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SUMMARY
To behave adaptively with sufficient flexibility, biological organisms must cognize beyond immediate reac-
tion to a physically present stimulus. For this, humans use visual mental imagery [1, 2], the ability to conjure
up a vivid internal experience from memory that stands in for the percept of the stimulus. Visually imagined
contents subjectively mimic perceived contents, suggesting that imagery and perception share common
neural mechanisms. Using multivariate pattern analysis on human electroencephalography (EEG) data, we
compared the oscillatory time courses of mental imagery and perception of objects. We found that represen-
tations shared between imagery and perception emerged specifically in the alpha frequency band. These
representations were present in posterior, but not anterior, electrodes, suggesting an origin in parieto-occip-
ital cortex. Comparison of the shared representations to computational models using representational sim-
ilarity analysis revealed a relationship to later layers of deep neural networks trained on object representa-
tions, but not auditory or semantic models, suggesting representations of complex visual features as the
basis of commonality. Together, our results identify and characterize alpha oscillations as a cortical signature
of representations shared between visual mental imagery and perception.
RESULTS AND DISCUSSION

Imagining and perceiving visual contents recruits similar brain

circuits [1, 3] with related neural dynamics [4, 5]. However, the

temporal dynamics of neural mechanismsmediating this similar-

ity as well as their nature remain less well understood. To char-

acterize these neural mechanisms and their temporal fingerprint,

we recorded brain responses with high temporal resolution using

electroencephalography (EEG) and analyzed them using multi-

variate pattern analysis [6–8] and model comparison through

representational similarity analysis [9–11]. We analyzed brain re-

sponses to twelve different visual objects (Figure 1A) that partic-

ipants (N = 38) either viewed as images (perception task; Fig-

ure 1B) or visually imagined after a spoken word cue (imagery

task; Figure 1C).

How do neural representations shared between imagery and

perception emerge? Unlike perception, imagery lacks feedfor-

ward information flow from the stimulus, suggesting that neural

representations shared between imagery and perception

emerge through feedback information flow. Feedforward and

feedback information in the visual brain are carried by different

neural oscillation channels: theta and gamma oscillations carry

feedforward information, and alpha and beta oscillations carry

feedback information [12, 13]. We thus expected representa-

tions shared between imagery and perception to emerge in the

alpha or beta frequency range.
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To determine the temporal dynamics of neural representations

in particular frequency bands, we used multivariate pattern anal-

ysis (MVPA) on time-frequency resolved EEG data (Figures 1D

and 1E). The general rationale is that if imagined and perceived

objects evoke similar neural activity, a classifier trained to

discriminate objects based on neural activity during imagery

will successfully classify these objects from neural activity during

perception and vice versa. Note that there is no reason to as-

sume that neural processing for imagery takes the exact same

time course as for perception—instead, neural processing

could be delayed [4], slowed [14], or even reversed [5]. We there-

fore used a time-generalization variant of MVPA, evaluating

classifier performance on all possible time point combinations

for perception (0–800 ms after image onset) and imagery

(0–2,500 ms after sound onset). Separately for each frequency

of interest (Figure 1D), this resulted in a two-dimensional classi-

fication accuracy matrix identifying time-point combinations,

during which neural representations are similar between imagery

and perception (Figure 1E).

Imagery and Perception Share Neural Dynamics in the
Alpha Frequency Band
The key result is that imagery and perception share neural dy-

namics in the alpha frequency band (Figure 1F; for timing,

see figure caption), but not in the theta or beta frequency band

(Figures S1A–S1C), even though we found strong object
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Figure 1. Methods and Results of Multivariate Classification Analyses
(A) Stimuli were a diverse set of twelve object images and twelve spoken words denoting these objects.

(B) In the perception task, participants viewed the object images in random order.

(C) In the mental imagery task, participants were cued to imagine an object by hearing the spoken word denoting the object.

(D) EEG data recorded from 64 electrodes during both tasks were epoched into trials and subjected to time-frequency decomposition usingMorlet wavelets. This

was done separately for each single trial and each electrode, yielding a trial-wise representation of induced oscillatory power. We aggregated these time-fre-

quency data into three frequency bands (theta: 5–7 Hz; alpha: 8–13 Hz; beta: 14–31 Hz). Averaging across all frequencies within each band yielded a time- and

frequency-resolved response vector (across EEG sensors) for each trial. These response vectors were entered into multivariate pattern analyses.

(E) Multivariate pattern classification was performed separately for each frequency band. As perception and imagery need not emerge with similar temporal

dynamics, we performed a time-generalization analysis in which we considered timing in the perception and imagery tasks independently. For every time point

combination during perception (0–800mswith respect to image onset) and imagery (0–2,500mswith respect to word onset) separately, we conducted a pairwise

cross-classification analysiswhere we trained support vectormachine (SVM) classifiers to discriminate between response patterns for two different objects (here:

car versus apple) when they were imagined and tested these classifiers on response patterns for the same two objects when they were perceived (and vice versa).

We averaged classification accuracies for all pairwise classification analyses between objects, yielding a single time-generalization matrix for each frequency

band. These matrices depict the temporal dynamics of representations shared between imagery and perception.

(F) We found significant cross-classification in the alpha frequency band, ranging from 200 to 660 ms in perception and from 600 to 2,280 ms in imagery. Peak

decoding latency was at 480 ms (95% confidence intervals: 479–485 ms) in perception and 1,340 ms (95% confidence intervals: 1,324–1,346 ms) in imagery.

(G) To spatially localize these shared representations, we performed separate time-generalization analyses for anterior and posterior electrodes in our EEG setup.

This analysis revealed significant cross-classification in the alpha band for posterior electrodes (from 20 to 800 ms during perception and from 660 to 2,500 ms

during imagery), but not in the anterior electrodes. This suggests that parieto-occipital alpha sources mediate the shared representations between perception

and imagery. Black outlines indicate time point combinations with above-chance classification (N = 38; non-parametric sign permutation tests; cluster-definition

threshold p < 0.05; cluster threshold p < 0.05; Bonferroni corrected by 3 for the number of frequency bands tested). Dec. acc., decoding accuracy.

See also Figure S1.
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classification in all frequency bands when analyzing perception

and imagery data separately (Figures S1H–S1J). This result

was robust to several analysis choices: it was independent of

changes in particular data aggregation choices for the multivar-

iate pattern analysis (Figures S1D–S1F and S1K–S1M); it held for

both possible directions of cross-classification analysis (from

imagery to perception and vice versa; Figures S1O and S1P); it

was achieved when imagery data were temporally aligned not

to sound onset but to sound offset (Figures S1Q–S1S); and it

held also when participant-specific alpha frequencies were

used (Figures S1T–S1V). Moreover, we found no shared neural

dynamics in broadband (evoked) responses (Figure S1G),

although they also contained robust object information when im-

agery and perception were analyzed separately (Figure S1N).

Our finding adds to previous research on shared representa-

tions between imagery and perception [1, 2, 4, 15–19] by specif-

ically identifying oscillations in the alpha frequency band as a
2622 Current Biology 30, 2621–2627, July 6, 2020
neural signature of representations shared between imagery

and perception. In particular, our findings go beyond previous

work suggesting that alpha oscillations play a role in mental im-

agery [20, 21] by specifying a dedicated role of alpha oscillations

in the encoding of particular visual contents.

Our findings characterize the temporal dynamics of the shared

representations. For one, we find that shared representations

emerge relatively later in imagery than in perception. This rein-

forces the notion that imagery and perception differ in their infor-

mation-processing dynamics [4, 14]. However, in our design,

participants had longer time (2,500 ms) to imagine the stimulus

than they had to perceive it (500 ms), which might have influ-

enced the dynamics. Systematic investigations using speeded

versus non-speeded imagery tasks are necessary to further

investigate this observation. A further observation is that shared

representations arise relatively late in the time course of visual

processing. They thus unlikely reflect early sensory processing
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in the first feedforward pass that is more rapid [6, 22–24]. Finally,

the cross-classification analysis generalizes over long periods of

time, suggesting persistent rather than transient neural dy-

namics. Persistent processing has previously been observed

during late visual processing and has been linked to high-level

ventral visual cortex [6]. Alternatively, the timing observed here

is also consistent with neuronal latencies of visual processing

in memory-related circuits of the medial temporal lobe [25], as

well as the timing of reinstatement of encoded memory signals

during retrieval [26–30] that also show persistence [31–33].

A large body of research has indicated that alpha oscillations

in the brain are not a unified but diverse phenomenon, implicated

in many cognitive functions and reflecting different mechanisms

and brain networks [34–41]. One key distinction is between pari-

eto-occipital alpha mechanisms implicated more in perceptual

functions and frontal alpha implicated more in cognitive func-

tions, such as executive control [42]. To investigate whether

the shared representations between imagery and perception

are related to one or the other, we repeated the analysis

restricted to either anterior or posterior EEG electrodes (Fig-

ure 1G). The cross-classification analysis in the alpha band

yielded significant cross-classification for the posterior, but not

the anterior, EEG electrodes. A supplementary analysis of clas-

sifier weight distributions across the scalp provided consistent

evidence, highlighting posterior EEG electrodes asmost strongly

relevant for classification in both imagery and perception (Fig-

ures S1X and S1Y). This lends further support to the idea that

shared representations between imagery and perception are

more strongly related to parieto-occipital alpha oscillations

implicated in perceptual functions.

Together, our finding that imagery and perception share repre-

sentations in the alpha frequency band from parieto-occipital

sources has two implications. First, they elucidate the neural

mechanisms of conscious phenomenal experience. Visually

imagined contents are subjectively felt to be similar to perceived

contents, and our results suggest that alpha oscillations play a

role in mediating this subjective similarity. Second, our findings

advance our general understanding of alpha oscillations. They

are hard to reconcile with the view that alpha oscillations

reflect cortical idling [43] or inhibition of irrelevant information

[35, 44, 45], as we find them to encode task-relevant contents

in memory and perception. Instead, our results are more aligned

with the idea that alpha oscillations can have an active role in in-

formation processing. Recent evidence for this view stems from

research in feedback communication [12, 13], working memory

[26], and memory [39, 46]. However, note that our study estab-

lished the encoding of contents in the alpha frequency band

rather than a relationship between the fidelity of encoding and

net alpha power (that did not predict shared information between

imagery and perception in our study; Figure S1W). Further

research is needed to unravel the relation between net alpha po-

wer changes and the information alpha band oscillations contain.

A remaining open question is whether shared representations

indeed reflect feedforward- or feedback-related processing in

perception. This question cannot be addressed with our data

alone. However, the fact that we find shared representations in

the alpha band, which is generally associated with top-down

processing, speaks for a role of feedback. Future studies

comparing imagery to perception with reduced feedback
processing, e.g., through masking [47–49], with imagery could

shed light on this issue.

One limitation of our study is that our analysis depends on

strong averaging of individual trials (see STAR Methods). We

chose to apply averaging because of the potentially low signal-

to-noise ratio (SNR) of imagery signals and because single-trial

imagery responses may be strongly dispersed in time and thus

only highly averaged data can reveal them. This averaging

does not impede the main conclusions of the current paper,

but it should be noted that we did not decode the content of par-

ticipant’s mental imagery on a single-trial basis. To achieve ac-

curate single-trial classification, future research might increase

detection power by employing a design that allows time locking

the analysis to the end rather than the beginning of imagery [5] or

by using classification methods that take temporal variability in

single trials into account [50].

The Format of Shared Representations in the Alpha
Frequency Band
Although the cross-classification analysis established that imag-

ery and perception share representations of particular contents,

it cannot by itself tell the format of these representations, i.e.,

which features of the objects are shared in the representations

[11, 14, 51–54]. One possibility is that the signal indexes shared

visual representations of low- or high-level features [1, 3, 15, 16,

55]. Another one is that it reflects category membership that is

abstract and semantic in nature. A third possibility is that it re-

flects verbal representations, for instance, because participants

silently vocalize the word cue they hear in the imagery task dur-

ing the perception task. To arbitrate between these possibilities,

we operationalized them in computational models that we

compared to alpha-frequency signals in the EEG using represen-

tational similarity analysis [10, 11] (Figure 2A; models and

respective results color-coded; EEG data in gray). We used the

following models (Figure 2A): (1) as a visual model, we used a

deep neural network (DNN) model trained on visual object clas-

sification (VGG-19, color-coded red) [56]; (2) as a semantic cate-

gory model, we used an explicit category model that captures

the objects’ membership in four superordinate-level categories

(animals, body parts, plants, and man-made objects; color-

coded purple); and (3) as auditory models, we used both a

commonly used spectrotemporal model [57] (color-coded

green) and a DNN model trained on auditory word and musical

genre classification [58] (color-coded blue). In brief, we found

that the higher layers of the DNN trained on visual object catego-

rization were related to representations shared between imagery

and perception in the alpha frequency band (Figure 2B), but not

the semantic model (Figure 2C) or the auditory models (Fig-

ure 2D). This difference was not trivially related to one model

generally fitting its associated domain better than the other: as

expected, we found robust and significant fits between the visual

DNN with the perception data (Figure S2D) and between the

auditory models and the imagery data (Figure S2E). Together,

this suggests that the shared representations between imagery

and perception in the alpha frequency band are of complex vi-

sual features as found in the high layers of DNNs trained on ob-

ject recognition.

High processing layers of visual DNNs contain high-

dimensional representations of whole objects and object parts
Current Biology 30, 2621–2627, July 6, 2020 2623



Figure 2. Methods and Results of Relating Shared Representations to Computational Models

(A) We characterized the format of the representations shared between imagery and perception in the alpha frequency band by relating EEG signals to

computational models using representational similarity analysis [10, 11]. For each participant, we first constructed a 123 12 neural representational dissimilarity

matrix (RDM) that contained the pairwise cross-classification accuracy between imagery and perception for each possible object pair (data, models, and results

are color-coded similarly; EEG data here in gray). This summarizes the representational geometry of the shared representations between imagery and perception

in the alpha band. We then related (Spearman’s R) neural RDMs to model RDMs that captured hypotheses about the format of the shared representations: (1) a

deep neural network (DNN) trained on visual object classification (VGG-19 [56]; color-coded red) to assess visual processing; (2) a category model that captures

superordinate-level category membership of the objects in 4 categories (animals, body part, plants, and man-made objects; color-coded purple) to assess

semantic processing; and (3) a spectrotemporal auditory model [57] (color-coded green) and a DNN with two branches trained on musical genre and auditory

word classification, respectively [58] (color-coded blue) to assess auditory processing. Visualizations of all model RDMs can be found in Figures S2A–S2C.

(B–D) We found a significant relationship between neural and model RDMs only for the late layers of the DNN trained on visual object classification (B), but not for

the semantic model (C) or the auditory models (D). Error bars represent standard errors of the mean. Asterisks indicate significant correlations between model

RDMs and neural RDMs (N = 38; non-parametric sign-permutation tests; *p < 0.05; **p < 0.01; false discovery rate [FDR] corrected for multiple comparisons

across RDMs per model).
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[59–64] and predict brain activity particularly well in high-level vi-

sual cortex [65–70] (but see also [71]). Our results therefore sug-

gest that shared representations between imagery and percep-

tion in the alpha band are representations of complex visual

features as encoded in high-level visual cortex. This further re-

fines the conclusion that the shared representations between im-

agery and perception originate from posterior brain regions,

potentially reflecting activations in high-level ventral visual cor-

tex. By contrast, we did not observe a relationship to early

DNN layers, and thus our results do not allow conclusions about

the role of low-level visual cortex. This might be so as low-level

visual cortex might have been activated by both imagery and

perception, but in different ways, and thus not captured by our

cross-decoding approach. Further, activation of early visual cor-

tex in imagery has been observed to depend on factors such as

task [72] and vividness [73], for which our design was not opti-

mized. Future research is needed to reveal the role of oscillatory

activity in imagery, taking these factors into explicit account.

Our results suggest that the observed cross-classification

cannot be easily explained by effects of spatial attention only.
2624 Current Biology 30, 2621–2627, July 6, 2020
Spatial location of stimuli perceived or kept in memory can be

decoded from the alpha frequency band [26, 41, 74], suggesting

that cross-classification of objects between imagery and

perception might reflect spatial attention to particular visual fea-

tures in perception, and their likely location in the feedback flow

during imagery. However, no attentional mechanisms are imple-

mented in the object-classification DNN used here. Future

studies that manipulate both content and location of imagery

[55] could further disentangle the role of those factors.

The implications of our study are limited in principle by the na-

ture and size of the stimulusmaterial used to probe brain activity.

Visual-imagery-related brain signals are low in SNR overall, and

imagery studies thus commonly focused on two-category de-

signs, such as places versus faces [15] or animate versus inani-

mate objects [5].

Even most encoding model studies that harvested the higher

SNR of veridical perceptual signals for model training, allowing

them to use a large number of conditions (even >1,000), tested

the model on a much smaller number of conditions (5 or 6) in im-

agery [75, 76]. Here, we choose a rather diverse set of twelve
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everyday objects that differed widely in their shape, color, and

orientation. Their pairwise comparison resulted in 66 values

that offer a rich characterization of the brain dynamics. In fact,

it was our relatively diverse stimulus set that allowed us to arbi-

trate different contents of shared representations. In particular,

our finding that representations shared between imagery and

perception in the alpha frequency band were representationally

similar to a DNN trained on object categorization points toward

a promising venue: magneto- and electroencephalography (M/

EEG) studies using an encoding approach based on DNNs

akin to a recent fMRI study [77]might be able to distinguish larger

numbers of stimuli.

A Neural Signature of Representations Shared between
Imagery and Perception
In sum, our results identify and characterize the oscillatory signa-

ture of representations shared between visual mental imagery

and perception. We find that shared representations of objects

are present in the alpha frequency band, they originate from pos-

terior locations in the brain, and they are similar in format to rep-

resentations in higher layers of visual deep neural networks. By

identifying alpha oscillations as a neural mechanism mediating

the perceived subjective similarity between visual imagery and

perception, our findings elucidate the neural mechanisms of

conscious phenomenal experience. They also further our under-

standing of brain oscillations, suggesting that activity in the alpha

frequency band plays an active role in cortical communication by

mediating visual contents.

STAR+METHODS

Detailed methods are provided in the online version of this paper

and include the following:

d KEY RESOURCES TABLE

d RESOURCE AVAILABILITY
B Lead contact

B Materials availability

B Data and code availability

d EXPERIMENTAL MODEL AND SUBJECT DETAILS

d METHOD DETAILS

B Stimuli

B Experimental design

B EEG acquisition and preprocessing

B Time-frequency decomposition

B Classification of oscillatory responses

B Localization of shared representations

B The format of shared representations

B Classification from broadband responses

d QUANTIFICATION AND STATISTICAL ANALYSIS

SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.

cub.2020.04.074.

ACKNOWLEDGMENTS

This work was funded by the German Research Foundation (DFG) (CI241/1-1

and CI241/3-1 to R.M.C.; KA4683/2-1 to D.K.), by the European Research
Council (ERC) (803370 to R.M.C.), and by the Chinese Scholarship Council

(CSC) (201706750004 to S.X.). Computing resources were provided by the

high-performance computing facilities at ZEDAT, Freie Universit€at Berlin.
AUTHOR CONTRIBUTIONS

Conceptualization, S.X., D.K., and R.M.C.; Methodology, S.X.; Investigation,

S.X.; Writing, S.X., D.K., and R.M.C.; Visualization, D.K. and R.M.C.; Supervi-

sion, D.K. and R.M.C.; Project Administration, D.K. and R.M.C.; Funding

Acquisition, D.K. and R.M.C.
DECLARATION OF INTERESTS

The authors declare no competing interests.

Received: August 22, 2019

Revised: April 6, 2020

Accepted: April 27, 2020

Published: June 11, 2020; corrected online: July 13, 2020

REFERENCES

1. Dijkstra, N., Bosch, S.E., and van Gerven, M.A.J. (2019). Shared neural

mechanisms of visual perception and imagery. Trends Cogn. Sci. 23,

423–434.

2. Pearson, J. (2019). The human imagination: the cognitive neuroscience of

visual mental imagery. Nat. Rev. Neurosci. 20, 624–634.

3. Pearson, J., Naselaris, T., Holmes, E.A., and Kosslyn, S.M. (2015). Mental

imagery: functional mechanisms and clinical applications. Trends Cogn.

Sci. 19, 590–602.

4. Dijkstra, N., Mostert, P., Lange, F.P., Bosch, S., and van Gerven, M.A.

(2018). Differential temporal dynamics during visual imagery and percep-

tion. eLife 7, e33904.

5. Linde-Domingo, J., Treder, M.S., Kerr�en, C., and Wimber, M. (2019).

Evidence that neural information flow is reversed between object percep-

tion and object reconstruction from memory. Nat. Commun. 10, 179.

6. Cichy, R.M., Pantazis, D., and Oliva, A. (2014). Resolving human object

recognition in space and time. Nat. Neurosci. 17, 455–462.

7. Carlson, T.A., Hogendoorn, H., Kanai, R., Mesik, J., and Turret, J. (2011).

High temporal resolution decoding of object position and category. J. Vis.

11, 9.

8. King, J.-R., and Dehaene, S. (2014). Characterizing the dynamics of

mental representations: the temporal generalization method. Trends

Cogn. Sci. 18, 203–210.

9. Mur,M., Bandettini, P.A., and Kriegeskorte, N. (2009). Revealing represen-

tational content with pattern-information fMRI–an introductory guide. Soc.

Cogn. Affect. Neurosci. 4, 101–109.

10. Kriegeskorte, N., Mur, M., and Bandettini, P. (2008). Representational sim-

ilarity analysis - connecting the branches of systems neuroscience. Front.

Syst. Neurosci. 2, 4.

11. Kriegeskorte, N., and Kievit, R.A. (2013). Representational geometry: inte-

grating cognition, computation, and the brain. Trends Cogn. Sci. 17,

401–412.

12. Bastos, A.M., Vezoli, J., Bosman, C.A., Schoffelen, J.-M., Oostenveld, R.,

Dowdall, J.R., De Weerd, P., Kennedy, H., and Fries, P. (2015). Visual

areas exert feedforward and feedback influences through distinct fre-

quency channels. Neuron 85, 390–401.

13. van Kerkoerle, T., Self, M.W., Dagnino, B., Gariel-Mathis, M.-A., Poort, J.,

van der Togt, C., and Roelfsema, P.R. (2014). Alpha and gamma oscilla-

tions characterize feedback and feedforward processing in monkey visual

cortex. Proc. Natl. Acad. Sci. USA 111, 14332–14341.

14. Smith, M.L., Gosselin, F., and Schyns, P.G. (2012). Measuring internal rep-

resentations from behavioral and brain data. Curr. Biol. 22, 191–196.
Current Biology 30, 2621–2627, July 6, 2020 2625

https://doi.org/10.1016/j.cub.2020.04.074
https://doi.org/10.1016/j.cub.2020.04.074
http://refhub.elsevier.com/S0960-9822(20)30590-X/sref1
http://refhub.elsevier.com/S0960-9822(20)30590-X/sref1
http://refhub.elsevier.com/S0960-9822(20)30590-X/sref1
http://refhub.elsevier.com/S0960-9822(20)30590-X/sref2
http://refhub.elsevier.com/S0960-9822(20)30590-X/sref2
http://refhub.elsevier.com/S0960-9822(20)30590-X/sref3
http://refhub.elsevier.com/S0960-9822(20)30590-X/sref3
http://refhub.elsevier.com/S0960-9822(20)30590-X/sref3
http://refhub.elsevier.com/S0960-9822(20)30590-X/sref4
http://refhub.elsevier.com/S0960-9822(20)30590-X/sref4
http://refhub.elsevier.com/S0960-9822(20)30590-X/sref4
http://refhub.elsevier.com/S0960-9822(20)30590-X/sref5
http://refhub.elsevier.com/S0960-9822(20)30590-X/sref5
http://refhub.elsevier.com/S0960-9822(20)30590-X/sref5
http://refhub.elsevier.com/S0960-9822(20)30590-X/sref5
http://refhub.elsevier.com/S0960-9822(20)30590-X/sref6
http://refhub.elsevier.com/S0960-9822(20)30590-X/sref6
http://refhub.elsevier.com/S0960-9822(20)30590-X/sref7
http://refhub.elsevier.com/S0960-9822(20)30590-X/sref7
http://refhub.elsevier.com/S0960-9822(20)30590-X/sref7
http://refhub.elsevier.com/S0960-9822(20)30590-X/sref8
http://refhub.elsevier.com/S0960-9822(20)30590-X/sref8
http://refhub.elsevier.com/S0960-9822(20)30590-X/sref8
http://refhub.elsevier.com/S0960-9822(20)30590-X/sref9
http://refhub.elsevier.com/S0960-9822(20)30590-X/sref9
http://refhub.elsevier.com/S0960-9822(20)30590-X/sref9
http://refhub.elsevier.com/S0960-9822(20)30590-X/sref10
http://refhub.elsevier.com/S0960-9822(20)30590-X/sref10
http://refhub.elsevier.com/S0960-9822(20)30590-X/sref10
http://refhub.elsevier.com/S0960-9822(20)30590-X/sref11
http://refhub.elsevier.com/S0960-9822(20)30590-X/sref11
http://refhub.elsevier.com/S0960-9822(20)30590-X/sref11
http://refhub.elsevier.com/S0960-9822(20)30590-X/sref12
http://refhub.elsevier.com/S0960-9822(20)30590-X/sref12
http://refhub.elsevier.com/S0960-9822(20)30590-X/sref12
http://refhub.elsevier.com/S0960-9822(20)30590-X/sref12
http://refhub.elsevier.com/S0960-9822(20)30590-X/sref13
http://refhub.elsevier.com/S0960-9822(20)30590-X/sref13
http://refhub.elsevier.com/S0960-9822(20)30590-X/sref13
http://refhub.elsevier.com/S0960-9822(20)30590-X/sref13
http://refhub.elsevier.com/S0960-9822(20)30590-X/sref14
http://refhub.elsevier.com/S0960-9822(20)30590-X/sref14


ll
OPEN ACCESS Report
15. O’Craven, K.M., and Kanwisher, N. (2000). Mental imagery of faces

and places activates corresponding stiimulus-specific brain regions.

J. Cogn. Neurosci. 12, 1013–1023.

16. Vetter, P., Smith, F.W., andMuckli, L. (2014). Decoding sound and imagery

content in early visual cortex. Curr. Biol. 24, 1256–1262.

17. Kosslyn, S.M., Behrmann, M., and Jeannerod, M. (1995). The cognitive

neuroscience of mental imagery. Neuropsychologia 33, 1335–1344.

18. Stokes, M., Thompson, R., Cusack, R., and Duncan, J. (2009). Top-down

activation of shape-specific population codes in visual cortex during

mental imagery. J. Neurosci. 29, 1565–1572.

19. Reddy, L., Tsuchiya, N., and Serre, T. (2010). Reading the mind’s eye: de-

coding category information during mental imagery. Neuroimage 50,

818–825.

20. Kaufman, L., Schwartz, B., Salustri, C., and Williamson, S.J. (1990).

Modulation of spontaneous brain activity during mental imagery.

J. Cogn. Neurosci. 2, 124–132.

21. Slatter, K.H. (1960). Alpha rhythms and mental imagery. Electroencephal.

Clin. Neurophysiol. 12, 851–859.

22. Hung, C.P., Kreiman, G., Poggio, T., and DiCarlo, J.J. (2005). Fast readout

of object identity from macaque inferior temporal cortex. Science 310,

863–866.

23. Schmolesky, M.T., Wang, Y., Hanes, D.P., Thompson, K.G., Leutgeb, S.,

Schall, J.D., and Leventhal, A.G. (1998). Signal timing across the macaque

visual system. J. Neurophysiol. 79, 3272–3278.

24. Luck, S.J. (2005). An Introduction to the Event-Related Potential

Technique (MIT).

25. Mormann, F., Kornblith, S., Quiroga, R.Q., Kraskov, A., Cerf, M., Fried, I.,

and Koch, C. (2008). Latency and selectivity of single neurons indicate hi-

erarchical processing in the human medial temporal lobe. J. Neurosci. 28,

8865–8872.

26. Sutterer, D.W., Foster, J.J., Adam, K.C.S., Vogel, E.K., and Awh, E. (2019).

Item-specific delay activity demonstrates concurrent storage of multiple

active neural representations in working memory. PLoS Biol. 17,

e3000239.

27. Johnson, J.D., Price, M.H., and Leiker, E.K. (2015). Episodic retrieval in-

volves early and sustained effects of reactivating information from encod-

ing. Neuroimage 106, 300–310.

28. Jafarpour, A., Fuentemilla, L., Horner, A.J., Penny, W., and Duzel, E.

(2014). Replay of very early encoding representations during recollection.

J. Neurosci. 34, 242–248.

29. Kurth-Nelson, Z., Barnes, G., Sejdinovic, D., Dolan, R., and Dayan, P.

(2015). Temporal structure in associative retrieval. eLife 4, e04919.

30. Staresina, B.P., and Wimber, M. (2019). A neural chronometry of memory

recall. Trends Cogn. Sci. 23, 1071–1085.

31. Staresina, B.P., Reber, T.P., Niediek, J., Boström, J., Elger, C.E., and

Mormann, F. (2019). Recollection in the human hippocampal-entorhinal

cell circuitry. Nat. Commun. 10, 1503.

32. Yaffe, R.B., Kerr, M.S.D., Damera, S., Sarma, S.V., Inati, S.K., and

Zaghloul, K.A. (2014). Reinstatement of distributed cortical oscillations oc-

curs with precise spatiotemporal dynamics during successful memory

retrieval. Proc. Natl. Acad. Sci. USA 111, 18727–18732.

33. Jang, A.I., Wittig, J.H., Jr., Inati, S.K., and Zaghloul, K.A. (2017). Human

cortical neurons in the anterior temporal lobe reinstate spiking activity dur-

ing verbal memory retrieval. Curr. Biol. 27, 1700–1705.e5.

34. Palva, S., and Palva, J.M. (2007). New vistas for a-frequency band oscilla-

tions. Trends Neurosci. 30, 150–158.

35. Klimesch, W., Sauseng, P., and Hanslmayr, S. (2007). EEG alpha oscilla-

tions: the inhibition-timing hypothesis. Brain Res. Brain Res. Rev. 53,

63–88.

36. Klimesch, W. (1999). EEG alpha and theta oscillations reflect cognitive and

memory performance: a review and analysis. Brain Res. Brain Res. Rev.

29, 169–195.
2626 Current Biology 30, 2621–2627, July 6, 2020
37. Jensen, O., Gips, B., Bergmann, T.O., and Bonnefond, M. (2014).

Temporal coding organized by coupled alpha and gamma oscillations pri-

oritize visual processing. Trends Neurosci. 37, 357–369.

38. Hanslmayr, S., Gross, J., Klimesch, W., and Shapiro, K.L. (2011). The role

of a oscillations in temporal attention. Brain Res. Brain Res. Rev. 67,

331–343.

39. Hanslmayr, S., Staudigl, T., and Fellner, M.-C. (2012). Oscillatory power

decreases and long-term memory: the information via desynchronization

hypothesis. Front. Hum. Neurosci. 6, 74.

40. Busch, N.A., Dubois, J., and VanRullen, R. (2009). The phase of ongoing

EEG oscillations predicts visual perception. J. Neurosci. 29, 7869–7876.

41. Popov, T., Gips, B., Kastner, S., and Jensen, O. (2019). Spatial specificity

of alpha oscillations in the human visual system. Hum. Brain Mapp. 40,

4432–4440.

42. Sadaghiani, S., and Kleinschmidt, A. (2016). Brain networks and a-oscilla-

tions: Structural and functional foundations of cognitive control. Trends

Cogn. Sci. 20, 805–817.
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The dataset generated during this study is available at OSF, https://doi.org/10.17605/OSF.IO/YKP9W.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

38 healthy participants with normal or corrected-to-normal visual acuity (age: mean ± SD = 24.1 ± 4.99 years, 30 female) participated in

the study. All procedures were approved by the ethical committee of the Freie Universit€at Berlin and conducted in accordance with the

Declaration of Helsinki. Participants gave written informed consent and received either money or course credits for compensation.

METHOD DETAILS

Stimuli
The stimulus set consisted of a set of object images and audio recordings of a human voice uttering their corresponding German

names. The image set comprised 12 silhouette color photographs of everyday objects on a gray background (Figure 1A). In addition

to these 12 objects, an image of a paper clip was used as a target stimulus in catch trials of the perception task (see below). The audio

recordings were 12 spoken German words taken from a German standard dictionary website (Duden, https://www.duden.de), with

each word corresponding to one of the object images. Each recording was digitized at a 44.1 kHz sampling rate and normalized by

their root mean squared amplitude. The average duration of the sound recordings was 554.3ms (SD: ± 17.8ms).

Experimental design
The experiment consisted of two identical recording sessions, performed on two different days.Within each session, participants first

completed the perception task (Figure 1B) and then themental imagery task (Figure 1C). Additionally, they completed a third, auditory

task, which was related to a different research question, and is not reported in the current manuscript. Experimental stimuli were

delivered using Psychtoolbox [79].

In the perception task, participants viewed the object images. On each trial, one of the object images (�2.9� visual angle) was pre-

sented for 500 ms at the center of the screen, overlaid with a black fixation cross. Participants were instructed to press a button and

blink their eyes when the image of the paper clip appeared (on average every 5th trial). Trials were separated by an inter-trial interval
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(ITI) of 300ms, 400ms, or 500ms, duringwhich only the fixation crosswas presented. Participants were instructed tomaintain central

fixation throughout the experiment. Following catch trials, the ITI was lengthened by 1000ms to avoid contaminating the subsequent

trial with motor artifacts. In each recording session, participants completed 600 trials of the perception task, split into two blocks

separated by a self-paced break.

In the mental imagery task, participants were presented with the audio recordings of the words and were asked to actively imagine

the object corresponding to the word they had heard. Each trial started with a red fixation cross, 500 ms after which the audio

recording of an object name was played. Participants were instructed to visually imagine the corresponding object image as soon

as they heard the object name for 2,500 ms. After the imagery period, participants indicated whether the vividness of their mental

image was high or low by selecting one of two letters (H versus L) on a 1,500 ms response screen. The positions of the response

options were counterbalanced across trials. Participants indicated high vividness of their imagery in the majority of trials (83.4%,

SD: ± 0.09), indicating that, subjectively, participants formed precise mental images of the objects. Trials were separated by an

ITI of 300 ms, 400 ms or 500 ms, where a black fixation cross was presented. In each recording session, participants completed

480 trials of the imagery task, split into four blocks interrupted by self-paced breaks.

To familiarize participants with the mental imagery task and to make sure they could vividly imagine the objects, we trained them in

imagining our object images prior to the mental imagery task. During this training procedure, participants practiced imagining the 12

objects after hearing audio recordings of their names. On each trial of the training procedure, participants first viewed one of the ob-

ject images for as long as they wished, in order to familiarize themselves with the image. After they were confident that they could

imagine the object, they proceeded to the 2,500 ms imagery period, where they first heard the audio recording and then imagined

the object. After this imagery period, participants again viewed the object image for as long as they wished, in order to self-evaluate

the correctness of their imagery. After each object was trained once (i.e., after 12 trials), participants entered a two-alternative forced-

choice test procedure, where on each trial (one for every object, i.e., 12 trials) an object image from the stimulus set was presented

alongside with a very similar foil image not from the stimulus set. Foil images were drawn randomly from a set of 3 alternatives. If

participants achieved 80% correct in this test, they proceeded to the main experiment. If participants failed to achieve 80% correct,

the training procedure and the subsequent test were repeated until the participant reached 80% correct.

EEG acquisition and preprocessing
EEG data was recorded using an EASYCAP 64-channel system and Brainvison actiCHamp amplifier. The 64 electrodes were ar-

ranged in accordance with the standard 10-10 system. Acquisition was continuous with a sampling rate of 1000 Hz and the EEG

data was filtered online between 0.3 and 100 Hz. All electrodes were referenced online to the Fz electrode. Offline preprocessing

was carried out using Brainstorm [80]. Eyeblinks and eye movements were detected and removed with an independent component

analysis on frontal electrodes Fp1, Fp2, AF7 and AF8 in the 64-channel EASYCAP system as implemented in the ‘SSP: Eye blinks’

(Signal-space projection) algorithm in Brainstorm. We visually inspected the components and removed those resembling the spatio-

temporal properties of eyeblinks and eye movements. The number of components removed was between one and four for each

participant, and a clear eye-blink component was always found and removed. To avoid edge artifacts in the subsequent time-fre-

quency decomposition, the continuous EEG raw datawas extracted in epochs between 600ms pre-stimulus and 1100ms post-stim-

ulus in the visual perception task and between 600 ms pre-stimulus and 3100 ms post-stimulus in the mental imagery task. For the

main analysis data were time-locked to the onset of the visual image in the perception task and to the onset of the auditory word in the

imagery task; time-locking the imagery data to the offset of each word yielded qualitatively similar results in the key analyses

described below (Figures S1Q–S1S). The epoched data was baseline-corrected by subtracting themean of the pre-stimulus interval,

separately for each channel and trial.

Time-frequency decomposition
EEGdata recorded for the visual perception task and for themental imagery taskwere analyzed separately. To recover induced oscil-

latory responses, the data was convolved with complex Morlet wavelets (constant length of 600 ms, logarithmically spaced in 20

frequency bins between 5 Hz and 31 Hz), separately for each trial and each sensor. By taking the square root of resulting time-fre-

quency coefficients, we obtained the absolute power values for each time point and each frequency between 5Hz and 31 Hz. These

power values were normalized to reflect relative changes (expressed in dB) with respect to the pre-stimulus baseline (�500 ms to

�300ms relative to stimulus onset). To increase the signal-to-noise ratio of all further analyses, we downsampled the time-frequency

representations to a temporal resolution of 50 Hz (by averaging data in 20 ms-bins) and aggregated the 20 frequency bins into three

discrete frequency bands (which we analyzed separately): theta (5-7 Hz, 5 bins), alpha (8-13 Hz, 6 bins) and beta (14-31 Hz, 9 bins).

Classification of oscillatory responses
To uncover shared representations between perception and imagery, we trained classifiers to discriminate pairs of objects from EEG

data recorded during one task (i.e., perceiving an apple versus perceiving a car) and tested them on EEG data recorded for the same

two objects in the other task (i.e., imagining an apple versus imagining a car). Above-chance classification performance in this cross-

task procedure indicates that similar representations are evoked by imagining and perceiving objects. Classification was performed

in a time- and frequency band-resolved fashion, that is separately for each frequency band and each time point. This allowed us to

quantify (1) which frequency bands mediate these shared representations, and (2) with which temporal dynamics these representa-

tions emerge.
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The detailed steps of the procedure are as follows. First, the data for each trial, each frequency band, and each time point was

unfolded into a single pattern vector. For this, the data was averaged across frequencies contained in the frequency band (e.g.,

for the 6 frequency bins between 8 and 13 Hz for the alpha band), yielding a 63-element pattern vector (i.e., one value for each elec-

trode). Note that results did not depend on the particulars of how data was aggregated in the frequency domain: A control analysis in

which we, instead of averaging across the frequency bins in each band, concatenated the data across all frequency bins (e.g., 6 fre-

quency bins 3 63 electrode pattern vectors for the alpha band) yielded qualitatively equivalent results (Figures S1G–S1L).

Second, we created four pseudo-trials for every condition by averaging pattern vectors across trials where the same object was

shown in the same task: for example, this resulted in four pseudo-trials for the apple in the imagery task, each constituting the

average of 25% of the available trials (assigned randomly).

Third, we trained and tested linear support vector machines (C-SVC with a linear kernel and a cost parameter of c = 1, as imple-

mented in the libsvm package [81]) using those pseudo-trials. This classificationwas performed across tasks: For each pairwise com-

bination of objects, we trained classifiers to discriminate the objects using the four pseudo-trials in one task (e.g., the perception

task). Then we tested these classifiers on the same two objects using data from the four pseudo-trials in the other task (e.g., the im-

agery task). Classification was repeated across both train-test directions (i.e., train on perception and test on imagery data, and train

on imagery and test on perception data) and across all pairwise object combinations, and classifier performance (i.e., classification

accuracy) was averaged across these repetitions. Averaging was performed along the ‘‘perception’’ and ‘‘imagery’’ axes of both

analysis variants, so that a successful generalization from perception at 200ms to imagery at 800ms ended up at the very same point

in the time generalization matrix, independently of the train-test direction. Results were consistent across both train-test directions

(Figures S1O and S1P). Finally, the whole classification analysis was repeated 100 times, with new random assignments of trials into

pseudo-trials, and results were averaged across these 100 repeats.

Importantly, as the temporal dynamics of cortical responses to perceived and imagined objects are not expected to be identical

(e.g., responses during imagery could be delayed, slowed or reversed), we performed classification analyses in a time-generalization

fashion [8]. That is, we did not only train and test classifiers on the same time points with respect to stimulus presentation, but we

trained and tested classifiers on each combination of time points from the perception task (i.e., from 0 to 800mswith respect to image

onset) and the imagery task (i.e., from 0 to 2,500 ms with respect to sound onset). The analysis thus yielded time generalization

matrices that indicate how well classifiers trained at one particular time point during perception perform at each time point during

imagery (and vice versa). The resulting time-generalization matrices thereby yielded a full temporal characterization of shared rep-

resentations between perception and imagery, separately for each of the three frequency bands (Figures S1A–S1C and S1D–S1F

for alternative data aggregation method).

In addition to the cross-task classification analysis, we also performed a within-task classification analysis where we classified ob-

jects from EEG data recorded within one task, i.e., solely for the perception task or solely for the imagery task, again separately for

each frequency band. This analysis was carried out in the sameway as the cross-classification analysis (see above) with a leave-one-

pseudo-trial-out cross-validation scheme:We trained classifiers to discriminate two objects using data from three of the four pseudo-

trials and then tested these classifiers using data from the remaining, the fourth pseudo-trial. Classification was repeated 100 times,

with new random assignments of trials into pseudo-trials, and results were averaged across these 100 repeats. For the within-task

classification analyses, we yoked training and testing times, leading to a time course of classification accuracies for each frequency

band and task (Figures S1H–S1M).

In the main analyses we chose a pre-defined, canonical range of frequencies to define the alpha band (8-13 Hz). However, peak

alpha frequencies may vary between participants [78], suggesting that participant-specific alpha band should be defined separately

for each participant. To determine the role of varying individual alpha frequencies on our analysis, we performed the cross-classifi-

cation analysis based on each participant’s individual peak alpha frequencies and respective alpha band definitions. We defined

participant-specific peak frequencies and respective bands using the following procedure. We first computed object classification

on data from the perception task only, considering data at each frequency between 8 and 13 Hz with 1 Hz resolution and its two im-

mediate neighbor frequencies (i.e., for 9 Hz including 8 and 10 Hz). For each participant, the peak alpha frequency was the frequency

where within-task object classification accuracy was highest. The respective participant-specific frequency band was defined as the

peak frequency and its two immediate neighbor frequencies (i.e., for peak frequency at 8 Hz the band is 7–9Hz).We then repeated the

cross-classification analysis using these participant-specific alpha frequencies. This yielded qualitatively similar results to the anal-

ysis based on the canonical alpha frequency band (see Figures S1T–S1V).

To determine whether cross-classification is enabled by large scale net increases or decreases in alpha power, we performed an

additional analysis, in which we binned trials in the perception task according to whether they exhibited an increase or a decrease in

alpha power, relative to baseline. We then re-performed the cross-classification analysis using only data from the perception task

that either showed an alpha power enhancement (45%of trials) or an alpha power suppression (55%of trials). We equalized the num-

ber of trials by subsampling the alpha suppression trials to avoid bias. This analysis revealed no significant differences between

alpha-enhanced or alpha-suppressed trials (Figure S1W).

Localization of shared representations
To investigate whether alpha-band representations shared between perception and imagery are related to parieto-occipital alpha or

frontal alpha mechanisms, we conducted separate cross-classification analyses using either the anterior or the posterior halves of

electrodes in our EEG montage. The anterior half consisted of the 35 electrodes located on the frontal, temporal and central parts of
e3 Current Biology 30, 2621–2627.e1–e5, July 6, 2020
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scalp, covering the Fp, AF, F, FT, T, andC channels in the EASYCAP 64-channel system. The posterior half consisted of 37 electrodes

covering occipital and parietal cortex, covering the C, T, CP, P, TP, PO and O channels. The central and temporal channels were

included in both halves. For both analyses, classification procedures were the same as described for the analysis including all

electrodes.

As an additional measure of spatial localization, we examined the distribution of classifier weights obtained from training classifiers

on data from all sensors. During classification analysis, each feature (i.e., here each EEG electrode) is assigned a weight correspond-

ing to the degree to which its output is used by the classifier to maximize class separation. Therefore, classification weights index the

degree to which different electrodes contain class-specific information. To directly compare the weights of electrodes across time,

we transformed weights into activation patterns by multiplying them with the covariance in the training dataset [83]. For display pur-

poses, we projected the reconstructed activation patterns onto a scalp topography (Figures S1X and S1Y). This analysis of classifier

weights was done twice: once for classifiers trained on data from the perception task, and once for classifiers trained on data from the

imagery task. We thereby obtained two sets of classifier weights across the scalp and across time, which allowed us to localize fea-

tures relevant for detecting shared representations in sensor space.

The format of shared representations
To characterize the nature of the representations shared between imagery and perception we used representational similarity anal-

ysis [10, 11] in combination with computational models. The basic idea is that representations shared between imagery and percep-

tion are related to representations in computational models if they treat the same conditions as similar or dissimilar. To determine this,

in a first step condition-specific multivariate patterns in the neural (here: EEG sensor patterns) and the model (e.g., model unit acti-

vation patterns) coding spaces are compared for dissimilarity independently. Dissimilarity values are aggregated in so-called repre-

sentational dissimilarity matrices (RDMs) indexed in rows and columns by conditions compared (here: 123 12 RDMs indexed by the

12 objects). In a second step the neural RDMs and model RDMs are then related to each other by determining their similarity. We

described the detailed procedures to construct neural and model RDMs as well as their comparison below.

The procedure to construct neural RDMs was as follows. Classification accuracy can be interpreted as a dissimilarity measure on

the assumption that the more dissimilar activation patterns are for two conditions, the easier they are to classify [6, 84]. Classification

accuracy at each time point combination in the cluster indexing shared representations between imagery and perception (Figure 1F)

is the average of a 123 12 matrix of cross-classification accuracies for all pairwise object combinations. Here, instead of averaging

across its entries, we extracted the full 123 12 RDM for each time point in the cluster and averaged the RDMs across all time-point

combinations, yielding a single RDM for each participant. Thus, each participant’s RDM indicates the dissimilarity for object repre-

sentations shared between imagery and perception.

To characterize the nature of these shared representations we extracted model RDMs from a set of computational models. These

models mirrored the objects’ (i) visual dissimilarity, (ii) their semantic category dissimilarity, and (iii) their auditory dissimilarity (i.e., the

dissimilarity of the word sounds used to cue imagery). The construction of model RDM was as follows.

As the visual model, we used the 19-layered deep convolutional neural network (DNN) VGG19 [56] pretrained to categorize objects

of the ImageNet dataset [85]. Using theMatConvNet toolbox [82], we ran the 12 object images used in this study through the DNNand

then constructed layer-specific model RDMs by quantifying the dissimilarity (1-Pearson’s R) of response patterns observed along

each of the 19 layers of the DNN. We constructed 8 aggregated RDMs from these results. The first five RDMs were constructed

from convolutional layers, averaging RDMs of convolutional layers positioned between max pooling layers, starting with the input

layer (RDM1: convolutional layers 1,2; RDM2: convolutional layers 3,4; RDM3: convolutional layers 5-8; RDM4: convolutional layers

9-12; RDM 5: convolutional layers 13-16). The last three RDMs were constructed from activations in the three final fully connected

layers each (RDM6-8).

For the semantic category model, we modeled category membership in a binary way. For this model, we split our 12 objects into

four sets of superordinate-level category membership: animals (butterfly, chicken, sheep), body parts (ear, eye, hand), plants (apple,

carrot, rose), and man-made objects (car, chair, violin). We then constructed a model RDM in which objects of the same category

were coded as similar (�1) and objects from different categories were coded as dissimilar (+1).

We considered two auditory models: a canonical spectrotemporal model inspired by psychoacoustical and neurophysiological

findings in early and central stages of the auditory system [57], and a DNN with two branches trained on musical genre and auditory

word classification respectively [58]. We ran all word sounds used in this study through the spectrotemporal and the auditory DNN.

We constructed auditory model RDMs by quantifying the dissimilarity of response patterns (1-Pearson’s R) observed in the 2 stages

(i.e., auditory spectrograms and estimated cortical spectrotemporal features) of the spectrotemporal model and the 11 layers along

the auditory DNN (i.e., 3 early shared convolutional layers and 4 layers (the first two convolutional, the latter two fully connected) along

the two branches trained on genre and word classification respectively).

To quantify how well the different models were related to the representations shared between imagery and perception in the alpha

frequency band we correlated (Spearman’s R) each model RDM with each participant’s neural RDM.

Additionally, to establish how well the visual and auditory models explained the organization of visual representations (within the

perception task) and auditory representations (within the imagery task) respectively, we compared these models with neural RDMs

extracted from classification analyses within the perception and imagery tasks (Figures S2D and S2E). For this we averaged the

RDMs at time points that fell in the within task classification clusters into a single neural RDM for each task and proceeded with repre-

sentational similarity analysis as described above for the cross-classification analysis.
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Classification from broadband responses
In addition to classifying objects from oscillatory responses, we also performed conventional classification analyses [6, 86] on broad-

band responses (i.e., single trial raw unfiltered waveforms). These analyses followed the same logic as the classification analysis on

time-frequency data, including the averaging of individual trials into pseudo-trials prior to classification analyses. As the only differ-

ence, classifiers were now solely trained and tested on response patterns across all electrodes for every time point (with the original

acquisition resolution of 1000 Hz), without any frequency decomposition. As for the classification analysis on oscillatory responses,

we performed a time-generalization analysis, where we cross-classified objects between perception and imagery (Figure S1G), and a

within-task classification analysis, where we classified objects in each of the two tasks separately (Figure S1N).

QUANTIFICATION AND STATISTICAL ANALYSIS

All statistical analyses were performed in MATLAB. We report results of specific tests with summary statistics and information on the

test used in the Results.

The statistic of interest (mean classification accuracy or correlation coefficient in representational similarity analysis across partic-

ipants, N = 38) was tested against chance level using sign permutation tests that do not make assumptions about the distribution of

the data. The null hypothesis was that the statistic of interest was equal to chance (i.e., 50% classification accuracy, a Spearman’s R

of 0). Under the null hypothesis, we could permute the condition labels of the EEG data, which effectively corresponds to a sign per-

mutation test that randomly multiplies participant-specific data with +1 or�1. For each permutation sample, we recomputed the sta-

tistic of interest. Repeating this permutation procedure 10,000 times, we obtained an empirical distribution of the data, which allowed

us to convert the original statistic (i.e., correlation coefficient, the time course of object classification and the time-time matrix of ob-

ject classification) into p values (correlation coefficients), 1-dimensional (time courses) or 2-dimensional (time-time matrices) p value

maps. We also converted the recomputed statistics to p values or p value maps (relying on the same empirical distribution as the

original statistic). For the classification-based analyses we controlled the familywise error across time points using cluster size infer-

ence. All p value maps were first thresholded at p < 0.05 (cluster-definition threshold) to define supra-threshold clusters by their tem-

poral contiguity. These supra-threshold clusters were used to construct an empirical distribution of maximum cluster size and to es-

timate a threshold at 5% of the right tail of this distribution. That is, the supra-threshold clusters of the original statistic were reported

as significant if their size exceeded a p < 0.05. Moreover, for the classification on time-frequency resolved signals, the cluster

threshold was Bonferroni-corrected for the number of frequency bands analyzed. For the correlation-based analyses we corrected

p values for multiple comparisons by FDR-correction.
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Figure S1. Analysis of object representations shared between imagery and perception, Related to 
Figure 1. A-C) Object cross-classification results for the alpha (A) (same as Figure 1F), theta (B), and 
beta (C) frequency bands. Shared representations between imagery and perception were only found in the 
alpha frequency band. Black outlines indicate time-point combinations with above-chance classification 
(N = 38, non-parametric sign permutation tests, cluster-definition threshold P < 0.05, cluster threshold P < 
0.05 Bonferroni-corrected by 3 for the number of frequency bands tested). Dec. acc. = Decoding 
accuracy. D-F) Same as A-C) but with an alternative data aggregation procedure. Instead of averaging 
data across frequencies in every frequency band, data for all frequencies were entered as separate features 
into the classifier. Again, shared representations were only found in the alpha frequency band. G) Cross-
classification based on broadband (evoked) responses did not reveal any shared representations. H-N) 



Object classification results separately for the perception task (top row) and the imagery task (bottom row), 
corresponding to each of the analyses in A-G). For these analyses, training and testing time were yoked, 
yielding a single time series of classification for each task. Significant classification in the perception task 
was found across all frequency bands, as well as in the broadband responses. Similarly, classification was 
significant for all analyses in the imagery task, with a more temporally sustained classification across the 
epoch emerging in the alpha frequency band. Error margins denote standard errors of the mean. O-P) Object 
cross-classification results for both train-test directions, with training on either the imagery task (O) or the 
perception task (P). Results were qualitatively similar for both train-test directions. Q-S) Object cross-
classification for the alpha (Q), theta (R), and beta (S) frequency bands when the imagery task data were 
time-locked to the offset, rather than the onset of the auditory word stimulus. Results were qualitatively 
similar to onset-locked analysis, revealing shared representations only in the alpha frequency band. T-V) 
Cross-decoding analysis based on subject-specific rather than canonical alpha frequencies bands. For each 
participant, that participant’s peak alpha frequency was selected from the perception task as the frequency 
(with 1 Hz resolution) that allowed for the best object classification within the perception task. The subject-
specific alpha band was then defined as the peak frequency plus the two neighboring frequencies of +/- 1 
Hz. A histogram of the subject-specific peak frequencies is shown in (T). Object-cross classification 
analysis based on the subject-specific alpha frequency bands did not yield higher classification accuracy 
(averaged across the time-point combinations in the significant cluster) (U), while yielding qualitatively 
similar results as cross-classification based on canonical alpha band definition in the full time-time analysis 
(V). W) Object cross-decoding results for alpha-enhanced and alpha-suppressed perception trials, within 
the temporal cluster previously identified for shared representations. Trials with enhanced alpha power 
(relative to baseline) and suppressed alpha power (relative to baseline) did not yield different classification 
accuracies, suggesting that the information shared between imagery and perception is not primarily related 
to net alpha power. X-Y) Topography of classifier weights for classifiers trained on discriminating the 
objects from alpha activity in the perception task (X) or the imagery task (Y), for discrete time bins of 
200ms in perception and 500ms in imagery, as shown below the topographies. The distribution of weights 
reveals the relative importance of posterior sensors in both tasks, suggesting that the shared representations 
are related to parieto-occipital alpha sources. Shaded bars indicate the perception and imagery times 
covered by the alpha frequency band cluster previously identified for shared representations. 



Figure S2. Analysis of the format of object representations shared between perception an imagery, 
Related to Figure 2. A-C) Representational dissimilarity matrices (RDMs) extracted from the three types 
of computational models as shown in Fig. 2. For all models, RDM entries reflect the dissimilarity between 
each pair of objects. D-E) To compare the different models to the neural representations, we correlated 
(Spearman’s R) each model RDM with a neural RDM extracted from the alpha cluster of shared 
representations between imagery and perception (Figure 1F; see STAR Methods). In addition to 
performing this analysis for the shared representations (Figure 2B-D), we also checked how the visual and 
auditory models explained representations in the perception and imagery tasks, respectively. As expected, 
the visual model explained the objects’ neural representations in the perception task (D) and the auditory 
models explained the objects’ neural representations in the imagery task (E). Error bars reflect standard 
errors of the mean. Asterisks indicate significant correlations between model RDMs and neural RDMs (N 
= 38, non-parametric sign-permutation tests, *: P < 0.05, **: P < 0.01, ***: P < 0.001; FDR-corrected for 
multiple comparisons across RDMs per model). 
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