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Jacob Cohen (1994) raised a number of questions about 
the logic and information value of the null hypothesis 
statistical test (NHST). Specifically, he suggested that: 
(a) The NHST does not tell us what we want to know; 
(b) the null hypothesis is always false; and (c) the NHST 
lacks logical integrity. It is the author's view that al- 
though there may be good reasons to give up the NHST, 
these particular points made by Cohen are not among 
those reasons. When addressing these points, the author 
also attempts to demonstrate the elegance and usefulness 
of the NHST. 

~ n the past 30 years, a series of lively, imaginative 
articles have chided us for misinterpreting the null 
hypothesis statistical test (NHST; e.g., Brewer, 1985; 

Carver, 1978; Chronbach, 1975; Cohen, 1990, 1994; 
Meehl, 1967, 1978, 1990a, 1990b; Shaver, 1993; Sny- 
der & Lawson, 1993; Thompson, 1993). In addition, 
these same articles have sometimes scolded us for trying 
to make statistical significance testing do what it was not 
meant to do, like appraising a grand theory on the basis 
of a few chi-squares (e.g., Meehl, 1990a). 

Not infrequently, however, mixed in with these valu- 
able admonitions, which we should certainly heed, have 
been criticisms of the usefulness and logical basis of the 
NHST. I believe these criticisms are not warranted. Of 
these articles, one by Cohen (1994) is particularly chal- 
lenging and disturbing. Cohen presented some observa- 
tions and "puzzles"  that could lead a careless reader to 
the conclusion that statistical significance testing is worse 
than useless and should be abandoned. Although Cohen 
apparently did not come to this conclusion, some of his 
readers might. 

An examination of Cohen's puzzles can lead us, I 
believe, to the opposite conclusion. It is within the con- 
text of three major points of disagreement with Cohen 
that I invite the reader to inspect these puzzles. 

The NHST and the P(Ho) 
Cohen (1994) stated that the NHST "does not tell us 
what we want to know," which is, "Given these data, 
what is the probability that H0 is true?" (p. 997). He 
supported this point by providing a demonstration in 
which a Bayesian analysis seemingly led to a posterior 
probability of the null hypothesis quite different from the 
known true probability. His example suggests that after 
the data are in, the null hypothesis test can lead us further 
from the truth than we were before the experiment. 

Apparently, this problem was no stranger to R. A. 
Fisher. Some of his correspondence suggests that he, like 
Cohen, also attempted to apply Bayesian theory to calcu- 
late the posterior probability of Ho, given the results of 
an experiment (Holschuh, 1980). The attempt did not 
work for Fisher any better than it did for Cohen. 

But let's return to Cohen's example. In this exam- 
ple, the frequency of normal to schizophrenic individuals 
in some population is about 98 to 2. Accordingly, the 
probability of randomly drawing a normal individual is 
.98, and the probability of drawing a schizophrenic indi- 
vidual is .02. Because Cohen (1994) defined H0 as "the 
case is normal" (p. 998), and H1 as "the case is schizo- 
phrenic" (p. 998), it follows that the probability of H0 
is .98 and the probability of H1 is .02. 

Then, with a Bayesian analysis, Cohen established 
a posterior probability of .60, a number he called "the 
probability that the case is normal, given a positive test" 
(p. 999). The puzzle is that the .98 and the .60 both seem 
to refer to the probability that the null hypothesis is true. 
An even greater puzzle is that what appears to be the 
least accurate number is obtained after the researcher has 
attained significant data. 

Is the example at fault? Or is the NHST flawed? I 
believe the problem lies with the example. Cohen tried to 
find a way to relate the probability of H0 to "countable," 
"empirically based" relative frequencies. And his effort 
led him to define Ho and Hi in ways that the NHST does 
not allow. 

Hayes (1963) reminded us that " A  statistical hy- 
p o t h e s i s . . ,  is always a statement about the population, 
not about the sample" (p. 248). In Cohen's (1994) exam- 
ple, however, H0 and H1 are statements about the sample: 
"H0 = the case is normal" and "H1 = the case is schizo- 
phrenic" (p. 998). 

There are four issues raised by Cohen's choice to 
define Ho and Hi in this way: 
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1. What is the population about which H0 is sup- 
posed to make a statement? 

2. Why cannot H0 and H1 in Cohen's  example qual- 
ify as statements about such a population? 

3. Why is it that H0 and H1 cannot be statements 
about a sample? 

4. Why did Cohen break the rules? 

First, the population, or sample space, is the set of 
possible outcomes for the experiment. In Cohen's exam- 
ple, the mixed pool of  normal and schizophrenic indi- 
viduals constituted that sample space. Therefore, H0 
must be a statement about this entire mixed group. So 
must H1. 

Second, the statement, "the case is normal"  (Ho 
in Cohen's example), is not a statement about a mixed 
population that contains both normals and schizophren- 
ics. That statement can apply only to one segment of  the 
population. A statement about the entire popula t ion- - in  
this example, an acceptable null hypothes is - -might  be 
"the proportion of schizophrenics is less than 2%," or 
"exactly 2%," or something similar. 

The reader might object: "But  could we not decide 
to sample only from the group of normals or the group 
of schizophrenics? Maybe Cohen's H0 can be saved." 
Yes, we could decide to sample from only one of these 
subgroups, but then the sample space, or population, 
becomes that subgroup, and it would not make sense 
for H0 to say that the case is normal if we know we 
are sampling from a population of persons with 
schizophrenia. 

We could, of  course, draw samples from both of 
these populations. But the null still could not be about 
the sample. It might be a statement that embraces two 
parameters, one from each of the populations (e.g., the 
means of the two populations do not differ). 

Perhaps there is a way to legitimize the null and the 
alternative hypotheses in Cohen's example, but I cannot 
find it. 

The third question we might want to attend to is 
"Why must H0 be a statement about a population?" Is 
that just a matter of  convention? If  it is, then Cohen's 
example is satisfactory. It is not just a matter of  conven- 
tion, and Cohen's  example is very instructive in showing 
us why. There are two reasons that the null cannot be a 
statement about a sample: 

1. I f  the null and the alternative hypotheses are 
statements about a sample, then the null hypothesis "be-  
comes"  true when, as in Cohen's example, we draw a 
case that is normal, and the alternative hypothesis "be-  
comes"  true when we draw a case that is schizophrenic. 
The sample, therefore, determines the status of the null 
hypothesis and, ultimately, the nature of our world. With 
the NHST, quite the opposite is true: It is the nature 
of  our world that determines the characteristics of our 
sample. 

This point can be brought home with greater clarity 
if one considers what the null hypothesis must be in 
a treatment outcome study. Suppose we are testing the 
effectiveness of a drug: H0 = the drug does not work 
and H1 = the drug does work. One of these hypotheses 
is a true statement about our world; the other is false. 
For the sake of this illustration, let us suppose that the 
drug really is effective (that is, the null is false). 

We give a placebo to a control group and this effec- 
tive drug to an experimental group. We then mix these 
participants into one group from which we select cases 
to test for prevalence of symptoms (like Cohen's mixture 
of normals and schizophrenics). Following the logic of  
Cohen's example, if we select by chance an experimental 
case, our selection means that the drug works, and if we 
select a control case, our selection means that the drug 
does not work. Surely, the world cannot be so capricious. 

"Not  so fast," the reader says. " I sn ' t  the control 
sample, which did not receive the treatment, drawn from 
a world in which H0 is true?" No, it is not. The untreated 
cases came from a world in which H1 is true-- the treat- 
ment works in this world- -but  it happens that the control 
sample was not subjected to the treatment. 

As mentioned above, if  the null and alternative 
hypotheses could be statements about samples, the partic- 
ular sample we selected would determine the nature of 
our world. That argument alone should put to rest efforts 
to define H0 and H1 in terms of the sample. But consider 
what might happen if we drew two samples. We might 
end up with a world in which both the null and the 
alternative hypotheses are trying to be true at the same 
time. Such a world is not only capricious, it is impossible. 

2. A statement about a sample cannot produce the 
required sampling distribution of the test statistic of 
interest. 

I have criticized the way the example defines the null 
hypothesis. The burden is on me, therefore, to provide a 
better definition. What really is the null hypothesis? 
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At first glance, there appear to be many different 
null hypotheses: For example, the groups do not differ 
on a certain parameter, the correlation is zero, or the 
proportion of schizophrenics in such-and-such popula- 
tion is P. Is there a common attribute that ties together 
the many ways that the null hypothesis is stated? 

At its core, the null hypothesis tells us something 
about a sampling distribution. A long form of the defini- 
tion might be: The null states a condition, or set of condi- 
tions, in a possible world from which we can estimate 
the characteristics of a sampling distribution of a test 
statistic. It may be that those conditions involve taking 
a sample and using the characteristics of that sample 
plus a hypothesized parameter to estimate the sampling 
distribution. It may be that the conditions involve only 
a stated proportion and a formula, as in the case of the 
binomial distribution. But the core is always the same: 
The null provides a "theoretically knowable" sampling 
distribution against which we can compare our obtained 
test statistic to see how unusual our statistic would be if 
it were produced under the null. The statistical tables in 
the back of statistics books provide us with a few specks 
of that sampling distribution. Those few specks are our 
critical values. 

By contrast, the alternative, or experimental hypoth- 
esis, states a condition in a possible world that does not 
tell us the characteristics of a sampling distribution (and 
accordingly, there are no tables in the back of statistics 
books against which we can test the alternative hypothe- 
sis). 1 The nature of the sampling distribution that would 
be produced under the alternative is unknowable because 
we can never know the true population parameter when 
H1 is true (e.g., the mean of the treated group, the size 
of the true correlation, the true relative frequency, etc.). 

Students sometimes wonder why it is that we test 
the null when it is the experimental hypothesis we really 
are interested in. The above definitions of the null and 
alternative hypotheses make the answer clear: We only 
test the null because only under the null can we know 
what the sampling distribution of the test statistic is sup- 
posed to look like. 

Now back to Cohen's (1994) example. The null hy- 
pothesis stated that the case is normal. This statement 
about a sample cannot tell us anything about a sampling 
distribution of a test statistic. Accordingly, it is not an 
acceptable statement of a null hypothesis. 

The fourth question raised above is, "Why did Co- 
hen devise an example that breaks the rules?" For his 
example to work, he had to have countable, relative fre- 
quencies of Ho and H1. And for these frequencies to be 
relative, Ho and H~ had to be related to events that exist 
in the same sample space, or population. Because neither 
Ho nor H1 could make a statement about a population 
that included both Ho and H~ events, the only alternative 
was to have Ho and H~ make statements about the sample. 

I suspect that we cannot construct an example that 
meets the requirements of the NHST and also provides 
countable frequencies. If this is true, we will never be 
able to use a counting method of probability in a Bayesian 

analysis to establish the posterior probabilities of Ho and 
H1. From what Fisher wrote, it appears that this is the 
reason he gave up the attempt some 60 years ago. 

What good, then, is the NHST? And how can it give 
us any meaningful information about the probability of 
Ho ? Should we abandon the model? Fisher did not. In- 
stead, he suggested that we reject the use of Bayes' theo- 
rem in trying to make inferences about the posterior prob- 
ability of H0 (Holschuh, 1980; Lane, 1980). 

Yet, Cohen (1994) rightly argued that the posterior 
probability is available only through Bayes' theorem, and 
indeed, it is that posterior probability that "w e  so much 
want to know" (p. 997). Can we resolve this dilemma? 

The P~H0) as a Subjective Level of 
Confidence 
It is in Fisher's (1937) comments on why he rejected a 
Bayesian analysis that we see what may be a solution. 
Fisher's major complaint was that Bayesian reasoning 
requires one to 

regard mathematical probability not as an objective quantity 
measured by observable frequencies, but as measuring merely 
psychological tendencies, theorems respecting which are use- 
less for scientific purposes. (p. 6) 

Fisher was saying that frequency-derived (objective) 
probabilities will not work in a Bayesian computation of 
the probability of the null and that the only approach 
that will work--treat ing probabilities as equivalent to 
subjective levels of confidence--is  unscientific. Fisher 
did not embrace this "unscientific" solution for many 
years; instead, he continued for most of his life to insist 
that probability statements are statements about frequen- 
cies of attributes in populations, never about levels of 
beliefs (Lane, 1980). 

His position did not go unopposed. A major antago- 
nist over the nature of probabilities was Sir Harold Jef- 
freys who, through a series of sometimes heated ex- 
changes with Fisher between 1932 and 1934, argued for 
a subjective and psychological definition of probability. 
(See the Proceedings of the Royal Society of London, 
Vol. 138-146). In regard specifically to the prior proba- 
bilities one uses in a Bayesian analysis, Jeffreys insisted 
that "A  prior probability is not a statement about fre- 
quency of occurrence in the w o rd  or in any portion of i t"  
(Jeffreys, 1934, p. 9). Accordingly, a Bayesian posterior 
probability, which is a function of Bayesian priors, also 
could not be a statement about frequency. 

Now, let us return to our question: Does the NHST 
tell us what we want to know about the P(H0)? The 
critical issue in answering this question is how we define 

1 With a power analysis, what is called the alternative hypothesis 
does provide a sampling distribution to which the obtained statistic can 
be compared. As pointed out later in this article, a power analysis 
essentially converts the alternative hypothesis to a null hypothesis, 
which can then be rejected the same way any null hypothesis can be 
rejected. 
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probability. Recognizing that there are a number of differ- 
ent ways that probability may be defined (cf. Carnap, 
1945), we need only to focus on two of these to demon- 
strate what the NHST does and does not tell us. 

As mentioned above, throughout most of his life, 
Fisher preferred to define probability in terms of observ- 
able frequencies. By contrast, Jeffreys, following the lead 
of the Reverend Thomas Bayes some two centuries ear- 
lier, defined probability as a degree of belief (Earman, 
1992). This same concept, essentially unchanged, is rep- 
resented by a number of modern writers who claim that 
a Bayesian posterior probability can only be construed 
as a subjective "level of  confidence" or "estimate of 
likelihood" (e.g., Darnell & Evans, 1990; Klayman & 
Ha, 1987; Savage, 1954, 1962). This construal of  proba- 
bility is familiar to all of us in the form of a statement 
of  odds, a concept which Bayes himself used when he 
attempted to explain what he meant by degree of belief. 

Both the "relative-frequency" approach to proba- 
bility (Fisher's [1937] preference) and the "degree-of- 
bel ief"  approach (Jeffreys' [1934] preference) can be 
said to have logical validity (Carnap, 1945). Therefore, 
the issue in applying one or the other to statistical signifi- 
cance testing is not which is correct but which seems to 
work. 

I invite those who have some comfort with Jeffreys' 
approach to now return with me to the questions Cohen 
(1994) raised about the NHST. Does the NHST assist us 
in making decisions about the nature of the world? Does 
the NHST increase or decrease our subjective levels of 
confidence about the existence of phenomena we are at- 
tempting to study? Does the NHST tell us anything at 
all about what we want to know? 

Let us use Cohen's example of psychiatric diagnosis 
to demonstrate what the NHST can tell us. In this exam- 
ple, 98% of a population are normals and 2% are schizo- 
phrenics. A test for schizophrenia identifies 97% of the 
normals and 95% of the schizophrenics. In this example, 
therefore, the following probabilities are obtained: 

Probabilities based on 
relative frequencies 

In Cohen's 
formula 

P(drawing a normal individual) 
= .98 P(Ho is true) 

P(drawing a schizophrenic individual) 
= .02 P(Hm is true) 

P(positive test lcase is normal) 
= .03 Alpha 

P(negative test lcase is schizophrenic) 
= .05 Beta 

The formula, then, for the Bayesian posterior proba- 
bility that the case is normal, given a positive test, is 
calculated in the following way (see Appendix for an 
explanation of how the formula was derived): 

P(Ho I positive test) 

P(Ho)(alpha) 

P(H0)(alpha) + P(H1)(1 - beta) 

(.98)(.03) 
= .607. 

(.98)(.03) + (.02)(.95) 

According to Cohen (1994), this number, .60, "demon- 
strates how wrong one can be by considering the p value 
from a typical significance test as bearing on the truth 
of the null hypothesis for a set of data" (p. 999). He is 
correct if  we try to conceptualize the P(Ho) in terms of 
a countable, empirically based relative frequency. If, on 
the other hand, we think of the P(Ho) as a degree of 
belief, or level of confidence, his example demonstrates 
how much the Bayesian posterior probability can tell us 
about the P(Ho). 2 

Instead of having the .98 represent the relative fre- 
quency of normals, let us think of it as representing the 
researcher's very high level of confidence that a treatment 
will not work (or that a condition does not exist). Con- 
versely, the researcher's hunch is that there are only about 
2 chances in 100 that the treatment will work. 

According to Cohen's arithmetic, with which I con- 
cur, after obtaining significant results, the researcher's 
level of  confidence that there is no treatment effect has 
decreased from .98 to about .60, and level of  confidence 
that the treatment did have an effect has increased from 
.02 to about .40. 

In this particular example, Cohen favored us with 
power = .95, which makes a replication highly likely if, 
indeed, H1 is true. And given the dismal odds the re- 
searcher originally allowed, an attempt to replicate would 
be in order. 

With one replication, using the level of  confidence 
derived from Experiment 1 (and the same alpha and beta 
that Cohen used), a Bayesian analysis shows that the 
prudent researcher should reject H0. 

Subjective P(Ho I positive test) 

(.03)(.60) 
= = .045. 

(.03)(.60) + (.95)(.40) 

The researcher's level of confidence that there is no treat- 
ment effect is now down to .045, and the researcher can 

2 The example is instructive about the usefulness of a conditional 
probability apart from any implications having to do with the probabil- 
ity of a null hypothesis. As Cohen (1994) pointed out, the Bayesian 
posterior probability of .60 is the expected relative frequency of false 
positives among all cases that have been diagnosed as schizophrenic 
from the test results. Accordingly, .40 is the expected relative frequency 
of true positives among those who score positive. The .40 represents a 
dramatic increase over base rate in the probability of correctly identi- 
fying schizophrenics, who, in the population at large, compose only 
2% of the cases. A similar analysis shows that among those who score 
negative, the probability of misdiagnosis is less than .001. If the figures 
in this example were applied to a screening test for a serious illness, 
the further diagnosis of which involved intrusive, expensive tests, the 
screening test would be of considerable value. 
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say, "Based on my original estimate of the likelihood 
that the treatment would work (which was very low) and 
twice obtaining significant data, I now estimate that the 
odds that this treatment does work are about 21 to 1." 

The example Cohen chose has some characteristics 
that may not be typical of  the average research problem. 
First, the researcher's initial level of  confidence in Ho 
was unusually high (.98); second, power was an almost 
unheard of .95. Will a Bayesian calculation of the inverse 
subjective probability of  Ho work with less extreme num- 
bers? Yes, it will. 

Consider the following example. An experimenter 
believes that the odds are 5 0 - 5 0  that a treatment will 
have an effect. Let us assume ot = .05 and  power = .40 
(about what Cohen [1962] found in his survey of articles 
in the Journal of Abnormal and Social Psychology). The 
Bayesian formula for calculating the subjective probabil- 
ity of  Ho, given data that fall into the alpha region (sym- 
bolized by D*), is the following: 

Subjective P(HolD*)  = (.05)(.5) = .11. 
(.05)(.5) + (.4)(.5) 

From these figures, we can see that after obtaining 
a significant effect, the researcher' s initial degree of con- 
fidence that the treatment would not work is decreased 
from .50 to .11. Conversely, the degree of confidence 
that the treatment did work is increased from .50 to .89. 

I f  one uses an alpha level of .01 for this same prob- 
lem, degree of confidence in the treatment increases from 
.50 to .98 after a significant result is obtained. 

The above examples show, and others would con- 
tinue to show, that when D* is obtained, the researcher's 
level of  confidence that the treatment was effective is 
always increased. What happens to level of confidence 
when the data obtained do not fall in the range of scores 
specified by alpha (when D, not D*, is obtained)? 

A Bayesian analysis using the same formula as 
above but calculating the probability of  Ho given D, in- 
stead of D*, shows that a failure to obtain significant 
results increases one's  level of  confidence in Ho. Why 
then, do we not accept Ho? Why do most of our textbooks 
insist that H0 can only be rejected and cannot be ac- 
cepted? Cohen (1990) framed this puzzle in the following 
way: 

Another problem that bothered me was the asymmetry of the 
Fisherian scheme: If your test exceeded a critical value, you 
could conclude, subject to the alpha risk, that your null was 
false, but if you fell short of that critical value, you couldn't 
conclude that the null was true. In fact, all you could conclude 
is that you couldn't conclude the null was false. In other words, 
you could hardly conclude anything. (p. 1308) 

The scheme is asymmetrical because the increases in 
levels of  confidence in Ho and H~, given D and D* respec- 
tively, are almost always asymmetrical. They would only 
be symmetrical when the subjective priors of  Ho and H~ 
are equal and when ot = /~, a condition that may occur 
in the real world but one that is usually too expensive 
for the researcher to set up for an a priori power analysis. 

Figure 1 shows the asymmetry when the subjective prior 
probability of  Ho = .50 and power = .40. As seen in 
these functions, level of  confidence in Ho is increased by 
a failure to obtain D*, but that increase in confidence in 
Ho is small compared with the increase in confidence in 
H~ when D* is obtained. 

Cohen (1994) stated that the NHST "does  not tell 
us what we want to know," which is "Given these data, 
what is the probability that Ho is true?" (p. 997). I f  one 
is seeking a frequency-based probability, he is correct. 
But if we are content to equate the P(Ho) with a subjective 
degree of belief, or level of  confidence, then the NHST 
does, indeed, tell us what we want to know. 

The NHST and the Status of the Null 
So if the null hypothesis is always false, what's the big deal 
about rejecting it? (Cohen, 1994, p. 1000) 

Cohen's comment  is reminiscent of Meehl'  s (1978) claim 
that "the null hypothesis, taken literally, is always false," 
that this fact is "generally recognized by statisticians 

Figure 1 
Subjective Probabilities of Hol D and HT I D* as a 
Function of Alp_ha When the Prior Subjective 
Probabilities of Ho and H1 = .5 
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today and by thoughtful social scientists," and "that 
among sophisticated persons, it is taken for granted" 
(p. 822). 

The contexts of these quotations from Cohen and 
Meehl suggest that they were talking only about "soft  
psychology," which apparently refers to (a) the study of 
variables, each set of  which comes from the same individ- 
ual (or same entity), or (b) the study of differences among 
intact groups. Under either of these two conditions, the 
null hypothesis may always be false. When scores are 
pulled from the same pocket, they probably are related 
to each other for the very reason that they fell into that 
pocket to begin with. In addition, it is unlikely that any 
two intact groups, particularly if those groups have quite 
different histories, are exactly the same on any variable 
one might measure. 

Meehl (1990b) made clear in a later article that he 
did not mean that the null hypothesis is always false in 
"purely experimental studies" (p. 204). In addition, in 
that same article, even when speaking of soft psychology, 
Meehl was careful to state that the null hypothesis is 
"a lmost"  (p. 124) always false. I believe it is safe to 
assume that Cohen would agree with Meehl and that 
when Cohen (1994) said, "the null is always false" (p. 
1000), he only wanted to rattle us into more careful 
thinking. 

So then, what is the problem? The problem is that an 
uncritical reader may assume what these writers (Cohen, 
1990, 1994; Meehl, 1990b) did not intend. During the 
past few years, several colleagues have referred me to 
Cohen's 1990 article as they have tried to convince 
me that the null is always false under all circumstances. 
Cohen may not believe it, but apparently some of his 
readers do. 

On what basis would one come to the conclusion 
that the null hypothesis is always false? The argument 
that appears to be most compelling is this: If the measure 
is fine enough, any observed samples will differ on what- 
ever variable we might choose to measure, and, therefore, 
the null hypothesis, taken literally, is always false. This 
appears to be the argument Cohen (1990) used in the 
following statement: 

A little thought reveals a fact widely understood among statisti- 
cians: The null hypothesis, taken literally . . . is always [Co- 
hen's italics] false in the real world. It can only be true in the 
bowels of a computer processor running a Monte Carlo study 
(and even then a stray electron may make it false). (p. 1308) 

In this statement, Cohen apparently was saying that 
the null is false when samples are unequal on some vari- 
able. His comment suggests that he believes that even if 
a computer were programmed to make the null true by 
generating samples that were exactly equal, a stray elec- 
tron might make the null false by producing samples that 
differed is some slight way. 

But the null hypothesis says nothing about samples 
being equal, nor does the alternative hypothesis say that 
they are different. Rather, when addressing group differ- 
ences, the null hypothesis says that the observed samples, 

given their differences, were drawn from the same popu- 
lation, and the alternative hypothesis says that they were 
drawn from different populations. 

Samples drawn from the sample population will al- 
ways differ. No matter how "randomly" participants are 
assigned, the groups will differ in an absolute sense on 
any measurable variable if the measure is fine enough. 
They will differ both before and after the experimental 
procedures are carried out. Groups drawn from the same 
population would be equal on a variable only under sam- 
pling with replacement and only if the sample size was 
equal to the population size. Fisher was surely aware of 
this. The system he and his followers devised not only 
anticipates the presence of such differences but it also 
accommodates them in the span of "1 - o~" in the sam- 
piing distribution of the statistic used to test the null. 

A second argument that has been put forth to support 
the idea that the null is always false is this: Even when 
samples are drawn from the same population, the abso- 
lute differences between samples will always reach sig- 
nificance given a large enough N. We have been taught 
that a sufficiently large N will detect differences no matter 
how tiny they may be. But what we may forget is that 
small differences will always be detected by a large N 
only under the alternative hypothesis, not under the null. 

When samples are drawn from the same population, 
the variance of absolute differences between or among 
such samples will become smaller as N becomes larger. 
This diminishing variance is reflected in a decrease in 
the variance of the particular test statistic from which 
we draw our sample statistic. Accordingly, Type I error 
remains roughly constant no matter how large N be- 
comes. Thus, although it may appear that larger and larger 
Ns are chasing smaller and smaller differences, when the 
null is true, the variance of the test statistic, which is 
doing the chasing, is a function of the variance of the 
differences it is chasing. Thus, the "chaser"  never gets 
any closer to the "chasee." 

A third argument is based on the assumption that 
whenever groups are treated differently in any way, those 
different treatments will always have some differential 
effect on the groups. By quoting Tukey (1991), Cohen 
(1994) suggested that this argument relates to the possi- 
bility that the null is always false: "I t  is foolish to ask 
'Are the effects of A and B different?' They are always 
different--for  some decimal place" (Tukey, 1991, 
p. 100). 

"A  and B"  can refer not only to the experimental 
manipulation but also to the countless other ways- -of ten  
unintended and unnot iced-- in  which the groups will be 
treated differently. It may seem reasonable, therefore, to 
assume that such differences, which are more than just 
sampling error, would always lead to a rejection of the 
null hypothesis if N is sufficiently large. 

I agree that A and B will always produce differential 
effects on some variable or variables that theoretically 
could be measured. But I do not agree that A and B will 
always produce an effect on the dependent variable (DV), 
and it is, after all, only a difference on the DV that will 
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lead to a rejection of the null hypothesis. Consider the 
theoretical leaps we would have to make if we were to 
accept the idea that all differences in treatment would 
produce changes that would ultimately show up as differ- 
ences on the DV. A few years ago, visual imagery thera- 
pists were treating AIDS patients by asking the patients 
to imagine little AIDS viruses in their bodies being eaten 
by monsters. Under such a treatment, both psychological 
and physiological changes would take place ( "No  twisted 
thought without a twisted neuron," Karl Lashley suppos- 
ediy said). Thus, Tukey (1991) was correct: The effects 
of A and B are different, But many would question 
whether or not such changes would be reflected in the 
participant' s T-cell count. And if that is the DV, it is only 
that difference that would lead to a rejection of the null 
hypothesis. 

Or consider an experiment in which there is a large 
number of unintended differences in treatment. Suppose 
we attempt a sloppy replication of a study Johnson and 
Barber (1978) conducted years ago on the effects of hyp- 
nosis on warts. Let 's suppose furthermore that the treat- 
ments are carried out in different rooms, with different 
kinds of chairs, different lighting, perhaps even different 
wallpaper. For these uncontrolled and unplanned differ- 
ences to be reflected on the dependent measure, they 
would have to be related to differential disappearance of 
warts. And in that case, forget the hypnosis, we might 
make a fortune selling wallpaper to witches. 

The point is that groups can be treated differentially 
in many ways, but those differences may not relate con- 
ceptuaily or empirically to the DV. Tukey's (1991) com- 
ment that the effects of A and B are always different can 
stand. But it does not necessarily follow that the null 
hypothesis will always be vulnerable to those effects. 

The final argument I wish to address makes the fol- 
lowing claim: If an experiment is repeated enough times, 
eventually Ho will be rejected. Therefore, Ho can always 
be shown to be false. 

I agree wholeheartedly with the first part of this 
assumption. If an experiment is repeated enough times, 
eventually H0 will be rejected for a given experiment, 
even if Ho is true. But it does not follow that Ho can 
therefore always be shown to be false. If we flipped a 
coin seven times, we would not expect to obtain seven 
heads on those first seven flips. However, if we flipped 
the coin seven more times, then seven more times, then 
seven more times, eventually, on one of these sets of 
seven flips, we would obtain seven heads in a row. 

If those seven heads in a row came after 100 or so 
sets of  flips, we would not conclude that the coin was 
biased (that is, we would not reject the null). Instead, we 
would consider all the data and would conclude that the 
one run of seven heads was to be expected occasionally 
under the null. This approach is commonly used in the 
interpretation of a large number of correlations, of which 
a few are significant. The NHST is not embarrassed by 
demonstrations that Type I errors can be produced given 
a large number of replications. 

If, as some have claimed, the null hypothesis is al- 

ways false, we would be foolish, indeed, to spend time 
conducting statistical tests that can only tell us what we 
already know. But we need not feel foolish. As far as I 
can tell, the claim has never been sustained by either 
statistical or logical arguments. 

The NHST and Formal Logic 
The logic on which the NHST rests has come under 
regular fire during the past 35 years (e.g., Carver, 1978, 
1993; Rozeboom, 1960; Shaver, 1993; Thompson, 1993). 
Criticisms have ranged from calling the logic tautological 
to challenging the backwardness of having to assume 
something is true to demonstrate that it is false. A full 
consideration of the logical basis of the NHST is far 
beyond the scope of this article. I will focus on Cohen' s 
(1994) critique of the NHST logic, a critique that, to my 
knowledge, has not been raised before. 

Cohen (1994) cautioned us not to be seduced into 
attributing logical validity to the NHST. The steps in his 
argument are the following: 

1. The NHST syllogism is similar in form to modus 
tollens. 

2. The modus tollens form has logical validity; 
therefore, people might be tempted to think that the rea- 
soning of the NHST also has logical validity. 

3. But when the modus tollens form is stated proba- 
bilistically, the form is no longer logically valid. 

4. Therefore, in spite of what might appear to be the 
case, the NHST syllogism does not have formal logical 
validity. 

Cohen stopped there, and the reader must draw his or her 
own conclusion as to whether or not this means that the 
NHST form is illogical. 

My lack of sophistication in formal logic led me to 
the conclusion that Cohen was, indeed, implying that the 
NHST form is illogical, but a colleague, a professor of 
philosophy, suggested that Cohen was probably only 
pointing out that people are misled into thinking that the 
NHST has formal validity because it is so similar to 
modus toUens. This colleague also alerted me to several 
other characteristics of formal logic, characteristics that 
I use in the following reply to Cohen's criticism of the 
logic of the NHS'I2. 

1. Only certain forms of reasoning (e.g., modus po- 
nens, modus tollens) are accorded formal logical validity. 

2. If an argument is presented in one of these forms, 
it is always valid (has formal logical validity), but it is 
not always sound. 

Example: 

If you contract AIDS, you will be healthy and happy. 
You did contract AIDS. 
You are healthy and happy. 
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This argument is logically valid. We might wonder, there- 
fore, how much importance we should attach to logical 
validity as a criterion for scientific argument. 

3. On the other hand, arguments can be reasonable 
and defensible even when they are not logically valid in 
a formal sense. 

Example: 

If you contract AIDS, you will probably die of some opportu- 
nistic infection within 10 years. 

You did contract AIDS. 
You will probably die of some opportunistic infection within 

10 years. 

This probabilistic argument is not formally logical be- 
cause one could accept the premises but still reject the 
conclusion. The argument is, however, quite reasonable 
and defensible based on data. 

Most of the decisions we make throughout our lives 
are based on probabilistic premises, not on logic that is 
valid in a formal sense. The conclusions I draw in this 
article concerning the usefulness of  the NHST are not 
logically valid in any formal sense. Nor are our suspi- 
cions concerning the faithfulness of our spouses or the 
competence of our auto mechanics. Our court system 
would have to close down if only formal logic were 
allowed. No conclusions derived from an argument stat- 
ing, "The evidence suggests that . . . .  " are ever logi- 
cally valid. 

Science has done well using arguments that are not 
logically valid. In the absence of an alternative, it will 
have to continue to do so. 

Not only will scientists have to continue using argu- 
ments that lack formal logical validity, but they may have 
a difficult time getting rid of  the seemingly backward 
logic that is peculiar to methods of statistical significance 
testing. For example, point estimates and confidence in- 
tervals have much to offer (see Cohen, 1994; Schmidt, 
1996), and at first glance, it appears that with a confi- 
dence interval we might be able to test a hypothesis 
concerning a parameter in a straightforward manner. 
After all, doesn' t  a confidence interval tell us the range 
in which we should find the parameter rather than the 
range in which we should not find it? Is that not a way 
to avoid the logic imposed on us by the NHST? 

Sorry, but it is not. The same logical form is there. 
But instead of starting with a hypothesized parameter and 
from that parameter developing a sampling distribution 
against which our sample statistic would be compared, 
we begin with the statistic, establish a confidence inter- 
val, and against that confidence interval we test an infinite 
number of  parameters. The upper and lower limits of the 
confidence interval are defined by hypothesized values 
of  the parameter in question that would be rejected right 
at the .05 level by the data, and, accordingly, all hypothe- 
sized values of  the parameter below the lower limit or 
above the upper limit would be rejected. Hypothesized 
values of  the parameter that fall within the confidence 
interval would not be rejected. 

For a parameter outside of the confidence interval 
to be rejected, one must invoke the following logic: The 
probability that a population with " th i s"  parameter pro- 
duced " th i s "  datum from which " th i s"  confidence inter- 
val was constructed is very low. Therefore, we reject the 
idea that the datum came from such a population. We 
cannot escape the logic of the NHST by turning to point 
estimates and confidence intervals. 

Similarly, we cannot avoid this logic by doing a 
power analysis. When we specify power, we state what 
the probability should have been of detecting at least a 
certain effect size. In a test for a mean difference, for 
example, we have, in effect, created a " n e w "  null hy- 
pothesis which posits a new null distribution, the stated 
# of which is the effect size away from the # of the old 
null distribution. This new null hypothesis meets all the 
requirements of  a null mentioned above because with it, 
we can specify a theoretical sampling distribution of 
means against which we can compare our obtained mean. 
Similarly, the old null hypothesis now loses its identity 
with a stated #: It can no longer tell us about a theoretical 
sampling distribution of means, and, therefore, it no 
longer meets the requirements of  a null hypothesis. What 
has happened is that the original null and alternative 
hypotheses have switched places, and what formerly was 
beta is now the new alpha. As long as we do power 
analyses, we are stuck with the logic of the NHST. 

At its simplest level, the NHST logic is used to 
evaluate the significance of a two-variable correlation or 
a difference between two groups. With more complex 
inferential methods, the same logic is used to evaluate 
an F change in multiple regression, a departure from 1.00 
in proportion of variance among effect sizes (Feingold, 
1995), or the fit of a covariance structure model to the 
obtained data. 

The logic of the NHST is elegant, extraordinarily 
creative, and deeply embedded in our methods of statisti- 
cal inference. It is unlikely that we will ever be able to 
divorce ourselves from that logic even if someday we 
decide that we want to. 

As mentioned at the outset of this article, the NHST 
has been misinterpreted and misused for decades. This 
is our fault, not the fault of the NHST. I have tried to 
point out that the NHST has been unfairly maligned; that 
it does, indeed, give us useful information; and that the 
logic underlying statistical significance testing has not 
yet been successfully challenged. Given the controversy 
that continues to reign over the NHST, what shall we do? 
Cohen (1994) asked this question in the article to which 
my reply has been directed. His answer was, "Don ' t  look 
for a magic alternative to the N H S T . . .  It doesn't  exist" 
(p. 1001). I suspect he was right. I would add that, when 
we use the NHST, as I suspect most of  us will continue 
to do, let 's not forget to celebrate its brilliance once in 
a while. 
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Appendix 
Explanation of Formula for Bayesian Posterior Probability of H0 

The density functions below represent sampling distribu- 
tions from two possible worlds. In one world, Ho is true; 
in the other, H1 is true. Although the two sampling distri- 
butions cannot exist in the same world at the same time, 
when represented as "possible," they can be placed 
above a common scale of measurement. 

A critical value divides the Ho distribution into two 
parts: Of and 1 - Of (determined by the experimenter). 
That same critical value divides the H~ distribution into 
/3 and 1 - /3 (determined by N, the actual effect size, 
and the reliability of the measures). To the right of the 
critical value, lie significant values of the test statistic 
(D*); to the left lie nonsignificant values (D). 

When the probabilities of Ho and H1 are equal, the 
probability that our data (the sample statistic) came from 
a particular distribution is: 

the sample space of that distribution 

the total sample space represented by both dislfibutions 

For example, when significant data (D*) are obtained, 
D* can have come only from the Of portion of the Ho 
distribution or from the 1 - / ~  portion of the H1 distribu- 
tion. Accordingly, the 

P(H01D*) - 
Of 

a + ( 1  - / ~ )  

Similarly, nonsignificant data can only be obtained from 
either the 1 - a portion of the H0 distribution or the beta 
portion of the Hi distribution. Accordingly, the 

P(HoID) = (1 - a)  
(1 - o f )  + / ~  

Using the same approach, one can calculate the probabil- 
ity of H1 given D* or D. 

When the prior probabilities of Ho and H1 are not 
equal-- that  is, when the subjective judgment of the ex- 
perimenter places a higher probability on one possible 
world than on the other-- then the prior probability 
attached to each possible world must enter into the equa- 
tion for the computation of a Bayesian posterior probabil- 
ity. For example, 

Posterior P(Ho[ D*) 

[Prior P (Ho)] [a] 

[Prior P(Ho)][a] + [Prior P(H,)][1 - / 3 ]  " 
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