SUGI 28 Posters

Paper 229-28

Developing a Marketing Geographic Segmentation System Using SAS® Software
Allison N. Freeman and Kellie M. Poulin
Marsh Affinity Group Services, Ft. Washington, PA

ABSTRACT

The marketing industry is rapidly moving from mass marketing to
a one-to-one customer-based approach (Peppers and Rogers
1997). Marketers are faced with the task of finding and
effectively using low-cost information to facilitate this change.
One approach is to use publicly available data and the marketer’s
own customer information to differentiate groups of customers
that can be addressed differently. The example presented in this
paper will highlight the process of creating a zip code-level
segmentation system with Base SAS®, SAS/STAT® and
SAS/GIS® software. This process can be implemented across all
operating systems and is appropriate for the intermediate
programmer or statistical analyst.

INTRODUCTION

The marketing industry has changed dramatically over the past
decade. The advent of inexpensive information technology has
made it possible for companies to move from mass marketing, or
marketing the same product to all consumers in the same way, to
one-to-one marketing. In one-to-one marketing, information
about the customer is used to tailor products, services, and
communications to each individual (Peppers and Rogers 1997).
The new challenge for the marketer is finding affordable
information that can be used effectively to differentiate their
customers. This paper will discuss one very low-cost method
that can be used as a first step in this process.

It has been shown that people with similar demographic
characteristics and product usage patterns tend to live near one
another. In other words, there are geographic areas where
residents are more likely to respond to certain product offers due
to their environment and demographics. Several companies
have created groupings of similar areas, called geographic
segmentation systems. These can be purchased and applied to
any customer database based on where the customer lives
(Shepard 1995). The Conclusion of this paper lists several
vendors of geographic level segmentation systems and provides
their web site addresses. While these systems are often helpful
in identifying customers with similar buying patterns, they are
often costly and are not designed for an individual company's
specific product offerings. Custom designed clusters can be
more powerful because information about a company's current
customer base can be incorporated into the model. In our
experience, we have found that the data we collect about our
customers, such as past customer behavior and products
purchased, are valuable in developing custom-built segmentation
tools and response models, thereby making them much more
predictive than purchased tools.

Custom geographic segmentation systems can be developed for
little cost using data from the U.S. Census Bureau, other
government sources, and customer information aggregated to a
geographic level. Census data are available on state, county,
census tract, census block group, and zip code levels. Thus,
clusters could be developed on any of these levels.

Once these clusters are developed, how can they aid marketers
and business analysts? Marketers and analysts can use
geographic segmentation tools to track buying trends and other
customer behavior. A customer who falls into a specific segment
will often respond to product offers in the same way that other
people in that segment will respond. Also, segmentation systems

can help to determine where a current customer base is
concentrated and where to focus new marketing efforts. Analysts
can locate areas with low customer penetration that have similar
geographic characteristics to areas with high customer
penetration and can use this information in their marketing
strategies. A geographic segmentation system also enables
analysts to use environmental, demographic and behavioral
information to create appropriate marketing offers.

In developing a custom segmentation system, you should begin
by asking the following questions:

e What are the basic characteristics of my best customers?

What is their level of income? What is their average age
and education level?

e Where do my best customers live?

Do they live in areas with high population densities? Do
they live where a large portion of the population is retired?

e What geographic factors affect the use of my product?

Are my prices more competitive in some areas of the
country? Is my product used more in warmer climates than
in colder climates?

Often these answers are found through statistical analysis and in
brainstorming sessions with the marketing staff of your company.
The answers to these and other related questions will lead you to
decide which data elements you will want to consider when
creating your custom segmentation system.

In the example discussed in this paper, we show the steps
involved in developing a zip code segmentation system using
customer data from our marketing database along with
geographic-level data from the Census. Although not covered in
this paper, a geographic-level segmentation system can often be
a building block to more sophisticated models. Geographic
segments can be used as inputs into individual-level
segmentation systems and other models that include individual
and household-level customer information.

GATHERING PERTINENT DATA

A segmentation system, or clustering schema, is designed to
assign people to groups based on related characteristics. The
variables you choose should be data elements that describe your
customer base rather than the variables that are "statistically
significant contributors”, as would be used in developing a
predictive model (Shepard 1995).

When choosing your variables, it is important to carefully
consider what available data elements are the most relevant to
your purpose. Clustering depends entirely on the variables that
are input into the procedure; the procedure itself cannot
distinguish between relevant and irrelevant variables.

Because clustering means that you are dividing a population into
a number of homogeneous groups, you will have no response
variable. Instead, those who will be using the segmentation
system should choose what characteristics should divide the
population into groups. For our example, a group of marketers
and analysts convened to decide which information about a
geographic area would be helpful in differentiating one area from
the next. We devised a list of possible geographic data elements
that would be the most important to our marketing group, and

then we focused on what data were available to us for this
purpose.

Another consideration when choosing your variables is the effect
of multicollinearity. If several of your variables are related to each
other, it may impact your final solution. This is because
correlated data elements will have more weight than other non-
correlated data elements when used together in your clusters.
(Hair, Anderson, Tatham, and Black 1998). We suggest you
eliminate correlated data elements from your list by keeping only
one variable from every set of correlated variables.

When choosing your data elements for clustering, it is important
to note that the procedure works best with continuous numeric
data. For example, if you wanted to include gender in your
model, it would be best to use the percentage of people living in
the area that is male, rather than an indicator stating that a zip
code is predominantly male. Similarly, penetrations and
percentages out of a total number rather than raw counts will
better allow you to compare areas to one another. For example,
knowing that 13% of the population in an area is insured with a
certain product is more intuitive than knowing that 200 people are
insured with the product in that area.

U.S. CENSUS DATA

Census data are public-domain information and can be found on
the U.S. Bureau of the Census web site: http://www.census.gov.
Data from the 2000 U.S. Census is compiled into three summary
files which are available at no cost from the Census web site.
These summary files are a rich source of information and are
useful in creating geographic clusters. They contain data
describing age, gender, occupation, industry, and income
distributions on a variety of geographic levels.

For our clustering example, total population from the census is
used in calculating penetrations of customers in each zip code
and population density (population per square mile). Our
marketers also expressed that areas containing large
percentages of group quarters population would be unattractive to
our client when marketing certain products. Thus, we included
the group quarters data from the Census to identify areas where
military bases and college dormitories are located.

OTHER PUBLIC DATA

One of the products that our company markets is health
insurance. Thus, knowing what zip codes contain a high or low
concentration of hospitals could be helpful in identifying good
areas for marketing health insurance. A count of hospitals per
zip code was calculated from hospital listings found on the
Centers for Medicare & Medicaid Services (CMS) web site:
http://cms.hhs.gov.

In addition, the number of elementary and secondary schools in
an area can indicate the demographic make up of a zip code, the
population density of an area, or even the affluence level of the
zip code. The National Center for Education Statistics web site
(http://nces.ed.gov/ccd/) provided a file containing a listing of
each elementary and secondary school in the United States and
detailed information about each. They call this "The Common
Core of Data (CCD)." These data were aggregated to a zip code
level and used in our model.

CUSTOMER COUNTS AND PENETRATIONS

We have found that aggregating counts of customers by product
to a geographic level can be very helpful in developing models. If
a large percentage of people have purchased certain products in
an area, then that product must be attractive to those people for a
reason. We would then continue to market that product in that
area and look to find other similar areas to market the product.

Extracting counts from a customer base can be done in many
different ways. One possible way to extract counts by product is
by running the SQL procedure to count up the number of people

SUGI 28 Posters

in each geographic area, which is zip code in our case. An
example of that code is as follows:

$macro counts (product,prod) ;

proc sql;

create table customer counts &prod. as
select

zip code, count (*) as producté&prod.

from datalib.customer base
where product_type=&product.

group by zip_ code
order by zip code;

proc print data=customer counts_&prod. (obs=20);
title "Zip Code Counts for Product &prod.";

run;

%mend ;

***Call the macro for all product types;
Scounts('Y',Y)
%$counts ('X',X)
Scounts('Z',Z)

Below is an example of how each data set will look.

Obs ZIP_CODE PRODUCTZ
5000 15484 5
5001 15486 10
5002 15488 1
5003 15489 4
5004 15490 2

After extracting this data into a number of separate data sets, you
could join or merge them together into one master data set
containing a count of customers by product for every zip code.
You can also make penetrations out of a "total in group" variable
or append U.S. population data from the census to calculate
population penetrations. An example of code to perform the
merge and penetration calculations is below.

data all customer counts (drop = 1 j);
merge customer counts_ X
customer counts_ Y
customer_counts_7Z;
by zip code;
array variable{3} productX productY productZ;
do i=1 to 3;
if variable{i}=. then variable{i}=0;
end;
total insured=sum(productX, productY,
productZ) ;
array penetration{3} productX pen productY pen
productZ_pen;
do j=1 to 3;
penetration{j}=variable{j}/total customers;
end;

Below is an example of how your data set should look.

total_ product product product
Obs ZIP_CODE PRODUCTX PRODUCTY PRODUCTZ insured X_pen Y_pen Z_pen

5000 14897 4 6 0 10 0.40000 0.60000 0.00000
5001 14898 9 14 0 23 0.39130 0.60870 0.00000
5002 14901 109 171 1 281 0.38790 0.60854 0.00356
5003 14902 3 5 0 8 0.37500 0.62500 0.00000
5004 14903 67 123 0 190 0.35263 0.64737 0.00000

PURCHASED DATA

Many vendors can provide data on the zip code or zip code plus 4
level. One web site that contains a list of geographic level data
available for purchase is http://www.esri.com/. In the past,
Experian/Choice Point has provided us with credit statistics on
the zip+4 level, which we often use in modeling. Credit statistics

can be very predictive data elements in response models for
certain products, and we found that they were helpful in
segmenting on the zip code level as well.

HOW MANY SEGMENTS DO WE WANT?

There are many things to consider when deciding how many
groups are sufficient to describe your population. The first
consideration is how many groups your modeling and data
storage systems can handle. Many companies have space and
access restrictions, which may limit the number of clusters that
could be developed.

Second, how deeply would you like to (or can you) segment your
database? A small database or a database containing many
homogeneous people may not need to be clustered into a large
number of different segments. You may find that you do not have
sufficient data or data that varies enough to divide your sample
into a large number of groups. It also may be difficult to manage
many segments and to strategize based on the various groups.
On the other hand, if you have a very diverse database, you may
want a large number of segments.

Third, you need to consider the level of geography you are
working with. The more detailed the level of geography, the more
clusters you may be able to find. For example, there are over
32,000 zip codes in America, but over 200,000 Census block
groups. Therefore, block group level data will probably allow you
to find more distinct segments since each segment contains
fewer households and is, hopefully, more homogeneous. Another
approach is creating clusters within clusters. This will not be
discussed in this paper; however, many segmentation systems
available for purchase use this clustering approach. They may
have only ten or fewer main segments, but within each of the
main groups are smaller groups, resulting in a large total number
of groups.

In zip code clustering, we wanted to be able to create around ten
different segments. We felt that this would give us enough
homogeneity within the clusters, but that it would also clearly
show us patterns within our groups.

THE ART OF CLUSTERING

The main objective for clustering is to find the best natural
grouping structure among a set of observations. Objects in the
same cluster should be more similar to each other than they are
to objects in other clusters. It is important to note that there is no
unique clustering solution for every data set. The "best"
clustering solution is not determined by statistical output alone,
but is determined through profiling a number of solutions and
determining the solution with the most practical importance. In
this way, clustering is "purely an exploratory technique...[and] is
more of an art than a science" (Hair, Anderson, Tatham, and
Black 1998).

Knowing how you want to use the clusters and knowing what data
you have available is all you need to begin the clustering process.
Once these two questions have been answered, there are a few
different paths that you can take in order to create your
segmentation system.

There are two primary ways of performing cluster analyses:
hierarchical grouping and nonhierarchical or direct grouping
(Johnson 1998). We decided to use a nonhierarchical method.
This method is much easier to use when attempting to cluster
large data sets, like our zip code data set with over 32,000
observations. The SAS procedure associated with this type of
clustering is FASTCLUS. This procedure is equipped to deal with
a larger number of items, and works well if you have a good
estimation of how many clusters would best describe your
population (Hamer 1997).

SUGI 28 Posters

PREPARING YOUR DATA

It is very important that you start with a clean data set. Running
diagnostics on your data to see the distribution of each variable,
amount of missing data, minimum and maximum values, and
outliers is a very important step in the preparation process. We
suggest using PROC UNIVARIATE to check for outlier
observations and missing data elements. It is necessary that you
handle missing data appropriately. If a value for one or more
data elements is missing, the entire zip code will not be included
in the analysis. You will also want to look for data elements that
are possibly incorrect. For example, you could find that the
number of people owning a specific product in the zip code is
larger than the number of people supposedly living in that zip
code. This may happen if your database uses default zip codes
for those people who do not have a zip code on file. You may
choose to omit incorrect or outlier zip codes from your analysis,
which would mean that those zip codes would not be clustered.
Another option would be to set anomalous values of a certain
variable to zero or to default them to the overall average.

Most likely, the data that you have collected to use for clustering
is in many different formats and encompasses a wide range of
numbers. For example, one variable may be in percentage
format, and is a number between 0.00 and 1.00. Another
variable could be describing the average income of an area, and
might range from $0 to $500,000. If you were to use the data as
it is, the income variable would have much more weight than the
percentage variable because the values are larger (Johnson
1998). If the income variable has the largest values on your data
set, it could completely determine the breaks in your clusters.

To eliminate this problem, you can standardize your data using
the STANDARD procedure. PROC STANDARD will replace
missing values and standardize your data based on specified
values.

To replace missing values with a number, you will use the
REPLACE option. With no other options, it will replace missing
values with the variable mean. If you use the MEAN= option with
a specific numeric value, it will replace all missing values with
that value. The PRINT option will print statistics for each variable
that will be standardized. An example of the SAS code is below.

proc standard data=all data out=new_data replace
print;

var percentl percent2 incomel creditl
penetrationl penetration2;

run;

PROC STANDARD code without the REPLACE option will
overwrite all original values of the variables percent1, percent2,
penetration1, penetration2, income1 and credit1 with the
standardized values of the variables. If you want to keep the
original unstandardized variables on your data set to use for
analysis after clustering, you should create a second copy of
these variables on that data set before standardizing.

Data new_data2;
set new_data;
sd_percentl=percentl;
sd_percent2=percent2;
sd_penetrationl=penetrationl;
sd_penetration2=penetration2;
sd_incomel=incomel;
sd_creditl=creditl;

To standardize variables around a specific mean with a specific
standard deviation, you will not use the REPLACE option, but
instead, you will include the MEAN= and STD= options. To scale
every variable the same way, center all variables on the same
mean and standard deviation. In most cases, it is best to convert
each variable to a standard normal distribution. Some clustering
methods, including the methods that we have chosen for this
paper, Euclidean distances, assume that the data have a
standard normal distribution. The code below tells SAS to

subtract the mean of the variable from the observation and divide
by the standard deviation, in effect centering the variable around
a mean of 0 and a standard deviation of 1.

proc standard data=new_data2 out=final data
mean=0 std=1;

var sd percentl sd percent2 sd_incomel
sd_creditl sd _penetrationl sd_penetration2;

On your normalized data set, values close to zero are near the
mean of the variable before standardizing. Observations with
negative values are below the mean of the variable and
observations with positive values are above the mean of the
variable. Your data should now be ready for clustering.

THE FASTCLUS PROCEDURE

PROC FASTCLUS not only finds a starting point for the clustering
algorithm (called the cluster seeds), but it also uses a "standard
iterative algorithm for minimizing the sum of squared distances
from the cluster means" (Arnold and Stokes 1999). This means
that it will try to find clusters where the distance between each
observation and the cluster centroid is small but where the
distances between the cluster centroids are the largest.

PROC FASTCLUS allows many ways of finding your cluster
solution. Different combinations of procedure options can give
you a variety of cluster solutions to choose from. First, you can
tell PROC FASTCLUS how many clusters you would like in your
solution by specifying a maximum number of clusters with the
MAXCLUSTERS= option. You can also specify how far apart you
want the initial cluster seeds to be by using the RADIUS= option.
You can use a combination of both options as well. The default
number of clusters you will attain if you do not use the
MAXCLUSTERS= option is 150. If you specify both options, the
FASTCLUS procedure will pick initial seeds with at least your
specified radius between them.

Next, you can also tell FASTCLUS how it should choose your
initial seeds with the REPLACE= option. The selection of the
initial seeds will significantly impact your final clustering solution.
Using the default, or REPLACE=FULL option, the order of the
data will determine the seeds. For example, if you want 20
clusters, it will use the first 20 observations in the data set that
satisfy all of your criteria as the initial seeds. Another method is
the REPLACE=RANDOM option, which will tell PROC
FASTCLUS to choose the initial seeds randomly from the data
set. Every time you run the procedure with the
REPLACE=RANDOM option, you will find a different solution
because it uses different seeds. You can specify your random
seed with the RANDOM= option as well. In addition, you can tell
PROC FASTCLUS how distant or different you want the clusters
to be with the REPLACE=FULL option and a larger RADIUS.
However, you cannot set the RADIUS option when using the
REPLACE=RANDOM. There is no "correct" way of choosing
initial seeds; rather, you should evaluate more than one result to
determine the best solution for your situation.

There are advantages and disadvantages to using each option. If
you have outliers in your data set, they can significantly impact
the seed selection and therefore the entire cluster solution. If the
outliers represent a valid component of the sample, they should
be included in your data set. If they do not, you should delete
them, and then you must rerun your procedure to compensate for
the differences in your data set. In our zip code data set, we had
outlier observations due to the use of group quarters information.
Zip codes with large military bases and large universities tended
to fall into a couple of very small clusters. We suggest that you
run the procedure several times, changing the procedure options
each time, to find your optimal cluster solution.

The initial cluster seeds that PROC FASTCLUS chooses are
most likely not the best cluster centroids. Using the MAXITER=
option, you can specify the number of iterations through which

SUGI 28 Posters

you want the algorithm to run to be sure that it will settle on the
best centroids. Choosing a large number of iterations (around
100-200) will ensure that it will run through enough iterations to
converge on the best centriods. The algorithm will stop when the
cluster seeds have stopped changing between iterations. To be
sure that the algorithm converges and the final cluster seeds
equal the cluster means, use the CONVERGE=0 option. In
addition, to tell PROC FASTCLUS to recalibrate the cluster seeds
with the new cluster means after each iteration, use the DRIFT
option. Below is an example of the PROC FASTCLUS code.

%let varlist=sd percentl sd percent2 sd_incomel
sd_creditl sd_penetrationl sd_penetration2;

proc fastclus data=final data maxclusters=20
replace=random maxiter=100 converge=0 drift
distance
mean=cluster_means out=cluster output;

var &varlist;
run;

The MEAN= option allows you to create a data set with the final
means of each cluster for every variable that was input into the
procedure. The OUT= option creates an output data set
containing the entire input data set, a variable called distance that
is the distance between the observation and the cluster centroid,
and a variable called cluster that gives the number of the cluster
that the observation fell into. The DISTANCE option computes
distances between each cluster mean and is a good way of
comparing your clusters to each other in the output. There are
many other options available in PROC FASTCLUS, but these are
the options that we feel are necessary to create good geographic
clusters. Please refer to the SAS documentation for information
on other procedure options.

READING THE OUTPUT

The output from PROC FASTCLUS contains a wealth of
information that can help you to decide if you have found the
optimal solution for your problem. The output will contain:

. The values of each variable for the initial seeds used
. The minimum distance between initial seeds

e The lteration History, which will show you the amount of
relative change in the cluster seeds

e A Cluster Summary similar to that shown below

(Some column names have been abbreviated to fit our paper.)

Cluster Summary

Max Dist

RMS Std from Seed Radius Nearest Distance Between
Cluster Freq Deviation to Obs Exceeded Cluster Cluster Centroids
1 10021 0.2827 6.5065 17 1.0073
2 4278 0.3550 6.5693 9 1.9972
3 7148 0.2399 6.4085 1 1.2573
4 7238 0.3144 6.4908 20 1.1778

. Statistics for Variables, including those shown below

Statistics for Variables

Variable Total STD Within STD R-Square RSQ/ (1-RSQ)
sd_percenti 1.00407 0.28674 0.918460 11.263873
sd_percent2 0.99843 0.43516 0.810079 4.265333
sd_income1 0.99959 0.52285 0.726452 2.655664
sd_crediti 1.00070 0.47640 0.773399 3.413050

e A Pseudo F-Statistic
e An Approximate Expected Overall R-squared

e The Cubic Clustering Criterion (or CCC); a good solution
would have a CCC over 3.

The FASTCLUS Procedure
Replace=RANDOM Drift Radius=0 Maxclusters=20 Maxiter=100
Converge=0

Pseudo F Statistic = 12566.87
Approximate Expected Over-All R-Squared = 0.55644
Cubic Clustering Criterion = 409.997

SUGI 28 Posters

The top of each page of output from PROC FASTCLUS
contains a header that lists all options that were used when
the procedure was run. With these options, we obtained a
Pseudo F Statistic that is extremely high. Our Cubic
Clustering Criterion is well above 3, so we can say that this
clustering solution is good. These statistics are primarily
used to compare the clusters generated when using different
options in the procedure. As a general rule, you will want to
consider solutions with the highest values for all three of
these statistics.

. Cluster means and standard deviations for each variable

Cluster Means

Cluster sd_percentt sd_percent2 sd_income1 sd_credit1
1 -0.06499711 -0.58701679 -0.17950219 -0.80023634
2 -0.06372894 -0.46876909 1.82396449 -0.41297967
3 -0.06286305 -0.67608011 -0.41784308 -0.76027134
4 -0.06292848 0.84408606 -0.16439056 -0.77268516

Cluster Standard Deviations

Cluster sd_percenti sd_percent2 sd_income1 sd_credit1
1 0.139992542 0.347590817 0.518054810 0.366450045
2 0.165958998 0.387469383 0.607362896 0.643014948
3 0.181548856 0.333455614 0.495453272 0.368051443
4 0.180417387 0.299385038 0.498704634 0.382692906

FIGURE 1:
The UNIVARIATE Procedure
Variable: penetrationt
Schematic Plots
|
0.35 + |
| |
| |
| |
0.3 + |
| |
| +eme- +
| | |
0.25 + MEER ST
| | |
| | |
| | +eme- +
0.2 + | * |
	*	
	*	
		0
0.15 +		0
		0
		0
		0
0.1 +	Hooon- + 0	
SRREEEE N I		
		*eohoo
0.05 +		
[+		hoo--- +
ARREEE *		
0 + E—_— + E—_— + LR *
------------ R e e I
CLUSTER 1 2 3 4

COMPARING CLUSTERS

After you have settled on a cluster solution that seems optimal,
you will want to compare your clusters to each other to determine
if you have found clusters that are very different from each other.
You can use PROC UNIVARIATE to compare the characteristics
of the clusters to each other. The code below compares the
values of variables income1 and penetration1 for clusters 1, 2, 3,
and 4 to each other. The data must be sorted by the by-variable
in order to use the by statement in PROC UNIVARIATE.

proc univariate data=cluster output plots;
by cluster;
var penetrationl incomel;
where cluster in (1,2,3,4);

The PLOTS option will tell SAS to include a series of graphs in
the output to help explain the data. With this option, in addition to
the default statistics, you will see a histogram, a box-plot and a
normal probability plot. At the end of the output, you will see a
series of schematic plots, which include box plots like those in
Figure 1 and Figure 2 that compare the clusters by variable.

The first plot, shown in Figure 1, illustrates that the average value
of the variable penetration1 (the number of people with product1
divided by the total population) is much higher for cluster 4 than
for the other three clusters. High values of penetration1 indicate
that zip codes included in cluster 4 may be excellent zip codes to
continue to target with both advertising and direct mail efforts for
product1. Extensive profiling can help to determine how to
strategize based on your findings.

The box-plot below in Figure 2 shows that cluster two contains zip
codes with higher average income. Separating the zip codes with
higher average income from those with low-to-mid income ranges
can be important when creating marketing strategies. Areas
where people are wealthier may be areas where people are likely
to be more educated and working full time. This may make them
prime prospects for some product offers and poor prospects for
others. Reviewing the product penetrations by cluster is one way
to tell which clusters will tend to respond to each product offer.
Once again, extensive profiling of the characteristics of these
clusters should be completed in order to determine the best way
to address each cluster.

FIGURE 2:
The UNIVARIATE Procedure
Variable: incomel
Schematic Plots

| |

| |
175000 + |

| |

| F—— +

| | |
150000 + | |

| | |

I Kook

| | |
125000 + | |

| | |

| F—— + 0

|
100000 +

|

| | | |

| | | |
75000 + | | |

| | | |

| *oo * P + *oo *

| | | | | | |
50000 + |+ | | |+

| L p— + Kotoox L p— +

| | | | |

| ! doeeet |
25000 + | | |

| | | |

| |

| 0 | 0

0 +

CLUSTER 1 2 3 4

HOW TO HANDLE OUTLIER CLUSTERS

Depending on which options you used in your FASTCLUS
procedure, you may notice that you have a number of clusters
with only a few observations. These outlier clusters will most
likely contain observations with "extreme" values for one or more
of the variables, and thus, they do not fit into any of the larger
clusters. We found working these clusters to be a challenge, so
we have detailed a few approaches below that you can use to
manage outlier clusters.

e Try using the REPLACE=RANDOM option to obtain a few
different solutions. However, it may be difficult for the
procedure to converge if the seeds that were chosen were
not near the outliers. You could also separate the outliers
from the main data set, creating an "Extreme/Qutlier" cluster
for them, and then rerun the procedure with the
REPLACE=RANDOM option to get a new solution.

e You could try to run the procedure with the REPLACE=FULL
option and a smaller number of MAXCLUSTERS to see if the
outlier clusters would combine with any of the larger
clusters. Often, this will only join the larger clusters
together, and you will have a few extreme clusters. The
distances between the larger clusters and the outlier clusters
are often so large that they will not cluster together.

e Outlier clusters with only a few observations could be added
to the nearest cluster. Most likely, if the sample sizes of
your other clusters are large enough, the outliers will not
skew the data in the larger cluster.

e Create an "Extreme/Outlier" cluster, in which you will
combine all clusters that have only a few observations. This
could enable you to identify areas that may have unusual
characteristics. This was the option that we chose for our
zZip code clusters.

PROFILING AND VALIDATING CLUSTERS

After you have created your clusters, performed preliminary
comparisons, and chosen an optimal cluster solution, you should
profile them more thoroughly with additional data you have about
each area. You already know the distribution of the variables you
used to create your clusters, but you should also identify other
significant characteristics of the clusters. You will also want to
determine the practical significance of the clusters to your
application. You can validate the clusters using campaign
response information and examine how your current customer
base and new responders are distributed within the zip code
clusters. We also suggest mapping your clusters using SAS/GIS
or another mapping package. In completing this analysis, some
examples of questions you may seek to answer are the following:

. Do people living in certain zip code clusters respond better
to direct mail campaigns or to advertisements?

. Do people in cluster X prefer certain products over others?

. Do people in cluster Y need products based on the
environment or their lifestyle?

Finally, if you find that your clusters do not discriminate well
between your customers after you have finished profiling, you
may want to modify your clusters. You can do this by adding or
subtracting variables or changing the number of clusters. A
larger number of clusters will have more distinct centroids, but
you may find that they are difficult to manage and use in
designing product offers.

CONCLUSION

Creating a custom geographic segmentation system can be

useful for direct marketing companies yet inexpensive to develop.
The procedures explained in this paper describe only one method
of clustering, and you should examine all possibilities for creating
clusters before deciding on the best method for segmenting your
data. There is no single "best" way of clustering your data set, so

SUGI 28 Posters

you should take time to explore different options before deciding
on the best solution for your application.

You may also choose to purchase a segmentation system
instead of creating one, which would save time and may be
sufficient for your clientele. Understanding the inputs to these
segmentation systems is key to being able to properly use them.
Some vendors who create and sell segmentation systems are:

Claritas' Prizm and MicroVision Codes:
http://www.claritas.com/index.html

ESRI Business Information Systems' ACORN Codes:
http://www.esribis.com/

Experian's MOSAIC System:
http://www.experian.com/products/segmentation_systems.html

REFERENCES

Arnold, T. and Stokes, M. (1999). SAS/STAT® User's Guide,
Version 8. Cary, NC: SAS Institute Inc.

Hair, J., Anderson, R., Tathem, R. and Black, W. (1998).
Multivariate Data Analysis: Fifth Edition. New Jersey:
Prentice Hall, Inc.

Hamer, Robert M. (1997). Multivariate Statistical Methods:
Practical Applications. Cary, NC: SAS Institute Inc.

Johnson, D. (1998). Applied Multivariate Methods for Data
Analysis. Pacific Grove: Duxbury Press.

Peppers, D. and Rogers, M. (1997). The One to One Future:
Building Relationships One Customer at a Time. New York:
Double Day.

Shepard, D. (1995). The New Direct Marketing. How to
Implement a Profit-Driven Database Marketing Strategy.
New York: McGraw-Hill.

ACKNOWLEDGMENTS

Thanks to Jen Warner, Mike Morgan, and Shawn Yoder for their
assistance in topic development and contributions. Thanks to Dr.
Craig Bach and Paula Marolewski for proofreading.

CONTACT INFORMATION

Your comments and questions are valued and encouraged.
Contact the authors at:

Allison Freeman or Kellie Poulin
Marsh Affinity Group Services

602 Office Center Drive, Suite 320
Ft. Washington, PA 19034

Phone: 215-653-8000
Fax: 215-653-5490

Email: Allison.N.Freeman@marshpm.com,
Kellie.M.Poulin@marshpm.com

SAS and all other SAS Institute Inc. product or service names are
registered trademarks or trademarks of SAS Institute Inc. in the
USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their
respective companies.

	SUGI 28 Title Page
	SUGI 28 Conference Leaders
	Section Keynotes
	2003 SASware Ballot Results
	Upcoming SUGI Conferences
	Wrapup of SUGI 27
	Advanced Tutorials
	SUGI 28: Multi-platform SAS(r), Multi-platform Code
	SUGI 28: Reducing the CPU Time of Your SAS(r) Jobs by More than 80%: Dream or Reality?
	SUGI 28: Indexing and Compressing SAS(r) Data Sets: How, Why and Why Not
	SUGI 28: Hashing: Generations
	SUGI 28: Version 9 Epiphanies
	SUGI 28: Developing SAS/AF(r) Applications with Form Viewers and Table Viewers
	SUGI 28: Fast and Easy Ways to Advance on Your Beginning SAS(r) Coworkers!
	SUGI 28: Advanced Analytics with Enterprise Guide(r)
	SUGI 28: Categorical Data Analysis with Graphics
	SUGI 28: A Serious Look at Macro Quoting
	SUGI 28: Generating Custom Excel Spreadsheets Using ODS
	SUGI 28: The Power of Pictures and Paint: Using Image Files and Color with ODS, SAS(r), and SAS/GRAPH(r)
	SUGI 28: Web Enabling Your Graphs with HTML, ActiveX, and Java Using SAS/GRAPH(r) and the Output Delivery System
	SUGI 28: PROC REPORT: Doin' It In STYLE!
	SUGI 28: Fancy MS Word Reports Made Easy: Harnessing the Power of Dynamic Data Exchange
	SUGI 28: Using Different Methods for Accessing Non-SAS(r) Data to Build and Incrementally Update That Data Warehouse
	SUGI 28: SAS/ACCESS(r) to External Databases: Wisdom for the Warehouse User
	SUGI 28: Undocumented and Hard-to-Find SQL Features
	SUGI 28: Tips from the Hood: Challenging Problems and Tips from SAS-L

	Applications Development
	SUGI 28: %WINDOW: Get the Parameters the User Wants and You Need
	SUGI 28: Next Generation Data _NULL_ Report Writing Using ODS OO Features
	SUGI 28: Hot Links: Creating Embedded URLs Using ODS
	SUGI 28: ODS to RTF: Tips and Tricks
	SUGI 28: XML in the DATA Step
	SUGI 28: Using SAS(r) Software to Analyze Web Logs
	SUGI 28: Developing SAS/AF(r) Applications Made Easy
	SUGI 28: The One-Time Methodology: Encapsulating Application Data
	SUGI 28: SAS(r) Helps Those Who Help Themselves: Creating Tools to Aid in Your Application Development
	SUGI 28: 'Watch Your Language!' -- Using SCL Lists to Store Vocabulary
	SUGI 28: Application Refactoring with Design Patterns
	SUGI 28: Using IOM and Visual Basic in SAS(r) Program Development
	SUGI 28: Using AppDev Studio(tm) and Integration Technologies for an Easy and Seamless Interface between Java and Server-Side SAS(r)
	SUGI 28: A Pinch of SAS(r), a Fraction of HTML, and a Touch of JavaScript Serve Up a Grand Recipe
	SUGI 28: Web Enable Your SAS(r) Applications
	SUGI 28: Producing American Community Survey Edit Analysis Reports Dynamically Using SAS/IntrNet(r)
	SUGI 28: Using a Dynamic SAS/IntrNet(r) Application to Create Statistical Comparison Reports and Download as SAS(r) Data Sets
	SUGI 28: 'The California Template' or 'How to Keep from Reinventing the Wheel Using SAS/IntrNet(r), JavaScript, and Process Reengineering'
	SUGI 28: UNIX Meet PC: Version 8 to the Rescue
	SUGI 28: A Table-Driven Solution for Clinical Data Submission
	SUGI 28: A Programming Development Environment for SAS(r) Programs
	SUGI 28: StARScope: A Web-Based SAS(r) Prototype for Clinical Data Visualization
	SUGI 28: Dynamically Building SQL Queries Using Metadata Tables and Macro Processing
	SUGI 28: Make Your SAS/ACCESS(r) Query More Efficient
	SUGI 28: Building Metadata Repository for Data Sets
	SUGI 28: Big Brother for SAS/IntrNet(r) Security and Tracking Agent
	SUGI 28: Advanced CRM Solution Using Java Applications
	SUGI 28: Automotive Warranty Data Analysis on the World Wide Web
	SUGI 28: Developing Data-Driven Applications Using JDBC and Java Servlet/JSP Technologies
	SUGI 28: GoodsHound -- Building Multi-functional Web-Based Applications with SAS/IntrNet(r) and JavaScript
	SUGI 28: Developing Custom Analytic Tasks for SAS(r) Enterprise Guide(r)

	Beginning Tutorials
	SUGI 28: A Beginner's Guide to Incorporating SAS(r) Output into Microsoft Office Applications
	SUGI 28: Mouse Clicking Your Way to Viewing and Manipulating Data with Versions 8 and 9 of the SAS(r) System
	SUGI 28: Connecting the SAS(r) System to the Web: An Introduction to SAS/IntrNet(r) Application Dispatcher
	SUGI 28: Describing and Retrieving Data with SAS(r) Formats
	SUGI 28: Nine Steps to Get Started Using SAS(r) Macros
	SUGI 28: How Regular Expressions Really Work
	SUGI 28: Beyond Debugging: Program Validation
	SUGI 28: Errors, Warnings, and Notes (Oh My): A Practical Guide to Debugging SAS(r) Programs
	SUGI 28: Introduction to the SAS(r) Custom Tag Library
	SUGI 28: DHTML -- GUI on the Cheap
	SUGI 28: Tips for Manipulating Data
	SUGI 28: Data Warehouse Administrator: Step by Step
	SUGI 28: Java Syntax for SAS(r) Programmers
	SUGI 28: Java Servlets and Java Server Pages for SAS(r) Programmers: An Introduction
	SUGI 28: Date Handling in the SAS(r) System
	SUGI 28: SAS(r) System Options Are Your Friends
	SUGI 28: Easy, Elegant, and Effective SAS(r) Graphs: Inform and Influence with Your Data
	SUGI 28: SAS(r) Enterprise Guide(r) -- Getting the Job Done
	SUGI 28: Getting Up to Speed with PROC REPORT
	SUGI 28: SAS(r) Reporting 101: REPORT, TABULATE, ODS, and Microsoft Office

	Coders' Corner
	SUGI 28: Space Odyssey: Concatenate Zip Files into One Master File
	SUGI 28: The URL-y Show: Using SAS(r) LE and the URL Access Method to Retrieve Stock Quotes
	SUGI 28: So Many Files, So Little Time (or Inclination) to Type Their Names: Spreadsheets by the Hundreds
	SUGI 28: Splitting a Large SAS(r) Data Set
	SUGI 28: Comparative Efficiency of SQL and Base Code When Reading from Database Tables and Existing Data Sets
	SUGI 28: Automatically Combining the Data from a Variety of DBMSs with ODBC and PROC SQL
	SUGI 28: Automatic Data File Retrieval from Different Database Engines
	SUGI 28: UNLOADing Data from Informix
	SUGI 28: Return Code from Macro; Passing Parameter by Reference
	SUGI 28: If Only 'Page 1 of 1000'
	SUGI 28: Don't Dither About Your Data, Let SAS/GRAPH(r) Trending Box Plots Drive Decision Making
	SUGI 28: A Handy Use of the %LINE Annotate Macro
	SUGI 28: A Drill-Down Diet: An Example of a Dynamic Detail Access on the Web Using SAS/GRAPH(r) and ODS
	SUGI 28: Make Your Life and Little Easier: A Collection of SAS Macro Utilities
	SUGI 28: More _Infile_ Magic
	SUGI 28: The Power of Recursive SAS(r) Macros -- How Can a Simple Macro Do So Much?
	SUGI 28: Continuous or Not: How One Can Tell
	SUGI 28: Identifying Continuity in Longitudinal Data
	SUGI 28: Determining the Dimensionality of Data: A SAS(r) Macro for Parallel Analysis
	SUGI 28: Using a SAS(r) Macro to Document the Database
	SUGI 28: An Automated MS Powerpoint Presentation Using SAS(r)
	SUGI 28: A Macro Using SAS(r) ODS to Summarize Client Information from Multiple Procedures
	SUGI 28: Multiple Graphs on One Page: The Easy Way (PDF) and the Hard Way (RTF)
	SUGI 28: Taking Control of Macro Variables
	SUGI 28: PROC SQL vs. Merge -- The Miller Lite Question of 2002 and Beyond
	SUGI 28: An Efficient Approach to Combine SAS(r) Data Sets with Voluminous Variables That Need Name and Other Changes
	SUGI 28: Danger: MERGE Ahead! Warning: BY Variable with Multiple Lengths!
	SUGI 28: The DOW (Not that DOW!!!) and the LOCF in Clinical Trials
	SUGI 28: MACRO Function with Error Handling to Automatically Generate Global Macro Date Variables
	SUGI 28: Report? Make It Easy -- An Example of Creating Dynamic Reports into Excel
	SUGI 28: Another Shot at the Holy Grail: Using SAS(r) to Create Highly-Customized Excel Workbooks
	SUGI 28: Combining Summary Level Data with Individual Records
	SUGI 28: RETAINing Information to Identify Entity Characteristics
	SUGI 28: Randomized Rounding
	SUGI 28: Logicals from Libraries: Using Storage as a Bridge between Sessions
	SUGI 28: %Fun &With %SYSFUNC
	SUGI 28: Creating Display Manager Abbreviations and Keyboard Macros for the Enhanced Editor
	SUGI 28: Build a SAS(r) Development Environment under Windows
	SUGI 28: Using SAS(r) Catalogs to Develop and Manage DATA Step Programs
	SUGI 28: Let's Play a Game: A SAS(r) Program for Creating a Word Search Matrix
	SUGI 28: SAS/CONNECT(r): The Ultimate in Distributed Processing
	SUGI 28: Run Time Comparison Macro
	SUGI 28: Parallel Processing on the Cheap: Using Unix Pipes to Run SAS(r) Programs in Parallel
	SUGI 28: Date Parameters for Interval Reporting
	SUGI 28: Keep Those Formats Rolling: A Macro to Manage the FMTSEARCH= Option
	SUGI 28: A Simplified and Efficient Way to Map Variables of a Clinical Data Warehouse
	SUGI 28: Renaming All Variables in a SAS(r) Data Set Using the Information from PROC SQL's Dictionary Tables
	SUGI 28: The BEST. Message in the SAS(r) Log

	Data Mining Techniques
	SUGI 28: Modeling Customer Lifetime Value Using Survival Analysis - An Application in the Telecommunications Industry
	SUGI 28: A Simple Bayesian Approach in Mining the Touch Point Data
	SUGI 28: Shopping for Voters: Using Association Rules to Discover Relationships in Election Survey Data
	SUGI 28: Monitoring, Analyzing, and Optimizing Waterflood Responses
	SUGI 28: Multistage Cross-Sell Model of Employers in the Financial Industry
	SUGI 28: The Use of Geographic Information Systems to Investigate Environmental Pollutants in Relationship to Medical Treatment

	Data Presentation
	SUGI 28: Dynamic Behavior from Static Web Applications
	SUGI 28: SAS(r) and the Internet for Programmers
	SUGI 28: Web Communication Effectiveness: Design and Methods to Get the Best Out of ODS, SAS(r), and SAS/GRAPH(r)
	SUGI 28: Regulatory Overview of Using SAS/IntrNet(r) to Collect Data from Thousands of Users
	SUGI 28: Using Formats and Other Techniques to Complete PROC REPORT Tables
	SUGI 28: Custom Map Displays Created with SAS/GRAPH(r) Procedures and the Annotate Facility
	SUGI 28: What's in a Map? A Macro-driven Drill-down Geo-graphical Representation System
	SUGI 28: Working with RGB and HLS Color Coding Systems in SAS(r) Software
	SUGI 28: SAS/IntrNet(r) and Census Mapping: How Low Would You Like to Get
	SUGI 28: Exporting SAS/GRAPH(r) Output: Concepts and Ideas
	SUGI 28: Innovative Graph for Comparing Central Tendencies and Spread at a Glance
	SUGI 28: A Plot and a Table Per Page Times Hundreds in a Single PDF File
	SUGI 28: Why Data _Null_ When You Can RTF Faster?
	SUGI 28: Business Intelligence Applications with JMP(r) Software
	SUGI 28: ODS or DDE for Data Presentation -- A Preliminary Comparison of Output from Different Sources
	SUGI 28: ODS PDF: It's Not Just for Printing Anymore!
	SUGI 28: It's All in the Presentation
	SUGI 28: ODS LAYOUT: Arranging ODS Output as You See Fit
	SUGI 28: Creating Drill-Down Graphs Using SAS/GRAPH(r) and the Output Delivery System
	SUGI 28: Efficient Reporting with Large Numbers of Variables: A SAS(r) Method

	Data Warehousing and Enterprise Solutions
	SUGI 28: Scaling SAS(r) Data Access to Oracle RDBMS
	SUGI 28: Using SAS(r) Strategically: A Case Study
	SUGI 28: Understanding SAS/Warehouse Administrator(r)
	SUGI 28: How to Access PC File Data Objects Directly from UNIX
	SUGI 28: SAS(r) in the Office -- IT Works
	SUGI 28: Multi-Center Study Data Management With A Distributed Application
	SUGI 28: Performance Tuning SAS/ACCESS(r) for DB2
	SUGI 28: Using Information Effectively to Make More Profitable Decisions: The Ten Letter Solution for Finance
	SUGI 28: The Value of ETL and Data Quality
	SUGI 28: The Horror of Bad Data Quality
	SUGI 28: 'How Do I Love Thee? Let Me Count the Ways.' SAS(r) Software as a Part of the Corporate Information Factory
	SUGI 28: Finding Time: SAS(r) and Data Warehouse Solutions for Determining Last Day of the Month
	SUGI 28: New Ways and Means to Summarize Files
	SUGI 28: Better Decisions Through Better Data
	SUGI 28: Deploying Enterprise Solutions: The Business and Technical Issues Faced by SAS(r) Technologists
	SUGI 28: Ring Charts
	SUGI 28: Next Generation Warehousing with Version 9
	SUGI 28: Why SAS(r) is the Best Place to Put Your Clinical Data
	SUGI 28: Transactional Records Access Clearinghouse: SAS(r) Based Warehouse and Mining Tools Keeps Tabs on U.S. Government

	Emerging Technologies
	SUGI 28: XML? We do that!
	SUGI 28: Extending SAS(r) Data Services via XML and Java
	SUGI 28: SAS Metadata, Authorization and Management Services -- Working Together for You
	SUGI 28: Future Trends and New Developments in Data Management
	SUGI 28: Flip the Bow Tie: Pushing Business Intelligence to Operational Applications
	SUGI 28: A Successful Implementation of a Complicated Web-based Application Through webAF(tm) and SAS(r) Integration Technologies
	SUGI 28: An Integrated View of the Customer
	SUGI 28: Rapid Analytic Application Deployment
	SUGI 28: Managing Clinical Trials Data with a SAS-Based Web Portal
	SUGI 28: PROLAP -- A Programmatic Approach to Online Analytical Processing
	SUGI 28: The Use of Scripting Languages, Database Technology, and SAS/IntrNet(r) to Revolutionize the Research Process
	SUGI 28: The SUGI Survey: A Case Study of Deploying a Web-Enabled SAS(r) Application to a Handheld
	SUGI 28: SAS(r) Enterprise Guide(r) Future Directions -- Analytic Business Intelligence with SAS
	SUGI 28: New Technologies for Delivering Data to Internal and External Clients

	Hands-on Workshops
	SUGI 28: Getting PC SAS(r) to Do What You Want, When You Want, How You Want
	SUGI 28: How SAS(r) Thinks or Why the DATA Step Does What It Does
	SUGI 28: PROC DATASETS: Managing Data Efficiently
	SUGI 28: Managing SAS(r) Libraries to Improve Your Programming Environment
	SUGI 28: Macro Power
	SUGI 28: XML Primer for SAS(r) Programmers
	SUGI 28: Creating Dynamic Web Based Reporting
	SUGI 28: SAS(r) with Style: Creating Your Own ODS Style Template
	SUGI 28: So You're Still Not Using PROC REPORT. Why Not?
	SUGI 28: The Simplicity and Power of the TABULATE Procedure
	SUGI 28: Introduction to JMP(r)
	SUGI 28: Making the Most of Version 9 Features
	SUGI 28: A Gentle Introduction to SAS/GRAPH(r) Software

	Posters
	SUGI 28: An Approach to Displaying Predicted Survival Data Based on the Level of a Continuous Covariate
	SUGI 28: Accelerating the Construction of Data Entry Applications in UNIX Systems for Epidemiology and Healthcare Policy Researches
	SUGI 28: Developing SAS(r) Ready Analyzable Data Systems: A Java Web Application for Creation and Management of SAS(r) Relational Databases
	SUGI 28: Linkage of Patient Registries and Clinical Data Sets without Patient Identifiers
	SUGI 28: Spectral Decomposition of Performance Variables for Dynamic System Characterization of Web Servers
	SUGI 28: What's in a Map? A Macro-Driven Drill-Down Geo-graphical Representation System
	SUGI 28: Analysis of Method Comparison Studies Using SAS(r)
	SUGI 28: P-Value Generation Simplified with a Single SAS(r) Macro
	SUGI 28: ODS in an Instant!
	SUGI 28: The Use of Formats, Concatenate, and Sum for Reporting on "Check All That Apply" Variables
	SUGI 28: An Interactive Table for the Web Using SAS(r) and JavaScript
	SUGI 28: Posting Project Status to the Web Through SAS(r) Programming
	SUGI 28: Teaching Statistical Methods Courses with Case Studies and JMP(r)
	SUGI 28: “From Data to Analysis, Results and Reports” -- A Researcher’s Dilemma but A Programmer’s Challenge
	SUGI 28: Filling Report Templates with the SAS(r) System and DDE
	SUGI 28: Creating Tables or Listings with a Zero-Record SAS(r) Data Set -- Basic Program Structure and Three Simple Techniques
	SUGI 28: Creating Multiple Graphs to Link from a Dynamic Map Using SAS(r) ODS, SAS/GRAPH(r), PROC GMAP, and MACRO
	SUGI 28: Scheduling Time with SAS(r): Project Proposal Examples
	SUGI 28: Using SAS(r) Software and Visual Basic for Applications to Produce Microsoft Graph Charts
	SUGI 28: Tell Them What's Important: Communication-Effective Web- and E-mail-Based Software-intelligent Enterprise Performance Reporting
	SUGI 28: A SAS(r) Market Basket Analysis Macro: The Poor Man's Recommendation Engine
	SUGI 28: Using SAS(r) to Automatically Generate Reports in Any Special Formats
	SUGI 28: MVS Point-and-Click Access to IMS Data with SAS/ACCESS(r)
	SUGI 28: Usage Statistics for Your Web Site: Leveraging the Flexibility of SAS(r) and Webhound
	SUGI 28: Applied Population Genetics Using SAS(r) Software
	SUGI 28: PROC FORMAT Supports PROC BOXPLOT to Handle Twofold Grouped Data
	SUGI 28: Developing a Marketing Geographic Segmentation System Using SAS(r) Software
	SUGI 28: 'I'll Have What She's Having' -- Serving-up MetaData to Academic Research Teams
	SUGI 28: Security Control System with SAS(r) Application Dispatcher
	SUGI 28: %MONDRIAAN: Presenting 3D Information in 2D
	SUGI 28: Advantages of Using a Web Based Reporting System Over Using SAS/CONNECT(r)
	SUGI 28: Working with RGB and HLS Color Coding Systems in SAS(r) Software
	SUGI 28: A SAS/IML(r) Program for Mapping QTL in Line Crosses
	SUGI 28: An Automated Reporting Macro to Create Cell Index -- An Enhanced Revisit
	SUGI 28: Metadata Application on Clinical Trial Data in Drug Development
	SUGI 28: Enhancement of Survival Graphs

	Professional Development and User Support
	SUGI 28: Practical Tips to Customize a SAS(r) Session
	SUGI 28: SAS(r) Programming Conventions
	SUGI 28: Programming Standards, Style Sheets, and Peer Reviews: A Practical Guide
	SUGI 28: SAS(r) High-speed Automated Reporting Queue (SHARQ)
	SUGI 28: Where to Go from Here: Learning More about SAS(r)
	SUGI 28: An Overview of SAS Certification and the Test Development Process
	SUGI 28: Ten Things I Wish I Knew Before I Became an Independent SAS(r) Software Consultant
	SUGI 28: SAS-L: A Very Powerful Free Resource for SAS(r) Users Worldwide
	SUGI 28: Ask and Ye Shall Receive: Getting the Most from SAS-L
	SUGI 28: Tinker, Tailor, Soldier, Spy: The Many Roles of the SAS(r) Consultant
	SUGI 28: Not All Fish Eat Worms: A SAS(r) Programmer's Guide to MS Excel and Other Fish Stories
	SUGI 28: Show-and-Tell: How to Use MS Office Products to Help with SAS(r) Applications

	Statistics and Data Analysis
	SUGI 28: Case Studies in Time Series
	SUGI 28: An Introduction to the Analysis of Mixed Models
	SUGI 28: Survival Analysis Using Cox Proportional Hazards Modeling for Single and Multiple Event Time Data
	SUGI 28: Let the Data Speak: New Regression Diagnostics Based on Cumulative Residuals
	SUGI 28: Using the SAS(r) System to Construct and Operate Control Charts with Randomized Control Limits
	SUGI 28: Logistic Regression Modeling -- JMPStart(tm) Your Analysis with a Tree
	SUGI 28: STEPWISE Methods in Using SAS(r) PROC LOGISTIC and SAS(r) Enterprise Miner(tm) for Prediction
	SUGI 28: An Introduction to Genomics and SAS(r) Scientific Discovery Solutions
	SUGI 28: How to Use the SAS(r) System as a Powerful Tool in Biomathematics
	SUGI 28: Cutpoint Determination Methods in Survival Analysis Using SAS(r)
	SUGI 28: Complex Sampling Designs Meet the Flaming Turkey of Glory
	SUGI 28: Multilevel Designs and Their Analyses
	SUGI 28: Estimating Standard Errors for CLASS Variables in Generalized Linear Models Using PROC IML
	SUGI 28: SAS/STAT(r) Version 9: Progressing into the Future
	SUGI 28: Fast and Easy Ways to Annoy a SAS(r) Programmer: A Statistician's Revenge!
	SUGI 28: Application of the LOESS Procedure for Monitoring and Detecting Critical Movements in the US Automobile Market
	SUGI 28: Smoothing with SAS(r) PROC MIXED
	SUGI 28: Beyond PROC LIFETEST: Alternative Linear Rank Tests for Comparing Survival Distributions
	SUGI 28: Estimation of Prevalence Ratios When PROC GENMOD Does Not Converge
	SUGI 28: An Alternative to PROC MI for Large Samples
	SUGI 28: Known Nonsense
	SUGI 28: Analysis of Data from Recurrent Events
	SUGI 28: Reliability, Exploratory and Confirmatory Factor Analysis for the Scale of Athletic Priorities
	SUGI 28: SAS(r) Macros and Tools for Working with Weighted Logistic Regression Models That Use Survey Data
	SUGI 28: Optimization with the SAS(r) System: What It Is, What's New, and Why You Should Be Using It

	Systems Architecture
	SUGI 28: Accelerating Performance of SAS(r) Applications via Rapid Extraction and Multiprocessing
	SUGI 28: Using a HOLAP Solution to Analyze Large Volumes of Data via the Web
	SUGI 28: Developing Client/Server Applications to Maximize SAS 9 Parallel Capabilities
	SUGI 28: SAS(r) Application Performance Monitoring for UNIX
	SUGI 28: Multi-Lingual Computing with the 9.1 SAS(r) Unicode Server
	SUGI 28: An Inside Look at Version 9 and 9.1 Threaded Base SAS(r) Procedures
	SUGI 28: SAS(r), Linux/UNIX and X-Windows Systems
	SUGI 28: Early Experiences with SAS(r) Release 9 on an OS390 Platform
	SUGI 28: SAS(r) System on Network Appliance
	SUGI 28: SAS(r) Performance Optimizations on Intel Architecture
	SUGI 28: The Bleeding Edge -- The Effects of Hardware and Software Migration on the SAS(r) System
	SUGI 28: PROC MIGRATE: How to Migrate Your Data and Know You?ve Done It Right!
	SUGI 28: SAS 9.1 on Solaris 9 Performance and Optimization Tips
	SUGI 28: Using the SAS(r) V9 Application Response Measurement System to Provide Metrics to HP-UX Workload Manager
	SUGI 28: A Case Study of the Tools, Techniques, and High Level Model Used to Tune AIX Version 5L for the SAS(r) System

