical experiments NE2 and NE3 (and NE8-NE9), 60 options

are considered during the second period. In NE2, the set is constructed according to the

market rules, and therefore the sets of options are different in each subtree. In NE3, the

same set of options, i.e. with the same strike prices, is considered for each subtree.

As we can expect, when the number of securities is increased, the portfolio payoff increases

or remains constant. The same is observed about the computation time.

When we remove options during one of the two periods, the problem becomes easier since
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there is no more than one security, i.e. the risk-free asset, to consider in the corresponding

period. The amount invested in this asset is directly given by the available budget at the

beginning of the period. Therefore, the optimization process requires less time. Moreover,

in experiments NE4 and NE10, the budget at t1 is the same for all subtrees. Each subtree is

nearly independent; the sole link is the VaR constraint. These experiments clearly show that

the options covering the second period contribute more to the optimal expected portfolio

payoff than the options with maturity at t1.

The case of the index is interesting. The index does not appear in the optimal solutions

neither in NE6 nor in NE12. In fact, the index can be considered as an option with a null

strike price, but the optimization process prefers options with larger strike prices. However,

surprisingly, considering the index in NE6 allows the optimization process to reduce more

quickly the gap. This is another indication that the computation time may significatively

vary depending on the data. Similarly, when we compare experiments NE2 and NE3, or

NE8 and NE9, even if all these problems have the same size (the only differences are the

values of the strike prices), the gap is reduced quicker in NE3 and NE9.

10.4.6 One-period vs two-period model

In the previous section, we have already noticed that considering new options during the

second period increases the optimal objective value more than options covering only the first

period. We would like here to show that the dynamic two-period model is superior to the

one-period model.

Obviously, if the horizon is the same in both models, the dynamic two-period model

cannot perform worst than the one-period model. Indeed, the two-period tree is a more

general model which includes the one-period tree. In order to compare both models, we

construct in this section a one-period tree with the same representation of the future; i.e.

the same final index values and number of leaves. In order to do it, we construct the two-

period model, but remove the possibility to adjust the portfolio at t1, and to consider other

options that the ones covering both periods.

Table 10.9 gives the optimal results for which 56 options with maturity at t2 are con-

sidered in the one-period model; i.e. all the options observed on the CBOE. The previous

results for the two-period model, with all the observed options or just options covering the

second period, are given again.

The two-period model clearly dominates the one-period approach. This is not due to

the selection of options considered at t0 since NE6 and N3, without option initially, perform
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ID Model Time Return Final gap

Normal distribution

NE1 1 period (56 options) 5h 0.42% ([5.18%,5.79%[) 0.10%

NE2 2 periods (126+30 options) 5h 0.54% ([6.69%,8.01%[) 0.21%

NE3 2 periods (0+30 options) 4’22” 0.50% ([6.16%,6.48%[)) 0.05%

Implied distribution

NE4 1 period (56 options) 3’21” 0.42% ([5.17%,5.37%[) 0.03%

NE5 2 periods (126+30 options) 6’31” 0.61% ([7.55%,7.84%[) 0.05%

NE6 2 periods (0+30 options) 4’26” 0.61% ([7.55%,7.88%[) 0.05%

Table 10.9: one-period model vs. two-period model

better than NE4 and NE1. Moreover, the optimal portfolios for NE2 and NE5 contain only

three options. NE4/NE5 and NE3/NE2 are very similar.

The difference is due to the VaR constraint which is very restrictive. The optimal return

for the one-period model is close to the risk-free return. Without the freedom to consider

new options at t1 and the possibility to adjust the portfolio, it is not possible to satisfy the

VaR constraint using other securities than the risk-free asset.

This also explains why NE3 and NE6 perform so well even if the initial portfolio is only

composed of the risk-free asset. The VaR constraint can be optimally handled by only using

options covering the second period, and by optimizing the second-period subtrees. Therefore,

portfolios composed of only the risk-free asset or only few options with maturity at t1, can

be seen as a side effect of a strong (high bound and large probability) VaR constraint and the

possibility to use distinct set of options (as explained in Section 10.4.3). In Section 10.4.8,

other VaR parameters are considered.

10.4.7 Consistency

Until now, we have carefully separated the Normal and Implied cases; i.e. what we could call

the theoretical and real cases. In order to be consistent, the Black and Scholes option prices

are used as target when using the Normal pdf, and the observed CBOE prices are used as

target when using the implied pdf. We cannot model the future by a Normal distribution

when we want to consider the real market. Indeed, the observed option prices are not close

to the Black and Scholes prices. When we consider the 126 observed option prices, the

mean difference is 37.12% with respect to the BS prices. Therefore, when we try to use the

observed prices and a tree with normally distributed index returns, the optimal expected
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portfolio payoff becomes unrealistic (5.40% per period or [91.26%,91.84%[ per year).

10.4.8 Financial variations

In Section 10.4.6, we have already noticed that the VaR constraints for the problem described

in Sections 10.2.1-10.2.2 are very restrictive. This is due to a large probability u and to a

high VaR lower bound. On the other hand, a large probability u implies that only a very

small subset of the variables α must be set equal to zero, and therefore that the problem is

probably easier to solve than one with a smaller probability u .

When we consider the same problem as before, but rather with a VaR probability of

80%, we obtain, for the implied distribution, the results in Table 10.10. As expected, the

computation time explodes. Model M1 cannot be solved as fast as observed before in Section

10.4.2. Moreover, the problem is less constrained and so the expected return is larger. Note

also that the heuristics based on strategies now give the best results, even better than the

result provided by Cplex heuristic.

Model Expected return Time

M1 (final gap 0.37%) 0.77% ([9.74%,12.21%[) 5h00’00”

M1(local bullish) +0.75% (9.42%) 2’00”

M1(Rounding & BB,800/900) +0.75% (9.42%) 2’00”

M1(bullish) 0.70% (8.79%) 1”

M1(Dybvig:bullish) 0.70% (8.79%) 1”

CPlex heuristic 0.68% (8.55%) 8”

M1(Dybvig) 0.56% (6.96%) 1”

M1(Rounding & BB,900/900) 0.46% (5.46%) 3”

M1(Dybvig:equirepartition) 0.44% (5.46%) 1”

Table 10.10: VaR probability u=80%

10.4.9 Normal pdf vs. implied pdf

It is interesting to compare the results obtained for the two probability density functions. We

already observed in Table 10.4 of Section 10.4.1 that the time required to optimize the VaR

problem not only is a function of the number of variables and constraints in the model, but

also depends on the nature of the data. Table 10.11 gives the computation time required to

obtain the best portfolio returns within nearly the same gap. Note that the optimal solution
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found for the Normal case was obtained by the rounding heuristic, and that the branch and

bound process requires one week just to reduce the upper bound. This shows that the data

used to create an instance of the problem influence strongly the computation time. The

Normal model is clearly more difficult to handle than the implied model.

Pdf nbS Time Expected return Final gap

Normal pdf* 30 1 week 0.56% ([6.96%,7.32%[) 0.06%

Implied pdf 30 6’31” 0.61% ([7.55%,7.84%[) 0.05%
∗ Rounding heuristic applied

Table 10.11: Best returns for both pdfs

It is clear from the results in Section 5.6, that the Normal distribution gives a different

representation of the future than the implied pdf. Therefore, we can expect that the optimal

returns vary with the pdf used to model the future. According to the results in Table 10.11,

the Normal world underestimates the expected returns since the Normal upper bound is

smaller than the implied lower bound.

In order to compare both distributions, it is also tempting to test the two optimal port-

folios, i.e. one for each pdf, on historical market data. However, by definition, only one

scenario can happen in reality. Therefore, such a test would compute, for a specific past

scenario, the portfolio value which corresponds to the optimal portofolio structure which

was computed to maximize the portfolio value in mean over a large set of possible scenarios.

These are two different contexts. This comparison would only be valid if it was possible to

perform this test several times and to take the mean result. But, it is impossible since only

one historical set of market data corresponds to each two-period tree of scenarios.

A more interesting comparison would be to compare the structure of all the portfolios

at t0 and t1 for both distributions. Indeed, the optimal portfolios could have the same

structure, and the differences in the optimal portfolio returns could only come from the

distributions of prices. Unfortunately, it is not possible to compare the adjusted portfolios

at t1 for the Normal distribution and the implied distribution since the scenarios at this

time correspond to two different representations of the world, characterized by completely

different parameters. However, as we suggest a roll-over strategy, only the initial portfolio is

important for the investor. As most of the initial parameters are observed on the market, this

comparison should be possible. But, this is not the case for all the parameters. In order to

avoid abnormal results and to insure coherency, the initial target option prices for the Normal

case are the BS prices instead of the market prices. Neverthless, the initial optimal porfolio
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structures are provided in Table 10.12. The two portfolios are clearly different. This is even

more obvious in Figure 10.4 when considering the portfolio payoffs at t1, independently of

the index distribution.

Implied distribution Normal distribution

Asset Quantity Asset Quantity

Risk-free 999 965 Risk-free 999 965

Call 1300 535 Call 1280 261

Call 1310 -387 Put 1240 112

Put 1150 -182 Call 1285 -534

Table 10.12: Optimal portfolio structures

Figure 10.4: Initial portfolio payoffs

In order to check that both solutions would lead to different final returns, a last test could

be to start the optimization of the VaR problem under one pdf, but by initially imposing

the optimal initial portfolio obtained for the other pdf. Unfortunately, this approach is

usually not possible. Indeed, two problems appear. First, due to the cleaning process, the

same sets of options could not be available for both pdfs. Secondly, as the market option

prices are not equal to the BS option prices, the initial investment to perform to construct

the portfolio could not satisfy the budget constraint. This problem indeed appears for the

problem considered in this chapter.
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10.5 Conclusions

In Section 10.2 of this chapter, we define a specific VaR problem, and the underlying models.

The index returns are modelled by the implied pdf. But, for theoretical reasons, we also

consider the Normal case. In Section 10.3, we precise the computer environment, and espe-

cially we present the software written for the purpose. In Section 10.4, we discuss the results

of several numerical experiments. For both the Normal distribution and the implied one, we

have successively analyzed the required number of scenarios in the tree and the quality of

the results, the computation time and the branch and bound gap, the specific structure of

the optimal portfolio, the heuristic performances, the use of different number of options in

each period and the index presence, the performances of the dynamic two-period tree versus

the static one-period tree, the consequences of considering inconsistent option prices, and

what happens when we consider another VaR probability.

Is it dangerous to draw general conclusions from a specific example. Moreover, as noticed

in particular in Section 10.4.3, for the S&P500 in February, a bullish strategy seems clearly

adequate. More numerical experiments should be made to consider all the possible cases

(bullish, bearish, volatility, butterfly) with different parameters to describe the financial

market and the investor’s goals. Therefore, in the sequel, the general comments are made

with respect to the VaR problem considered in this chapter. However, we expect that most

of the results presented here remain valid even for other financial data.

It is difficult to compare the results obtained with the Normal pdf and with the implied

pdf. Indeed, we observe, in Sections 10.4.1-10.4.2, that the time spent in the optimization

process does not only depend on the size of the problem, but also strongly on the input

values. For this VaR problem and the normal distribution, the optimization process cannot

return results with high precision in a reasonable computation time. Moreover, as shown

in Section 10.4.7, it is not possible to use the same option sets in both representations of

the future. We must be coherent and use the Black and Scholes option prices when using

the Normal distribution to model the future index returns. Note that, even if we could use

identical data sets, the optimal results would probably be different. Indeed, in Section 5.5.4,

the implied distribution, based on the observed option prices, and the Normal distribution

have a very different shape. Finally, if we even assume that using different sets of options

make few differences, the optimal return obtained under normality assumptions (6.96%) is

lower than the optimal return obtained under the implied pdf (7.56%). Therefore, for all

the reasons mentionned in this paragraph and the ones already formulated in Chapter 5, we

consider that the implied pdf should be used to model the future.
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Another interesting result is that 30 scenarios per subtree suffice to model the future. For

this sample size and index returns obtained by the stratification of the continuous pdf, the

tree of scenarios accurately represents the continuous index distribution. Moreover, as the

sample size is small, the VaR problem size is also reduced. We can even afford to complete

the market with nbS2 options when it is useful. More important, the optimal portfolio

returns appear stable, i.e. when we increase the number of scenarios, the returns remain in

the same range, and the constraints are perfectly satisfied. More scenarios do not lead to

improvements for this VaR problem, while has the drawback to increase, exponentially, time

required to obtain an optimal solution. Note also that option pricing model (OP2) cannot

be used for sample sizes larger under the Normal distribution.

In Section 10.4.3, the structure of the optimal portfolio is described. As for all feasible

portfolios and options with maturity at t2, the payoff is a piecewise linear function of the

index value with breakpoints at the option strike prices. This property was already stated,

and used to define the improved version of the guarantee constraint in Section 7.3.10. More-

over, in each subtree, i.e. for each adjusted portfolios, the portfolio payoff is an increasing

function of the index value. This is the definition we have given to a bullish portfolio in

Section 8.4. In each subtree, the number of breakpoints in the portfolio payoff is small. It

implies that few options are required in the optimal portfolio. We also observe that, starting

from the guaranteed level, the portfolio payoff shifts to the VaR level, and finally increases

linearly with the index value. The payoff pattern described in this paragraph is typical in

several VaR problems (see also Dert and Oldenkamp [20]). Moreover, due to the possibility

to adjust the portfolio at t1, the increasing portfolio payoff pattern is “split” into the sub-

trees. Therefore, in some substrees, the optimal portfolio has a constant payoff, and consists

only of the risk-free rate. This is what we call a “block structure”.

The typical portfolio payoff pattern observed made us expect the possibility to improve

the optimization process by using heuristics. Models M1(Rounding & BB,f%), based on

operations research techniques, work very well. They quickly find solutions close to the

best solutions found by the complete optimization process. Heuristics based on trading

strategies and on Dybvig’s theorem are more disappointing. For this VaR portoflio problem,

the bullish strategy should return very good results. However, when applied to the final

leaves of the tree, this is not the case. This may be due to the possibility to adjust the

portfolio at the root of each second-period subtree and to the overlapping of the subtrees.

We need to use the general model with local optimization in each subtree to obtain the

expected portfolio returns. Unfortunately, this is a MIP problem that requires more time to

be solved. Heuristics based on Dybvig’s theorem provide even worst results for this specific
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VaR problem. The violations of Dybvig’s hypotheses are too large.

Finally, when we compare the dynamic two-period tree model to a one-period tree model,

we observe different behaviours. Firstly, as already stated for a two-period tree, the structure

of the portfolio is typical, and especially the apparition of blocks. Secondly, introducing

options at the beginning of the second period leads to higher returns. Moreover, considering

such options is realistic and so very desirable. Thirdly, more than higher returns, this

dynamic two-period model gives more freedom to construct the portfolio, especially, one

more time, thanks to the different sets of options at t1. Therefore, the constraints seems

more light, and portfolio payoffs, which are inaccessible in one-period tree models, can be

achieved.



Chapter 11

Conclusions

11.1 Introduction

Let us now draw some conclusions. We will not repeat here in details the conclusions given in

each of the four main parts of this work : Chapter 2 (“Simulated Annealing for a generalized

mean-variance model”), Chapter 5 (“Modelling the future”), Chapter 6 (“Modelling option

prices”) and Chapters 7-10 (“Modelling VaR problems”). Instead, we will first briefly recall

the complete method we suggest in order to handle portfolio selection problems. Then, we

summarize the main results. And finally, we suggest some possible future developments.

11.2 Handling portfolio selection problems

Let us briefly recall the procedure we suggest to follow before solving a portfolio problem like

M1. Note that the models described in Chapter 5, “Modelling the future”, and in Chapter

6, “Modelling option prices” are not specific to the VaR model and could be used in a larger

framework.

We propose to represent the future evolution of financial markets by constructing a two-

period tree of scenarios. This model allows to represent at each of its node a possible future

state of the world, that we call a scenario.

In order to instantiate such a tree to model the future stochastic returns of a given

security, e.g. a stock or an index, we work with its consensus probability density function

(pdf). Unfortunately, the pdf can only be approximated. A classical assumption in finance

is to consider that the returns are normally distributed. We propose two alternative models:

a skewed Student t pdf and an implied pdf. The latter is computed from the option prices

observed at t0. This model is preferred since the option prices reflect, at t0, the future stock
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returns as expected by the market. Note that to define such a pdf, it is already required to

tune the parameters used in its formulation (and which are also used in the VaR problem);

e.g. the risk-free rate and the dividend yield. In Chapter 5, we also discuss how to convert

a risk-neutral pdf into a consensus one, and conversely. Indeed, the implied pdf is defined

in a risk-neutral world while the tree of scenarios models the consensus world. On the other

hand, it is also helpful, in particular in our work, to know the risk-neutral pdf since it is

used to price the options and to define optimization heuristics.

In order to convert the continuous pdf into a discrete set of values that can be associated to

each leaf of the tree, we suggest to use a stratification method instead of a random generator.

By this method, even for small sample sizes, the discrete sample represents accurately the

continuous pdf.

Once the future index returns have been modelled, we still have to do the same for

the option prices. We cannot resort to classical approaches, such as the Black and Scholes

formula or the binomial trees, since the hypotheses underlying these models are not satisfied

within the multinomial trees of scenarios, and hence the resulting option prices can lead

to arbitrage opportunities. Therefore, we propose a new one-period model (OP2), which is

based on the no-arbitrage equations. This model can be extended to multiperiod trees, by

using a backpropagation technique, and if necessary, a simulated annealing algorithm. Note

also that model (OP2) defines a bid price and an ask price for each option, and not a single

price as with classical methods.

In order to use the option pricing model (OP2), we first have to define target option

prices. Initially, these can be the prices observed on the market. At the beginning of the

second period, we suggest to resort to an improved version of the Black and Scholes formula,

which takes into account the volatility smile effect. An alternative is to price the options

using the state-prices of the first period. Once again, the quality of the option pricing results

depends on the quality of the inputs of the model. Realistic procedures to reject mispriced

options have been developed.

Using the different models presented in Chapters 5-6, we are now in a position to for-

mulate the portfolio problem. We can construct a two-period tree of scenarios, in which the

index and option prices are defined at each node. In the VaR model M1 proposed in Chapter

7, the investor can invest in the index, in the risk-free asset, in options observed initially

on the market, or even in options that will only be available at the end of the first period.

Moreover, he can adjust his portfolio at t1. Transaction costs, bid-ask option spreads and

dividend yield are modelled. The investor’s objective is to maximize the expected payoff of

his portfolio under guarantee and Value-at-Risk constraints.
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M1 is a MIP problem which can be solved by the branch and bound optimization method.

To speed up the process, several heuristics are proposed. The first ones are based on trading

strategies involving options. The next ones use Dybvig’s reults relating optimal portfolio

payoffs to state price densities. Finally, rounding techniques are developed. These heuristics

are first presented and then modelled in Chapters 8-9.

11.3 Main contributions of this thesis

We started this work from a pure operations research point of view, but our aim was to

develop models and methods that can be used in practice on financial markets. However,

it soon appeared that solving financial optimization models, without first obtaining realistic

and consistent financial data, is meaningless. Indeed, the conclusions derived from financial

models, like M1, are that results are more sensitive to the validity of their inputs than usual

operations research models. Therefore, we have devoted a lot of attention to the application

and the integration in our work of advanced financial concepts. This is especially true for

the second part of the thesis dealing with VaR models.

As a result, we propose two new optimization models, Markowitz mean-variance model

and a Value-at-Risk (VaR) model, which integrate realistic features of portfolio selection

problems. Especially, the VaR model contains several interesting features. First, in cotnrast

with most portfolio selection models considered in the operations research literature, it ex-

plicitely considers the possibility to invest in options. Also, it is based on a measure of risk

frequently used by practitioners, namely Value-at-Risk. Moreover, as we know that VaR is

an incomplete measure of risk, the approach is improved by considering a second VaR con-

straint with a total confidence probability: the guarantee constraint. Secondly, a strength

of this model is to allow portfolio adjustments at an intermediate time, and to take this

possibility into account when constructing the initial optimal portfolio. Thirdly, the model

and the algorithms are able to consider all the options available initially on the market, but

also to construct realistic sets of options that should appear in the future depending on each

scenario at the end of the first period. Finally, realistic features, as transaction costs and

bid-ask option spreads, are integrated in the model.

To solve mean-variance portfolio problems, we have developed a new approach based on

a simulated annealing algorithm. The originality of this work consists in the application

of the Simulated Annealing heuristic, typically used for pure combinatorial problems, to

continuous problems. In particular, we have shown how to define effective neighborhoods in

this framework.



Chapter 11. Conclusions 233

Before solving financial problems based on future security values, we need to construct a

good representation of this future. In order to do it, we have proposed a complete approach

for which the result is coherent with information observed on the market. Four steps are

required. First, we construct a multinomial multi-period tree of scenarios. This is a flex-

ible tool, more general than classical binomial trees. Secondly, we show how to construct

probability density functions. In particular, we suggest to use an implied pdf based on in-

stantaneous market information, viz observed option prices. We have developed a complete

and robust algorithm to construct such a pdf. Thirdly, we show how to convert pdfs from the

risk-neutral world to the consensus world, and conversely. Representations in both worlds

are useful. Finally, the continuous pdf is converted into a discrete set of returns by a strat-

ification method. This results in small data sets which faithfully represent the continuous

distribution.

We also propose a new option pricing method valid in a multinomial framework, and

which is coherent with observed bid and ask prices. So, we have extended the binomial

approach to a more general framework. Moreover, thanks to the models and methods de-

veloped to construct representative multinomial trees of scenarios, and the consideration of

both the bid and the ask target option prices in the model, this method leads to results close

to observed prices.

It is important to notice that the methods developed to model the future and the option

prices are not only valid for the VaR model presented here, but for a larger class of financial

problems.

Considering the VaR model, we have investigated some advanced methods to solve more

quickly the problems than with the branch and bound method, or at least to obtain quickly

good feasible solutions. We resort to three set of heuristics. The first two are based on

financial properties of the model, and consider trading strategies or a theorem due to Dybvig.

The last one is a pure operations research methods based on rounding the solutions of relaxed

problems.

As a result, by putting all those models and methods together, we have developed a

complete software that can be fully configured. Therefore, we are able to apply advanced

theoretical methods, based on financial and operations research concepts, in order to solve

realistic portfolio selection problems, and to obtain results that can be applied in practice,

since they are coherent with observed market features.
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11.4 Future developments

The idea of a research topic should not only yield answers to questions which initiate it, but

should also open doors for future developments. This principle certainly applies when we try

to model so complex entities such as financial markets. Here are some further improvements

that could be considered in relation with the models and the technics presented in our thesis.

The first propositions are relative to the optimization process:

• Depending on the problems to solve, the heuristics already provide quickly good solu-
tions. However, when we examine at the structure of the optimal portfolio, we think

it should be possible to improve the quality of the lower bound by exploiting this

structure more appropriately.

• It appears also that we do not know how to compute tight upper bounds on the optimal
value of model M1. It would be useful to be able to improve the upper bound, so as

to refine our estimate and to speed up the branch and bound process. Numerically,

classical cuts used in operations research do not provide satisfying improvements. We

could consider cuts based on financial properties of the model.

• The heuristics are applied only before the main optimization process. Some improve-
ments could be achieved by considering specific heuristics during the branch and bound

process.

A second set of improvements considers the model itself, i.e. the quality of the represen-

tation of the real market:

• We consider that applying both a guarantee and the VaR constraint in the model

provides a great improvement over a unique VaR constraint. We can go further and

add several VaR constraints, corresponding to different levels of returns and different

probabilities. The model can be easily modified to take this into account.

• We are not restricted to VaR measures of risk. We could for example also add an upper
limit on the portfolio volatility. Integrating a downside volatility measure of risk in the

model should be possible whitout loosing its linearity. From a practical point of view,

the real difficulty arises from the computation of a valid and realistic upper limit. It

is not clear whether the classical mean-variance framework can be extended here.

• We numerically observed large differences between the historical and implied prob-
ability density functions. Clearly, the estimation of the parameters for the Normal
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and skewed Student t pdfs, based on a long period in the past, are too rough. Some

weighing schemes should be considered, in particular to put additional wheight on the

returns observed in the short past.

• Also, thanks to the flexibility of the tree of scenarios, we could increase the realism of

the model by defining different risk-free rates and index volatilities depending on the

period. In order to do so, and more generally to enrich the model, we could consider

the possibility to include future contracts in the optimization models.
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Appendix A : list of stocks

List of the stocks considered in the computational experiments.

Code Firm Code Firm

U:ABT ABBOTT LABS. U:CLF CLEVELAND CLIFFS

U:ADM ARCHER-DANLS.-MIDL. U:CLX CLOROX

U:AFL AFLAC U:CMB CHASE MANHATTAN

U:AHM AHMANSON (H.F.) U:CMZ CIN.MILACRON

U:ALK ALASKA AIR GROUP U:CQ COMSAT SR.1

U:APA APACHE U:CSC CMP.SCIENCES

U:AS ARMCO INCO. U:CTL CENTURY TEL.

U:ASA ASA U:CTX CENTEX

U:AVE AVEMCO U:CUM CUMMINS ENGINE

U:AVP AVON PRODUCTS U:CVS CVS

U:AVY AVERY DENNISON CORP. U:CYB CYBEX INTL.

U:AXP AMER.EXPRESS U:DCN DANA CORP.

U:AZ ATLAS U:DEC DIGITAL EQUP.

U:BC BRUNSWICK U:DH DAYTON-HUDSON

U:BDK BLACK - DECKER U:DIS DISNEY (WALT)

U:BK BANK OF NEW YORK U:DLX DELUXE

U:BS BETHLEHEM STEEL U:DOW DOW CHEMICALS

U:CAG CONAGRA U:DUK DUKE POWER

U:CAT CATERPILLAR U:DYA DYNAMICS AMERICA

U:CBE COOPER INDS. U:EIX EDISON INTL.

U:CC CIRCUIT CITY STORES U:EK EASTMAN KODAK

U:CCK CROWN CORK SEAL U:ELK ELCOR

U:CEN CERIDIAN U:EMR EMERSON ELECTRIC

U:CG COLUMBIA GAS SYS. U:ESL ESTERLINE

U:CHV CHEVRON U:EY ETHYL
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Code Firm Code Firm

U:F FORD MOTOR U:LC LIBERTY

U:FA FAIRCHILD U:LFB LONGVIEW FIBRE

U:FES 1ST.EMPIRE STATE U:LGL LYNCH

U:FJC FEDDERS U:LPX LNA.PACIFIC

U:FKL FRANKLIN HDG. U:MAT MATTEL

U:FWC FOSTER WHEELER U:MCD MCDONALDS

U:GFF GRIFFON CORP. U:MEA MEAD

U:GIS GEN.MILLS U:MEL MELLON BANK

U:GLW CORNING U:MER MERRILL LYNCH

U:GM GENERAL MOTORS U:MHP MCGRAW-HILL CO.

U:GTI GTI U:MMG METROMEDIA INTL.GROUP

U:HAS HASBRO U:MO PHILIP MORRIS

U:HON HONEYWELL U:MOB MOBIL

U:HPC HERCULES U:MOT MOTOROLA

U:HUG HUGHES SUPPLY U:MSN EMERSON RADIO

U:ICI IMP.CHM.INDS.ADR U:MST MERCANTILE STRS.

U:IDA IDAHO POWER U:MTS MONTGOMERY STR.INC.SECS.

U:IIN ITT INDUSTRIES U:MUR MURPHY OIL

U:IP INTL.PAPER U:MYE MYERS INDS.

U:JET JETRONIC U:NAE NORAM ENERGY CORP.

U:JII JOHNSTON INDUSTRIES U:NAV NAVISTAR INTL.

U:JNJ JOHNSON-JOHNSON U:NBL NOBLE AFFILIATES

U:JP JEFFERSON PILOT U:NCC NAT.CITY

U:JPM MORGAN (JP) U:NL NL INDUSTRIES

U:K KELLOGG U:NOB NORWEST

U:KO COCA COLA U:NSH NASHUA

U:KRI KNIGHT-RIDDER U:NU NORTHEAST UTILITIES

U:KSF QUAKER STATE U:NUE NUCOR

U:KUH KUHLMAN U:NYTA NY.TIMES ’A’

U:KZ KYSOR IND. DEAD U:OG OGDEN
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Code Firm Code Firm

U:OJ ORANGE CO. U:SNT SONAT

U:OM OUTBOARD MARINE U:SO SOUTHERN

U:OWC OWENS-CORNING U:SP SPELLING ENTM.GP.

U:OXM OXFORD INDS. U:SPA SPARTON

U:PEP PEPSICO U:SUN SUN

U:PET PACIFIC ENTS. U:SVT SERVOTRONICS

U:PG PROCTER - GAMBLE U:TA TRANSAMERICA

U:PHM PULTE U:TAN TANDY

U:PKD PARKER DRILLING U:TUR TURNER

U:PNC PNC BANK U:TWX TIME WARNER

U:PXR PAXAR CORP. U:TX TEXACO

U:RAL RALSTON PURINA RAL-PUR U:TYC TYCO INTERNATIONAL

U:RLM REYNOLDS METALS U:UL UNILEVER ADR.

U:RML RUSSELL U:WEC WISCONSIN ENERGY

U:ROK ROCKWELL INTL.NEW U:WTR AQUARION

U:RTN RAYTHEON U:XON EXXON

U:S SEARS,ROEBUCK U:XRX XEROX

U:SGP SCHERING-PLOUGH U:Z WOOLWORTH

U:SII SMITH INTL. U:ZAP ZAPATA CORP.NEW

U:SKY SKYLINE U:ZCO ZIEGLER CO.

U:SLE SARA LEE CORP. U:ZE ZENITH ELEC.
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Appendix B : software parameters

List of the software parameters with a short description.

Parameter Value Description

FINANCIAL DATA

t1 1 End of the 1st period

t2 2 End of the 2nd period

B 1000000.0 Initial budget

theta 0.9 Guarantee level

lambda 1.01 VaR level

proba 0.95 VaR probability

TREE

nbS 40 Number of scenarios per subtree

STOCK

name SP500 Name of the index to define the strike prices

allowed off Index can be in the portfolio

s0 1246.23 Initial index value

mean 0.01131035 Empirical mean index return

autostock off Compute index parameters thanks to the parity equations

paritypcmin 0.003 Minimal percentage to take the option into account

paritypcmax 0.08 Maximal percentage to take the option into account

r 0.0042 Risk-free rate

stdDev 0.03658057 Index volatility

q1 0.001058 Dividend yield for the 1st period

q2 0.001058 Dividend yield for the 2nd period

tstock 0.0030 Index cost of transaction (%)

samplemethod 1 pdf to model the future

< 0=N from random generator,1=N stratification

2=N from uniform generator,3=Skewed T stratification

5=implied pdf stratification
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Parameter Value Description

impliedconvert 3 Conversion from risk-neutral to consensus implied pdf

1=shift,2=log,3=power

impliedsampling 400 Sample size for the implied conversion

equiproba off The leaves are equiprobable (implied distribution only)

minwilkp 0.00000 Reject the sample if Wilk’s test is not satisfied

OPTIONS

optload1 1 Option generation for the 1st period

1=load from file ”options1.txt”

2=auto - nbopt1 options - strike prices uniformly distributed

3=auto - nbS options - index prices at leaves as strike prices

4=auto - nbopt1 options - market rules

nbopt1 126 Number of options to generate (1st period)

typ1 * Generate c=call,p=puts,*=calls and puts

optload2 4 As optload1 but for the 2nd period

nbopt2 30 As nbopt1 but for the 2nd period

typ2 * As typ1 but for the 2nd period

auto2 0 Preselect auto2 promising options in a set of auto2set

auto2set 0 Preselect auto2 promising options in a set of auto2set

target2 1 Option target price for the 2nd period

0=read from file, 1=BS, 2=state-prices,3=BS(smile)

optload12 4 As optload1 but for both periods

nbopt12 0 As nbopt1 but for both periods

typ12 * As typ1 but for both periods

auto12 0 As auto2 but for both periods

auto12set 0 As auto2set but for both periods

timeauto 1 Maximal time to spend in the preselection process

autobound on Compute heuristic bounds for the preselection BB

spread 0.02 Bid-ask percentage spread (if not read from file)

topt 0.0030 Option transaction cost (%)

spreadmin 0.0 Minimal spread (absolute value)

transmin 2.0 Minimal cost of transaction per 100 options

transmax 20.0 Maximal cost of transaction per 100 options

optvalmin 0.10 Option is valueless if price smaller than optvalmin

optregresmin 2.0 Minimal price of options used to construct the smile
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optcompute 3 Option pricing method

1=BS, 2=linear problem with squared objective function

3=linear problem with absolute objective function,4=3+SA

optabsolu off Absolute or relative term in the objective function

optproba 2 1=OP1 (without state-prices), 2=OP2 (with state-prices)

optclean 1 If an option has no implied volatility

0=do nothing, 1=delete,2=price:=BS,3=price:=BS(smile)

timeheuristic 60 Maximal time to spend in the SA (optcompute=3)

tolheuristic 0.1 Precision for the SA algo(optcompute=3)

autostrike strikep.txt File containing the market rules for different indices

BOUNDS

bound off Compute one or several lower bounds

boundDybvigequi on Use Dybvig’s theorem and equirepartition

boundDybvigsp on Use Dybvig’s theorem and final state-prices

boundDybvigs2 on Use Dybvig’s theorem and final index values

boundtime 4 Maximal time to spend in each of the previous method

reducedBB off Use a BB process after relaxing some variables

reducedBBnb 100 Number of binary variables to set in the BB process

reducedBBgap 0.02000 Requested precision for this BB process

reduceBBtime 2 Maximal time to spend in this BB process

stratbull off Use a bullish heuristic

stratbear off Use a bearish heuristic

stratvol off Use a volatility heuristic

strat3gap 0.02 Requested precision for this BB process

strat3time 2 Maximal time to spend in this BB process

stratstab off Use a stability heuristic

stabgap 0.02 Requested precision for this BB process

stabtime 2 Maximal time to spend in this BB process

DybvigM2 off Use Dybvig’s theorem and BB over model 2

DybvigM1 off Use Dybvig’s theorem and BB over model 1

DybvigMxgap 0.020000 Requested precision for this BB process

DybvigMxtime 2 Maximal time to spend in this BB process
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VaR OPTIMIZATION (CPLEX)

portfolio on Compute the VaR portfolio and not only price options

model 1 VaR model 1 or 2

enableoptimt2 on Improved guarantee constraints for maturity at t2

strongoptim on Strong guarantee constraints

cuts off Allow CPlex to try some cuts during the BB process

rootheuristic -1 CPlex pre-heuristic (-1=off,0=auto,1=on)

heuristic on CPlex heuristic during the BB process

aggregator off CPlex aggregator

presolver off CPlex presolver

coeffreduce on CPlex coefficient reduction

gap 0.0200000 Stop if (best integer sol - best sol)/(best integer sol) < gap

treeRAM 64.0 Maximal physical memory CPlex can use

priorityDybvig off Branch according to Dybvig’s theorem

time 10 Maximal time spent in the VaR BB process

backtrack 1.0 CPlex backtracking ([0,1],0=jump,1=deep)

OTHER PARAMETERS

tofile on Save detailed results in separate files

rebalance on The investor can adjust the portfolio at t1

sizecheck 50 Post-processing:

Check the constraints on a sample test of size nbS2*sizecheck
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7, Boulevard du Rectorat, B-4000 Liège
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