
P values, confidence intervals, or 
confidence levels for hypotheses? 
11 February 2014 

 

Michael Wood 
University of Portsmouth Business School 
Richmond Building 
Portland Street, Portsmouth 
PO1 3DE, UK 
michael.wood@port.ac.uk 
mickofemsworth@gmail.com  

Abstract 
Null hypothesis significance tests and p values are widely used despite very strong arguments 

against their use in many contexts. Confidence intervals are often recommended as an 

alternative, but these do not achieve the objective of assessing the credibility of a hypothesis, 

and the distinction between confidence and probability is an unnecessary confusion. This paper 

proposes a more straightforward (probabilistic) definition of confidence, and suggests how the 

idea can be applied to whatever hypotheses are of interest to researchers. The relative merits of 

the different approaches are discussed using a series of illustrative examples: usually confidence 

based approaches seem more transparent and useful, but there are some contexts in which p 

values may be appropriate. I also suggest some methods for converting results from one format 

to another. (The attractiveness of the idea of confidence is demonstrated by the widespread 

persistence of the completely incorrect idea that p=5% is equivalent to 95% confidence in the 

alternative hypothesis. In this paper I show how p values can be used to derive meaningful 

confidence statements, and the assumptions underlying the derivation.) 

Key words: Confidence interval, Confidence level, Hypothesis testing, Null hypothesis significance 

tests, P value, User friendliness.  

  



P values, confidence intervals, or confidence levels for hypotheses?  

2 
 

P values, confidence intervals, or 
confidence levels for hypotheses? 

Introduction 
Null hypothesis significance tests (NHSTs) are widely used to answer the question of whether 

empirical results based on a sample are due to chance, or whether they are likely to indicate a 

real effect which applies to the whole population from which the sample is taken. There are, 

however, serious difficulties with such tests and their resulting p values or significance levels: 

the literature on these difficulties goes back at least half a century (e.g. Cohen, 1994; Gardner 

and Altman, 1986; Gill, 1999; Kirk, 1996; Lindsay, 1995; Mingers, 2006; Morrison and Henkel, 

1970; Nickerson, 2000). NHSTs are very widely misinterpreted, they do not provide the 

information that is likely to be wanted, and as many null hypotheses are obviously false the 

tests are often unnecessary as well as uninformative. 

 The commonly suggested alternative to the use of NHSTs is the use of confidence 

intervals (e.g. Cashen and Geiger, 2004; Cortina and Folger, 1998; Gardner and Altman, 1986; 

Gill,1999; Mingers, 2006; Wood, 2005). In medicine, for example, guidance to authors of 

research papers in some journals (BMJ, 2011), and regulatory authorities (ICH, 1998), strongly 

recommends these in preference to NHSTs. However, in most of the social sciences, NHSTs, and 

not confidence intervals, are still the standard. 

 There are, however, also problems with confidence intervals: 

1 They refer to an interval whereas in many cases researchers do want to evaluate a 

hypothesis. 

2 “Confidence” is usually defined in a rather awkward way which appears to 

distinguish the concept from the probabilities that people intuitively want. 

3 They are inapplicable if the characteristic of interest cannot be expressed on a 

suitable numerical scale. 

 My aim in this paper is to extend the idea of confidence to include confidence levels for 

hypotheses in general (not just intervals), to propose that confidence levels can reasonably be 

interpreted as probabilities, to suggest some simple methods for deriving confidence levels from 

p values, and to assess the relative merits of NHSTs, confidence intervals and confidence levels 

for hypotheses. This should be of interest to any researcher concerned about the best way to 

analyze and communicate statistical results. 

For example, according to a study which sought to investigate the impact of social status 

on mortality by analyzing how winning an Academy award (Oscar) may prolong an actor’s life, 
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“life expectancy was 3.9 years longer for Academy Award winners that for other, less recognized 

performers (79.7 vs. 75.8 years, p = 0.003)” (Redelmeier and Singh, 2001: 955). The p value here 

does not directly address the question of how likely it is that Oscar winners really do live longer 

– the equivalent confidence level for this hypothesis is 99.85% (making a few reasonable 

assumptions to be explained below). Alternatively, we might cite a confidence level for the 

slightly stronger hypothesis that the life expectancy of Oscar winners is at least a year longer 

(98.6%). Confidence levels of this type avoid most of the difficulties of p values – they do, for 

example, seem far easier to understand. 

 I start with a brief discussion of the concepts used to frame the problem that all the 

methods are tackling – that of using a sample to make inferences about a wider population. I 

then review briefly the difficulties of NHSTs, how confidence intervals overcome many of these 

difficulties and how confidence can be defined. Then I explore the idea of confidence levels for 

more general hypotheses and how they can be estimated. I finish with a discussion of a series of 

examples, chosen to illustrate the advantages and disadvantages of p values, confidence 

intervals, and confidence levels for hypotheses in a range of different contexts. My concern in 

this article is with the concepts used to express statistical conclusions, not with the detail of 

methods of analysis; I have chosen examples using relatively simple methods because this 

makes it easier to analyze these concepts.  

Samples, populations, processes and the wider context 
Hand (2009: 291) points out that “much statistical theory is based on the notion that the data 

have been randomly drawn from a population” but this is often not the case. To make sense of 

statistical inference procedures we then need to imagine a population from which the sample 

can reasonably be assumed to have been randomly selected. The sample of Oscar winners 

included only past Oscar winners, but the aim of the research was to see if anything could be 

inferred about the life expectancy of Oscar winners in general, including future winners. We 

then need to make the assumption that the sample can be regarded as a random sample from 

this population of current and potential future winners – which is obviously a difficult notion to 

nail down precisely. 

 Experiments, or randomized trials, also make the idea of the population problematic. 

Suppose, for example, we are comparing two training programs, A and B, with the help of 42 

trainees1: as I will use this as an example below it is helpful to give a few details. A randomly 

chosen group of 21 trainees does Program A, the remainder to do B, and then the effectiveness 

of the training for each trainee is rated on a 1-7 scale. To compare the two programs we then 

work out the mean effectiveness ratings for each group of 21 trainees: these come to 4.48 for 

Program A and 5.55 for Program B. This suggests that Program B is better, but does not answer 

the question of whether the effect may be due to chance and might be reversed in another 

similar experiment. In one sense the population here is the wider group of trainees from whom 

the sample is drawn, but even if the 42 trainees comprised the entire population, the problem 
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of sampling error still arises because a different division of trainees into two groups might 

produce a different result. 

 In both cases it is obviously important to analyze how reliable the result is taking 

account of sampling error, although the idea of a population is difficult to visualize. An 

alternative metaphor is the idea of a “process”: we could refer to the training process or the 

process of winning an Oscar. This is still rather awkward, and does not acknowledge the future 

dimension. A term such as “wider context” is vaguer, and so more suitable for informal 

descriptions, although for formal work the notion of population is convenient and deeply 

embedded in the language of statistics. For the Oscars, the wider context includes the future, 

and for the training programs the wider context includes both a wider population of trainees 

and the fact that there are many possible allocations into two groups.  

Null hypothesis significance tests (NHSTs) and p values 

The idea of an NHST is to set up a null hypothesis and then use probability theory or simulation 

to estimate the probability of obtaining the observed results, or more extreme results, if the null 

hypothesis is true2. If this probability, known as the p value, is low, then we conclude the null 

hypothesis is unlikely and an alternative hypothesis must be true. Many researchers use cut-off 

levels of 5%, 1%, etc and describe their results as significant at 5% (p<0.05) or whatever. The 

result above about Oscars and life expectancy, for example, is significant at 1%, indicating 

reasonably strong evidence against the null hypotheses, and so for the hypotheses that winning 

an Oscar really does tend to prolong life. On the other hand, a subsequent analysis using a 

difference method of analysis and including more recent data gave results that are equivalent to 

a p value between about 13% and 17% (Sylvestre et al, 2006; I have estimated the p value from 

the confidence interval given in the article, using the method described below). This suggests 

that the difference in life expectancies is well within the range that would be expected if only 

chance factors were at work. In contrast to the earlier result, this suggests there is little 

evidence for the hypothesis that winning an Oscar prolongs an actor’s life. 

 Similarly, the advantage of program B over Program A yields a p value of 2.11%. This is 

shown graphically in Figure 13. This graph represents the likely distribution of the mean 

difference between the programs in similar samples drawn from the same source, assuming the 

truth of the null hypothesis that the difference between the population means is actually zero, 

and that any difference observed in the sample is just due to random sampling error (this is 

often called a sampling distribution). The graph shows that the probability of this difference 

being as big as, or bigger than, the observed difference of 1.07 is only 2.11%. As this p value is 

low we can assume the null hypothesis is unlikely and there is a real difference in the 

effectiveness of the two programs. 
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Figure 1: Probability distribution for sample estimate of difference between Program B and 

Program A assuming the null hypothesis of no population difference 

 

 As noted above, NHSTs have attracted some very extensive criticism over the years. I 

will review some of the main points here, but for a more extensive review the reader is referred 

to the citations above. There are counter-arguments; taken in the right spirit, sometimes NHSTs 

may have a useful role to play – I will discuss this in relation to some specific examples below. 

1. NHSTs fail to provide the information people are likely to want. The p value from the 

NHST about Oscar winners does not tell us (a) how many extra years Oscar winners 

are likely to have (the strength of the effect), and (b) how probable it is that winning 

an Oscar winner does increase life expectancy (the p value may give us some 

indication but it does not give this probability). The p value concerning the two 

training programs is similarly uninformative. Readers of the article about the two 

training programs are given the mean scores for each group, but the difference 

between the means is not made explicit in the article. This is part of a general 

tendency for “quantitative” research in some social sciences to be strangely non-

quantitative in the sense that readers are often not told the size of effects and 

differences. This is not, however, true of the article about the Oscars (in a medical 

journal with different conventions) where the 3.9 years is made explicit.  

 

2. The conclusions that can be drawn from NHSTs are often trivial. Strictly, the null 

hypotheses on which p values are based are exact: the Oscar winners’ life 

expectancy and that of the controls are exactly the same, and the population mean 

scores for both training programs are identical. In practice, slight differences are 

likely between any two groups, so null hypotheses of this kind are very likely to be 

false, which means that there is little point in a formal test to prove it. The result will 

depend on the sample size: with a suitably large sample almost any null hypothesis 

is likely to be disproved. Even apart from this logical point, null hypotheses are 

sometimes so unlikely as to make disproving them of marginal interest. For 

-3.0 -2.0 -1.0 0.0 1.0 2.0 3.0

Sample estimate of difference between Programme B and A 

p is the probability 

in the two tails

which is 2.11%
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example, Grinyer et al (1994) tested the – very implausible – hypothesis that 

respondents to a questionnaire are equally likely to agree with a statement, or 

disagree, or neither agree nor disagree; and Glebbeek and Bax (2004: Table 2) cite a 

p value less than 1% for the relationship between employee turnover and the 

performance of organizations – common sense and much of the literature suggests 

that a null hypothesis of no relationship between these two variables is false, so the 

p value adds little. 

 

3. NHSTs are very widely misinterpreted. Statistically significant results are widely 

assumed to be large and important in a practical sense. The fact that a p value is 5% 

is widely viewed as implying that the probability of the truth of the alternative 

hypothesis is 95%. A non-significant p value is often seen as some sort of proof for 

the truth of the null hypothesis (this fallacy is built into the “test of normality” often 

used as a pre-check for some statistical procedures). None of these are valid. 

Nickerson (2000) lists ten distinct ways in which NHSTs can be, and often are, 

misunderstood. Part of the reason for this is doubtless the natural tendency to 

assume that a carefully crafted statistic like a p value will deliver the information 

that is obviously wanted: unfortunately this is not the case. Coulson et al (2010) 

tested how well 330 authors of published articles understood p values and 

confidence intervals. They concluded that “interpretation was generally poor”. 

However, there was very clear evidence that many authors interpreted confidence 

intervals in terms of p values; those who interpreted confidence intervals without 

reference to null hypothesis tests gave a far better interpretation of the results than 

those who thought in terms of null hypothesis tests, which suggests that NHSTs are 

a powerful confusing influence in the interpretation of statistics, even among 

professional researchers. 

The terminology commonly used is not helpful. “Significant” in ordinary English 

does mean important. Widely used phrases like A “is significantly more than” B 

suggests that the statistical significance is a property of the difference between A 

and B, as opposed to being just a measure of the strength of the evidence for this 

difference. Furthermore, p values mean focusing on a hypothetical null hypothesis 

instead of the hypothesis of interest. And to cap it all, as a measure of the strength 

of evidence, p values are a reverse measure – low values indicating strong evidence. 

All these factors make the widespread misunderstanding of NHSTs seem almost 

inevitable.  

 

Confidence intervals 
The idea of confidence intervals is to use the data to derive an interval within which we have a 

specified level of confidence that the population parameter will lie. For the Oscars, the first 

analysis suggests that the extra life expectancy for winners is 3.9 years and the 95% confidence 
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interval for this additional life expectancy is likely to be about 1.3 to 6.5 years (an estimate from 

the results given by Redelmeier and Singh (2001) using the normal distribution as described 

below). We cannot be sure of the exact advantage from winning an Oscar on the basis of the 

sample data, but we can be 95% confident that the true figure will lie in this interval. 

 I will look at the second example in more detail and carry this through to the discussion 

of confidence levels. Figure 2 shows a confidence distribution for the population difference 

between the means of the effectiveness ratings of Programs A and B. This is derived from Figure 

1 simply by shifting the curve along so that it is centered on 1.07 (the observed difference of the 

means) rather than 0. An informal rationale for this goes as follows. The most likely value for the 

population parameter, given the sample data, is the sample estimate (1.07), so it makes sense 

that this should be the centre of the confidence distribution. Furthermore, Figure 1 suggests 

that the probability that the difference between the sample estimate, and the unknown 

population value (assumed to be 0), being more than 1.07 is 2.11%, so the tails in Figure 2 are 

correct from this perspective. Figure 1 can be regarded as describing the probabilities of 

different discrepancies between the sample estimate and the population parameter being 

estimated, so it is reasonable to regard a displaced version of Figure 1, in Figure 2, as 

representing our view, based on the sample information, of different possible values of the 

population parameter. The horizontal axis in Figure 2 refers to the possible values of the 

unknown population parameter (the difference of the means), whereas in Figure 1 it refers to 

sample estimates. Figure 2 (and the spreadsheet behind it) enables us to read off the 2.5 and 

97.5 percentiles of this distribution – this is the 95% confidence interval which extends from 

0.17 to 1.97. (There is a more detailed discussion of the rationale behind this in the Appendix.) 

Figure 2: Confidence distribution and interval for difference between Program B and Program 

A 

 

 This has clear advantages over the p value presentation. It does answer directly 

questions about the strength of the effect (how big the difference is), and the width of the 

interval describes the uncertainty due to sampling error in an obvious way. The information 

displayed is not trivial or obvious like the NHST conclusions may be, and misinterpretations 

-3.0 -2.0 -1.0 0.0 1.0 2.0 3.0

Possible values of population difference Programme B - Programme A

The dotted lines represent 

a 95% confidence

interval. The area in the two 

tails beyond

the outer solid lines is 

2.11% as in

Figure 1.
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seem far less likely than for NHSTs. The focus is very much on the difference between the 

programs and not on a hypothetical null hypothesis, there is no inverse scale, and the phrase 

“confidence” suggests that what is being assessed is the strength of the evidence. 

It is also worth noting that, because zero is not in this interval, we can be more than 

95% confident that Program B is better than Program A, which is equivalent to the statement 

that p<0.05. In this way all the information in the significance level can be deduced from 

confidence intervals, but the confidence intervals provide extra information about the size of 

the difference and the extent of the uncertainty. 

Confidence intervals corresponding to many other null hypothesis models have been 

derived and built into software packages. They are widely used as a means of analyzing and 

presenting results in some fields such as medicine, but not in most social sciences. 

Confidence levels for hypotheses 
The notion of confidence can easily be extended from intervals to more general hypotheses. 

This idea can easily be applied to the difference between Programs A and B (Figures 1 and 2). 

The confidence curve in Figure 2 is symmetrical so the confidence of the value being in the 

lower tail will be half of 2.11% or 1.1% (rounded to one decimal place), and the confidence that 

the difference in the means will be greater than zero, or that Program B is actually, in population 

terms, better than Program A is 100% – 1.1% = 98.9%.  

 This principle can easily be extended. Suppose we were interested in the hypothesis 

that the advantage of Program B is substantial, say greater than one unit. Then the p value is no 

longer helpful, but in the case of Figure 2, we can use the t distribution (more details below) 

directly to show that: 

 Confidence (Program B more than 1 unit better than A) = 56%. 

It should be clear from Figure 2 that this is roughly right. 

 In a very similar way, using Redelmeier and Singh’s (2001) data and methods, the 

confidence level for the hypothesis that Oscar winners live longer than the controls is 99.85%, 

and the confidence for their life expectancy being at least a year longer is 98.6%.  

The idea of a confidence level for a hypothesis is more general than these two examples 

might suggest. For example, Glebbeek and Bax (2004) wanted to confirm the hypothesis that 

there is an “inverted U-shape relationship” between two variables – staff turnover and 

organizational performance – by setting up regression models with both staff turnover, and staff 

turnover squared, as independent variables. Because this hypothesis does not depend on a 

single parameter, it is awkward to use p values or confidence intervals to support this 

hypothesis. Glebbeek and Bax (2004) actually used p values, but it is easy to use a bootstrap 

argument to estimate the confidence level for this hypothesis – this comes to 67% (Wood, 

2012). 
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Confidence as probability 
The word “confidence” is conventionally used to indicate that the concept is not probability but 

is to be interpreted in frequentist terms. This means that we need to imagine repeating the 

procedure that led to a 95% confidence interval, for example: then if the 95% is accurate, 95% of 

these repetitions should produce an interval which includes the true value of what we are trying 

to estimate (see, for example, Bayarri and Berger, 2004). On the other hand, interpreting a 95% 

confidence interval as a probability would simply involve asserting that there is a probability of 

95% that the truth about the whole population lies somewhere in this interval. This distinction is 

described as “subtle” by Nickerson (2000, p. 279), and is one of the issues at stake in the 

literature on the foundations of statistical inference. 

This literature is complex both conceptually and mathematically, and has spawned 

debates without easy answers. One influential and important perspective is the Bayesian one: 

the Bayesian equivalent of a confidence interval is a credible interval. These are sometimes 

identical to frequentist confidence intervals (Bayarri and Berger, 2004: 63), so in these cases it 

would be reasonable to view confidence levels as probabilities, and to identify the confidence 

distribution with the posterior probability distribution. The confidence level for a hypothesis is 

simply the posterior probability of the hypothesis. 

Part of the reason for the reluctance to do this stems from the frequentist view that 

either the population mean is in the confidence interval, or it is not, and that the idea of 

probability cannot meaningfully be used to express this type of uncertainty. However, in 

everyday discourse the idea of using probability for this type of “epistemic” uncertainty is 

widespread and unproblematic, so it would seem sensible to ignore the frequentists’ 

philosophical objections and treat confidence levels as probabilities. 

Another reason for the reluctance to use Bayesian methods is that these bring in prior 

probabilities to reflect prior beliefs about the situation. In practice, this may be difficult, and is 

widely seen as introducing an unhelpful element of subjectivity into the calculations. However, 

the assumption necessary to produce Bayesian intervals which are identical to standard 

confidence intervals for the example in Figure 2 is that the prior probabilities should be uniform 

indicating that all values on the horizontal axis in Figure 2 are equally likely (see Appendix). In 

Bayesian terms, this is the assumption on which the derivation of Figure 2 and the above 

confidence interval depends. 

 My suggestion is that we adopt the following definition of a confidence level for an 

interval or hypothesis: 

A confidence level is defined as an estimate of the probability of the true value of the 

parameter being within the interval, or of the probability of the truth of the hypothesis. 

There may be different ways of estimating this probability: using Bayesian credible intervals 

based on a uniform prior distribution, or on some other prior distribution, or by the methods 
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used to derive confidence intervals. Obviously, different methods of computation may give 

slightly different answers, but this is hardly unusual in statistics where many concepts are 

slippery and can be made precise in different ways. (Different statistical tests may give different 

p values, for example.) The Bayesian methods have the advantage that they are arguably more 

transparent: Bayarri and Berger (2004) suggest that the Bayesian approach should be “taught to 

the masses” (p. 59) and that this is often possible “without changing the procedures that are 

taught”. 

Methods of estimating confidence levels 
If we think of a confidence distribution as a Bayesian posterior distribution, then we have the 

whole gamut of Bayesian methods at our disposal. Similarly there are a wide variety of methods 

for deriving confidence intervals, which could easily be adapted to give confidence levels for 

more general hypotheses. This includes bootstrapping, an approach of very general applicability, 

which was used to generate the 67% confidence level mentioned above. 

However, in practice, we may be using software which just generates p values, and 

possibly confidence intervals. Alternatively we may just have the results in a published paper. 

The methods outlined below are for estimating confidence levels from the information we are 

likely to have in these circumstances.  

Estimating confidence levels from p values or other NHST statistics 

If we only have p values (from a software package or a published paper) it is sometimes possible 

to estimate confidence levels as we have seen above. This approach assumes that it is 

reasonable to shift the null hypothesis distribution and treat it as a confidence distribution as 

described above in the section on confidence intervals. There is a more detailed analysis of the 

conditions under which this is reasonable in the Appendix: in rough terms the curve shift 

method is likely to be reasonable if the null hypothesis is modeled by a symmetrical distribution 

such as the normal or t distributions. 

 The method above can easily be generalized. If the difference of the means were 

negative, the argument above will be reversed, so in general we can write 

Confidence (Pop. parameter > 0)  = 1 – p/2  if Sample estimate ≥0  

       = p/2   if Sample estimate <0     

where p is the two tailed p value for the null hypothesis that the population parameter is zero.  

In Figure 1 the one-tailed p value is 2.1%/2 = 1.1% which is the same as the confidence 

that Program A is better than Program B. Confidence levels thus give us another way of 

interpreting one-tailed significance levels. On the other hand, the argument here is not 

consistent with the common misconception that p is 5% means that the probability of the null 

hypothesis being true is 5%, so the probability that the probability that the alternative 

hypothesis is true – that there is a difference between programs A and B – is 95%. Figure 2 
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illustrates the problem with this. The probability of the difference between the two programs 

being exactly zero is very small indeed, certainly not 5%. 

 In some cases p values are not given exactly but as an inequality. The example above 

mirrors Eggins et al (2008), where the p is given a single star, indicating that p < 5%. This means 

that the above reduces to the assertion that the confidence level is greater than 97.5%. 

 If we are starting from a value of t or z, or if we want a confidence level for another 

hypothesis, it is possible to deduce the standard error from the given information and then use 

this to calculate confidence levels from the t or normal distributions. The arithmetic here is easy, 

and is incorporated in the spreadsheet at http://woodm.myweb.port.ac.uk/CLIP.xls.  

Estimating confidence levels from confidence intervals 

Sylvestre et al (2006), in their paper on Oscar winners, gave a 95% confidence interval for 

additional life expectancy enjoyed by Oscar winners as –0.3 years to +1.6 years. The confidence 

level for the hypothesis that this additional life expectancy is positive could be estimated by 

rerunning the analysis with different confidence levels until one is found that has a lower limit of 

zero, which can then be used to estimate the confidence level for the hypothesis that the 

additional life expectancy is positive and that the experience of winning an Oscar is linked to 

longer life expectancy. In this way any software package generating different confidence 

intervals could be used to build up a confidence distribution. 

 In practice, it may be reasonable to assume that the confidence distribution is 

approximated by a t or normal distribution, in which case the mean and one of the given limits 

can be used to estimate the standard error and hence use the t or normal distribution to 

estimate any confidence level we want – the confidence level for the hypothesis that the 

additional life expectancy is positive is somewhere between 91% and 94% (using the 

spreadsheet at http://woodm.myweb.port.ac.uk/CLIP.xls, the answer depending on which limit 

we take as they are not quite symmetrical). This is obviously just an approximation, but there 

seems little point in being too pedantic when the interpretation of confidence is likely to refer to 

arbitrary levels such as 95%, and estimates of statistics such as p values are themselves subject 

to considerable variation between samples (Boos and Stefanski, 2011). 

Some examples 
I will start by drawing together the discussion of the examples above, and then consider a few 

more examples – chosen to illustrate a number of issues. All statistics not explained below, or 

given by the authors of the original research, are estimated roughly using the methods 

described in the previous section and the spreadsheet at 

http://woodm.myweb.port.ac.uk/CLIP.xls. 

 

 

http://woodm.myweb.port.ac.uk/CLIP.xls
http://woodm.myweb.port.ac.uk/CLIP.xls
http://woodm.myweb.port.ac.uk/CLIP.xls
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Oscars and life expectancy 

Redelmeier and Singh (2000) found that Oscar winners’ life expectancy was 3.9 years longer 

than the controls. They cited a p value for this result: 

 p = 0.003      

Alternatively they could have stated that: 

 95% confidence interval for additional life expectancy is 1.3 to 6.5 years 

 Confidence level for positive additional life expectancy = 99.85% 

Confidence level for additional life expectancy of one year or more = 98.6% 

The equivalent results for Sylvestre et al’s (2006) updated analysis are4: 

p = 0.15            

95% confidence interval is -0.3 to 1.7 years    

 Confidence level for positive additional life expectancy = 93%  

Confidence level for additional life expectancy of one year or more = 27%  

The confidence intervals and levels seem more useful and easier to interpret than the p values. 

Training programs A and B 

This example was introduced because it is an experiment, or randomized controlled trial. 

However, the issues regarding the analysis are similar to the Oscars example and to the next 

example, so I will not analyze this further here. 

Men and women in work-home culture 

This example is included to show how the results in a typical article in a social science journal, 

the British Journal of Management, could be analyzed in terms of confidence. As part of a study 

of “work-home culture and employee well-being” Beauregard (2011) showed the differences 

between men and women on 9 variables in her sample of 224 local government employees. I 

will use two of these variables as illustrations:  

Table 1. Some of the results in Table 1 in Beauregard (2011) 

Measure Mean for men 
(n=84) 

Mean for women 
(n=140) 

t(222) 

Work-home culture: 
managerial support 

4.34 4.56 – 1.33 

Hours worked 
weekly  

41.27 36.69 3.68*** 

She also gives the SD for each variable, and a note under the table explains that *** means 

p<0.001: the difference between men and women is not significant (p>0.05) for the first 

variable, and highly significant for the second. As is usual in management research, confidence 

intervals are not given.  
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Tables 2 and 3 show the same results in terms of confidence intervals and levels. 

Table 2. Some of the results in Table 1 in Beauregard (2011) expressed as confidence intervals 

Measure Mean 
for men 
(n=84) 

Mean for women 
(n=140) 

Difference of means 
(Men – Women) 

95% Confidence 
Interval for difference 
of means 

Work-home culture: 
managerial support 

4.34 4.56 -0.22 -0.55 to +0.11 

Hours worked weekly  41.27 36.69 4.58 2.1 to 7.0 

Table 3. Some of the results in Table 1 in Beauregard (2011) expressed as confidence levels for 

hypotheses 

Measure Mean for men 
(n=84) 

Mean for 
women 
(n=140) 

Difference of 
means  
(Men – Women) 

Confidence level for the 
hypothesis:  
Mean for Men  > for Women 

Work-home culture: 
managerial support 

4.34 4.56 -0.22 9% 

Hours worked weekly  41.27 36.69 4.58 99.99% 

 

Telepathy 

In a series of experiments in the 1920s and 30s, the psychologist, J B Rhine, found a number of 

people who appeared to be telepathic (Rhine, 1997). In one series of experiments, Hubert 

Pearce Jr. did a card guessing experiment 8,075 times, and got the card right on 3,049 occasions. 

There were five cards in the pack, so guesswork would have produced about 1615 hits. Rhine 

argues that Pearce's performance is so much better than guesswork that telepathy must be 

involved; others have taken the hypothesis that Pearce was cheating more seriously (Hansel, 

1966). We can model the number of correct cards under the null hypothesis that Pearce was 

guessing using the binomial distribution, and then use the normal approximation (z = 39.9) to 

deduce that the two tail p value is, for all practical purposes, zero, which means that the results 

could not have arisen from chance alone.  

 This is an example where the p value does seem entirely appropriate and the idea of 

confidence would be rather awkward: the reasons for this are discussed below. 

Heart transplants 

In October 2007, heart transplants were stopped at Papworth Hospital in the UK because 7 out 

of 20 patients had died within 30 days of their operation (Garfield, 2008): this was significantly 

more than the national average rate of about 10% (p = 0.0024, one tail, using the binomial 

distribution with a mean of 2 deaths in a 20 patient group to model the null hypothesis as 

shown in Figure 35). 
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Figure 3. Distribution of number of deaths in 20 patient groups assuming the null hypothesis 

that the mean death rate = 10% 

 

The curve shift method obviously cannot work here. If we shift the curve five units to 

the right so that it is centered on the sample value of 7, this clearly cannot represent a 

confidence distribution because it would indicate that there is zero confidence that the 

population mean is 0, 1, 2, 3 or 4 deaths, whereas 4 deaths in particular does seem reasonably 

consistent with the sample value of 7. The binomial distribution is a different shape for different 

population means, so we cannot simply slide it along.  

Confidence intervals and levels here clearly need to be estimated using other methods: 

the standard normal approximation method gives a 95% confidence interval (based on 7 out of 

20, or 35%, of patients dying) extending from 14% to 56%, a numerical Bayesian approach (using 

the spreadsheet at http://woodm.myweb.port.ac.uk/ConfIntsPoissonBinom.xls) gives an 

interval extending from 18% to 57%, and there are a number of other methods giving similar 

answers.  

These same methods can be used to estimate a confidence level for the hypothesis that 

the long term death rate at Papworth Hospital is more than 10%: this comes to 99.8% by the 

first method above, and 99.94% by the second. 

Staff turnover and organizational performance 

We have mentioned above the estimated confidence level of 67% for the hypothesis that this 

relationship has an inverted U-shape with very high and very low levels of staff turnover both 

leading to suboptimal performance (Glebbeek and Bax, 2004; Wood, 2012). There is no 

satisfactory and easy way of using p values or confidence intervals to express this result. 

 Glebbeek and Bax (2004) also tried a linear (straight line) model of the relationship 

between staff turnover and performance (with three control variables): the regression 

coefficient in one model was -1778: this means that predicted performance fell by 1778 

http://woodm.myweb.port.ac.uk/ConfIntsPoissonBinom.xls
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currency units per staff member for each additional 1% in staff turnover. The p value found was 

0.007, which can be converted to a 95% confidence interval extending from -3060 to -495 

currency units per additional 1% of staff turnover, or to a confidence level that the regression 

coefficient is positive of 99.65%. 

Discussion: a comparison of p values, confidence intervals and 

confidence levels for hypotheses 

Most of the above examples can be analyzed by all three approaches. There are two examples 

where this is not so. For the inverted U-shape hypothesis relating staff turnover and 

organizational performance there is no easy and obvious way to use p values and confidence 

intervals, so the confidence level approach is the obvious one to use. 

With the telepathy example, to use the data to derive a confidence interval or level we 

need to define a suitable measure to assess the extent to which telepathy is occurring. The 

obvious statistic is the proportion of correct guesses: under the guessing hypothesis we would 

expect population value of this measure to be exactly 20%, and under the telepathy hypothesis 

it would be more than 20%. If we were going to use confidence intervals, 20% would be just one 

value on the continuum of possibilities, which would mean that the confidence level for the 

hypothesis that the proportion of correct guesses is exactly 20% is zero – which is not a helpful 

answer. This effectively rules out the idea of confidence as discussed in this paper. Furthermore, 

this is one instance in which p values are not trivial and do make good logical sense, because the 

null hypothesis is an exact one, and any departures from 20% are surprising from this point of 

view. This suggests the p value as the appropriate statistic here. 

This example illustrates neatly the main advantage of NHSTs over their rivals: the 

underlying rationale is straightforward involving the estimation of a probability under the 

assumptions of the null hypothesis. There are none of the extraneous, and possibly 

questionable, additional assumptions which are necessary to use the idea of confidence – 

foremost among these is the assumption, explicit in the Bayesian formulation and implicit in 

frequentist formulations, that all possibilities are assumed to be equally likely before analyzing 

the evidence. NHSTs and p values may not be user-friendly and may just tell a small part of the 

story, but for thoughtful users, the rationale is simpler and involves fewer assumptions. 

Let’s now consider Men and women in work-home culture (Table 1). The confidence 

interval presentation (Table 2) has the advantage of telling readers how strong the effect is, and 

the likely level of uncertainty due to sampling error. The p values given in the original article do 

not directly tell readers how big the difference is, nor the likely impact of sampling errors on the 

result, and they are difficult to interpret for the reasons discussed above. The comparison with 

confidence levels (Table 3) is less clear cut because simply telling readers that there is 99.99% 

chance that men (in this population) work longer hours than women says nothing about the size 
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of the effect – how much longer they work. The confidence interval presentation here is 

arguably the most informative, with the confidence level presentation providing a simple 

summary in terms of the hypotheses of interest to the researchers. 

Very similar arguments apply to the difference between the two training programs, the 

heart transplants, the linear model relating staff turnover and organizational performance, and 

the Oscars and life expectancy. In the last of these examples, I have shown how confidence 

levels for hypotheses can be made more useful by considering different hypotheses. The 

confidence levels for Oscar winners living at least a year longer tell a slightly different story from 

the confidence levels in them simply living longer. Another possibility, of course, would be to 

show a graph of the confidence distribution (like Figure 2). 

One important way in which the examples vary is in terms of the status of the null 

hypothesis. For many people telepathy is so unlikely that the alternative, null or chance 

hypothesis, is very much the front runner. The situation with the heart transplants is rather 

different in that there are fairly obvious reasons for differences between hospitals, but it still 

makes excellent sense to take the national average as a baseline for comparison. In both cases 

there are good reasons for taking the null hypothesis seriously, and so, from this perspective, 

NHSTs are a reasonable approach (although in the latter case the arguments against them may 

be stronger). 

This is not true of the other examples. There is very little reason to think that staff 

turnover would have no impact on performance, or that there would be no difference between 

men and women in work-home culture, or that two training programs would be (exactly) equally 

effective. These null hypotheses have little interest or credibility, which, means, firstly that 

testing them is of marginal interest, and secondly that the focus on the null hypothesis is likely 

to seem odd to readers of the research (this is possibly acknowledged by the common practice 

of not mentioning null hypotheses in research publications). In these three examples, it 

definitely makes sense to focus on confidence, because then the focus is on the hypothesis or 

interval of interest; there is no strange, hypothetical and distinctly uninteresting null hypothesis 

involved. 

Conclusions 
Using confidence intervals, or giving confidence levels for hypotheses of interest, has the 

potential to avoid many of the widely acknowledged problems of NHSTs and p values.  

Confidence seems a more intuitive and direct concept which avoids the need to formulate a null 

hypothesis in order to demonstrate how implausible it is. 

For example, research studying the hypothesis that Oscar winners live longer is better 

served by giving a confidence level for this hypothesis (98.5% for one study, 93% for the second) 

than a p value because the former gives a direct estimate of the probability of the hypothesis 

being true whereas the latter does not. To convey information about the size of the effect, we 
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could either use a confidence interval, or give the confidence level for Oscar winners having at 

least one year additional life expectancy (98.6% for the first study and 27% for the second). 

In a more typical social science context, instead of the conventional t and p values in 

tables such as Table 1, we could use confidence intervals as in Table 2, or confidence levels as in 

Table 3. Using confidence intervals or levels involves converting the characteristic of interest to 

a single quantity – typically a difference between two means, or a regression coefficient (slope). 

 The idea of confidence is conventionally viewed as distinct from the idea of probability, 

but I have argued above that this is unnecessary. Confidence distributions could be defined as 

probability distributions: the probabilities in question could then be estimated in a variety of 

different ways, including as Bayesian posteriors based on a flat prior distribution. This may 

offend purist statisticians, but it is worth remembering that the typical underlying assumption of 

a random sample from a large population may bear only a very rough relationship with reality, 

and that empirical estimates of both confidence levels and p values are themselves uncertain 

and unreliable estimates. 

 In practice, because of the current dominance of null hypothesis testing, the 

information we often have comprises p values and statistics such as t and z. Under many 

circumstances (see the Appendix) it is reasonable to estimate confidence distributions, and so 

confidence intervals and levels for other hypotheses, by shifting the null hypothesis distribution 

along so that it represents a confidence distribution – e.g. for the difference of two means or 

proportions, for regression coefficients, or any other statistic for which the t or z distribution is 

the basis of the null hypothesis test. In these cases there is a very simple formula for deriving 

confidence levels for the hypothesis that the population value of the statistic is above or below 

zero (or other null hypothesis value) – either p/2 or 1 – p/2. For other hypotheses and 

confidence intervals, it is be possible to use a given p value to “reverse engineer” the confidence 

distributions and so derive the required statistics – a spreadsheet is available 

(http://woodm.myweb.port.ac.uk/CLIP.xls) for performing the simple calculations involved.  

 Despite these arguments, NHSTs do have certain advantages. P values are probabilities 

of certain events happening on the assumption that the null hypothesis is true; in terms of 

detailed rationale this is conceptually simpler than confidence based methods because these 

depend on an argument involving various assumptions (like the flat priors assumption) to derive 

confidence from probability. If the null hypothesis is a credible or interesting hypothesis, then p 

values do make some sense. However, for a non-technical audience (i.e. almost everybody) it 

would be sensible to avoid jargon like “p” or “significant” and use phrases like “the probability of 

getting a sample value this far from 0 is 0.3% if only chance factors are at work”, or “the data is 

consistent with the hypothesis that there is no difference and only chance factors are at work.” 

And, of course, readers also need to know how big the difference, or other measure of effect, is. 

This may necessitate a lengthier description of conclusions, but hopefully one that is more 

informative and less likely to lead to misunderstanding. If we want a probability for the truth of 

our hypothesis, then we need a confidence level, not a p value. In practice, research results 

http://woodm.myweb.port.ac.uk/CLIP.xls
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could easily be given in several formats, which may be the best way of comparing the practical 

value of the different approaches.  
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Appendix: A Bayesian analysis of the validity of the curve shift 

method 
Let’s suppose that we are interested in a numerical population parameter,  , and we have some 

sample information which gives an estimate of its value – say   . The typical null hypothesis 

would be that the population value of   is zero, but    is typically slightly different from zero. 

Regardless of whether the range of possible values for   is discrete or continuous, we can 

regard it as discrete if we remember that there is a limit to the accuracy of our measurements. 

Furthermore, in practice, there is likely to be a minimum possible value and a maximum. This 

means that we have a finite number, n, of possible hypotheses about the value of   which we 

can call Hmin …  Hmax. For example, in Figure 1, if we decide to measure to the nearest tenth, and 

assume that -10.0 is the minimum possible value of  , and +10.0 is the maximum, then, for 

example, the 101st hypothesis, H0.0, is the null hypothesis that   is zero, and the 102nd hypothesis 

is H0.1, the hypothesis that   is actually 0.1. Similarly, if we imagine taking further samples, there 

are n possible sample estimates of  ; the estimate from the actual sample,   , being 1.1.  

We now make the following assumptions: 

1. There is a distribution curve for the sample estimates, under the null hypothesis, which 

extends far enough for the curve to be shifted. If, for example, the parameter being 

estimated were a correlation coefficient, the shift might move parts of the curve above 

+1 or below -1, which, of course, cannot be correct because correlation coefficients 

cannot take values outside these limits. Also, there has to be the possibility of 

departures from the null hypothesis in both directions (otherwise the probability of 

departures in the possible direction will simply be 100%) – this rules out the χ2 test for 

goodness of fit, for example. 

2. This distribution is symmetrical. 

3. The probability distributions for the sample estimates under each of the hypotheses, Hi, 

are the same shape and width as the distribution under the null hypothesis.  

4. The prior probabilities for all hypotheses, Hi, are equal. 

 Bayes theorem now tells us that the posterior probability of hypothesis Hi is 

             
               

                
   (Equation 1) 

where X is a random variable varying over all n possible sample estimates of  , the sum is taken 

over all the hypotheses, Hj, and P(Hj) is the prior probability of the corresponding hypothesis. 

Assumption 4 means that we can cancel out the (equal) prior probabilities, so this reduces to 

             
          

           
    (Equation 2) 

Using Assumption 3, the distribution under Hi is simply the distribution under H0 moved i units 

to the right so we can write the numerator of the right hand side as   
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                         (Equation 3) 

(For example, if i = 0.5 in Figure 1, the distribution will be moved 0.5 units to the right so the left 

hand side of Equation 3 will be the probability corresponding to 1.1 – 0.5 = 0.6 in the null 

hypothesis distribution.) Also, because the distribution is symmetrical (Assumption 2):   

                         (Equation 4) 

This means that Equation 2 becomes 

             
            

           
   (Equation 5) 

If we sum this equation for all values of i, the left hand side obviously sums to one, as does the 

numerator on the right hand side, which means that the denominator on the right hand side 

also sums to one, and the equation reduces to 

                         (Equation 6) 

This equation tells us that the posterior probability of each hypothesis is given by a discrete 

version of Figure 1 shifted    units to the right, which is a discrete version of Figure 2. As the 

above argument does not depend on whether we measure to the nearest tenth, or hundredth 

or thousandth, we can get as close as we like to a continuous distribution, so we can view the 

continuous version, Figure 2, as the posterior distribution, or, using a Bayesian interpretation of 

confidence, as a confidence distribution. 

In practice, Assumptions 1-3 are satisfied when the normal or t distributions are used to model 

the null hypothesis. There may, of course, be other sets of assumptions which lead to the same 

conclusion (e.g. Bolstad, 2007: 227), but Assumptions 1-3 have the advantage that they have a 

simple graphical interpretation.  

Notes 
                                                           

1
  This example is based on Table 3 of Eggins et al (2008), although I have changed the details of the 

experiment to give an illustration which can be appreciated by readers who have not read this article. 

2
  This conception of NHSTs is usually traced back to Fisher, and seems to be the standard in most 

social sciences, although it is sometimes combined with the “Neyman-Pearson” position and errors of 

Types I and II in a manner which is not entirely consistent – see Cortina and Folger (1998: 340-341). 

3
  The value of t in the paper from which the example is drawn (Eggins et al, 2008) is 2.40, and the 

difference of the means is 1.07, which means that the standard error of the difference is 0.446: this allows 

us to use the t distribution to calculate these statistics, and others cited below.  



P values, confidence intervals, or confidence levels for hypotheses?  

22 
 

                                                                                                                                                                             

4
  The first, third and fourth of these are estimated using the mean of results from the two CI limits 

given in the article. 

5
  The Excel formula for the p value is =1-BINOMDIST(6,20,0.1,TRUE). Figure 3 is based on the 

binomial distribution. 


