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ABSTRACT	  
 
 
 

Can Internet search query data be a relevant predictor of financial measures of brand value? Can 

Internet search query data enrich existing financial measures of brand valuation tools and 

provide more timely insights to brand managers? Along with the financial based motivation to 

estimate the value of a brand for accounting purposes, marketers desire to show “accountability” 

of marketing activity and respond to the customer’s perception of the brand quickly to maintain 

their competitive advantage and value. The usefulness of the “consumer information processing” 

framework for brand, consumer and firm forecasting is examined. To develop our hypotheses, 

we draw from the growing body of work relating web searches to real world outcomes, to 

determine if a search query for a brand is causal to, and potentially predictive of brand, consumer 

and firm value.  The contribution to current literature is that search queries can predict 

perception, whereas previous research in this nascent area predicted behavior and events. In this 

direction, we propose arguments underpinning this research as follows: the theoretical 

background relative to brand valuation and the theoretical frame based on an in-depth review of 

how scholars have used search query data as a predictive measure across several disciplines 

including economics and the health sciences. From a practitioner perspective, unlike traditional 

valuation methods search query data for brands is more timely, actionable, and inclusive. 
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Chapter	  1:	  INTRODUCTION	  

 
Can Internet search query data be a relevant predictor of financial measures of brand value? Can 

Internet search query data enrich existing financial measures of brand valuation tools and 

provide more timely insights to brand managers? 

 

The concept of brand value first emerged in the marketing literature in the late 1980s. The use of 

a financial term for what was a consumer-based construct was a highly effective technique to 

communicate the idea that brands are long-lived business assets that can have significant 

financial value. As a result, there was increased interest in the boardroom in the value of brands; 

leading to the disclosure of the value of acquired brands on the balance sheet (Hull, 2008).  

 

Brand valuation plays an important role in business practice for three distinct reasons. First, 

firms are financially motivated to estimate the value of a brand for accounting purposes (Keller, 

1993). Second, marketers can show “accountability” for marketing activity and report results 

using the language of finance (Salinas and Ambler, 2009). Third, the value of a brand name is 

closely associated with the customer’s satisfaction, awareness, and perception of the quality of 

the product (Aaker, 1991).  

 

Brand value has typically been measured from either a financial market analysis or a consumer-

demand-driver analysis of the brand. Methodologies, like suppliers, have proliferated. In 2009, 

Salinas and Ambler studied 52 such suppliers of brand valuation methods, admitting that there 



 3 

were many others. 

 

In general, Salinas and Ambler (2009) categorized suppliers of brand valuation methods as 

technical or brand management providers. Technical providers define the financial market value 

of the brand at arm’s length between the buyer and seller. Brand Finance is an example of a 

technical provider using royalty relief, a method that tends to be the choice among this sector. 

Brand Finance describes royalty relief as the application of an appropriate royalty rate to 

an estimate of likely future sales which leads to the 

income attributable to brand royalties in future years. The stream of brand royalty is discounted 

back to a net present value—the brand value (Brandfinance, 2011). The variables to arrive at the 

income attributable to brand royalties take into account market data, including quantitative 

consumer research, insights into competitors, and forecasted brand earnings. Brand Finance is 

well known for its annual release of a league table of the most valuable brands based on their 

financial strength (Brand Finance, 2011). The release of the annual league table is in March of 

the following year.  

 

Brand management providers prefer demand-driver analysis designed to improve marketing 

effectiveness and accountability. Demand-driver analysis applies an economic use approach to 

brand valuation using valuation methodology similar to that employed by analysts and 

accountants. This approach is focused on the intrinsic value of the brand determined by its ability 

to generate demand. The actual value of the brand is the sum of the future earnings that brand is 

forecasted to generate, discounted to a present-day value. Millward Brown Optimer is an 

example of a brand management provider. Millward Brown is known for its highly publicized 
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annual league table of the top 100 most valuable global brands. This ranking focuses on 

consumer-facing brands and, like other rankings, includes customer brand perception metrics in 

its valuation methodologies. Consumer perceptions are typically gathered over the course of the 

year through interviews and surveys and incorporated into the final value. The release of the 

actual valuation or annual league table is in April or May of the following year.  

 

To illustrate the variations between providers, Salinas and Ambler (2009) compared brand 

valuations published in 2005 for Toyota, Samsung, and Apple across three brand management 

providers: Interbrand, Millward Brown Optimer, and Vivaldi Partners. The findings varied by a 

factor of two or more. Likewise, Knowles (2008) compared valuations for eight well-known 

brands across three providers, Interbrand, Millward Brown, and Brand Finance, again with wide 

variations in their findings. We conducted our own comparison of Interbrand, Millward Brown 

Optimer, and Brand Finance valuations for Apple, Coca Cola, and GE during the years 2008, 

2009, and 2010, See Figure 1. 
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Figure 1: Apple, Coca Cola, and GE 
Brand	  Values	  2008,	  2009,	  and	  2010	  

As	  defined	  by	  Interbrand,	  Millward	  Brown	  Optimer,	  and	  Brand	  Finance	  

 
 
 

              Interbrand            Millward Brown      BrandFinance 
 
 
Despite each provider using legitimate valuation approaches, the disparity in the results is 

evident and undermines the credibility of current valuation processes. Even if their 

measurements differ, all tend to be backward looking. Thus, although interesting from a news 

perspective, practitioners cannot build strategies or predict turning points in the value of their 

brands.  

 

Two inherent challenges to valuing brands are evident: (1) Brand valuations and rankings are 

made available after a lag period from the time the data is collected, compiled, and analyzed to 

the time that it is delivered, and (2) the consumer’s perception of the brand is rarely factored into 

the valuation, and in cases where it is included, the methodology is proprietary. This leaves 

CEOs, investors, and brand managers to make decisions based on data that is months to a year 
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old and that do not adequately represent a key asset, the consumer.  

 

This raises the question as to whether or not brand values can be predicted; i.e., are there any 

forward-looking metrics that could help us explain brand value? Specifically, can Internet search 

query data be a relevant, timely predictor of a brand’s financial value? In this research, we posit 

that the firm is able to predict brand value via a consumer’s search query on the Internet for 

brand terms. We believe that branded search queries are the forward-looking metric that explains 

brand value and could be used to make reliable predictions about a brand’s value in the 

marketplace literally months before that change is validated through traditional brand valuation 

methods.  

 

The downside of not being able to predict brand value is that this can have a great impact on the 

practitioner. Motorola is an example of a brand that customers lost interest in, while brand 

managers were slow to adapt to changing signals in the marketplace for feature-rich phones and 

3G. Having successfully created demand for the RAZR, which launched in 2004, Motorola 

released a series of product extensions including a limited edition version given to guests at the 

Academy Awards ceremony in 2005. This cemented the RAZR's reputation as an iconic brand 

and distinctive phone. As sales of the RAZR boomed, Motorola seems to have rested on its 

laurels, failing to develop a pipeline of exciting replacement products to maintain upward 

momentum (Frampton, 2007). The RAZR, highly successful at launch and significantly raising 

the profile of the brand, was not followed by any “blockbuster” handsets before the RAZR 

approached the end of its life cycle.  
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Consumer insight is at the heart of successful branding, according to experts. Motorola would 

have been well advised to gain a deep understanding of its brand value, what drives its 

consumers, and to keep on top of emerging trends (Frampton, 2007). From the search queries in 

Figure 2, we see a noticeable rise in queries worldwide for the brand Motorola and RAZR as 

anticipated during the height of the RAZR releases in 2005. Both queries reached their highest 

levels the week ending December 25, 2005. Foreshadowing the decline of Motorola, we see a 

dramatic drop in the number of queries for RAZR, down 30% in one week and 50% within eight 

months. By early 2007, the number of people searching online for RAZR and Motorola had 

dropped significantly. Clearly RAZR was no longer top of mind, and without a product pipeline, 

neither was Motorola. 
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Figure 2: Motorola, RAZR, and Krispy Kreme 

Google	  Insight	  Search	  Queries	  
Worldwide,	  January	  1,	  2004–August	  31,	  2011	  	  

All	  categories;	  collected	  on	  September	  12	  and	  17,	  2011	  
	  
   

   
	  
	  
	  

In 2003, FORTUNE magazine called Krispy Kreme, the doughnut maker, “America's hottest 

brand.” What followed was a period of aggressive expansion in New England, including a well-

publicized Krispy Kreme store at the Prudential Center in Boston, Massachusetts, which opened 

on April 15, 2004. During this time, search queries for the Krispy Kreme brand reached their 

height the week ending March 7, 2004, followed by a sharp decline. Within four months, the 

number of searches for the branded term “Krispy Kreme” was cut in half. By the end of the year, 

Krispy Kreme was forced to close all but one store following its recent expansion, and the well-

hyped Krispy Kreme at the Prudential Center in Boston was closed sixteen months after it 

opened (Surowiecki, 2004). By 2005, the company faced defaulting on its $150M credit line 

(Anderson, 2008). Would the knowledge of the dramatic decrease in searches for the Krispy 

Kreme brand have prompted executives to reconsider their expansion plans?  

 

‘04	  ‘05	  	  ‘06	  ‘07	  ‘08	  	  ‘09	  ‘10	  ‘11 ‘04	  ‘05	  	  ‘06	  ‘07	  ‘08	  	  ‘09	  ‘10	  ‘11 ‘04	  ‘05	  	  ‘06	  ‘07	  ‘08	  	  ‘09	  ‘10	  ‘11 
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In what follows, we will describe the current state of the relationship between brand value and 

search queries, as well as other variables of interest including, customer actions, customer 

values, marketing actions, brand history, and firmographics. The data we will use is available 

over time, and for multiple brands. Typically this type of research would be a descriptive 

analysis as it specifies the relationship between brand value and search queries. However, we 

will use a hierarchical cross-sectional and time-series analysis framework to explain the 

relationship between our predictive variables and future brand value, along with controlling for 

numerous other factors that can impact brand value. 

 

Looking ahead, in Chapter 2, we explore the literature concerning the practice of gathering 

forward-looking metrics to help researchers explain lag data. We will understand how that 

practice has carried over to digital data, and describe the studies’ contributions to the literature 

by using search queries to predict the present in terms of a consumer’s real-time perception of a 

brand. In addition, we extend the domain of past studies beyond the fields of epidemiology and 

health to the social sciences specific to marketing. In Chapter 3, we will explain the consumer 

information-processing model and search engine behavioral model as theoretical underpinnings 

of our research. In Chapter 4, we describe our conceptual model and hypotheses followed by 

Chapter 5, where we outline the methodology and data-gathering process. In Chapter 6, we 

complete our analysis to determine if the number of search queries for a brand is positively 

associated with brand value. In Chapter 7 we conclude by summarizing the contribution to 

practitioners and existing literature, we further outline the limitations and provide guidance on 

future research.  
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Chapter	  2:	  LITERATURE	  REVIEW	  

 
 
The practice of gathering forward-looking metrics to help researchers explain lag data is well 

known. Health practitioners collect information concerning school absenteeism, pharmaceutical 

sales, and medical diagnoses in an effort to provide early detection of disease outbreaks (Hulth, 

Rydevik and Linde, 2009). Companies gather sales data, and governments gather unemployment 

and consumption information. The benefits are that early detection allows for interventions to 

lower morbidity, allows companies to modify strategies, or governments to enact policy.  

 

Conversely, the use of gathering digital data as a forward-looking metric to explain lag variables 

is a fairly nascent area. With billions of people online, the digital footprint and the number of 

search queries on the web is vast. In our literature review, we explore early studies focused on 

the relationship of digital metrics, and web searches, to lag variables. We will examine the 

evolution of this body of work that began in health sciences to identify epidemics and outbreaks, 

through the adoption within economics to identify unemployment and consumption trends. This 

research is similar in many ways to previous studies as it associates the number of search queries 

with an outcome. In previous studies, the outcome was a behavior or an event. This research 

varies in that it is the first of its kind used in marketing sciences, and the first of its kind to 

associate search queries with perception, specifically the customer’s perception or efficacy 

toward a brand.  
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The practice of gathering digital data has been challenging in some respects due to a lack of 

access. Early studies arose from the fields of economics and health sciences with the data utilized 

in their digital surveillance coming from varied sources. For example, Johnson et al. (2004) used 

the counts from articles viewed on a U.S. medical site with the Centers for Disease Control and 

Prevention for surveillance of incidences of influenza. Ettredge, Gerdes and Karuga (2005) used 

unemployment-related queries captured by Wordtracker, a keyword research tool, to predict the 

number of unemployed in the United States.  

 

Even with a limited supply of data, researchers continued to study the phenomena of the 

statistical linkage between online behavior and offline occurrences. Cooper, Mallon, Ledbetter, 

Pollack, and Peipins (2005) used Yahoo Buzz and LexisNexis news reports to correlate search 

activity for cancer with their estimated incidence over the period from 2001 to 2003. Some 

researchers employed creative methods such as launching ad campaigns related to flu symptoms 

as a means to gather counts of user clicks to correlate with epidemiological data during the 

2004–2005 Canadian flu season (Eysenbach, 2006). Others partnered with website operators like 

a Swedish medical website for query counts to facilitate influenza monitoring (Hulth, Rydevik 

and Linde, 2009) or with yahoo.com to show that search volume for select influenza queries 

correlated with caseloads from 2004 to 2008 (Polgreen, Chen, Pennock and Nelson, 2008). 
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Research	  Domain	  
 
While search engines maintain a record of the searches entered into their websites, it was not 

until the advent of the Google Trends and Insights for search applications in 2007 that this 

information was made available to researchers and the public at large. Including counts for all 

queries on a weekly basis since 2004, the data amounts to a vast and rich database. With this 

information at their disposal, researchers embraced the opportunity to correlate search queries to 

real-world outcomes across a variety of disciplines. At the outset, the data was documented and 

used to describe the evolution of particular queries before the U.S. presidential elections 

(Constant and Zimmerman, 2008). Using regression models, what soon evolved was the 

discovery of a high correlation between search queries and unemployment in Germany and the 

United States. (Askitas and Zimmermann, 2009; D’Amuir and Marucci, 2010).  

 

Ultimately, Ginsberg et al. (2009) used search engine query data to develop a simple model that 

would estimate the probability that a random physician in a region of the United States would see 

a patient with influenza. This well-cited, seminal work led to more extensive research that 

pushed the boundaries within epidemiological studies and econometrics. An early example prior 

to the release of traditional indicators was Choi and Varian’s (2009) research using a simple 

forecasting model to “predict the present” in terms of travel, as well as auto, retail, and home 

sales.  

 

Relying on regression analysis, the focus expanded from predicting events to predicting 

behavior. Goel, Hofman, Lahaie, Pennock and Watts (2010) used search query volume to 
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determine the relationship of search queries to the opening weekend box office revenue for 

feature films. Goel et al. (2010) also used search to predict first-month sales of video games, and 

the rank of songs on the Billboard Hot 100 chart, finding in all cases that search counts were 

predictive of future outcomes.  

 

Kissan, Wintoki & Zhang  (2011, p. 2) believe “the availability of measures of consumer search 

behavior is only going to increase as we move further into the digital age”. Consistent with this 

trend, scholars are coming to recognize that what individuals are searching for leaves a trail of 

“what we collectively think” and “what might happen in the future” (Rangaswamy, Giles and 

Seres, 2009, p.58). Across the empirical cases that we have considered, we observe that search 

counts are predictive of an event prior to the release of traditional indicators, or a behavior that 

will occur within days or weeks in the future. The predictions have typically been 

epidemiological or economic events including unemployment, consumption, travel, or game, and 

real estate sales. Our intent is to contribute to the literature by using search queries to predict the 

present in terms of perception, specifically in terms of a consumer’s real-time perception of a 

brand. In addition, we will extend the domain of past studies from epidemiological and health 

fields to the social sciences specific to marketing. See Table 1 for a summary of this study’s 

contribution with regard to other studies that have focused on relating web searches to real-world 

outcomes.  
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Table 1: Summary of Related Studies 
Relating	  Web	  Searches	  to	  Real-‐World	  Outcomes	  

Delineated	  by	  health,	  macroeconomics,	  and	  marketing	  sciences	  
 

Studies	   Contributions	  to	  Health	  Sciences	   	  	   Studies	   Contributions	  to	  Macroeconomics	  
Johnson,	  Wagner,	  Hogan,	  Chapman,	  
Olszewski,	  Dowling,	  and	  Barnas	  (2004)	  	  

Measures	  the	  correlation	  between	  
article	  access	  counts	  and	  influenza	  
activity.	  

	  	   Ettredge	  and	  Karuga	  
(2005)	  

Internet	  search	  data	  to	  predict	  number	  
of	  unemployed	  in	  the	  United	  States.	  

Cooper,	  Mallon,	  Leadbetter,	  Pollack,	  
and	  Peipins	  (2005)	  	  

Cancer-‐related	  searches	  and	  
volume	  of	  news	  coverage	  with	  
cancer	  incidence	  and	  cancer	  
mortality.	  	  

	  	   Constant	  and	  
Zimmerman	  (2008)	  

Evolution	  of	  keyword	  searches	  before	  
U.S.	  presidential	  election;	  indicator	  of	  
the	  traction	  of	  the	  candidates.	  

Eysenbach	  (2006)	   Tracking	  flu-‐related	  searches	  on	  the	  
web	  for	  syndromic	  surveillance.	  

	  	   Askitas	  and	  
Zimmermann	  (2009)	  

Internet	  search	  data	  as	  a	  predictor	  of	  
unemployment	  in	  Germany.	  

Hulth	  (2007)	   Web	  queries	  for	  influenza	  
monitoring.	  	  

	  	   Choi	  and	  Varian	  (2009)	   Search	  data	  to	  predict	  initial	  claims	  for	  
unemployment	  benefits.	  

Polgreen,	  Chen,	  Pennock,	  and	  Nelson	  
(2008)	  	  

Internet	  searches	  for	  influenza	  
surveillance;	  showed	  that	  search	  
volume	  for	  handpicked	  influenza-‐
related	  queries	  was	  correlated	  with	  
caseloads	  over	  the	  period	  2004–
2008.	  

	  	   Choi	  and	  Varian	  (2009)	  	   Search	  data	  to	  predict	  travel	  as	  well	  as	  
auto	  and	  real	  estate	  sales	  in	  the	  United	  
States.	  

Ginsberg,	  Mohebbi,	  Patel,	  Brammer,	  
Smolinski,	  and	  Brilliant	  (2009)	  	  
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Current	  Study	  
The	  proposed	  study	  is	  designed	  to	  determine	  if	  brand	  search	  query	  data	  is	  positively	  associated	  with	  brand	  
value	  and	  if	  search	  query	  data	  can	  offer	  greater	  empirical	  evidence	  as	  to	  the	  brand’s	  efficacy.	  This	  study	  
furthers	  existing	  science	  in	  that	  it	  is	  the	  first	  of	  its	  kind	  to	  relate	  web	  searches	  to	  real-‐world	  perceptions,	  

breaking	  from	  the	  historic	  disciplines	  of	  health	  sciences	  and	  economics.	  

 

Chapter	  3:	  THEORETICAL	  FRAMEWORK	  
 
Two models provide the theoretical underpinnings of our research. First, the consumer 

information-processing model adopted from Kotler (1997), Schiffman and Kanuk (1997), and 

Solomon (1996) introduces the concept that a consumer has a fundamental need to search for 

information prior to making a purchase. The perspective being that information search begins 

after a consumer recognizes a problem, or need for a product. Later theorists, like Bloch, Sherrell 

and Ridgeway (1986), postulate that a consumer is always searching, either to make a purchase 

or to gather information for use at a later time. This model lays the foundation that a customer’s 

search query for a brand is a measure of their intent, be it positive or negative. 

 

Second foundational model is the interaction with a search engine (Holscher, 2000). This model 

details a consumers searching behavior online as a series of querying, clicking, and browsing. 

Pentland (2008) describes this behavior as a more “honest signal” of actual interests and 

preferences. Wu and Brynjolfsson (2009) supports this belief by describing a consumers search 

query as a digital trace left by consumers that can be compiled to reveal comprehensive pictures 

of the true underlying intentions and activities. This model solidifies the foundation that a 

customer’s search query for a brand is a measure of their intent and that search queries in their 

aggregate are theorized to be a more honest signal of a consumer’s value of a brand.  

Customer	  Information-‐Processing	  Model	   
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Marketing theorists have long argued that consumers seek information from a variety of sources 

(Cox, 1967). This concept has evolved into the dominant school of thought among consumer 

researchers known as the consumer information-processing model depicted in Figure 3 

(Matsuno, 1997). 

 
Figure 3: Consumer Information-Processing 

Model	  
 

Source: Adopted from Kotler (1997), Schiffman and Kanuk (1997), and Solomon (1996) 
 
In this model, the consumer passes through five stages: (1) problem recognition, (2) information 

search, (3) evaluation and selection of alternatives, (4) decision implementation, and (5) post-

purchase evaluation. A principal determinant used in the information process is information 

search. Though the consumer information-processing model identifies information search as a 

prominent aspect of the pre-purchase decision process, Bloch et al. (1986) postulates that 

information search is conducted throughout the entire information processing cycle as consumers 

are driven by an immediate purchase decision, as well as building a bank of information for 

future use. 
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Traditional sources of information that consumers rely on to reduce the uncertainty related to 

purchase decisions have been advertisements (radio, TV, and print), packaging, store displays, or 

brochures. Information is also indirectly conveyed by the price and type of store in which the 

product is sold. Consumers may also draw upon their own prior experience. He or she may 

obtain information from friends, family, or salespeople or read about products in product-rating 

publications or specialty magazines. In addition, the consumer may observe products being used 

by others (Bettman, Johnson and Payne, 1991). 

 

With the advent of the Internet, the consumer can gather near-perfect information (Reibstein, 

2002). Historically, the amount of information delivered to the consumer was constrained by the 

size of the package, the space available to deliver a message, the time available in a TV spot, or 

the space available in a print ad (Reibstein, 2002). Alternatively, in the digital world the 

information is not limited by the physical space (Alba and Hutchinson, 1987; Johnson, Lohse 

and Mandel, 1997). Web sites, natural search links, and ads provide detailed information about 

their merchandise, and comparison sites offer decision aids for making product price 

comparisons. Discussion forums, chat rooms, and online consumer reviews provide consumers 

with detailed experiences, opinions, and knowledge of others, both positive and negative, about a 

product or a seller.    

 

Another perspective is that the Internet allows consumers to become more efficient in their 

buying processes. This efficiency results primarily because the cost of information, as well as the 

cost and time needed to acquire information, is so low (Bakos, 1997). With information being 

exceedingly easy to access, consumers become fully informed as to their options (Bakos, 1997; 
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Brynjolfsson and Kahin, 2000). The consumer can benefit from multiple points of view to make 

informed assessments with less effort required to inform their purchase decisions. 

 

Interaction	  With	  a	  Search	  Engine	  	  
 
It is hard for many to believe the important role that search engines play in today’s world. Be it 

for academics, work or leisure, search engines can be used to find every conceivable kind of 

information. Some of the searches conducted are directional, meaning a customer is looking for a 

specific site. Some searches are fun and frivolous, meaning a customer is exploring hobbies, 

favorite past times, or entertainment.  However, according to Rangaswamy et al. (2009), many 

searches are imbued with purpose, and search results can influence important decisions about 

someone's life, health, or a major purchase. 

 

The online search process does not start with the search query itself, but with the idea to search 

(Joo, Mingyu, Wilbur and Zhu, 2010). The search idea may be general or very specific; a 

consumer may want to learn more about an entire product category or may want to consider a 

particular brand. Once the idea to search is formed, the consumer selects a search engine and the 

query. The query, or set of words knows as keywords, can be one word or up to a full sentence. 

The search query determines the breadth of information returned by the search engine. After 

entering the query, the consumer examines the results and chooses the one of interest. The 

consumer makes this choice by clicking on the result, either an ad or a link to the information 

deemed most relevant. Holscher (2000) describes this process as one where an individual 

identifies a question or need and seeks information online by switching back and forth between 

querying, clicking, and browsing. Figure 4. 
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Figure 4: Interaction With a Search Engine 

Values	  represent	  transition	  probabilities	  to	  the	  next	  unit	  	  
 

    Search/Launch Search Engine   
    .82  .18 
    Generate and Select Search Terms   
       

    Formulate Query   
    1.0   
     .08  Submit Query/Get Results   
    .91  Browsing 

     .25  Examine Page of Results .04  
    .57   
    Select Document from Results   

     .04     
    Examine Document .42  
       
      .46 

 
 

Source: Holscher (2000) 
 
 

The majority of the querying, clicking, and browsing behavior is conducted on Google: Google 

accounts for 65.5% of the search volume on the Internet resulting in billions of daily queries that 

are retained by Google in a database (Comscore, 2011). Pentland (2008) describes search as a 

more “honest signal” of actual interests and preferences since there is no bargaining, gaming, or 

strategic signaling involved in contrast to many market-based transactions. As a result, these 

digital traces left by consumers can be compiled to reveal comprehensive pictures of the true 

underlying economic intentions and activities (Wu and Brynjolfsson, 2009).  
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Chapter	  4:	  CONCEPTUAL	  MODEL	  	  
 
This chapter presents the conceptual model for this study and states the hypotheses tested. The 

central objective of this study is to determine if the number of search queries is positively 

associated with brand value. Throughout the literature, researchers identify numerous variables 

relative to brand value. Some of these variables are connected to financial models like sales and 

market value (Farquhar, 1989; Simon and Sullivan, 1993; Haigh, 1999). Research has also 

indicated customer-based variables relative to brand value like satisfaction and awareness 

(Aaker, 1991; Keller,1993; Yoo and Donthu, 2000; Vazquez, Del Rio and Iglesias 2002; de 

Chernatony, Harris and Christodoulides 2004; Pappu, Quester and Cooksey, 2005; 

Christodoulides, Chernatony, Furrer and Abimbola , 2006). In developing the conceptual 

framework, we incorporate both financial and customer-based variables into our model for the 

purpose of explaining the relationship between search queries, consumer and financial variables 

to brand value. Figure 5.  

 

The selected predictor variables from a financial perspective are those derived from 

firmographics, the brand’s history and related marketing actions. The customer-based 

perspective is derived from customer values and actions. The conceptual model shows the 

temporal relationship of the predictor variables represented at time t (year) and the dependent 

variable, brand value at time t+1 (year+1), while controlling for economic factors that can impact 

brand value. 
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To address causality, the proposed framework specifies a time-based relationship among the 

focal variables. Specifically, a one-year lag relationship is defined between branded search 

queries, other predictor variables and brand value. Although such lags have not been defined in 

the marketing sciences for search query data, a year lag is largely supported for a change in level 

of measured communication, followed in the next year by a change in reputation and in the year 

following by a change in financial performance. A one-year lag is common when investigating 

the relationship between R&D activities and firm performance, and one-year lag effects are used 

when accounting for the impact of advertising and R&D expenditures (Peterson and Jeong, 

2010). 

 

The model is simple in terms of the number of variables. The rational, as described by 

Balasubramanian and Kumar (1990), is that as more variables are added, the model becomes 

more complex and less interpretable, and understanding the interaction effects becomes more 

difficult. Also, several predictor variables usually belong to the same domain, thus increasing the 

potential for high correlations between the model variables.  
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Figure 5: Conceptual Model 
 

 

Brand	  Value 
 
In light of the inconsistencies of the brand valuation methods described earlier, the International 

Standards Organization (ISO) created brand valuation standards known as ISO 10668. ISO 

10668 is the international norm that sets minimum standard requirements for the procedures and 

methods used to determine the monetary value of brands. It defines a coherent and reliable 

approach for brand valuation that takes into consideration financial, legal and behavioral science 

aspects (International Organization for Standardization, 2010). A certification program on the 

basis of ISO 10668 was developed to attest that a provider’s valuation method conforms with 
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ISO 10668 standards (ISO, 2010). Interbrand and BrandFinance are two such valuation providers 

whose methodologies have been certified since ISO 10688’s inception in October 2010. For 

purposes of our research, we use BrandFinance valuation characterized by Salinas and Ambler 

(2009) as a technical provider, with an emphasis on financial market value to minimize 

collinearity.  

 

Brand Finance first issued its top 250 brand value ranking table in 2007 (reflecting 2006 values).  

In 2008, the study was extended to report the top 500 brands worldwide. (Brandfinance, 2011). 

Our data sets consists of 74 brands, each accorded a brand rating with values for each year from 

2007 through 2011 (released in years 2008 to 2012). The brands in the dataset represent 15 

industries (consumer banking, consumer package goods, department discount and grocery stores, 

fast food dining, insurance, travel, apparel, auto, consumer electronics, beverages, financial 

advisors, retail gasoline, retail specialty and telecom) and are headquartered across 15 countries 

(US, Japan, Switzerland, Sweden, Germany, Australia, Hong Kong, Spain, France, Great Britain, 

India, Korea, Netherlands, Finland and Italy). Brand values range from a low of $1.4 trillion for 

Sprint in 2008, to a high of $70 trillion for Apple in 2011. In addition, our data set represents 

brands that have declined and increased in value over the five-year period.  

Customer-‐Based	  Variables	  	  
 
In most customer-based brand value research, surveys are used to determine the cognitive and 

behavioral value of a brand at the individual consumer level (Yoo et al., 2001). For our research, 

we use (1) customer action or the search queries for a brand conducted on Google’s search 

engine, and (2) customer values gathered through online surveys as a measure of the cognitive 

and behavioral value of a brand at the individual level.  
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1.	  CUSTOMER	  ACTION	  

Brand	  Search	  Query. Chaudhuri and Holbrook (2001) support that brand value includes some 

degree of predisposition toward a brand by the consumer (Aaker, 1991; Assael, 1998; Beatty and 

Kahle, 1988; Jacoby and Chestnut, 1978).  Historically, brand search queries have not been 

modeled as a predictive measure of brand value. The hypotheses is that when consumers are 

browsing, querying and searching on the Internet, this activity represents a predisposition to the 

brand, and the brand search queries are reliable predictors of a brand’s value literally months 

before that change is validated through traditional brand valuation methods. As described in our 

literature review, the use of search queries is a growing body of work relating web searches to 

real world outcome, specifically healthcare and macroeconomics. If we extrapolate the 

theoretical underpinnings to the social sciences specifically marketing, we would expect 

increases in branded search queries for a particular brand to reflect in the brand’s value released 

the following year. Therefore, 

 
H1: increases in brand search queries at t, increased brand value at t+1.  

2.	  CUSTOMER	  VALUE	  

Researchers of brand value evaluate customer value indirectly by asking certain questions and 

drawing particular conclusions about the customer’s response (Banyte, Joksaite and Virvilaite, 

2007). Consumer surveys are often used to capture customer values, attitudes, beliefs, and 

behaviors toward a brand (Lehmann, Keller and Farley, 2008; Srinivasan and Hanssens, 1979; 

Rangaswamy, 1993; Keller, 1993; Berg, Matthews and O’Hare, 2007). A key challenge in 

developing survey-based brand values and metrics is the wide range of possible measures that 

could be employed. As Lehmann (1993) observed, no single measure fully captures the richness 

of brand value, multiple sets of measures and factors must be employed.  
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For this reason, multidimensional measures are used in this research to capture a customer values 

toward the brand. A traditional customer value metric used for marketing sciences has been the 

American Customer Satisfaction Index (ASCI), (Anderson, Fornell and Mazvancheryl, 2004; 

Fornell, Mithas, Morgeson and Krishnan 2006; Gupta, 2006). As the data is not consistently 

available at the brand level (Srinivasan and hanssens, 2009), we selected YouGov’s Brandindex 

as our measure of customer value as it is available at the brand level, can be regionally 

segmented, and based on the segmentation it is available typically since 2007. YouGov’s 

information is interval data, collected daily, on hundreds of brands, rather than just a few 

predetermined brands. The data is derived from surveys conducted over the Internet using an 

opt-in panel of the general public. YouGov’s survey metrics have proven to be both meaningful 

and versatile in a variety of research areas including Omnicom’s BrandScience projects. In 

particular, BrandIndex metrics have proven valuable as both upper and lower funnel analytics 

(Collins et al., 2010).  

 

The customer value metrics from YouGov used in this research include buzz, impression, 

quality, value, reputation, satisfaction and recommendation. Each metric is taken independently 

– in other words, in any one survey, any individual respondent is asked about only one measure 

for the sector, not all seven. Therefore, none of the ratings influence each other within the survey 

(Brandindex, 2011) 

 

Buzz. Buzz is the “top of mind” accessibility of the brand as perceived by the consumer. Like 

brand awareness, buzz measures the accessibility of the brand in memory (Chandon, 2003). The 
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buzz measure reflects what the consumer has heard in the media, news or advertising, or in 

conversations among friends and family about the brand. Buzz indicates whether a consumer 

noticed good or bad news, advertising or PR campaigns, product launches or whether there is 

any 'word on the street' emerging. As	  buzz	  reflects	  the	  recent	  brand	  sentiment	  and	  the	  

direction	  of	  recent	  awareness,	  we	  hypothesize	  that	  an	  increase	  in	  positive	  and	  neutral	  buzz	  

be	  associated	  with	  an	  increase	  in	  the	  brand	  value.	  	  

	  

H2: Increase in the customer’s positive and neutral buzz at t, increased brand value at t+1 

 

Impression. Impression is the strength, favorability, and uniqueness of perceived attributes and 

benefits of the brand. The impression variable reflects positive or negative feelings toward the 

brand. Leuthesser, Kohli and Harich (1995) determined that a brand represents the value of a 

product’s impression, or the global effect, above that which would result for an otherwise 

identical product without brands name. Thus, we hypothesize that an increase in positive and 

neutral impressions of the brand, will be associated with an increase in the brand value.  

 

H3: Increase in the customer’s positive and neutral impression of the brand at t, increased 

brand value at t+1 

 

Quality. Quality reflects whether the brand is perceived as good or poor quality, irrespective of 

price. Many researchers have identified perceived quality as a dimension of brand value (Aaker, 

1991; Kapferer, 1992; Kamakura and Russel, 1993; Martin and Brown, 1991; Feldwick, 1996). 
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We hypotheses that an increase in perceived quality of a brand will be associated with an 

increase in the brand value.   

 

 H4: Increase in the customer’s positive and neutral perception of the quality of the brand 

at t, increased brand value at t+1 

 

Value. Value measures the perception of a brand’s price-point, its value offering. Value does not 

mean “cheap” or “expensive”, but what the brand offers a customer in return for the price paid. 

Value is defined by Lasser, Mittal and Sharma (1995) as the perceived brand utility relative to its 

costs. From a customer perspective this means the customer weighs and measures what is 

received, with what must be given up to receive it. This gets at the heart of the value versus the 

price paid, and the utility the product offers. Therefore, we hypothesize that an increase in 

positive	  and	  neutral	  value	  will	  be	  positively	  associated	  with	  an	  increase	  in	  the	  brand	  value.	  	  

	  

H10: Increase in the customer’s positive and neutral perception of the value of a brand at t, 

increased brand value at t+1 

 

Reputation.  Reputation informs us about what products to buy, what companies to work for or 

what stocks to invest in (Fombrun, 1996). Reputation is the image associated with owning or 

using a brand, the measure of a brand’s ”prestige” explained via consumers desire to work for a 

brand. Positive responses indicate that one would be proud to work for the brand, or advise a 

friend to work for the brand, or one would want to own a product with that brand. Fombrun 

(1996) demonstrated there are economic returns associated with a brand’s reputation informing 
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our hypothesis that an	  increase	  in	  positive	  and	  neutral	  reputation	  will	  lead	  to	  an	  increase	  in	  

the	  brand	  value.	  	  

	  

H5: Increase in the customer’s positive and neutral perception of a brand’s reputation at t, 

increased brand value at t+1 

 

Satisfaction.	  Satisfaction is a measure of performance against customer expectations, it is 

centrally related to all elements and has some of the strongest correlations with brand health 

(Berg et al., 2007). It answers the question: Are customers satisfied with their experience with 

the brand? It measures the extent to which consumers purchase and use the brand, talk to others 

about the brand, and seek out brand information, promotions, and events. Satisfaction is a 

measure of the number of people feeling generally ‘positive’ or 'generally negative' toward a 

brand. Overall, we postulate the following: 

	  

H6: Increase in the customer’s positive and neutral satisfaction measures of the value of a 

brand at t, will lead to increased brand value at t+1 

 

Recommend. Recommendation, like a referral reflects a positive promotion by individuals, 

increasing the likelihood of adding new customers or sales, Berg, Matthews and O’Hare (2007). 

Recommend measures the impact of the ambassadors and the equity destroyers of a brand. 

Recommend measures if your brand will be recommended for consumption or use, or 

recommended as a brand to avoid. We hypothesize that an increase in positive	  and	  neutral	  

recommendations	  of	  the	  brand	  will	  lead	  to	  an	  increase	  in	  the	  brand	  value.	  	  
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H7: Increase in the customers’ positive and neutral recommendations at t, increased brand 

value at t+1 

Financial	  Variables	  	  
 
In contrast to customer-based variables, for financial-based measures researchers collect 

financial market, accounting, firm level data without contacting consumers; these then identify 

dollar-metric and financial brand value at the firm or brand level (Yoo, 2000). For our research 

we use (1) marketing action, (2) brand history and (3) firmographics as a proxy for financial-

based measures to predict the brand value at the brand level.  

1.	  MARKETING	  ACTION	  

Advertising	  spend. In the marketing literature there is extant studies on the value creation of a 

firms advertising spend on brand value (Mizik and Jacobson, 2003; Chaudhuri, 2002; Shah and 

Akbar, 2008; Peterson and Jeong, 2010; Abdel-khalik, 1975; Hirschey and Weygandt, 1985).  

Consistent with the literature, it is our hypothesis that increased advertising spend for a particular 

brand is reflected in the brands value released the following year. 

 

H8: Increase in advertising spend by the firm at t, increased brand value at t+1.  

2.	  BRAND	  HISTORY	  

Brand	  Value.	  Brand loyalties influence brand value (Aaker, 1991). Increased loyalty results in 

more sales and revenue for the firm. The actions of the consumer become more predicatable 

resulting in a revenue-stream that can become considerable over time (Gremer, 1999). For this 
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reason, it is our hypothesis that increases in loyalty reflected in a brand’s value in year t will 

have a spillover effect in a brand’s value in year t+1. Thus, 

 

H9: Increase in brand value at t, increased brand value at t+1 

3.	  FIRMOGRAPHICS	  
A number of structural variables at the firm level have been used in empirical studies  

(Proceedings of the International Conference on Information Systems, 1987). 

In selecting our variables we indicate net sales (Kumar, Venkatesan, Bohling, and Beckmann, 

2008) and the number of employees (Kaen and Baumann, 2003; Evans, 1987) as a measure of 

growth. We use and market value (Simon and Sullivan, 1993) as a measure of shareholder return.  

 

Sales. Sales reflect the revenue generated by the firm from the sale of a good or service. It is 

defined in each company’s annual report after discounts and allowances. Berg et al., (2007), 

observed statistically significant correlations between brand value and sales, the healthiest brands 

having twice the amount of customers increasing spending than the worst-performing brands. 

These findings allow us to incorporate sales as a key element of brand value. It is our hypothesis 

that favorable consumer brand value will be reflected in purchase behavior and sales. Therefore, 

 

H10: Increase in firm sales at t, increased brand value at t+1 

 

Market	  Value. Simon and Sullivan, 1993 outline a technique for estimating a firm’s brand 

value, based on a firms’ market value. Market value is the ultimate metric of shareholder value 

calculated as the value of the firm based on the current price per share multiplied by the number 

of shares in issue. Total Market Value for Industrials is: Market Capitalization + Preferred 
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Equity + Short-Term and Long-Term Debt + Other Long-Term Liabilities + Minority Interest – 

Cash & Equivalents. For Banks and Financials it is calculated at: Market Capitalization + 

Preferred Equity + Short-Term and Long-Term Debt + Other Long-Term Liabilities + Minority 

Interest + Total Deposits.  

 

It is our hypothesis, similar to Simon and Sullivan’s findings that firms with commonly known 

brand names have higher estimates of brand value.  

 

H11: Increase in a firm’s market value at t, increased brand value at t+1. 

 

Number	  of	  Employees. As in previous research by Kaen and Baumann (2003) and Evans 

(1987), our measure of firm size is the natural log of the number of employees. It is our 

hypothesis that an increase in the number of employees is indicative of the need to increase 

production to meet increased demand. Therefore, we expect the following:   

 

H12: Increase in a firm’s number of employees at t, increased brand value at t+1 

4.	  CONTROL	  VARIABLES	  	  
Although they are not of primary theoretical interest to our study, we include in our model 

control variables that have been found in prior research to affect brand outcomes. Beyond 

whatever substantive interest these control variables possess in their own right, similar to 

Chaudhuri and Holbrook (2001), their main purpose here is to help remove statistical noise due 

to omitted-variables bias in a case in which we can capture effects that have been shown 

elsewhere to make a difference. The control variables include the following macroeconomic 

factors: gross domestic product, unemployment, and government debt.  
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A summary of the variables, a detailed description, frequency and characteristic of the data and 

data source is summarized in Table 2. 
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Table 2: Variable Description and Source 

  

 

Dependent 
Variables Description 

Frequency/ 
Characteristics Data Source 

 
Type Reference 

Brand 
 Value 

Dollar-based marketing effects or outcomes 
that accrue to a product or service due to its 
brand name, as compared with the effects or 
outcomes that would accrue if the product 

or service did not have that brand name 

Interval- 
Annual Brand Finance 

 
 

$ Billion 
Aaker (1991), 

Gremer (1999),  
Keller (2003) 

Advertising 
Spend 

Measured media including TV, Magazines, 
Print, Radio, Outdoor, Internet 

 
Interval-monthly 
Disaggregate data 

Brand level 

Kantar Media 

 
 
 

$ Million 

Mizik (2003), Ho 
(2005), Chaudhuri 

(2002), (Shah 
(2008), Peterson 
(2010), Abdel-
khalik (1975), 

Hirschey (1985)   

Buzz Measures	  recent	  brand	  sentiment	  &	  the	  
direction	  of	  recent	  awareness 

 
Daily 

YouGov 
BrandIndex 

Ratio: negative to 
positive and 

neutral 
Chandon, (2003) 

Impression 
Strength, favorability, and uniqueness of 
perceived attributes and benefits of the 

brand 

 
Daily 

YouGov 
BrandIndex 

Ratio: negative to 
positive and 

neutral 
Leuthesser (1995) 

Quality 
Whether the brand is perceived as 

good/poor quality, irrespective of price. 
 

 
Daily 

YouGov 
Brandindex 

 
Ratio: negative to 

positive and 
neutral 

Aaker (1991), 
Kapferer (1991), 

Kamakura (1991), 
Martin (1991), 

Feldwick (1996) 

Value What the brand offers a customer in return 
for the price paid 

 
Daily 

YouGov 
Brandindex 

Ratio: negative to 
positive and 

neutral 
Lasser, (1995) 

Reputation Measures	  brand	  “prestige”	  via	  a	  
customers	  desire	  to	  work	  for	  a	  brand 

 
Daily 

YouGov 
Brandindex 

Ratio: negative to 
positive and 

neutral 
Fombrun (1996). 

Satisfaction 

The extent to which customers purchase and 
use the brand, talk to others about the brand, 

and seek out brand information, 
promotions, and events. 

 
Daily 

YouGov 
Brandindex 

Ratio: negative to 
positive and 

neutral Berg  (2007) 

Recommend 
Measures if your brand will be 

recommended for consumption or use, or 
recommended as a brand to avoid.  

Daily YouGov 
Brandindex 

Ratio: negative to 
positive and 

neutral 
Berg (2007) 

Sales Net sales is the revenue generated by the 
firm from the sale of a good or service 

 
Annual, Lag 

Bloomberg 
and annual 
financial 
reports 

 
 

$ Million Berg (2007) 

Market 
Value 

Estimation of the value of the firm based on 
the current price per share multiplied by the 

number of shares in issue 
Annual, Lag 

Bloomberg 
and annual 
financial 
reports 

 
$ Million Simon and Sullivan 

(1993) 

Number of 
Employees Number of full time employees  

Annual, Lag 

Bloomberg 
and annual 
financial 
reports 

 
Integer > 1 Kaen (2003), Evans 

(1987) 
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Chapter	  5:	  METHODOLOGY	  

Database	  Overview	  
 
To evaluate our conceptual model, we compiled a cross sectional data set of seventy-four brands 

for five consecutive years from 2007 through 2011. The data set consists of each brands’ value, 

the associated customer search queries for the brand term conducted on Google’s search engine, 

along with the brand’s history, the firm’s marketing actions, customer attitudes and associated 

firmographics.   

Predictor	  Variables	  

 

The predictor variable is a customer’s query for a brand that has been searched for on the Google 

engine; these queries are stored on Google in what is known as records. Each record stored 

includes the search query itself, the IP address, the date it was entered, and the type of device it 

was entered from (mobile phone, desktop computer). These records collectively are referred to as 

search logs. Most websites store records of visits to their site in a similar way. For more on 

search logs and privacy see Appendix, Disclosure 1.   

To access and analyze search query data, we use two tools, Google Insights found at 

http://www.google.com/insights/search/ and Google’s internal tool for categorization and counts.  

Google Insights provides an index of the volume of Google queries by geographic location and 

category measured against total query volume. Google Insight data are automatically filtered for 

spam and porn, and the researcher can apply filters by query string, query category and time. The 

number represents the normalized query share by each filter. For a given query of interest, 

Google Insights uses a “broad match” algorithm such that any query string containing the query 
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of interest as a substring is included in the statistics. Google Insights has been used in many 

studies including capital markets (Vlastakis and Markellos, 2010; Da and Gao, 2010), 

entertainment (Choi and Varian, 2009; 2010), labor markets (Askitas and Zimmerman; 2009; 

Suhoy, 2009; D’Amuri and Marcucci, 2010), real estate markets (Wu and Brynjolfsson, 2009; 

healthcare (Polgreen et al., 2008; Brownstein, Freidield, and Madoff, 2009; Corley, Mikler, 

Singh and Cook, 2009; Hulth et al., 2009; Pelat, Turbelin, Bartten, Flahault and Valleron, 2009; 

Valdivia and Monge-Corella, 2010), economic indices (Ettredge and Karuga, 2005; Schmidt and 

Vosen, 2009) and travel (Choi and Liu, 2011). 

 

Google’s internal tool for categorization and counts is similar to Insights in that it filters for spam 

and one can apply filters for geography and time. However, Google’s internal tool uses an 

“exact” match algorithm such that any query string containing the exact query will be included in 

the statistics, queries in a substring will not. Google’s internal tool does not index the data and no 

other filters are automatically applied.  

 

To extract and compile the data we invoke a three stage process involving (1) building query 

libraries for each brand, (2) quantifying and detrending queries, (3) coding and collating.  

 

Step (1), building query libraries for each brand involves the identification, extraction and 

storage of brand and associated brand queries. Many queries for a brand are simply the brand 

itself, like “apple”, however many users will input brand association such as apple computer, 

apple accessories, etc. To develop a library of queries reflecting a brand and its associations, we 

access Google server logs via Google Insights. The rational behind using Google Insights is that 
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it uses the “broadmatch” algorithm that provides us with the query substrings. Researchers 

typically use Google Insights to obtain the indexed volume of search queries by geographic 

location and category (Ginsberg et al., 2011; Polgren et al., 2008; Goel et al., 2010; Schmidt and 

Vosen, 2011; Choi and Lui, 2011 and 2009; McLaren and Shanbhogue, 2011; Askitas and 

Zimmermann, 2009). For our purposes, we use Insights to gather the query substrings that are 

displayed as top and rising queries associated with the brand. This process allows us to capture 

the queries associated with the brand with the most significant level of interest and those that 

experienced significant growth in a given time period. For example, when you input a specific 

query into Insights, for a specific period of time, you will see a list of the top 10 rising queries 

related to that term. The Insights tool determines relativity by examining searches that have been 

conducted by a large group of users preceding the search term entered, as well as after. For 

example, if a user inputs "apple," the list of rising searches will include apple, but it may also 

include a product (apple ipod) or a navigational query (apple location). This process is repeated 

for each brand, for each year 2007 through 2011, with the associated queries captured in a file 

called a library.  

For purposes of our research we apply filters for the US, to coincide with our dependent 

longitudinal variables of advertising spend, customer value and brand value, we include all 

categories and specify the year. If a brand query could mean different things  (example, Visa 

means a credit card association as well as travel and residency documentation) Insights takes a 

look at broad search patterns among people who search for the credit cards versus those who 

search for travel and residency documentation. Specifically, people looking for the credit card 

brand may have also looked for Mastercard in the few searches immediately before and after, 

while people looking for  travel and residency documentation may have conducted a search 
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related to immigration or customs immediately before or after. In the event the queries 

significantly cross into other categories (VISA is 10 to 25 percent in the financial category and 

25 to 50 percent in law and government) we specify the desired category, in the case of VISA we 

select financial services. For each brand, the size of the library is n>20.  

Step 2 of our process involves obtaining a count of the number of times each query from the 

newly created brand library was entered into Google as a search. As the brand variables of 

interest are reported on a calendar basis, we aggregate the search query counts into an annual 

amount, for a given year. We access Google server logs through the internal tool to obtain the 

count by reading the number of times the query was entered by desktop, laptop, mobile or 

tablets, the related year and country. We utilize the internal tool due to the  “exact” match 

algorithm that counts exact queries strings, not substrings which would introduce confounding 

variables into our process. We repeat this process for each brand and for each year 2007 through 

2011. Once we have the counts we normalize the data to 2007 levels, accounting for Internet 

adoption and Google’s share of core search.  

In Step 3 we analyze the emotional content of the queries using SentiStrength, a publically 

available list of 890 positive and negative sentiment terms (Thelwall, Buckley, Paltoglou, Cai 

and Kappas, 2010). SentiStrength detects positive and negative sentiment strength in short 

informal text and assigns an integer from 5 to -5 to reflect sentence-level subjectivity, examples 

include: dislike = -3, hate=-4, coolest = 3, love = 4. Sentistrength has been used to analyze the 

emotional content of tweets, blogs and other short text (Bollen, Mao and Zeng, 2009; Paltoglou 

and Thelwall, in press). For purposes of our analysis, the queries are multiplied by their 

SentiStrength value and categorized as positive, neutral or negative. This results in a database 

consisting of 21.2 billion positive and neutral queries, and 32 million negative queries. 



 38 

To finalize, we append the values for the remaining predictive variables including brand, 

customer value and firmographics as well as the control variables.   

 

The methodology described employs qualitative approaches to the large volumes of textual 

search query data. The amount of data, in the order of billions of queries per day, poses 

considerable challenges to identifying and manual coding relevant brand queries and counts over 

the five-year period. In this research we utilize the fully automatic identification and 

categorization of queries by leveraging the output of Google’s machine language algorithms as 

made available through their Google Insights tool and internal query categorization and access 

tool.  SentiStrenth is a semi-automatic coding on textual data (specifically, short text). The use of 

machine language processing is preferred due to the size of the database, and to eliminate any 

researcher bias (Crowston, Liu, Allen and Heckman, 2010). 
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Chapter	  6:	  ANALYSIS	  

 

To enable us to assess the proposed hypotheses, we use a modeling framework that accounts for 

the various sources of errors, outliers, multicollinearity and brand specific effects of search 

queries. Figure 6 is a flow chart depicting the decision-making steps and selected analysis.   

 
Figure 6: Decision-Making Flow Chart 
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To begin, standard diagnostic checks were conducted on the data to assess for normalcy. 

Descriptive statistics (Table 3) indicate a need to logarithmicly transform brand, search and 

firmographic variables. Outlying search query variable BP is removed, as it is explainable, an 

anomaly and a negative value that cannot be logged.  

 
Table 3: Descriptive Statistics 

                      

    Min Max Mean St. Dev. Skewness Kurtosis   
  GDP 12,703 13,288 13,089 204 -1.14 0.13 -0.20 0.25   
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  Unemployment %  5 10 8 2 -0.69 0.13 -0.87 0.25   
  Debt % GDP 43 73 59 11 -0.17 0.13 -1.56 0.25   
  Brand Value $B 1,424 70,605 13,008 10,785 1.43 0.13 2.43 0.25   
  Search Query M -12 1,542 46 115 8.13 0.13 87.46 0.25   
  Advertising $M 2 2,900 385 511 2.45 0.13 6.66 0.25   
  Employees 1,403 2,200,000 156,173 250,222 6.25 0.13 45.91 0.25   
  Sales $M 1,605 447,884 59,643 67,957 2.97 0.13 11.17 0.25   
  Market Value $M 4,318 2,203,717 261,086 468,745 2.77 0.13 6.83 0.25   
  Buzz 0.56 0.98 0.88 0.10 -1.38 0.14 1.50 0.28   
  Impression 0.56 0.98 0.87 0.08 -1.38 0.14 1.87 0.28   
  Quality 0.61 0.98 0.90 0.07 -1.56 0.14 2.26 0.28   
  Value 0.52 0.97 0.87 0.08 -1.40 0.14 2.98 0.28   
  Reputation 0.57 0.98 0.88 0.08 -1.61 0.14 2.76 0.28   
  Satisfaction 0.73 0.98 0.92 0.05 -1.25 0.14 0.99 0.28   
  Recommendation 0.61 0.98 0.89 0.07 -1.32 0.14 1.51 0.28   
                      

We provide the correlation matrix of the customer value measures in Table 4 to check the 

presence of collinearity. There seems to be strong linear associations among some variables (corr 

>0.80) suggesting that multicollinearity could be a problem in the model estimation. The 

Variance Inflation Factors (VIFs) of the customer value measures also corroborate the possibility 

of multicollinearity (VIF> 5). 

 
Table 4: Correlation Matrix of Customer Value Measures 

 
  Buzz Impression Quality Value Reputation Satisfaction Recommendation 
Buzz 1.00       
Impression 0.63 1.00      
Quality 0.63 0.94 1.00     
Value 0.49 0.85 0.76 1.00    
Reputation 0.57 0.92 0.90 0.81 1.00   
Satisfaction 0.46 0.77 0.76 0.64 0.72 1.00  
Recommendation 0.59 0.95 0.93 0.85 0.90 0.77 1.00 

 
Therefore, in order to control for this multicollinearity we performed a factor analysis on the 

customer value measures. Kaiser-Meyer-Olin test and Bartlett’s test results reported in Table 5  

verify the need for factor analysis.  Kaiser-Meyer-Olin measure of sampling adequacy was at 
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.93, which is greater than .5 to precede factor analysis (Hutcheson and Safroniou, 1999). 

Bartlett’s test of sphericity was χ2 (28) = 3179 (p < .001), rejecting the null hypothesis that the 

correlation is an identity matrix. This result indicates the appropriateness of factor analysis.  

 
Table 5: Kaiser-Meyer-Olin and Barltett's Test 

 
Kaiser-Meyer-Olin Measure of Sampling 
Adequacy 

.931 

Bartlett's 
Test of 
Sphericity 

Approx. Chi-Square 3179.061 
df 28 

Sig. .000 

 
 
Factor analysis was conducted on the seven measures (see Table 6). One component had an 

eigenvalue above Kaiser’s criterion of 1 and explained 79% of the variance. Given the large 

sample size, and the Guttman-Kaiser's Rule that the factors with eigenvalue higher than 1 should 

be retained, we loaded all into one factor named customer’s overall attitude using PROC 

FACTOR in SAS. Factor loadings of all variables exhibit scores higher than .6.  

 

Table 6: Factor Pattern 
 
 Factor 
Buzz Ratio .676 
Impression Ratio .979 
Quality Ratio .951 
Value Ratio .860 
Reputation Ratio .938 
Satisfaction Ratio .825 
Recommend Ratio .966 
Eigenvalues 6.329 
% of Variance 79.108 
Cronbach's Alpha .946 
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This resulted in a revised conceptual model shown in Figure 7.  
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Figure 7: Revised Conceptual Model 
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The following model was used to investigate the predicative variables for brand value at year t. 

(1)        Log (BVt)=α0+α1Log(SQt)+α2Log(BVt-1)+α3MVt+α4SLSt+α5EMPt+α6Debtt 

(2)       α1=β0+β1ADVt+β2Customer Attitudet 

 

where 

SQt denotes the value of search queries for brand value in year t, 

BVt-1 denotes brand value at year t-1, 

MVt denotes the market value for the brands at year t, 

SLSt denotes the sales for the brands at year t, 

EMPt denotes the number of employees for the brands at year t, 

DEBTt denotes the government debt at year t, 

ADVt denotes the advertising spend at year t, 

Customer Attitudest denotes the customer attitudes at year t. 

 

By substituting Equation 2 into Equation 1, we estimate the interaction effects of search queries-

advertising and search queries-customer attitude as well as the main effects of search queries, 

lagged brand value, and firmographics.  

  

(3)       Log (BVt)=α0+β0Log(SQt)+β1ADVt*Log(SQt)+β2Customer  Attitudet*Log(SQt)+α2(BVt-

1)+α3MVt+α4SLSt+α5EMPt+α6Debtt+error 

 

Equation 1 can be estimated by using ordinary least squares (OLS) regression at the brand level. 
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The data encompasses four time periods for 74 cross-sections. Estimating a random effects 

model incorporating heterogeneity may lead to inefficient estimates of the coefficients because 

of the number of parameters estimated in relation to the sample size.  

 

Given the cross sectional and time series nature of the data and the lack of an a priori theoretical 

reason for the regression coefficients to differ across brands, we pool the data across 74 brands 

which reduces the number of parameters to  9 by making use of 295 observations. Moreover, 

pooling provides not only more degrees of freedom, but also a defense against misspecification 

bias caused by using only time-series or only cross-sectional data (Brobst and Gates, 1977).  

According to Kumar and Leone (1988), most similar studies that try to explain variance have 

analyzed cross-sectional data by stacking the cross-sections and estimating the parameters using 

OLS regression. However, pooled models can be estimated by procedures that allow both cross 

sectional and time series variation in the data through the specifications of the error structure 

(Fuller and Battese 1974, Maddala 1971, Nerlove 1971). The Fuller-Battese procedure was used 

to estimate the pooled models, (Kumar and Leone, 1988). Variance estimates for each of the 

cross-sectional, time-specific, and random error components are shown in Table 7.   
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Table 7: Fuller and Battese Variance Components 
 

Model Description  
Estimation Method Fuller 
Number of Cross Sections 74 
Time Series Length 4 
Variance Component Estimates  
Variance Component for Cross Sections 0.040119 
Variance Component for Time Series 0.003352 
Variance Component for Error 0.009805 

 
The benefits of the Fuller-Battese procedure according to Balasubramanian and Kumar (1990) 

are as follows. First, using cross sectional, time series data allows generalizability of results over 

time. In contrast, cross-sectional data provides "snapshot" picture specific to a given time period 

and inferences drawn from such data could be biased by idiosyncrasies associated with that time 

period. Second, brand value does change (1) across time for a firm (Farris 1979) and (2) across 

time for an industry (West 1985). Analysis of these two important components of variation can 

be accomplished by using cross sectional, time series data. For the above reasons, like Brobst 

and Gates (1977), we estimate the model hierarchically using cross-sectional and time series data 

and present the results in Table 8.   

 

Consistent with our conceptual framework, Table 8 shows that increases in our customer-based 

variables are positively associated with increases in brand value. Of primary interest, search 

queries are positively associated with increases in brand value (β0=.1874, p<.0001). The first 

interaction effect reported in Table 8 is between search queries and advertising spend, where a 

positive association is evident with brand value (β1=.000015, p<.0001). Next we observe that the 
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interaction between search queries and customer attitudes are positively associated with brand 

value (β2=0.0084, p<.0001).  

 

In addition to the customer-based variables and the effects of search queries and related 

interaction effects, we observed that the financial variables, market value, sales and number of 

employees are positively associated with increases in brand value. Also, prior brand values are 

positively associated with future brand value (α2=0.5127, p<.0001). The results also suggest that 

debt is marginally associated with increased brand value which is contrary to our hypothesis, 

implying that the increased government debt along with an aggressive economic stimulus was 

positively associated with brand value (α6=.0063, p-value .0079).  

 
 

Table 8: Impact of Financial and Customer Based Variables on Brand Value 
 
  Parameters t-value p-value   
  Intercept 0.0347    Number of 

Observations 
295 

  log_Search Queries 0.1874 6.68 <.0001 R-square 0.9966 
  log_Search Queries x Advertising 0.000015 3.12 0.002 Adjusted R-

square 
0.9965 

  log_Search Queries x customer 
attitudes 

0.0084 4.37 <.0001   

  log_lag_Brand Value 0.5127 13.74 <.0001   
  Market Value 0.00000004 4.6 <.0001   
  Sales 0.00000101 3.84 0.0002   
  Employees 0.0000004 5.48 <.0001   
  Debt 0.0063 2.67 0.0079   
 
Overall, the variance explained by the search query and its interaction is 58.9%, which is quite 

substantive and significant to our hypotheses. The remaining variance of 40.8% is explained by 

the lag brand value, and the control variables. See table 9 for a summary of the outcome.  

 
Table 9: Summary of Analysis 
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 Statement Results 

H1 Increase in brand search queries at t, are associated with increased 
BV at t+1 

supported 

H2 Increase in advertising spend at t, will lead to increased BV at t+1 supported 

H3 Increase in brand value at t, will lead to increased BV at t+1 supported 

H4 Increase in firm sales at t, will lead to increased BV at t+1 supported 

H5 Increase in a firm’s market value at t, will lead to increased BV at t+1 supported 

H6 Increase in a firm’s employees at t, will lead to increased BV at t+1 supported 

H
7
 Increase in customer’s positive or neutral attitude factor at t, will lead 

to increased BV at t+1 
supported 

	  

Chapter	  7:	  CONTRIBUTION,	  LIMITATIONS	  AND	  FUTURE	  RESEARCH	  	  

Contribution	  
 
Based on our analyses of cross-sectional, time series data spanning several industries, and past 

studies providing broad based insights into the role of key independent variables in determining 

brand value, we determine that search queries for a brand term is a forward-looking metric that 

explains brand value. For the practitioner, the implication is great in that they no longer need to 

wait for brand valuations and rankings to be made available after a lag period, from the time the 

data is collected, compiled, and analyzed to the time that it is delivered. With search queries for 

brand terms, this information is available almost real time so that is can be used to inform 

marketing plans in terms of forward-looking brand strategies and promotions/tactics to increase 

customer value and grow overall profitability. 
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For the industry, since a relationship exists between brand search query data and brand value, 

then search query data can be used to increase the accuracy of brand valuation tools by adding a 

robust customer measure to current methodologies. It also can be used to predict subsequent 

releases, minimizing the lag effects, so brand managers can have early indicators as to how their 

brands are tracking, and brand values are more timely and actionable.  

 

This study contributes to the nascent literature using search queries to predict real world events 

and behavior in that it now shows the ability to predict perception, specifically in terms of a 

consumer’s real time perception of a brand. This research extends the domain of past studies 

from health & macroeconomics to the social sciences specifically, marketing. 

 

Limitations	  and	  Future	  Research	  Direction	  

 

Although the research offers several important implications, some limitations provide the basis 

for future research. First, as we are working with firm level data, our sample is restricted to 

larger firms. This was primarily a result of our focus on metrics of financial, customer and brand 

value as dependent variables, for which longitudinal measures are available only for relative 

large firms (Krasnikov, 2009). Further research might include smaller firms with newly 

established brands to investigate whether branded search queries are a valuable early indicator of 

brand value or if they differ from what we observed in our sample.  

 

Second, our sample data for customer value and advertising is limited to the US. Like firm value, 

customer value and advertising measures are available only for relative large firms, and within 
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the US. Further research might include global firms once that information is made available 

either by the firms self-reporting, or the globalization of the data gathering tools. 

 

Third, branded search queries as our independent variable are derived from the process of 

developing keyword libraries of the brand and brand associations. Although extensive rigor was 

established to rule out or minimize endogeneity complete randomization is not possible and 

causal interpretation could be confounded.  To minimize endogeneity,  

Difference estimation should be used to rule out lagged dependent variables.  

 

Fourth, extend research by introducing moderator variables like firms with single brands versus 

multiple brands (i.e. Proctor and Gamble), brand duration, creation of new age versus old age 

brands, or competitive intensity. Last, from a practitioner perspective,  

Identifying turning points in a customer’s perception of brand value will allow brand manager’s 

to implement remediation efforts quickly in terms of changing media mix, pricing, messaging or 

distribution.  
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Appendix	  
 

Disclosure 1 
Search Engine - Definitions and Privacy 

 
Google Privacy Center, Your Data on Google 
http://www.google.com/goodtoknow/data-on-google/search-logs/ 
 
Data Retained 
IP address: 
123.45.67.89 is the IP address assigned to the user’s computer by his or her service provider. Just like other 
websites, when you ask Google for a page (a search results page, for example), Google uses your computer’s IP 
address to ensure that Google gets the right results back to the right computer. It’s important to remember that IP 
addresses don’t say exactly where an individual user is, or who they are. In fact, some Internet Service Providers 
(ISPs) give users a different IP address every time they log onto the web. The most Google can tell about a user 
from his computers IP address is that user’s general location (for example, Boston) and possibly the ISP they use to 
connect to the Internet. Only the ISP (who actually controls the user’s account) can match an individual with an IP 
address. 
 
Time and date: 
25/Aug/2011 10:15:32 is the date and time the user typed the query into Google. 
 
Search query: 
http://www.google.com/search?q=cars is the search query, in this case “cars.” 
 
Browsers and operating systems: 
Chrome 2.0.0.7; Windows NT 5.1 is the browser and operating system being used. 
 
Cookie: 
740674ce2123a969 is the unique cookie ID assigned to a browser the first time a user visits Google. Like an IP 
address, a cookie doesn’t tell Google who a user actually is or where they live, it only identifies a computer. You 
can delete these cookies at any time. 
 
Time limits on data retention 
Google anonymizes IP addresses after 9 months and alter the cookie numbers in our logs permanently after 18 
months. This breaks the link between the search query and the computer it was entered from and is similar to the 
way in which credit card receipts replace digits with hash marks to improve customer security. Here is what an IP 
address could look like in our logs after 9 months: 123.45.67.XXX. After 18 months, the cookie will be replaced by 
a newly-generated cookie number. 
 
Google was the first major search engine to announce time limits on the retention of logs data, and are pleased that 
others in the industry have followed their lead. Online cookies don’t last forever, Google cookies expire after two 
years. Additionally, Google has always allowed people to use its services without cookies (though this may mean 
losing the use of some features or functions of particular products). 
 

Disclosure 2 
Views presented in the publication are those of the researchers, not Google or other data providers.  
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