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Introduction

Sometimes it is hard to know precisely what to think about the Dynamical Hypothesis
(hereafter, DH), the new kid on the block in cognitive science and described succinctly
by the slogan “cognitive agents are dynamical systems” (Van Gelder, 1998). Is the DH a
radically new approach to understanding human cognition? (No.) Is it providing deep
insights that traditional symbolic artificial intelligence overlooked? (Certainly.) Is it
providing deep insights that recurrent connectionist models, circa 1990, had overlooked?
(Probably not.) Is time, as instantiated in the DH, necessary to our understanding of
cognition? (Certainly.) Is time, as instantiated in the DH, sufficient for understanding
cognition? (Certainly not.)

The DH is often touted as being a revolutionary alternative to the traditional
Physical Symbol System Hypothesis (PSSH, renamed in Mind As Motion, the
Computational Hypothesis) (Newell & Simon, 1976) that was the bedrock of artificial
intelligence for 25 years. We disagree.

First, as pointed out by the authors themselves, the use of dynamics as a
framework to comprehend the brain and cognition is not new. In the early 1950’s, for
example, W. Ross Ashby wrote a wonderful little treatise called Design for a Brain
(1952) based on the recurrent, dynamical nature of the brain. The whole field of
cybernetics (Wiener, 1948), developed during the late 1940’s, was also deeply concerned
with feedback and stability in complex evolving systems.  The explicit goal of these
authors and others was to develop a general framework within which biological and
cognitive systems could be studied and understood. These efforts, while visionary in
scope, did not bear fruit, in part because the systems they hoped to understand — in
particular, human brain function and cognitive activities — were extraordinarily complex
and there were no realistic means of empirically testing hypotheses generated by this
approach to cognition.



Second, the really revolutionary alternative to the PSSH — connectionism — was
provided by researchers like Stephen Grossberg (1976), J. J. Hopfield (1982, 1984),
Teuvo Kohonen (1982), David Ackley, Geoffrey Hinton, and Terrence Sejnowski (1985),
and, above all, David Rumelhart, James McClelland and the PDP Research Group in
1986 when their book, Parallel Distributed Processing: Explorations in the
Microstruction of Cognition (Rumelhart & McClelland, 1986), appeared. Within the
context of a critique of the PSSH, the Dynamical Hypothesis represents an incremental,
albeit important, extension of the work begun by the connectionists in the early- and mid-
1980’s. In particular, the DH’s insistence on the importance of analyzing the evolution of
internal patterns of activation over time is a major contribution.

Virtually from the outset, however, the static, stimulus-response nature of a large
class of connectionist models introduced in the mid to late 1980’s was recognized (see,
for example, Kaplan, Weaver, & French, 1991) and led to a second-wave of recurrent
connectionist models. For example, Jeffrey Elman’s ground-breaking paper, “Finding
structure in time” (Elman, 1990), in which he introduced the Simple Recurrent Network,
clearly indicates the singular importance he attached to time. Once modelers began
working with recurrent connectionist networks, analyzing the evolution of their internal
patterns of activation over time, determining how their internal representations clustered,
etc., they were fully part of the Dynamical Hypothesis paradigm.

A reasonable evaluation of the contribution to the field of Mind as Motion would
be to say that, even though the contributors to the book were not the first to attend to the
issue of time in cognitive modeling, their systematic emphasis on studying cognition as a
phenomenon that evolves over time has brought the issue of time to center stage in
cognitive modeling. Their application of dynamical systems tools has provided the
framework with which this approach can be carried out. And therein lies the importance
of this book.

The Physical Symbol System Hypothesis

The ultimate purpose of Mind as Motion is to persuade the reader that a dynamical
systems approach to cognition provides a new and extremely useful approach to
understanding cognition. And, in many respects, they argue their case admirably. This
new approach is claimed to not only provide new practical tools with which to study the
mind but indeed to change the very way in which we approach the question of the
workings of the mind. The “dynamical” approach to mind does, indeed, lie in stark
contrast to the traditional computational approach whose roots lie in formal logic and the
Physical Symbol System Hypothesis of Newell and Simon (1976). The PSSH claims to
provide a necessary and sufficient condition for intelligence. It is rooted in a number of
explicit assumptions — namely,

• that the world can be cut up into discrete objects, each of which can be
designated by a symbol;

• that each symbol refers to an object, an action, or a state of the world (e.g., an
object — dog, cat, piano, etc. — or an action — bark, sleep, shout, etc. );

• that each string of symbols (i.e., an expression) has an interpretation in the
world (e.g., People hate mosquitoes.);



• that rules and an underlying “logic of thought” govern the manipulation of the
symbols and expressions in the system;

• that cognitive agents are, basically, digital computers.

In other words, according to the PSSH, if we have a rich enough repertoire of symbols
and a detailed enough collection of rules for manipulating these symbols, intelligence
will necessarily ensue. And not only that, all intelligence is necessarily a product of this
type of symbol manipulation. The adherents to this point of view do not deny that
symbols are engendered by lower-level processes, for that would be madness, but they do
deny the importance of these lower-level processes in the study of cognition.
Representations, for the adherents of the PSSH, are, for the most part, static structures
made up of lists of properties for each object represented (which is one of the reasons
why a list processing language like Lisp was an ideal tool to process them). One of the
major problems with this approach is its disavowal of the importance of the underlying
mechanisms that give rise to the symbols and rules manipulating them. It turns out that
there are a great many cognitive phenomena that cannot be modeled at all when their
“subcognitive” aspects are ignored.

The Dynamical Hypothesis

In contrast, in the dynamical approach to cognition, representations are no longer static
structures that are unrelated to the underlying hardware of the brain. Instead, they are
defined by the evolution of patterns that emerge from a substrate of underlying hardware
and that are detected in the geometry of time.

Compare how a traditional AI system and a dynamical system might solve the
problem of binding. Consider what happens when we recognize a red car. We know that
color and shape are processed in different areas of the cortex. Consequently, the brain
must somehow conjoin the concept “red” and the concept “car” in order for us to
perceive a “red car.” We say that the concept “red” is bound to the concept “car.” Now a
traditional symbol system simply makes a copy of both concepts and joins the two
concepts in Working Memory. If the system needs to make more copies of either concept,
it does so. There are no theoretical constraints on this copying processing that transfers
concepts from long-term memory to working memory.

Now consider a dynamical-system way of doing binding that uses the brain’s 40
Hz synchronous oscillations. A red car is not represented by a neuron (or even a cluster
of neurons) that responds to both “car” and “red” or by a direct anatomical connection
between the a neuron for “red” and another for “car.” Rather, the binding of these
disparate concepts instead takes place in time, by the synchronous firing of these separate
clusters of neurons, one corresponding to the concept “red” and another corresponding to
the concept “ball” (Shastri & Ajjanagadde, 1993; Sougné & French, 1997; Sougné,
2000).

According to the Dynamical Hypothesis, it is crucial to monitor activity as it
unfolds in time (time series). Sometimes the time series creates a pattern in space called
an attractor. All of cognition, according to the Dynamical Hypothesis, takes place via
transitions between these attractors. Unlike the PSSH, where the transitions between
fixed entities called symbols are discrete and generally instantaneous, transitions between



attractors in the dynamical hypothesis paradigm take place over time and therefore
intrinsically incorporate the various transitional states that may occur before settling to a
final state.

Introducing the Dynamical Hypothesis

The book begins with an excellent introduction by the editors, Timothy van Gelder and
Robert Port, appropriately entitled “It’s About Time: An Overview of the Dynamical
Approach to Cognition,” in which the overarching philosophy of the dynamical approach
to cognition is presented. In terms of its explanatory value, this chapter is the high-water
mark of the book, at least for non-specialists. This first chapter includes a detailed
description of the inadequacies of the PSSH. Most of these criticisms can be found, in
one form or another, in the early connectionist attacks on traditional artificial intelligence
of the mid-1980’s. The contribution of the Dynamical Hypothesis is to shift the focus of
the connectionist criticisms of the PSSH. The connectionists focused on the advantages
of distributed systems with massive parallel processing of information. The dynamical
hypothesis focuses, in addition, on the evolution of the state of the system (or parts of the
system) over time.

When dynamicists talk about “time,” they are really talking about sequences of
events in time, whether these events are at the level of neural firings, arm movements of
babies, or high-level actions. And in this sense time clearly was an issue in many
symbolic systems — planning, for example, was based on performing a sequence of
actions in order to achieve a goal, which was a time-dependent process. Thus, there are
numerous examples of researchers in the PSSH tradition studying sequences of high-level
actions and their evolution over time. For dynamical hypothesists, actions that occur over
time, whether they are at the neural, cognitive, or even social level, are the central focus
of their work. In addition, one of their main goals is to understand how higher level
cognitive behaviors might arise from sequences of lower level actions. So, for example,
for a dynamicist whose focus is on sequences of neural firings, the goal would be to
understand how low-level neural activity might give rise to our perception of high-level
concepts. In contrast, the PSSH is wholly unconcerned with this lower level. This
undoubtedly marks one of the most fundamental differences between the two approaches
to modeling cognition. Researchers in the PSSH tradition are explicitly uninterested in
linking the neural level to the higher symbolic level. Dynamicists, on other hand, would
argue that understanding cognition requires an understanding of how temporal sequences
of low-level events produce the phenomena (e.g., the perception of categories, relations
between categories, etc.) that are finally perceived by us.

Unfortunately, after the first introductory chapter, Mind As Motion, reads more
like a thinly veiled proceedings of a technical conference on dynamics than “the first
comprehensive presentation of the dynamical approach to cognition” that it is touted to
be. Despite considerable efforts on the part of the editors, they nonetheless failed to
ensure that the individual chapters were written in a manner that would make them
accessible to cognitive scientists without considerable mathematical training. The
technical difficulty of the content has undoubtedly meant that the book has not had its
hoped-for impact. There is a clear conflict between the desires of the editors (“presenting



real research papers”) and the needs of the cognitive science research community
interested in an general understanding of the dynamical-systems approach to cognition.

This is the first significant difficulty with Mind As Motion. The second is that the
authors, in seeking to apply the tools of dynamical systems, often analyze physical
quantities that one has difficulty identifying with cognition.

The first difficulty is exemplified by the second chapter by Alec Norton
(“Dynamics: An Introduction”), which is supposed to be a short introduction to dynamics
for people not familiar with the mathematical underpinnings of the subject. After a few
elementary definitions, the author moves rapidly into the technical language of
differential equations and dynamical systems theory and the chapter ceases to be useful to
the uninitiated. And the five-page glossary added at the end of the book does little to
improve the situation. For example, here is how the glossary “explains” the concepts of
diffeomorphism: “This is a differentiable mapping of a space to itself with a differentiable
inverse. For example, the time-one map of a flow is a diffeomorphism.” and manifold:
“A geometric object that has fewer dimensions locally than the parametric space in which
it is embedded....Generally, a manifold is a topological space that is locally
homeomorphic to Rn, and is the most common setting for much of geometric dynamical
systems theory.” And the explanation of key concepts like flow, gradient system, orbit,
Poincaré map, trajectory, and vector field are equally technical for non mathematicians.
The point is that either one has a relatively strong background in mathematics, in general,
and in differential equations, in particular, and doesn’t need the chapter or, one doesn’t
have such a background and the chapter is of little use.

Tools for the study of dynamical systems

As we have already said, one of the major contributions of Mind as Motion is advocating
studying cognitive processes with a new arsenal of tools, largely developed in the domain
of the physics of complex, dynamical systems.

One type of dynamical systems approach to understanding a particular
phenomenon is to attempt to develop a set of equations that describe the evolution over
time of the entire system. Marco Guinti calls these Galilean dynamical models (chapter
18, “Dynamical Models of Cognition”). This technique, one that has long been used
fruitfully in physics and engineering, is essentially as follows. A variable of the system
which is deemed to be important (a “cognitive magnitude”) is identified and an equation
is formulated to describe the evolution of this magnitude over time. It is also common to
use a set of dynamical equations to characterize various components of a system rather
than the system as a whole. Examples of this approach are found in the various
connectionist models described in the book. Equations are used to describe various nodes
in the network without an attempt to introduce equations that describe the overall
behavior of the network.

The ultimate goal of dynamicists in cognitive science is, presumably, to develop
precise sets of equations to describe the behavior of real cognitive systems. This,
however, may never be possible due to the difficulties inherent in actually developing
equations that precisely describe the dynamics of such a complex system. A more
realistic approach to understanding the dynamical behavior of cognitive systems is to
make use of the graphical techniques — in particular, phase portraits — currently available



to dynamicists attempting to understand complex, non-linear systems. Phase portraits are
created by plotting at each time step the variables which characterize the state of the
system. A curve in such a graph describing the ‘flow’ of a system in time is called the
trajectory of the system. Phase portraits have been used with considerable success,
especially in understanding certain real, albeit relatively simple, experimental systems, as
well as simulations using connectionist nets.

In one of the more readable chapters in the book, Jeffrey Elman (chapter 8,
“Language as a Dynamical System”) uses phase portraits to study linguistic performance
using a simple recurrent connectionist network. The manner in which language
processing takes place is understood by the state of the hidden units in the network. The
principal components of the hidden unit activation vectors are used to construct phase
portraits of the system in the case of different types of sentences. The difference in the
sequential dependencies of the sentences are captured in the different trajectories of the
hidden unit phase portraits in the different situations.

Of particular interest in the study of real cognitive systems are phase portraits
determined by a particular embedding scheme (Takens, 1981). So, for example, assume
we have a sequence of values of some variable that changes in time as follows:

We can look at this sequence of values in a number of different ways. The simplest way
is to view them as a set of temporally varying raw values: {8, 5, 3, 4, 2, 8, ...}. But we
may not be able to detect any pattern in the variations. So, we “embed” the sequence in a
two-dimensional space by regarding, not the individual values, but consecutive pairs of
values formed by a “sliding time window” of length two: {(8, 5), (5, 3), (3, 4), (4, 2), (2,
8), ...}. In this case, each pair of points form a point in two-space. We look for a pattern
in these points. If no pattern appears for the two-dimensional embedding, we embed the
sequence in a three-dimensional space by using a time window of length three. Now, we
have a set of points: {(8, 5, 3), (5, 3, 4), (3, 4, 2), (4, 2, 8), ...} in three-space. Again, we
look to see if there is a recognizable pattern in the points. We continue this process for
ever higher dimensions. If we see a pattern for a particular embedding dimension, say
dimension n, we call this the n-dimensional phase portrait of the data. The graph that
describes the evolution of these values is called the phase portrait of the system.

Using this embedding technique the multidimensional structure of a complex
system can be uncovered with the use of data from a single variable. This method has
been widely applied in the study of various real dynamical systems. Using this method,
data from a single cognitive magnitude can be used to reveal the number of degrees of
freedom displayed by the system. An example of the use of this technique, was
demonstrated by Steven Reidbord and Dana Redington (chapter 17, “The Dynamics of
Mind and Body During Clinical Interviews: Research Trends, Potential, and Future
Directions”). Having identified the heart rate as an important cognitive magnitude in
studying the emotional state of people, they then used the embedding technique to
construct phase portraits of their subjects in different emotional conditions. Differences in
the emotional states of the subject were found to correspond to differences in the class of
phase portrait generated.

t0  t1 t2  t3  t4 t5  ....

 8   5    3   4   2    8  ....



Losing sight of cognition

We now turn to some of the more philosophical aspects of the dynamical hypothesis for
cognitive systems. First, we will consider the question of whether the dynamical systems
framework replaces the PSSH. As we pointed out above, one of the major problems with
the PSSH approach is that it places no importance on the underlying mechanisms that
give rise to symbols and the relationships between them. But many cognitive phenomena,
such as priming, color-contour binding, etc., are virtually impossible to model if
“subcognitive” (and neural) aspects are ignored altogether. Donald Hebb (1949) was one
of the first to explicitly address the issue of how low-level modifications of neurons gave
rise to high-level cognitive phenomena, in particular, learning. The rise of connectionism
in the 1980’s was an explicit response to the subcognitive shortcomings of traditional
artificial intelligence, just as the current interest in the Dynamical Hypothesis is an
extension of the overall concerns of connectionism. Many of these issues have been
discussed at length in review articles on the dynamical hypothesis by van Gelder (1998)
and Randall Beer (2000).

The dynamical hypothesis can be considered to be an extension of an information
processing approach to cognitive science, but with a significantly different focus than the
traditional artificial intelligence information processing paradigm. One of the dangers,
however, of the headlong rush to apply dynamics to all levels of cognitive processing is
losing sight of cognition. Understanding the deeper meaning of period doubling in a
dynamical system, for example, requires maintaining a clear focus on the high-level task
to be accomplished and the means by which the system can accomplish it. While it may
seem unnecessarily alarmist to speak out against the proliferation of such research, one
need not look very far to see myriad studies of dynamics in which the higher level
products of the dynamics are barely mentioned. Neuroscience journals are full of
complex descriptions of changes in the dynamics of neurons and neural systems that
never touch base with the purpose of these changes. They could just as easily be studying
the dynamics of digestion.

Consider, for example, Esther Thelen’s chapter on the development of embodied
cognition in infants (chapter 3, “Time-Scale Dynamics and the Development of an
Embodied Cognition”). The author goes to considerable length to convince us of the
importance of the dynamics of a child’s limb movement in the emergence of a higher
level awareness of its surroundings. Thelen explicitly links the dynamics of reaching to
emergent intentionality. While we are convinced of the ultimate importance of
embodiment (i.e., the necessary interaction with the environment of the body in the
development of cognition), her explicit link between reaching and intentionality is far
from obvious. One could do a thorough dynamical systems analysis of an amoeba’s
pseudopod extension towards a food particle, but this would certainly have nothing to do
with emerging intentionality. So one key question, which goes largely unanswered in this
book, is what types of dynamical systems are related to cognition, what types are not, and
why. (Dennett, 1998, makes a related point.)

The importance of embodiment



Let us focus for a moment on the notion of embodiment in cognition. This idea, of
considerable importance in the dynamical hypothesis framework, is that it is impossible
to understand cognition without reference to the bodies in which the cognitive processes
take place (Lakoff, 1986; Varela, Thompson, Rosch, 1993; etc.). In other words, the
disembodied, brain-in-a-vat cognition that has long been the plaything of philosophers of
mind is, in this view, nonsensical. Minds are products of bodies, of their structure, their
capacities and their limitations. And, as a result, it makes sense to study the dynamics,
not just of neurons, but of bodily movements in an attempt to study cognition. This is
what dynamicists mean when they talk about closing the dualistic gap between the mind
and the body, even though at the present stage of our understanding, we believe that it is
more reasonable to talk about narrowing, rather than closing, this gap.

In the traditional PSSH framework, cognition is the manipulation of various
symbols or representations in the head. But the low-level mechanisms that actually
produce transitions from one representation to another are generally absent from these
models. Thus, another advantage of a dynamical systems approach is that it provides a
parsimonious explanation for these transitions between these various representations.
From a dynamical systems perspective, the states of the system emerge from the
dynamics of the system itself. By varying certain critical parameters, the system makes a
transition (bifurcation) to a new state. Jordan Pollack (chapter 10, “The Induction of
Dynamic Recognizers”), for example, shows how his network is able to perform a serial
parity task only after a small change in the weights of the network produces a radical
change in the behavior of the network. The network’s limit behavior changes from being
a limit point to a limit cycle. Similarly, Jean Petitot’s article (chapter 9,
“Morphodynamics and Attractor Syntax: Constituency in Visual Perception and
Cognitive Grammar”) on language processing models the individual terms of a sentence
by attractors and the bifurcations between these attractors as the syntax relating the
attractors to one another.

This type of system is said to be ‘self-organizing’ and eliminates the need for the
“central executive” that is so crucial to traditional AI systems. The greater parsimony
entailed by the elimination of the need for a global executive to orchestrate the
appropriate state transitions of the system is one of the things that makes dynamical
systems approaches to cognitive science so appealing.

Conclusion

This is a book about the importance of the evolution of time in modeling psychological
processes. It presents various ways in which studies of cognition should incorporate time,
among them the use of equations to describe changes of cognitive magnitudes over time,
the use of recurrent connectionist models, or the use of graphical methods to uncover
structure in the temporal evolution of a process. It calls for the incorporation of the
framework of dynamics, which deals specifically with the temporal evolution of a
system, into the study of cognition. While this is certainly a promising approach, many
problems remain. These problems are too infrequently discussed and, as a result, the
uninformed reader is left with an inaccurate impression of the vast difficulties that lay
ahead. For example, much of current dynamical theory has been developed for physical
systems which do not show the problems of noise and lack of stationarity displayed by



biological and other complex systems (Crutchfield, 1998; French & Thomas, 1998; Rapp
1993). Further, the characterization of attractors requires huge amounts of data, implying
correspondingly huge amounts of calculation. Since in real cognition, the transition from
one state to another is extremely rapid, one must wonder how the types of highly
computationally intensive attractors described in this book could be processed by a real
brain. While certain authors (e.g., Thelen and Reidbord) do mention their inability to
characterize an attractor due to insufficient data, this crucial point is almost overlooked
entirely in this book. There should at least have been references to the methods in
nonlinear dynamics that have been specially developed to deal with short time series.

While the ideas presented in this book are important, it does not live up to its
dust-jacket description as the first comprehensive presentation of the dynamical approach
to cognition. Unfortunately, Mind As Motion comes up short in the difficult task of
conveying the ideas of dynamics as they apply to cognition to those readers not already
familiar with them.
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