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Abstract: 
A study shows how to add known seasonal patterns to any dynamic model parsimoniously, and 
without changing the fundamental model assumptions, illustrates how the method provides 
strategic implications for timing new product introductions, and provides an empirical 
application. The study transforms time so that, during high seasons, time is moving faster than 
normal time. The study also changes the product's growth along its life cycle and suggests that 
timing introduction decisions are dependent on the shape of the product's life cycle. 
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Virtually every product is seasonal; seasonality often dictates business 
strategy. In this article, the authors (1) show how to add known seasonal 
patterns to any dynamic model parsimoniously and without changing the 
fundamental model assumptions, (2) illustrate how their method provides 
strategic implications for timing new product introductions, and (3) pro­
vide an empirical application. The authors transform time so that, during 
high seasons, time is moving faster than normal time. Traditional meth­
ods only adjust sales, independent of the underlying sales model. The 
authors' method also changes the product's growth along its life cycle 
and suggests that timing introduction decisions are dependent on the 
shape of the product's life cycle. The authors' empirical work compares 
their theoretical results with empirical observations. With data for all major 
films released between July 1993 and 1995 (673 films), the authors esti­
mate the seasonal pattern for the motion picture industry and compare 

their theory with studio behavior. 

Seasonal Marketing and Timing New 
Product Introductions 

Virtually every product in every industry in every coun­
try is seasonal. Seasonality transcends products such as toys, 
snow shovels, and Christmas trees. Seasonality dictates 
business strategy in highly seasonal businesses such as ac­
counting services, advertising, airlines, amusement parks, 
beauty salons, restaurants, car rentals, cinemas, communica­
tions, construction materials, education, public utilities, em­
ployment agencies, financial services, and lodging. In 
Tokyo, vending machines dispense only cold drinks in April 
and hot drinks in October. These industries exhibit regular 
seasonal patterns related to climatic or other periodic events. 

In this article, we show how to use historic seasonal pat­
terns. We (1) provide a method for parsimoniously adding 
known seasonal patterns to any dynamic model without 
changing the model's fundamental assumptions (e.g., para­
meter interpretation), (2) illustrate how that method pro­
vides strategic implications for timing product introductions 
(e.g., when to launch), and (3) provide an empirical applica­
tion. Our method adds any known historic seasonal pattern 
to almost any underlying model for sales. 

Not all seasonal patterns are known and predictable, but 
many are (see Table 1). We allow for any predictable sea-
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sonal pattern caused by exogenous factors (i.e., beyond one 
firm's control) such as holidays, government actions, indus­
try traditions, weather, social phenomena, summer, and 
school years. 

Holidays create extreme seasonality in greeting-card 
sales. Most retailers and distributors have their highest sales 
near Christmas. Confectioneries such as Suchard and Ben-
dicks obtain 60% of their annual chocolate-mint sales dur­
ing the three months before Christmas (King 1992). Sales of 
Smucker frozen pies are tied to the holidays. 

Government actions cause financial planning books— 
particularly tax-related ones—to be highly seasonal, peak­
ing in the first quarter of the year (Schrage 1986) when tax 
guides are best-sellers. Tax refunds also cause seasonal up­
turns in durable sales. 

Industry traditions also create exogenous seasonality. 
Sports seasons, for example, create seasonal demand for 
baseballs, gloves, bats, helmets, and other related products. 
Periodic trade shows foster seasonal activities, such as new 
product releases. New automotive releases create autumn 
demand in auto-related industries. 

Weather is another cause of exogenous seasonality. Con­
sider agricultural-related industries, travel-related business­
es (e.g., ski resorts), and demand for many chemicals and 
fuels (e.g., natural gas). Scotts Company, the leading pro­
ducer and marketer of consumer turf and lawn care prod­
ucts, enjoys 70% of its sales during the March and June 
quarters. Winter is the peak season for replacement of auto­
mobile storage batteries. Tractor Supply Company's sales 
peak in fiscal quarters two and four. The peak seasons for 
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Table 1 
EXAMPLES OF KNOWN SEASONAL PATTERNS 

297 

Product Category Sample Company 

Baseball equipment Rawlings Sporting 
Chocolate mints Bendicks 
Comfort footware R.G. Barry 
Diamonds De Beers 
Entertainment software Midisoft 
Flannel sheets Domestics Mills 
Furniture retailing Cantors 
Furriers Weiss Furs 
Geese Farmers 
Gift certificates Mario's International 
Gift shop Mallard Bay 
Health plan renewals Health Net 
Indoor foliage plants Sunny's Plants 
Karat gold jewelry Jewelmasters' 
Leather outerwear Wilsons' 
Motivational items Successories 
Outdoor clothing/equipment Gander Mountain 
Party supplies Paper Warehouse 
Personal care products Helen of Troy 
Polystyrene bird feeder Rubbermaid 
Rich desserts/roses Bear Creek 
Soft drinks Pepsi-Cola Co. 
Travelers' checks American Express 
Turf and lawn care Scotts Company 

lighting products are the fall and winter, when daylight sav­
ing time ends, making days shorter. Indoor foliage plants 
enjoy 40% of their sales in the spring and 30% in the sum­
mer. Sales of car care items (e.g., waxes, polishes, protec-
tants, wiper blades) peak in the spring and summer. The as­
pirin manufacturer Monsanto finds seasonality in acetylsal-
icylic acid (i.e., aspirin) sales. 

Even social phenomena are often seasonal. Aggravated 
assaults peak and heart attacks bottom out in the summer. 
Triplet births and suicides both peak in the spring. Single 
births peak from July to September. Half of all adolescents 
first have intercourse between May and August. Stroke 
deaths for men peak from November to January, and for 
women from December to February. High blood pressure 
deaths peak from December to April and bottom out from 
June to August. Mania or manic episodes peak in spring and 
summer. Beard growth peaks in the summer and bottoms 
out in January. 

It is surprising how concentrated sales can become during 
high seasons. For example, Gander Mountain Inc., a catalog 
and retail marketer of outdoor clothing and equipment, re­
ports that 90% of its earnings occur in its first two fiscal 
quarters. Also, 90% of the shipments of Rubbermaid's in­
jection-molded polystyrene bird feeders occur between Sep­
tember and November. 

Seasonality is so strong in many industries that losses 
routinely occur in the off-season. It causes elementary and 
secondary textbook businesses, for example, to incur oper­
ating losses in the first two fiscal quarters. 

Despite its prevalence, the impact of seasonality on mar­
keting strategy has received little attention. Few marketing 
articles address this topic. Most research on seasonality is in 
statistics and econometrics literature. This research views 
seasonality as a contaminating factor and seeks to remove it 
from the data. Using averaging ratios or differencing, statis­
ticians deseasonalize data by removing recurring effects 

Peak Season Sales During Season 

Baseball, etc. Varies by sport 
October-December. 60% 
Fall holiday season 80% 

11/26-12/25 40% 
Christmas 40%-60% 

Winter season 40%-50% 
Third quarter 40% 

November-December 40% 
Thanksgiving-New Year's 95% 

December 80% 
Christmas season 40% 

January 1 50% 
Spring 40% 

Christmas (fourth quarter) 77% of earnings 
September-November 70% 

Holidays 60% 
First two fiscal quarters 90% 
Halloween-Christmas 50% 

Second and third fiscal quarters 60% 
September-November 90% 

Fourth quarter 70% 
Summer 40% 

June-August 40% 
Second and third fiscal quarters 70% 

found in sufficiently long time series. However, the impact 
of seasonal effects on strategy seldom is studied (Zellner 
1979). 

We argue for the study of seasonality itself because of its 
myriad potential applications. Many applications involve 
new products, such as better forecasting of introductory 
sales, the optimal pattern of advertising expenditures, and 
the timing of new product introductions. 

We make a first attempt at modeling seasonality and ex­
plore some specific managerial implications for one appli­
cation. We use known seasonality as valuable information in 
making decisions involving new product introductions, 
which are timed carefully to correspond to seasonal patterns 
(McMath 1994). The development of new products, howev­
er, often defies careful planning. Delays in completion are 
common, and new products are often unready for introduc­
tion during the best time. Given these delays, a firm must 
decide whether to launch the product if it is finished, in a 
nonoptimal time, or wait until the next high season. We de­
rive conditions in which it is best to wait. We start with a 
new method for modeling seasonality. 

MODELING SEASONALITY 
We suggest that predictable external factors often cause a 

predictable pattern of seasonality. If that pattern is known, it 
should be considered when any model of sales is estimated. 
Although we sometimes can use the same data to estimate 
both the model and the seasonal pattern, this is often ineffi­
cient because we usually have substantial historic exoge­
nous data on the seasonal pattern. Moreover, we might have 
insufficient data for a new product to estimate the seasonal 
pattern while trying to predict sales for the new product. 

Our method uses this historic information on seasonality. 
We first estimate the historic seasonal pattern, employing 
the classical method of categorical variables. We, however, 
adopt a new approach for using that seasonal pattern. Unlike 
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the traditional approach, which merely adjusts the data, in­
dependent of the underlying model for sales, our method ex­
plicitly considers the underlying model for sales. 

We deseasonalize the underlying sales model itself by 
transforming time. We increase the rate at which time pro­
gresses during high seasons and slow the rate during lower 
seasons. The stronger the season, the more rapid the in­
crease in the rate at which time progresses. Therefore, in ad­
dition to adjusting for the strength of the season, our ap­
proach also speeds or slows the product's aging along its life 
cycle. During a high season, a product ages faster than dur­
ing a low season. 

This view of seasonality offers many advantages. It di­
rectly considers the sales curve for a product S(t). It pro­
vides a parsimonious way of adding known seasonal pat­
terns into any dynamic model without changing the funda­
mental assumptions of the model S(t). It allows seasonality 
in early periods to affect sales in later periods. It also allows 
the derivation of managerial implications for known season­
ality patterns. We assume S(t) is specified correctly. 

By transforming time, the model without seasonality, 
namely, S(t), remains the same. Seasonality merely changes 
the time each sale occurs. In a high season, the product en­
joys sales it would have had in later periods. After the high 
season, the product's sales suffer but only by the amount 
shifted to the high seasons. Thus, the fundamental model of 
sales remains the same in a transformed-time dimension. 

During off-season time slows, some buyers stop buying, 
and the product moves more slowly through its life cycle. 
For example, people see films throughout the year and re­
main in the market the entire year. However, the week after 
Christmas might be equivalent to the preceding three weeks. 

One month during the peak season equals several months 
off-season. 

To explain the time transformation method, we define the 
function g(t). This function captures the known seasonal 
patterns in normal (i.e., observed) time. When known, g(t) 
provides valuable input for strategic decisions. We can mea­
sure g{t) in any unit, including attendance, unit sales, or dol­
lar sales. In Figure 1 we provide g(t) in monthly attendance 
at Disney World (Sehlinger 1995), In Table 1, we provide 
other examples. 

We define f(t) as transformed time, abbreviated T = f(t). 
This function accelerates time during high seasons. The du­
ration of a seasonal cycle, in transformed time, equals the 
duration in observed time. When the seasonal pattern re­
peats each year, for example, transformed time and ob­
served time equate at the end of each year. Equation \ de­
fines transformed time accordingly. Here, N is the number 
of periods in the seasonal cycle, and K is a constant. Note 
that T is in the same units as N: 

(1) 

where 

T = f(t) = K f g(u)du, 
Jo 

K = 

I 
N 

g(u)du 

For example, suppose g(t) = I + cos(t x rc/6), as is shown 
in Figure 2, Part A. Here, g(t) cycles, repeating every 12 
months (i.e., N = 12), and peaks during months 0, 12, 24, 
and so on. Winter resorts display this seasonal pattern, bot-

Figure 1 
ATTENDANCE AT DISNEY WORLD BY MONTH 
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Figure 2 
SEASONALITY AND TRANSFORMED TIME BY OBSERVED TIME 

A: Seasonaiity Pattern B: Transformed Time 
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toming during months 6, 18, and so on. During months 1 to 
3, transformed time moves faster than observed time. Dur­
ing months 4 to 8, transformed time moves slower than 
observed time. 

For this g(t), Equation 2 provides f(t) because K = 1. 
Here, transformed time, f(t), equals observed time t at the 
beginning of every cycle (i.e., 0, 12, 24, 36,...). See Figure 
2, Part B. 

(2) f(t) = (6/71) sin (t x TC/6 ) + t. 

We now define the following notation, where S(t) is any 
dynamic model of sales over time t. Let 

Y(t) = cumulative sales to observed or normal time t; 
S(t) = observed sales in observed time, by definition, S(t) = 

dY(t)/dt; 
YT(T) = cumulative sales to transformed time T; and 
ST(T) = sales in transformed time, by definition, ST(T) = 

dYT(T)/dT. 

Note that observed cumulative sales in observed time 
always equals cumulative sales in transformed time, 
because Y(t) = Y{f- i[f(t)]} = Y[f- '(T)] = YT(T). So, Y(t) 
= YT(T) everywhere. Moreover, S(t) = dY(t)/dt, so S(t) = 
ST[f(t)] x f(t). Solving, we get Equation 3, which provides 
deseasonalized sales1 in transformed time. 

(3) rl«'H S(0 
(t)' 

Comparison with the Traditional Approach 
Note that both the transformed-time approach and the tra­

ditional approach adjust observed sales by a seasonal adjust­
ment, which is independent of the sales function S(t). 
However, the transformed-time approach also considers the 

'We thank an anonymous reviewer for noting that when S(t) is only a 
function of Y(t), as it is for diffusion models, S(t) = f(t)0[Y(t)], where the 
function <)>[Y(t)] is independent of f(t). Thus, observed sales can be fitted as 
a multiplicative model. 

underlying model of sales S(t). It suggests that seasonaiity 
also alters the aging of the product. High seasons make 
aging more rapid and move the product faster along its life 
cycle. Low seasons slow aging and decrease the progression 
along the life cycle. 

For example, if a new product enters a high season during 
the early growth stage of its life cycle, seasonaiity would 
both increase observed sales and accelerate growth. Enter­
ing a high season during the decline stage of a life cycle, in 
contrast, would temporarily increase sales but accelerate the 
decline of the product as it more quickly exhausts its mar­
ket. With the transformed-time method, the impact of sea­
sonaiity depends on the position in the life cycle, namely, 
S(t). 

Unlike the traditional approach, we explicitly consider 
the underlying sales function. We go beyond merely re­
moving seasonaiity from the underlying data. The tradi­
tional method adjusts the data by dividing by a normalized 
g(t). In that case, deseasonalized sales, denoted SD(t), be­
come SD(t) = S(t)/f (t), where S(t) is observed sales at time 
t. Note that, unlike Equation 3, SD(t) is only a function of 
f (t) and S(t). When the high season is twice as strong, for 
example, the traditional approach simply divides sales by 
two. 

To be precise, in the transformed-time approach, YT[f(t)] = 
Y(t), so YT(t) = Y[h(t)], where h(t) = f- >(t), as in Lemma 1: 

Lemma 1: At observed time t, deseasonalized sales are SD(t) = 
S(t)/f '(t) in the traditional approach, and ST(t) = 
S[h(t)]h'(t) in the transformed-time approach, where 
h(t) = f - i ( t ) . 

Note that the traditional approach deseasonalizes sales 
by adjusting observed sales, that is, dividing by f (t). The 
transformed-time approach, however, deseasonalizes sales 
by also shifting the product along its life cycle, that is, 
S[h(t)], in addition to adjusting sales, that is, multiplying by 
h'(t). Entering a high sales season accelerates growth along 
the life cycle, whereas entering a low sales season deceler­
ates it. 
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Discrete Approximation 
Although S(t) is continuous, data are discrete. For a dis­

crete approximation, let f(t) = f(t) - f(t - 1). Equation 4 
deseasonalizes discrete sales, where s(t) and s-r(T) are dis­
crete sales in normal and transformed time, respectively: 

(4) sT[f(t)] = s(t) 
f ( t ) - f ( t - l ) 

For example, consider the sales in Figure 3, Part A, and 
Table 2 with the seasonal 12 month cycle g(t) from Figure 
2. Sales s(t) increase until t = 2, decrease until t = 6, and then 
rapidly increase until t = 12. 

Equation 4 produces Sx(T) in transformed time, as is 
shown in Figure 3, Part B. Table 2 shows our computations. 
We divide the data points for sales in observed time, s(t), by 
f(t) - f(t - 1), to obtain sales in transformed time, Sj(T). The 

points in observed time are spaced equally, whereas the 
points in transformed time are spaced according to f(t). 
Points are closer together during the low season because 
time is moving more slowly; a transformed month is sever­
al normal months. In transformed time, for example, June 
consists of three normal months. When f(t) - f(t - 1) = 1, the 
spacing in observed time and transformed time are equal. 

Cumulative sales are equal for each time line. For example, 
in Figure 3, the shaded areas under the first four data points 
are equal for observed and transformed time. Observed time 
period 3 corresponds to transformed time 4.91. Thus, Part A's 
shaded area to month 3 and Part B's to month 4.91 equate. 

With the new spacing, the sales in transformed time dis­
plays a simple linear growth (Figure 3), concealed by sea-
sonality. For an annual pattern, after each 12-month cycle, 
transformed time equals observed time. Continuous cumu­
lative normal and deseasonalized sales always equate. 

Figure 3 
SALES BY TIME 

s(t) 
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ST (T) 
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4 8 
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Table 2 
EXAMPLE OF TRANSFORMED-TIME APPROACH 

Traditional Transformed- Time 
t g(') T=fit) fit)-fit-/) s(t) s-iiT) Approach Approach 

0 2.00 0.00 0.00 0.00 0.00 (0,0.00) (0,0.00) 
I 1.87 1.95 1.95 76.43 39.10 (1,39) (1.95.39) 
2 1.50 3.65 1.70 124.17 73.08 (2,73) (3.65,73) 
3 1.00 4.91 1.26 123.32 98.20 (3,98) (4.91,98) 
4 .50 5.65 .74 84.15 113.08 (4,113) (5.65,113) 
5 .13 5.95 .30 35.84 119.10 (5.119) (5.95,119) 
6 .00 6.00 .05 5.41 120.00 (6,120) (6.00,120) 
7 .13 6.05 .05 5.45 120.90 (7,121) (6.05,121) 
8 .50 6.35 .30 38.20 126.92 (8,127) (6.35,127) 
9 1.00 7.09 .74 105.52 141.80 (9,142) (7.09,142) 

10 1.50 8.35 1.26 209.63 166.92 (10,167) (8.35.167) 
11 1.87 10.05 1.70 341.34 200.90 (11,201) (10.05,201) 
12 2.00 12.00 1.95 469.18 240.00 (12,240) (12.00.240) 
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Therefore, seasonality influences transformed time T 
through the function g(t). Different seasonal patterns pro­
duce different transformed times. In transformed time, no 
seasons exist. In this example, g(t) > l implies a high season 
(transformed time is moving faster than observed time); 
g(t) < l implies a low season (transformed time is moving 
slower); and when g(t) = 1, transformed time is moving at 
the speed of observed time. In the special case in which g(t) 
is constant, there are no seasons. 

Although we emphasize using f(t) for strategic implica­
tions, it also gives us improved predictive accuracy. For ex­
ample, Figure 4 shows early box office returns for two films 
released in late April: Fine Line's Naked in New York and 
Miramax's Picture Bride. Growth appears evident, until we 
consider seasonality. Here, Memorial Day weekend (5/27) 
dramatically distorts real growth. The empirical section of 
this article shows that our transformed-time model, by con­
sidering seasonality, provides much better predictions than 
a nonadjusted forecast or traditional methods of adjustment. 

TIMING NEW PRODUCT INTRODUCTIONS 
In this section, we explore an application of our trans­

formed-time method. Space limitations allow only one 
application, the timing of new product introductions. Many 
firms time these introductions to correspond with the begin­
ning of their peak selling season. Cadbury, for example, 
times new confectionery introductions for the Easter selling 
season. Given expected development times, Cadbury starts 
developing new products exactly 18 months before the peak 
Easter season. Unfortunately, development times are often 
difficult to predict, and delays often occur in the completion 
of new products. We consider the problem of whether to 
wait until the peak season when the new product is ready for 
launch during the off-season. 

When delays occur, firms sometimes wait until the fol­
lowing high season. Campbell Soup's new line of ready-to-

serve Home Cookin' soups, for example, experienced pro­
duction delays. The line was ready only at the tail end of the 
highly seasonal soup market. Campbell waited almost a year 
to introduce the new line. 

Production delays are also common in the movie industry. 
Production delays prevented Disney from releasing its ani­
mated film The Lion King during the peak Christmas season. 
Disney decided to wait until the next peak, namely, summer, 
for that movie but did not wait to launch its film D2: The 
Mighty Ducks. 

With production delays, the James Bond film Golden Eye 
missed the desirable summer season. Of the 16 James Bond 
films, MGM/UA has released the majority during the sum­
mer months (Ulmer 1994). With more than $50 million in­
vested in Golden Eye, MGM/UA waited until the subse­
quent high season, Thanksgiving 1995. 

Production problems, special effects problems, censors, 
public complaints, lawsuits, and other unforeseen events 
cause delays. Worrisome test results, suggesting the need 
for additional editing, forced Paramount to delay its planned 
Christmas release of the film Intersection. Other recent de­
layed releases include Johnny Mnemonic, Blue Sky, The 
Quick and the Dead, The Last of the Mohicans, Demolition 
Man, Wolf, The River Wild, Natural Born Killers, Car 54, 
Scarf ace. True Lies, I'll Do Anything, Guarding Tess, and 
House of Spirits. 

When a new product enters the market at the beginning of 
a high season, greater revenues and profits are possible. 
When delays occur, the production firm might miss the crit­
ical season. The firm must decide whether to wait for the 
next high season, launch immediately, or wait for some in­
termediate time. Waiting provides potentially larger sales 
but in the distant future. The same problem occurs when de­
velopment finishes early. 

These decisions are especially critical in the movie indus­
try, which spends tens of millions of dollars on production 

Figure 4 
BOX OFFICE BY WEEK 
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schedules with planned December releases. A one-month 
delay in production could completely miss the Christmas 
season. With many films grossing more than $50 million, a 
five-month delay to the summer season has an opportunity 
cost of more than $2 million. 

The Problem 
We start by considering exponential sales with a simple 

seasonal pattern consisting of an off-peak season,2 g(t) = 
kct| for t < ts, followed by a peak season, g(t) = ka2 for t > 
ts. We define the constant k so that f(t) = oqt for ts > t > 0 
and f(t) = a,ts + a2(t - ts) for t > ts. 

We have just completed a new product. We can launch 
now with no wait (w = 0), wait a short time (w < ts), or wait 
until the peak season (w = ts). We seek the optimal wait, w*. 

The seasonal pattern, as well as the model parameters 
themselves, are independent of the launch date. This inde­
pendence allows parsimony, but it could be a poor approxi­
mation of reality if a very strong product actually changes 
the industry seasonality pattern. 

Now we consider the launch decision. Launching imme­
diately implies a seasonal pattern with transformed time f(t). 
Waiting produces transformed time fw(t), where, by defini­
tion, fw(t) = f(t + w) - f(w). 

For example, suppose a product is ready on March 1. We 
could wait until the high season beginning Memorial Day, 
12 weeks away. Here, w = 12, and fw(t) = f(t + 12) - f(12). 
Therefore, f(t) is the current transformed time function, and 
fw(t) is transformed time starting at Memorial Day. 

Waiting is better only when its benefits outweigh the loss 
inflicted by the discount rate, r. Therefore, for a wait to be 
optimal (i.e., w* > 0), the product must capture more sales 
during the high season than when w* = 0. The seasonal pat­
tern determines the magnitude of these additional sales. 

Exponential Sales 
We develop timing implications for two dynamic models 

of sales: exponential (i.e., monotonic sales) and classic dif­
fusion (i.e., quadratic sales). The exponential model 
describes the vast majority of motion pictures; the diffusion 
model describes many durables. 

Equation 5 provides the exponential sales model, where y 
and P are constants. Constant y represents the initial level of 
sales, whereas P captures the curvature of the sales function: 

(5) S K D = TB-PT. 

Equation 6 provides cumulative sales, YT(T), where by 
definition, YT(T) = [ ST(t)dx: 

(6) YT(T) = (Y/p)(l-e-PT). 

Recalling that Y(t) = YT(T) and T = f(t), we obtain cumu­
lative sales in observed time with seasonality: 

(7) Y(t) = (Y/P)[l-e-PW]. 

Solving for S(t) yields Equation 8: 

(8) S(t) = 7f(t)e-Pf«>. 

2AUhough this seasonal pattern might be appropriate for products with 
short lives, we might need to extend the analysis to more complex seasonal 
patterns when the product has a much longer life. 

Equation 8 provides sales with seasonality in observed 
time. This model retains the parameter interpretations of the 
original model and the interpretations of the parameters. For 
example, y and P are independent of t, making the new 
model parsimonious and loyal to the original theory of sales. 
We also can interpret y/P as the market potential (i.e., cumu­
lative sales as t —> <*>), denoted by m, in both models. 

In observed time, exponential sales curves can take only 
the single-peaked shape. In transformed time, however, the 
exponential model can capture more general shapes. 

Endogenously Determined Life 
Let L denote the product's life. Our empirical work finds 

that the average life of a film is 9.6 weeks. Many new prod­
ucts exhibit limited fixed lives. Retailers, for example, 
might allow fashion items a limited fixed life before apply­
ing deep markdowns and discontinuation. Most films also 
have fixed lives for the studio. Motion picture studios and 
their distributors sign contracts with exhibitors for a fixed 
length of time. Although exhibitors might have an option to 
extend the film's life, studios obtain a much smaller per­
centage of the box office during the extended period. Gen­
erally, retailers and exhibitors have alternative uses for shelf 
space. They consequently drop products that still enjoy 
some sales. Many firms therefore delay new product intro­
ductions to avoid early deaths. 

For other products, however, the life of the product might 
be determined endogenously by its sales, because the retail­
er drops the product when sales fall below some critical lev­
el c. In this section, we consider an endogenous life, in 
which the product stays on the market provided that sales re­
main above some cutoff level c. When sales fall below c, the 
retailer or exhibitor drops the product. For this situation, we 
obtain Theorems 1 and 2. See the Appendix for proofs. 

Theorem 1: If the product is dropped when discounted sales fall 
below cutoff c, then the product's life equals L, 
where 

l n l + 
L = -

p(a2-a,)-a,Pv 

r + a,P 

Note that as r and p increase, we drop the product sooner 
because discounted sales drop more quickly. As the off sea­
son becomes stronger, that is, as a2 - o.\ decreases, the prod­
uct's life increases because, as we see from Theorem 2, we 
launch the product during the off season. 

Theorem 2: When the product's life is endogenous, it should be 
launched immediately. 

Theorem 2 is a strong result. It says we should never wait 
for the season when the product's life is determined 
endogenously. After consideration, the result is intuitive. 
When the life is endogenous, the product enjoys a longer life 
during the off-peak season because the discounted sales dur­
ing the season quickly drop below the cutoff. 

Although Theorem 2 has the same cutoff for the peak and 
off-peak seasons, many retailers or exhibitors have a higher 
cutoff during the peak season because of opportunities with 
competitive products. The higher cutoff strengthens the re­
sults of Theorem 2 and provides a greater incentive for an 
immediate launch. 
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Exogenous Life L 
A fixed exogenous life L complicates the situation. Here, 

the product has the same life during the peak and off-peak 
season but far fewer sales off-season. The launching decision 
must compare some sales now against greater sales later. 
Motion pictures studios, for example, face this decision. The 
studios sign contracts with exhibitors that give them a large 
share of the profit for only the first few weeks (usually 90% 
in the first week, 70% in the second, and 60% in the third). 
After the initial life, the exhibitor enjoys most of the profit. 
The contracts are the same regardless of the time of release, 
causing studio profits to come mostly during the first few 
weeks. Thus, from the studio's viewpoint, the movie's life is 
fixed. With fixed L, some strategies never work: 

Lemma 2: Given exogenous life L and the peak season begin­
ning at ts, 
(a) if L < ts, profits are declining for any delay up to 

w = ts - L and 
(b) for any L, if the peak-season is flat and w > ts, 

profits are declining. 

Lemma 2a notes that, when a product's life is short, L < 
ts, it enjoys no advantage for nonzero waits less than ts - L. 
The tail of the life cycle fails to reach the season, so dis­
counting always reduces profits. Lemma 2b notes that the 
product enjoys no advantage by waiting longer than ts, 
because all of the product's life cycle is already in the peak 
season when w = ts. 

We are left with three possible strategies. First, we can 
launch immediately, w = 0, and enjoy sooner but smaller 
sales. Second, we can wait until only the tail end of the life 
cycle enters the peak season, ts > w > ts - L. Third, we can 
wait until the start of the peak season, w = ts, and enjoy 
greater but postponed sales. Here, the tail of the product's 
life cycle might extend into the peak season, allowing 
greater sales than an immediate launch. We consider these 
three strategies with Theorems 3, 4, and 5, respectively. We 
begin by considering the optimal wait. 

The best strategy depends on many factors, including the 
time until the peak season, the discount rate, the shape of the 
sales curve, the way seasonaiity changes that shape, and the 
length of the life. To find the best strategy, we maximize 
profits, given by Equation 9 with respect to w, where C are 
fixed costs: 

(9) ji(w) = yfe- ' ,a1e"p a i ( ,"w ,dt 
w 

L+w 
f „ - B a , t + ( a . - a , )t -a .w . „ 

+ y e - n a 2 e I - ' 2 » ' Idt-C 

" I 7
 c a,Sw 

r + a.p 
e(r+o |(3)w_ e(r+a1p)t ! 

a2 YrP[ t s(a ,"a 2)~a i W] 
r + a,p 

r+a,| i) is _ -(r+a2p)(L + w) 

(10) 

Equation 10 provides the derivative of profit function: 

dK — = Kf-Ae"aw + B + e-<a+bH, 
dw 

where the constants A, B, a, and b are defined as follows: 

e«2P (L-ts )erL A - i 
a2 (r + a,p)[r + p ( a 2 - a , ) ] 

[(r + a2p)ea iP ' s ] , a = r + a,p, 

and 

B = ^ «2p(L-.s)erL 

-c . 

«2 (r+ 0 ^ + ^ 0 2 - 0 , ) ] 

[p(a2-a,)e- r t
s ] , b = (a 2 -a , )p . 

Let Q = A/B = [(r + a,P)e(r + atPVp(a2 - a,)]. Roughly 
speaking, Q represents the advantage of an immediate 
launch over waiting. Larger values for Q favor an immedi­
ate launch. Theorem 3 presents the implications for the first 
strategy, launching now: 

Theorem 3: (a) The product should be launched immediately for 
sufficiently large base demand, CC|, sufficiently 
small seasonal effect, a2 - oi|, and sufficiently large 
time to the season, ts. (b) The product should be 
launched immediately for sufficiently large or small 
p. Waiting is only optimal for a medium p. 

Theorem 3b is interesting. It suggests that when most of 
the product's sales are early in its life, its launch should be 
immediate. Moreover, when most of the product's sales are 
late in its life, it should also launch immediately. However, 
intermediate cases favor waiting for the peak season. 

The shape of the sales curve provides the support under­
lying this interesting result. Remember that the peak season 
accelerates sales, moving sales forward. Therefore, when p 
is large, there is less advantage to accelerating sales because 
off-peak sales already occur early in the product's life. With 
less advantage, discounting favors an immediate launch. 
When P is small, the seasonal acceleration is less pro­
nounced because the sales stretch into the distant future. 
With less pronounced acceleration, we launch immediately. 
With intermediate levels of p, however, we must compro­
mise between the benefit of accelerated sales in the high 
season and the cost associated with discounting. 

Now we consider the second strategy, waiting for w* = z, 
where ts > z > ts - L. Here, z is a unique maximum of the 
profit function, computed numerically from dn/dw = 0. 

Theorem 4: Let a| = r + ot|P and a2 = r + oc2p. The optimal de­
lay is always 0 or ts, except in the following cases in 
which it is possible to have optimal intermediate 
delay: 

(a) When L > ts and 
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a L + lnaj > In 
a 2 a i ( r + a 2 - a ! ) 

o,r 

>a ,(L-.,) + l n [ e V . a 2 - ( a 2 - a 1 ) 

then the optimal delay is either ts or z. 

(b) When L < ts and 

a 2 a i ( r + a 2 - a . ) 
a.L + lna! > In 

then the optimal delay is either 0, t,, or z. 

Conditions a and b in Theorem 4 are rare because of the 
monotonic nature of the tail of the exponential function. As 
the tail moves into the season, in-season sales increase at an 
increasing rate. Therefore, when it is optimal to have any 
portion of the tail in the season, it becomes optimal to move 
all of the tail into the season. Subsequently, we show that 
when the tail is not monotonic, that is, the sales curve pos­
sesses a maximum, it might be best to wait only until the 
peak of the life cycle enters the season. For monotonic sales, 
however, condition b is rarely best (see Figure 5). 

Figure 5 shows the projected sales curve for a new prod­
uct launched at three different times: 0, w < ts, and ts. 
Launching at time 0 produces smaller initial sales with a less 
rapid decline than introducing at the start of the season ts. 
Launching at an intermediate time w < ts produces the same 
sales curve as an immediate launch until the high season. At 
that point, the product enjoys a boost in sales but a more 
rapid rate of decline. However, if waiting until w is prof-

Figure 5 
PROJECTED SALES CURVES FOR NEW PRODUCT 

Sales 

o w Time 
Launched 

itable, a much larger sales boost occurs by waiting until ts. 
Therefore, intermediate waits 0 < w < ts are seldom optimal. 
We end this section with sufficient conditions for the opti-
mality of the third and final strategy, waiting until the start 
of peak-season: 

Theorem 5: (a) The optimal strategy is to wait until the peak 
season, w* = ts, whenever Ae-3* > B + e-*a + b)x, 
where x = max {0, ^ - L}, and 

(r + o,p) 
_ e - ( f + «iPKl 

a, 
(r + a2fj) 
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I2P)(L -1 
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(b) The optimal strategy is to launch immediately. 
w* = 0, whenever Ae - ax > B + e-<a + b>\ where 
x = max {0, ts - L}, and 

a, 
(r + a,p) 

1 - e - (r + °iPK 

(r + a2p) 

- e " «iP«» + e " (r + a2PKL - 0 - a&* 

+ 1 _ e " (r + °2P)L 

Corollary 1: (a) For a sufficiently large L, w* = 0. 
(b) For a sufficiently large ts, w* = 0. 

Greater sales during the season, a longer life, a closer sea­
son, and a larger tail all favor waiting for the season. 
Greater discount rates and a weaker season both favor 
launching immediately. 

The Diffusion Model 
Beyond the exponential model, another example for S(t) 

is the classic diffusion model for new durables and some 
repeat purchase items (Blattberg 1991; Mahajan, Muller, 
and Bass 1990): 

(11) ST(T) = 
mp(q + p) 2e -<p + q>T 

[p + qe -<p + q>TJ 

where p, q, and m are constants and rn = lim Y(t) As with 
the exponential model, m represents the eventual cumula­
tive sales (Bass, Krishnan, and Jain 1994). As is illustrated 
previously, the time-transformation method does not require 
this specific S(t). 

We model p, q, and m as constants and not as functions of 
when the new product is launched. The shape of the sales 
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curve in observed time, however, will vary according to 
when the product is launched. For example, diffusion occurs 
more rapidly and the product enjoys more sales (during L) 
when launched in the high season compared with the low 
season. This assumption is violated when seasonality is not 
captured fully by transformed time or when the time of the 
launch influences the seasonal pattern. For example, a bad 
durable product released during the high season might gen­
erate large sales during the first week before negative word 
of mouth destroys future sales. That product might have a 
smaller m during the off-season because negative word of 
mouth occurs before some buyers are fooled into buying the 
product. Therefore, the underlying diffusion model becomes 
misspecified and our transformation can not correct it. In 
this article, we do not explicitly consider word-of-mouth ef­
fects and assume the sales function is well specified. 

Using Equation 11, we obtain Equation 12: 

moia + D)2e -<p + q)f(t> 
(12) S(t) = f'(t) ™m P' j — . 

[p + qe -<p + q>f<t)l" 

Equation 12 provides the seasonal diffusion model in 
observed time. Here, p, q, and m retain their original inter­
pretations. Without seasonality, g(t) is constant, f(t) = t, and 
Equation 12 reduces to Equation 11. 

Equation 12 is similar to the equation estimated by Bass, 
Krishnan, and Jain (1994). They derive Equation 12 as a 
general method for including marketing mix variables in 
diffusion models. With marketing mix variables for f(t), 
rather than seasonality, they find the model fits historical da­
ta very well. Some researchers estimate diffusion models us­
ing years of annual data to avoid monthly seasons. Using 
known seasonality enables estimation in less than one year 
by using weekly or monthly data. 

The Optimal Wait 
The optimal strategy for the exponential model is usually 

to either wait until the high season or launch immediately. 
For the diffusion model, however, intermediate waits can be 
optimal because they exhibit an initial period of growth. It is 
sometimes best to have that growth occur in the low season. 
The distributor should launch shortly before the high season 
and start the diffusion process so that peak sales occur in the 
peak season. The support for this result lies in the shape of the 
curve. As the tail of the exponential model enters the season, 
each one-day additional delay brings increasing sales into the 
season. Consequently, the optimal solution is to push all sales 
into the high season or launch immediately. 

In the growth phase of the diffusion model, the opposite 
may be true. Early sales can be small before sales reach their 
peak. By waiting another day, a smaller number of incre­
mental sales might be pushed into the season than would be 
during the previous day. A long wait has less advantage than 
a shorter wait because the long wait pushes the majority of 
sales into the future without a commensurate gain. 

Although we can calculate the exact optimal wait, mathe­
matical complexity prevents the derivation of direct strate­
gic implications. Fortunately, the sufficient conditions in 
Theorem 6 provide the optimal strategy for products with 
diffusion sales patterns for any seasonal pattern g(t): 
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Theorem 6: Let h(p,q,L) = e -<p + q)RL>_e -(p + q)f»(U Then. 
(a) if e«L + w> < I + h(p,q,L), waiting (i.e., w* = ts) 

is optimal and 
(b) if e r tL-w) < I - h(p,q,L), launching immediate­

ly (i.e., w* = 0) is optimal. 

Theorem 6 suggests that increases in r favor an immediate 
launch. 

The Impact ofp and q 
Now we consider the effect of the diffusion parameters on 

the launch decision. When the life of the product is less than 
the waiting period, we obtain Theorem 7: 

Theorem 7: Let X be such that 1 - e«L - «> + e-xMU = e-Xf(U 
and let Y be such that 1 - ê L + w> + e-Yf(L> = 
e-Yfw(D if the life L is less than the time to peak 
season ts, then 
(a) for p + q < X, launching immediately is optimal 

and 
(b) for p + q > Y, launching immediately is optimal. 

Theorem 7 reveals some interesting tendencies. Both a large 
and a small p + q favor launching immediately. Intermedi­
ate values, however, might suggest waiting. Figure 5 pro­
vides the support. 

A small p + q yields slow growth whenever we launch. 
Although waiting provides somewhat higher sales, the dis­
count rate favors launching immediately. A large p + q 
yields rapid growth. The growth is so rapid that the product 
completes much of its life in the low season. Waiting pro­
vides few incremental sales. An intermediate p + q yields an 
intermediate growth rate. The product is unable to complete 
the rapid stage of its life cycle during the low season. Wait­
ing so that some sales are in the high season allows acceler­
ated growth, and the product completes this rapid stage. 
Therefore, waiting is optimal. Our results for p + q therefore 
are analogous to our results for p for the exponential model. 

THE IMPACT OF THE PRODUCT LIFE 
We now consider how the new product's life affects 

launching when a product is ready directly after the peak of 
the high season. For example, we let w = 6 and use the f(t) 
in Table 2. We define fw(L) = f(L + w) - f(w) = f(L + 6) -
f(6). We now can compute f(L) and compare it with fw(L). 
We find that the optimal strategy cycles. For a short life, we 
should launch immediately. For longer lives, we should wait 
until the next season. Even longer lives favor an immediate 
launch. 

To understand the effect of L on launching strategy, recall 
the nature of the wait. Here, the season peaks at month 0 
when g(t) = 2. The product is ready directly after the peak, 
that is, g(t) = 1.8660. Consider a wait until the start of the 
next season, which occurs at month 6, when g(t) = 0. 
Launching immediately yields the tail end of the season. 
Waiting yields the entire next season. 

For short lives, we launch immediately because A(L) = 
f(L + w) - f(w) - f(L) < 0. A short life captures sufficient 
sales in the remaining season to make waiting undesirable. 
Slightly longer lives (8 < L < 11) make waiting desirable be­
cause A(L) > 0. Here, the life is sufficiently long so that the 
remaining sales during this season are smaller than potential 
sales in the subsequent high season. Even longer lives (12 < 
L < 24) make launching optimal because A(L) < 0. For a suf­
ficiently long life, an immediate launch captures both the re-
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mainder of this season and the growth period of the subse­
quent season. Note that the seasonal pattern in our example 
is complex. Actual seasonal patterns may be simpler. For 
very simple constant high then constant low seasonal pat­
terns, the optimal wait may depend less on L. 

APPLICATIONS TO MOTION PICTURES 
Our empirical application examines the film industry. We 

estimate f(t) for domestic films. This section supplies the 
needed information to deseasonalize film data and provides 
implications for prediction. In addition, we check our theo­
rems on timing releases against actual studio decisions, 
using both the exponential and the diffusion model. Our 
strategic implications should provide useful support. For 
specific recommendations for a particular film, we also 
could use specific parameter estimates (e.g., p). 

Without historical data, studios can learn parameter 
ranges from test screens (Eliashberg and Sawhney 1994). 
Tests are becoming common and can reveal the general 
magnitude of required parameters. Tests for the film Speed, 
for example, revealed a surprisingly positive word of mouth, 
so the studio changed the introduction date. Other options 
include early critic reviews (Eliashberg and Shugan 1997), 
success of prior films involving the people making the cur­
rent film (Shugan 1997), and moviegoers' stated intent 
(Shugan and Swait 1997). 

Similar to other industries, movie box office sales are 
highly seasonal. For example, the diffusion of the films An 
American Tail and Black Robe shows the influence of each 
holiday season (see Figure 6). Oscar nominations can exag­
gerate box office sales around President's Day (see Dodds 
and Holbrook 1988). We assume this seasonally is exoge­
nous and beyond a single film's control. Some films may be 
sufficiently popular to change the seasonal pattern itself. 

We gathered data for all major films released between 
July 2, 1993 and July 13, 1995. Our data came from Variety 
and Daily Variety, which report data from Baseline Inc. 
and Entertainment Data Incorporated (owned by 
ACNielsen). Our database examined releases of 673 films 
(more than 6000 observations). We obtained complete 
screen and box office data for 636 films and had the com­

plete life cycle for 505 films during the 106 weeks. The 
number of films per week usually ranged from 58 to 60. 
Ranking films by box office sales reveals that the bottom 
films account for few sales. Variety reported, for example, 
60 films for the first week in July. Of those, the top 40 films 
accounted for 99.39% of the total box office. Therefore, our 
data represent nearly complete box office totals. 

We estimated the seasonal pattern for total box office. Al­
though 52 different levels of seasonality (1 for each week) 
are possible, trade publications suggest specific seasonal 
patterns. For example, spring is one season but Memorial 
Day differs. Starting with these priors, we refined the mod­
el with actual data. Our final model found the 12 levels of 
weekly seasonality shown in Figure 7. Each bar shows esti­
mated seasonality for one week. All 12 levels were signifi­
cant (see Table 3). With N = 106, the adjusted multiple R2 

= .985 and F = 573. Finally, we use the same weeks as Va­
riety, starting on Fridays. The first week in January was 
12/31 to 1/6 for 1994 and 12/30 to 1/5 for 1995. Pictures re­
leased on 12/31 are classified as December releases. This 
seasonal pattern allows deseasonalizing the box office sales 
of any film. The pattern alters the shape of the diffusion for 
films launched in different seasons. We also fit the model 
with a trend. The deseasonalized trend was insignificant (t = 
.978 and p = .330), despite movie industry claims that the 
box office is slowly growing. 

Equation 13 provides the discrete version of Equation 1. 
Equation 13 and g(t) in Table 3 provide f(t). The seasonal 
cycle is 52 weeks (1 year). At the end of the cycle, t = f(t) = 
52, and the cycle repeats (see Table 4): 

(13) f(t) = 52 i;., g(i) 
.52 

g(k) 

Most distributors believe that peak seasons bring 
increased competition, because industry wisdom suggests 
that many firms launch new products in the peak season. 
There is, however, evidence that competitive movies can 
expand the market, encouraging peak season entry. For 
example, the motion picture Independence Day (ID4) 

Figure 6 
HOLIDAY SEASON EFFECTS 
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enhanced the box office for competitive films because. 
unable to get tickets for ID4, moviegoers opted to attend 
another movie (Mcnary 1996). 

Table 5 shows average monthly seasonality. We obtain 
average seasonality by averaging the seasonality for each 
week in the month (from Table 3). For our 106 weeks of da­
ta, 505 films completed their life, L. The average L was 
9.618 weeks, with a standard deviation of 7.539. Although 
lives varied by month, differences were insignificant. Fur­
ther research on this topic is necessary, but our fixed life as­
sumption appears to be a good approximation. 

Perhaps increased competition during the high season 
shortens film lives. To check this hypothesis, we regressed 
the life of the film on the season released. We found an in­
significant relationship (N = 505, adjusted R2 = .0, t = .747). 

We also investigated the impact of seasonality on the av­
erage monthly box office (see Table 5). Although June was 
not the highest season, it enjoyed the largest mean box of­
fice from $100+ million films, such as Batman Forever, 
Speed, and The Lion King. In general, however, box office 
was related to average seasonality. Regressing ultimate cu­
mulative box office on seasonality indicated that seasonali-

Figure 7 
WEEKLY SEASONALITY LEVELS 
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Table 3 
ESTIMATED SEASONAL PATTERN FOR MOTION PICTURES 

Season Time gU) in 000's 

I 
2 
3 
4 
5 
6 
7 
8 
9 

10 
II 
12 

January (first 3 weeks) 
Next 19 weeks (except President's Day) 

President's Day 
Memorial Day 

June (first 2 weeks) 
Next 6 weeks (except Independence Day) 

Independence Day 
August 

Next 10 weeks 
November (last 3 weeks) 
December (first 3 weeks) 

Christmas Week 

109,954 
73,268 
98,340 

130.325 
99.656 

147.603 
175.227 
123.524 
79,020 

119,263 
70,654 

101,861 

21.228* 
33.672* 
10.961* 
14.526* 
15.709* 
41.945* 
23.921* 
27.537* 
27.853* 
23.025* 
13.640* 
11.354* 

•Significant at <.001. 
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Table 4 
ESTIMATED WEEKLY f(t) FOR MOTION PICTURES 

t fit) ( fit) t fit) t fit) / fit) 
l 1.139 12 10.507 23 19.719 33 34.299 43 43.406 
2 2.278 13 11.266 24 20.752 34 35.579 44 44.225 
3 3.417 14 12.025 25 22.281 35 36.858 45 45.043 
4 4.176 15 12.784 26 23.809 36 37.677 46 46.279 
5 4.935 16 13.543 27 25.625 37 38.495 47 47.514 
6 5.694 17 14.301 28 27.153 38 39.314 48 48.749 
7 6.453 18 15.060 29 28.682 39 40.132 49 49.481 
8 7.471 19 15.819 30 30.211 40 40.951 50 50.213 
9 8.230 20 16.578 31 31.740 41 41.769 51 50.945 

10 8.989 21 17.337 32 33.020 42 42.588 52 52.000 
II 9.748 22 18.687 

Table 5 
FILM LIVES/RELEASES BY MONTH 

Average Mean Number of Averag \e 
Life Average Box Releases Releases 

Month (in Weeks) Seasonality Office over 106 weeks per WeekA Screens 

January 7.6 9,527,900 9,475,230 35 4.4 26.254 
February 9.8 7,953,600 12.183.645 40 5.0 25.864 
March 9.3 7,326,800 11,679.643 41 5.1 30,464 
April 8.5 7,326,800 9.640,275 73 8.1 30,294 
May 8.8 8,753,200 11,964,197 38 4.2 29.054 
June 9.5 12,363,000 38.603.951 56 4.7 27,432 
July 9.7 15,312.800 33,234,338 80 6.7 36.355 
August 8.5 12.352,400 11,233,141 59 7.4 36,271 
September 9.7 7,902,000 11,456.617 76 10.8 25,363 
October 9.8 7,902,000 10,964,857 61 6.8 25,877 
November 11.0 10,920,200 '24,618,442 48 6.0 28,831 
December 12.4 7,845,600 22,939,199 66 6.6 30,826 
Average 9.6 9,745.770 16,366,956 56 6.3 29.407 
Standard Deviation 7.5 

ty was significant (N = 12, adjusted R2 = .866, t = 8.447). 
This finding is consistent with our theory about time mov­
ing faster. One month during the peak season can generate 
the sales of several months off-season. 

Finally, we tested the fixed m assumption. Were m fixed, 
an increase in opening screens, controlling for opening box 
office, would only shift sales from future weeks to the open­
ing week, creating a negative relationship between cumula­
tive box office, m, and opening screens. Regressing opening 
screens on cumulative box office, controlling for opening 
box office, reveals a significant negative relationship (N = 
3688, adjusted R2 = .531, t = -10.138, p = .000). 

We now use f(t) to ascertain the consistency of our key 
theorems on timing releases with our data. Timing releases 
for seasonal introduction is common in the film industry. 
Movie studios influence timing by scheduling production, 
but schedules are not perfectly predictable. This creates 
dilemmas regarding when to launch. To check our theorems, 
we estimate the appropriate model (i.e., exponential or Bass) 
for movies introduced at the beginning of the low season, 
that is, March. Our theorems predict whether waiting or 
launching is optimal. For movies released in March, our the­
orems should predict an immediate launch because the stu­
dio has not waited for Memorial Day. We now check the 
consistency of theorems with studio decisions. Note that our 
purpose here is not box office prediction. We address that is­
sue subsequently. 

We found 31 films released in March with sufficiently 
long lives (3 weeks) to estimate a model for sales. We use 
the respective theorems, depending on the model estimated, 
to make predictions. Our predictions were consistent with 
studio decisions for 27 of the 31 films (87%) (see Table 6). 
We estimated p + q with constrained nonlinear regression. 
Logical consistency requires p + q > 0 and m > y(L). We set 
the initial parameter values so that the sales curve passed 
through the points 1,172, and L in transformed time. When 
the algorithm failed to converge, we kept these values. 

Our predictions are inconsistent with studio decisions for 
several films, such as China Moon. We predict that the stu­
dio should have waited until Memorial Day rather than 
launching in March. In these cases, either the studio made a 
mistake or there are other important factors that the theorem 
overlooks. A review of available information revealed no 
special factors for these movies. 

Although our data do not allow a direct test of Theorem 
7, the theorem suggests that the variance for p + q might be 
greater farther from the peak season because only films with 
extreme values of p + q are released. Films with average val­
ues of p + q wait and thereby decrease the variance of p + q 
during the peak season. 

We compared the standard deviation for p + q during two 
months requiring long waits, March and September, to the 
beginning of their respective seasons. May and November. 
The standard deviations were greater, but the difference was 
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statistically insignificant. It is possible that the peak season 
variance in p + q is sufficiently great that adding several av­
erage values fails to decrease it significantly. We did find, 
however, that the range of p + q in the low season (.015 to 
1.187) was larger than the range in the high season (.007 to 
1.030), as was predicted by Theorem 7. 

Table 5 shows releases by month for all films, including 
those with short lives (i.e., no estimated p + q) and those 
with missing box office data. As was predicted by Corollary 
1, many releases occur when the wait is long (e.g., April, 
September), and few releases occur when the wait is short 
(e.g., November). High seasons (e.g., July, August) have 
many releases compared with low seasons (e.g., May). Jan­
uary and April are indeterminate. 

We also correlated screens with releases. August aver­
aged 36,271 screens per week, whereas September averaged 
25,363. The distribution channel accommodates more films 
during the peak season. Perhaps this "added shelf space" re­
sults from more showings per day. 

Finally, we examined the ability of the transformed-time 
model to estimate diffusion with fewer data points and to 
provide earlier forecasts. We return to the films Naked in 
New York and Picture Bride. Table 7 shows the actual box 
office returns for the two films for the first ten weeks after 
their release. Using the first five weeks of data, we estimat­
ed the original (observed time) and the transformed-time 
diffusion models. Table 7 shows p, q, and m for both mod­
els of both films. The table also compares model fit for the 
first five weeks and the predictive accuracy for the subse­
quent five weeks. 

After using the first five weeks to estimate p and q in 
transformed time. Equation 14 provides predicted sales in 
observed time using the transformed-time model: 

(14) s(t) = [f(t) - f(t -1) /p + 3J£i> J[m - y(t)]. 

The transformed-time model for Naked in New York fits the 
first five observations better and provides much better pre­
dictions for the last five observations (correlation = .951) 
than the regular diffusion model does (correlation = .766). 
The transformed time model for Picture Bride also fits the 
first five observations better and provides much better pre­
dictions for the last five observations (correlation = .952) 
than the regular diffusion model does (correlation = .797). 
The transformed-time model captures the effect of Memor­
ial Day, whereas the regular diffusion model does not. As 
Figure 8 illustrates, Memorial Day significantly distorts the 
growth of both films in observed time. 

The solid lines in Figure 8 show the actual box office re­
turns for Naked in New York and Picture Bride. The dotted 
lines show the diffusion model predictions, whereas the 
dashed lines show the transformed-time model predictions. 
We see that adjusting for seasonality better captures the 
peaks in box office. Finally, recall that the transformed-time 
diffusion model reduces to the regular diffusion model in pe­
riods in which no seasonal changes occur. Both models there­
fore should perform similarly under those circumstances. 

Table 6 
THEOREM 2 PREDICTIONS ON WHEN TO LAUNCH 

Film Model Life '.V P p + q Recommendation 

3 Ninjas Kick Back Bass 5 11 1.08689 Launch immediately 
Above the Rim Bass 21 10 .11264 Launch immediately 
Angie Bass 7 12 .78200 Launch immediately 
Bitter Moon Bass 14 11 .31170 Launch immediately 
Bye Bye Love Exponential 9 10 .7739 Launch immediately 
Candymun Bass 6 10 .57170 Launch immediately 
China Moon Exponential 4 12 .67213 Delay until season 
Circle of Friends Bass 17 10 .33212 Launch immediately 
Eldorado Exponential 2 11 .65475 Delay until season 
Four Weddings and a Funeral Bass .31684 Launch immediately 
Greedy Exponential 5 12 .76047 Launch immediately 
Guarding Tess Exponential 17 II .31973 Launch immediately 
Hideaway Exponential 4 12 .77116 Delay until season 
Lightning Jack Exponential 12 11 .37001 Launch immediately 
Losing Isaiah Exponential II 10 .50734 Launch immediately 
Love and Remains Bass 10 10 .51032 Launch immediately 
Man of the House Exponential 19 12 .38857 Launch immediately 
Monkey Trouble Exponential 17 10 .28753 Launch immediately 
Mother's Boys Bass 3 10 1.04909 Launch immediately 
Muriel's Wedding Bass 18 11 .28946 Launch immediately 
Naked Gun 3.VA Exponential 17 10 .45904 Launch immediately 
Outbreak Exponential 18 II .35669 Launch immediately 
Roommates Exponential 9 12 .73514 Launch immediately 
Sirens Bass 20 12 .30670 Launch immediately 
The Chase Exponential 7 12 .83344 Launch immediately 
The Hudsucker Proxy Bass 12 11 .39508 Launch immediately 
The Mangier Exponential 2 12 .82304 Delay until season 
The Paper Bass 16 10 .31254 Launch immediately 
The Ref Bass 8 II .60207 Launch immediately 
The Sum of Us Exponential 8 10 .12504 Launch immediately 
The Wild Bunch Bass 6 12 1.18717 Launch immediately 
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Table 7 
PREDICTIONS FOR TWO FILMS 

Naked in New York (4/29/94) Picture Bride (4/21V95) 

Weeks after Transformed Transformed 
Release Regular 

p = .l42 

Time Actual Regular 

p = .\0l 

Time Actual Regular 

p = .l42 p = A62 

Regular 

p = .\0l p = .121 
q = .40l q = .206 q = .606 q = .393 

m = 756762 m = 997117 m = 654144 m = 861935 

1 107460 122592 140461 66069 79151 68871 
2 129173 123895 94962 95389 96917 115985 
3 139077 116898 113040 123455 108418 91681 
4 129971 102634 107911 134749 107909 115321 
5 102932 149375 188546 114844 166097 164640 

6 68815 87657 89988 71325 94548 106447 
7 39743 63728 54056 31996 61130 84807 
8 20667 65763 57571 11291 52313 66801 
9 10086 44395 32805 3531 27997 51061 
10 4758 34795 22732 1056 16993 32393 

SUMMARY AND FURTHER RESEARCH 

Nearly every product displays some seasonality. The 
objective of this article was to make a first attempt at pro­
viding a theoretical foundation for modeling seasonality and 
illustrate its usefulness in strategy formulation. We trans­
formed time so that during high seasons, time moves faster 
than observed time. During the low seasons, time moves 
more slowly. At the end of each seasonal cycle, transformed 
time and observed time equate. 

Our transformed-time method goes beyond adjusting 
sales for seasonality. Our method accelerates and deceler­
ates the product's aging along its life cycle for high and low 
seasons, respectively. Our method also enables us to incor­
porate known exogenous seasonal patterns into any dynam­
ic model parsimoniously, without changing the foundation 
of the original underlying model. By viewing the model in 
transformed time, we remain loyal to the original model's 
assumptions and interpretation. Beyond adjusting for sea­
sonal demand, we also speed or slow the product's aging 
along its life cycle. The high season speeds aging. 

As an example, we used the transformed-time method to 
develop seasonal versions of both the exponential and Bass 
diffusion model. By considering seasonality, we find in­
sights into several important problems, including the timing 
of new product introductions and whether to launch in a cur­
rent low season or wait for the next high season. 

We find that the shape of the life cycle is important for 
timing strategy. We show that when the sales of a new prod­
uct are decreasing continuously (i.e., a typical pattern for 
single-purchase products such as motion pictures), we 
should either launch immediately or wait until the high sea­
son. In contrast, when sales grow, stabilize, and then de­
cline, an intermediate wait is possible. In this case, we can 
time a product's introduction so that growth begins in the 
off-season but the majority of sales occur at the beginning of 
the peak season. This strategy moves sales forward while al­
lowing the product to enjoy a boost from the peak season. 
We identify specific conditions in which different strategies 
are optimum. 

We also find that the early growth rate influences the op­
timal wait. Very rapid or very slow growth in the off-season 
encourages an immediate launch because waiting for the 
season has little impact. When growth is intermediate, how­
ever, the season can affect sales significantly. Here, waiting 
might be the optimal strategy. 

Finally, the length of the product's life is also important. 
When we are just past the peak of the season, a short life 
suggests launching immediately, because the short life 
catches the end of the season. A long life also suggests 
launching immediately, because the product lasts into the 
next high season. An intermediate life suggests waiting; the 
optimal wait depends on the length of the life. Generally, the 
longer the life, the shorter the optimal wait. 

Our empirical work compares our theoretical results with 
empirical observations in the movie industry. As with most 
industries, we found that movies are highly seasonal. We 
derived the seasonal pattern for the industry for 106 weeks, 
gathering more than 6000 observations. We found 12 differ­
ent levels of seasonality. With them, we found g(t) and f(t), 
which enabled us to derive monthly seasonality and better 
examine competition between films. 

Consistent with our fixed life assumption, our data indi­
cate that film lives are as long during the peak season as dur­
ing the off-season. As was expected, the average box office 
is higher for films released in the high season. However, the 
box office performance of many films in the low season ex­
ceeded the average film. 

We also compare the predictions of our theorems on wait­
ing with actual studio behavior. We found that Theorems 5 
and 6 predicted 87% of the films in our analysis, consistent 
with studio decisions. In the other cases, either the studio 
made a mistake or there were other important factors that 
the theorem overlooked. A review of available information 
revealed no special factors for these movies. 

Our test of Theorem 7 was mixed. The signs were correct, 
but the magnitudes were insignificant. Finally, we checked 
the prediction capabilities of the seasonal model with two 
films: Naked in New York and Picture Bride. In both cases, 
the seasonal model performed well. 
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Despite these interesting results, there are many direc­
tions for further research. We must test predictability in oth­
er product categories. The analysis could include marketing 
mix variables (Jeuland 1981) and competitive reaction. 
Krider and Weinberg (1998), for example, suggest that 
some films that are unable to withstand the peak season 
competition during the off-peak season should be launched. 

Additional theoretical research also might explore other 
seasonal patterns, the effect of seasonality on other manage­
rial decisions, the precise role of word of mouth, optimal ad­
vertising given seasonal and intertemporal influences, and 
finally, channel relationships. During the high seasons, dis­
tributors have de trop films to exhibit, whereas the low sea­
son brings scarcity. 

APPENDIX 
Proof of Theorem 1 

We assume that initial sales are greater than the cutoff c 
(otherwise the product does not get launched at all). We 
equate the discounted sales to c and solve for life L. We 
want to solve e-rtSw(L) = c, where t is time since the prod­
uct was finished, that is, t = L + w, and Sw denotes sales 
starting from t = w (product is launched at t = w). In other 
words, we need to solve 

e-r(L + w)Sw(L)=C. 

Note that Sw(t) = S[fw(t)]. 

Case 1 
Assume that w < ts. First, we compute the time t that the 

sales would need to drop to cutoff c if there was no immi­
nent high season. Here, fw(t) = ot|t - 0C|W. Now we have 

e-tU + w>sw(/?) = e-fC + wtye-frM' + w - *> = c. 

After taking logarithm of both sides and solving for L, we 
get 

I. = 

. n i l 

r + a,p 

Because the product starts diffusing at t = w, if {[In(y/c) -
rw]/[r + ot|P]} < ts - w, the entire life of the product is com­
pleted in the low season, and L = £ = {[ln(y/c) - rw]/[r + 
a$]}. If {[ln(y/c) - rw]/[r + 0C|P]} > ts - w, the product will 
run into the high season because it cannot complete its life 
in the low season. Therefore, the time fw(t) becomes fw(t) = 
(ot| - oc2)ts + a2t - oqw. This implies that 

e-r(L + w)Sw(L) = e-^L + *>7e-P[<ai - a2^ + a:(L + w) - a,wl, 

To find L, we must solve the equation e~r<L + W'SW(L) = c; 
that is, the equation 

e-f(L + w>ye-P[(ai -a2)ts + a2(L + w) - aiw] = c 

Figure 8 
ACTUAL AND PREDICTED BOX OFFICE 

Naked in New York Picture Bride 
Box Office Box Office 

5 7 
Week 

3 5 7 
Week 

Key 

■ = transformed time 
A = actual 
♦ = regular 
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We take logarithm of both sides of the equation and solve 
for L. Finally, we get 

L = 
l n - + P(«2 - a t \ h - w ) - r w 

r + (3a2 

This L is the product's life. 

Case 2 

If w > ts, then fw(t) = a2(t - w) and the equation e~r<L + 
W)SW(L) = c becomes 

e-r tL + wVyg-pOhKL + w) - w] = c 

We take logarithm of both sides and solve for L. We obtain 

L = 
ln| — | - rw 

r + <x2P 

This L is the product's life. 

PROOF OF THEOREM 2 
By it, we denote the profit function. We analyze three cas­

es, namely, when the product is released so that the tail re­
mains completely in the low season (w < ts and L < ts - w), 
when the sales happen entirely in the high season (w > ts), 
and the mixed case when the product is launched in the low 
season, but the tail enters the high season (w < ts and L > ts 
- w ) . 

We will prove that n always decreases with waiting. In 
the rest of this proof, profit function is given by 

7t(w) -f 
Jo 

e-rth + w ) S w ( h ) d h - C . 

In this formula, h stands for time elapsed since the launch. 
To simplify the ensuing computations, we use t = h + w in­
stead of h (i.e., we consider the time elapsed since the prod­
uct was finished, rather than time elapsed since the product 
was launched). With this convention, we claim that 

7t(\V) -£ e-ith + w>sw(h)dh - C 

= f e-Xh + ">S[f(h + w) - f(w)]dh - C 
Jo 

= f e-"S[f(t) - f(w)]dt - C. 
Jw 

Case I 
If w < ts and {[ln(y/c) - rw]/[r + a ,P]} < ts - w, then the 

product completes its life in the low season. The profit func­
tion K is given by 

7t(w) f e-«S[f(t) - f(w)]dt - C 
Jw 

pL+w 
= Y e-"f;(t)e-Pfw<'>dt-C 

Jw 

pL+w 
= Y e 

Jw 

e- r t a ,e -P a i ( , - w ) dt -C 

a,ye° 
e-(r + (X|P)w KX,|3)(L + w) 

r + a,P -c. 

Now we compute drc/dw. After simplifying, we get 

dTt 
— = a,Ye' 
dw 

a,Pw 
e - ( r+o tp)w _ e - ( r + a,pXL+w) 

r + a,P 

e - ( r+o,PXL+w) 

r + a,P 

From this, we find that dn/dw < 0; thus, profits are declin­
ing with waiting. 

Case 2 
If w < ts and {[ln(y/c) - rw]/[r + CC|P]} > ts - w, then the 

product's life is 

1 + P(cc2 -<x,)(ts - w ) - r w 
L = -£ > t - w . 

r + Pa2
 s 

This inequality is true because {[(y/c) - rw]/[r + a ^ ] } > 
{[ln(y/c) - rw]/[r + a ^ ] } > tj - w, by assumption. This im­
plies that {[(y/c) - rw]/[r + oc2P]} > (ts - w) (r + a,p)/(r + 
a 2 P) . It is easy to verify that this is equivalent to L > ts - w. 

From fw(h), we deduce that f(t) - f(w) = (o^ - a2)t s + a 2 t 
- oqw, and therefore, profit function is equal to 

jt(w) = |"se-rtS[f(t) - f(w)]dt 

Jw 

pL+w 

+ e-«S[f(t) - f(w)]dt - C 
J i« 

f's 
= y e-rtoqe-PoM'-w'dt 

Jw 

(•L+w 

+ y J e-rta2e-P[a2« + <ai - v-iK -aiwidt - C 

« i 7 
r + a,p 

ea,pw[e-<r + a,p)w _ e-<r + a,p)ts] 

a 2 ye" p [ ( a | " a 2 ) ' s " a | W 1 
r + a 2 P 

[e-(r + a,P)ts _e-<r + a,P)(L + w)] _ Q 

After further simplification, we obtain 

7C(w) = yeP«iw a, 
r + a,P 

[e-(r + o,3)w _ e-(r + a,P)(s] + 
r+ a2P 

e-(r + a,3)ts _ ^ p a , w 2±. e ^ + W> - C 
1 r + a2p 

After differentiating profit function with respect to delay w 
and simplifying, we get 

dre _ Yr«|e~rw 

dw r + a,P 
-1 + 

p e - ( r+a l PKt s -w) ( o t 2 _ a ) 

r + a2P 
dK 
dw 

where we define K as 
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-vjY P - ( a , -a-, )Pt, 
« _ ' U ' 2 C

 c pn | w-(r+« : a)(L+w) 
r + a2p 

Because dL/dw = {[(a, - a 2 )p - r]/[r + a 2 P]} , when we 
compute dK/dw and substitute the previous expression for 
dL/dw, we get dK/dw = 0. Therefore, 

drc 
dw 

■yra,e-
r + a,P 

-l + 
pe-(r+aiP)('s-w>(a2 - a , ) 

r + a2P 

We prove next that 

ne-(r+a lPHls-w)(a _ a ) 
-1 + - — — < 0. 

r + a 2 p 

We assume the contrary, that is, that this expression is 
greater than or equal to zero. This would imply that 

e-(r + a1PXl,-w>> 
r + a2p 

P(a2 - a , ) ' 

The right-hand side of this inequality is greater than 1 (r + 
a 2 P > P a 2 - a t P is equivalent to r + otjP > 0), whereas the 
left-hand side of the inequality is less than 1 (because w < 
ts). This is a contradiction; thus 

-1 + 
pe-(r+a|ftHts-w>(ct2 _ g | ) 

r + a2P < 0, 

which in turn implies that d7t/dw < 0, or profits are declin­
ing with waiting. 

Case 3 
If w > ts, then the product's life is 

L = 
ln| — | — rw 

r + cc7p 

Because fw(t) = oc2(t - w), the profit function can be ex­
pressed as 

/•L+w 
JI (W)= e-"S[f(t) - f(w)]dt - C 

= Y [ e-rtf W(t)e-Pf»d>dt - C 

/•L+w 
= Y e-rta2e-P[«2<'-wi]dt-C 

Jw 

ya,e pa2w 

r + a2p 
[e-(r + ctjplw _ e-<r + (XjpKL + w)] _ C 

After taking the derivative drc/dw and substituting dL/dw = 
(-r/r + a 2 P) , we obtain 

— = 7a->eP<x2w[-e<r + °4P)W + e<r + tt>PHL + w> 
dw 

+ e(f + a,p,(L + w ) r + a 2 p 

We find that drc/dw < 0; therefore, profits are declining 
with waiting. All three cases together cover the entire range 
of possible situations. In all of them, profits decline with 
waiting. Therefore, an immediate launch is the optimal 
strategy. 

PROOF OF THEOREM 4 
The function dll/dw = e-ax(e-bx - A) + B can be written 

as n'(x) = q(x) + B, where q(x) = e-^e-** - A), a = a, = r 
+ otiP, b = a2 - a| = P(a2 - a,), A = Te^LeU. - a:>isa2, B = 
Tea:<L - U(a2 - a,), and T = [a,r/cc2ai(r + a2 - a,)]. We ob­
serve n on (0,ts) if L > ts, and (ts - L,ts) if L < ts. We want 
to determine relative maximum of n . To do this, we inves­
tigate q(x). Note that 

q'(x) = e-b* - a"(-a - b) - e-»»A (-a) = er**[ -(a + b)e-*>* + aA]. 

If - ( a + b) + aA > 0, then q'(x) > 0, which implies that 
dlT/dw > 0, and thus, n is increasing. 

If-{a + b) + aA < 0, there is a unique zero of q'(x), which 
we denote by x*, and this x* is the unique relative minimum 
of q(x), thus a unique relative minimum of dll/dw. To find 
x*, we must solve the equation -e-bx*(a + b) + aA = 0. Thus 
-bx* = in[aA/(a + b)], which implies that 

b l a + b 
-1 

(a2 - a,) 
•In V 

Note that n has a relative maximum iff dll/dw changes 
from positive to negative. If dll/dw(x*) > 0, then dll/dw is 
always positive (because its minimum is a positive number). 
In this case, n is always increasing and does not have a rel­
ative maximum. Therefore, n has relative maximum only if 
dn/dw(x*) < 0, that is, if q(x*) + B < 0. 

We observe function n only from y = max{0,ts - L) to ts. 
If dn/dw(y) < 0, then dll /dw does not have relative maxi­
mum (because the only possible change of sign is from neg­
ative to positive). This presents us with the second condition 
for relative maximum of FI, namely dll/dw(y) > 0. There­
fore, n achieves relative maximum on (0,y) only if both 
dll/dw(x*) < 0 and dll/dw(y) > 0 are true. In the rest of this 
proof, we examine both conditions. 

First condition. We start with dll/dw(x*) < 0. As we 
mentioned previously, this condition is equivalent to q(x*) 
+ B < 0. Taking into consideration the formula for x*, we 
demonstrate that 

(a-) - a, )A 
q(x*) + B < 0 is equivalent to e-a>x* —= ! > B. 

a 2 
This implies that e_aix* [(a2 - a|)/a2] A > B, which, after 

simplification, becomes ea i«5- x*> > 1. This in turn implies 
that ts > x*. Using the expression for x* computed previ­
ously, we obtain 

-1 a|Tea2Le< a i - a2 | ,sa1 
< i< 

We can simplify this inequality further, until we obtain 

a-^Cr + a2 - a,) lna| + a2L > lnT_l = In 

Now we have proved that 

q(x*) + B < 0 «=> In a2a!(r + a-, - a^ 

a,r 
< a2L + lna|. 

Second condition. Next we look at the second condition, 
dfl/dw(y) > 0. Here, y changes depending on the relation-
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ship between L and ts (as we mentioned previously, L > ts 

implies y = 0, and L < ts implies y = ts - L). Therefore, we 
must study these cases separately. 

Assume L > ts. Then y = 0 and, thus, dn/dw(y) > 0 be­
comes dIT/dw(0) = q(0) + B > 0. This is equivalent to A < B 
+ 1. Substituting expressions for A and B in this inequality, 
we obtain 

Tea2Le<a, - a2>t,a2 < Tea:<L - ^(^2 ~ a i ) + 1 • 

After taking the In of both sides and further simplifying, we 
obtain 

In a2
a\ ( r + a2 ~ a i ) 

a.r 
• a2(L - ts) + ln[eai^a2 - (a2 - a()|. 

Assume L < ts. Then y = ts - L and, thus, dll/dw(y) > 0 
becomes dIT/dw(ts - L) = q(ts - L) + B > 0. This is equiva­
lent to 

e-a,(ts - L)[e-(a2 -a ,Kt s -L)_A] + B > 0 . 

Again, after substituting expressions for A and B and further 
simplifying, we obtain 

In o^a^r + a2 - a , ) > ln |e a iLa2-(a2-ai) . 

This analysis gives us sufficient and necessary conditions 
for n to reach relative maximum on (y,ts), where y = max{0, 
ts - L} . We summarize it as follows: 

(1) If L > ^ then fl has a relative maximum on (0,ts) iff 

a2L + lnat > In 
a 2a l ( r + a2 - a,) 

a.r 
> a2(L -1,.) 

+ ln[eai '»a2-(a2-ai)]. 

(2) If L < ts, then fl has a relative maximum in (ts - L,ts) iff 

a2L + Inai > In ot2a,(r + a2 - a , ) 

a.r 
>ln[e»i t«a2-(a2-a|)]. 

PROOF OF THEOREM 6 

We must compare Joe-rtS(t)dt with loe- r« + w>Sw(t)dt. By 

D we denote the difference of these two integrals, namely, 

D = f e-«S(t)dt- f e-«< + *>Sw(t)dt 
Jo Jo 

= e-rt-Y(L) + r f e-rtY(t)dt-e-«L + w>Y,(L) 
Jo 

Jo e
-rtt + w)Yw(t)dt. 

Because both Y and Y ( are increasing, we can estimate D as 
follows: 

e-fLY(L) - e-™YW(L) < D < Y(L) - e-<L + w)Yw(L). 

If Y(L) - e-r<L + w>Yw(L) < 0, then D < 0. This means that 
the second integral in D is larger, and it is better to delay the 
launch. If e-^Y(L) - e - T J L ) > 0, then D > 0. This means 
that the first integral in D is bigger, and therefore, an imme­
diate launch is a better strategy. 

Recall that 

F| _ e-(p+q>f<l)l 
Y(t) = m p r *r, 

[p + qe-<P+<i>f<'>] 

[| _e-(p+q)f„(t)l 
Y w ( t ) = m P[p + qe-<P^w«>]-

Because formulae for Y and Yw are complicated, we now 
discuss two particular cases in which it is easier to deter­
mine the course of action. For the sake of simplicity, we 
write E = e-<P + q)«o and F = e-<p + q)[f*(t> - «t)l. 

Case 1 
Assume that er<L + w> - 1 < E(l - F). Then, C<L + w) _ i < 

E(l - F)/(l - E). This implies that er<L + w) < E(l - F)/(l -
E) + 1 < 1 + (p + q)E(l - F)/[(p + q)(l - E)] < 1 + (p + q)E(l 
- F)/[(p + qEF)(l - E)] = (p + qE)(l - EF)/[(p + qEF)(l -
E)] = Y | {t)l Y ( 0 . This yields Y(L) - ©-*«. +w)yw(L) < 0, and 
therefore, D < 0. 

Case 2 
Assume that e«L - w» - 1 < E(F - \). Then, e«L - w) < \ + 

(p + q ) E ( F - l)/[(p + qE)(l - EF)] = (1 - E)(p + qEF)/[(p + 
qE)(l - EF)] = Y(L)/YW(L). This implies that e-fLy(L) -
e-™Yw(L) > 0, and therefore, D > 0. 

PROOF OF THEOREM 7 
Let G ( be defined in the following way: G|(x) = 1 + 

e-xf„(U _ e-xf<L) _ er<L - w) where x = p + q. We can rewrite 
this as G,(x) = K + e-"fw(L)_e-xf(L)t Where K = 1 _ eKL-w). 
Because fw(L) > f(L), the two functions K + e~xf«(L> and 
e-xf(L) intersect only once, at point X|*. For x < x (*, we have 
K + e-xf«<L> > e-xf<L>, and for x > X|* this changes to K + 
e-xfw(D < e-x«L). Therefore G,(x) > 0 for all x < x,*, and 
G^x) < 0 for all x > X|*. Note that G|(x) > 0 is equivalent 
to Part b of Theorem 6; therefore, if x < X|*, it is best to 
launch immediately. 

Let G2 be defined in the following way: G2(x) = 1 -
e-xfw(D + e-xf(D _ er(L + w^ where x = p + q. We can rewrite 
this as G2(x) = C + e-*«L> - e-xfw(D, where C = 1 - er<L + w). 
Because C < 0, and fw(L) > f(L), we find that the two func­
tions K + e-xf<L> and e-xf»<L> intersect only once, at point x2*. 
For x < x2* we have K + e-xf<L> < e_xfw<L), and for x > x2* 
we have K + e-x«L> > e-xfw(D. Therefore, G2(x) < 0 for all x 
< x2*, and G2(x) > 0 for all x > x2*. Note that G2(x) > 0 is 
equivalent to Part a of Theorem 6; therefore, if x > x2*, it is 
best to delay the launch until ts. 

We show next that x t * < x2*. Assume that this is not true, 
namely, that x ^ > x2*. Then G2(x!*) > 0, and so x t* satis­
fies both Parts a and b of Theorem 6, which is not possible. 
Therefore X!* < x2*. 

Finally, we find that when x < X|* (small x) or x > 
x2*(large x), it is best to launch immediately. 
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