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ABSTRACT 

 

The United Nations (UN) and World Bank have set Sustainable Development Goals (SDGs), with the aim 

for countries to reach targets related to important aspects of quality of life by 2030. An essential element of 

sustainable development is achieving social and economic aims to improve human quality of life, while 

conserving and managing natural resources. Earth observation data, such as satellite imagery data, are 

increasingly being used for monitoring the SDGs, and statistical machine learning methods are commonly 

used to analyse these types of data. However, current methods often exclude the spatial information inherent 

in earth observation data, which can provide useful insights. In this paper we review how spatial information 

is currently measured for remote sensing data, describe spatial machine learning methods in the literature 

and opportunities for further development of spatial methods. We also describe a minimum set of 

requirements to measure SDGs from satellite imagery data.  
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1. INTRODUCTION 

 

The United Nations (UN) and World Bank have set Sustainable Development Goals (SDGs), with the aim 

for countries to reach targets related to important aspects of quality of life by 2030 (United Nations, 2018). 

For example, food security, sustainable cities and communities, clean water and life on land are all SDGs 

with targets. The United Nations has acknowledged the role big data can play in measuring and monitoring 

progress towards these SDGs, and supports a number of Task Teams which have investigated and 

implemented methods for using big data sources for official statistics, and continue to explore these 

applications (United Nations, 2018).  

 

Earth observation data, including satellite images, are an example of a big data source which can be obtained 

at no cost, for a long time series, and used to produce statistics and indicators to measure sustainable 

development (United Nations, 2017). In 2017, the United Nations Task Team on Satellite Imagery and 

Geospatial Data published a report on the feasibility of using earth observation data to produce official 

statistics, including statistics relevant to SDGs such as agricultural indicators and land cover (United Nations, 

2017). There are a number of useful resources on the topic of earth observation data for official statistics and 

SDGs, including Satellite earth observations in support of the SDGs (CEOS EO HANDBOOK, 2018), Earth 

Observation for Water Resources Management (García, Rodríguez, Wijnen, & Pakulski, 2016) and the 

United Nations Food and Agriculture Organisation’s Handbook on remote sensing for agricultural statistics 

(FAO, 2016). 

 

Satellite images can be used to identify features of interest, such as agricultural land, forests, urban areas, 

roads and water based on how they appear in the images. This is called land cover classification (FAO, 2016).  

Identifying  these features of interest is often viewed as a classification problem, which requires methods 

which label individual pixels as belonging to a class based on their spectral characteristics (Sharma, Ghosh, 

& Joshi, 2013). For example, pixels can be classified into different crop types, or a binary classification of 

forest or bare ground.  

 

Statistical analyses of satellite images, such as land cover, can be applicable to indicators of SDGs. The 

Group on Earth Observation (GEO) has identified that a number of SDGs can be measured at some level 

using earth observation data (GEO, 2016, pp.5). In figure 1, blue boxes indicate the goal can be measured 

based on earth observation data.  Examples include agricultural monitoring relevant to SDG 2: No hunger 

and biodiversity and ecosystem monitoring relevant to SDG 15: Life on land.  
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Figure 1 Sustainable Development Goals measurable by earth observation data  

Source: (GEO, 2016, pp.5). 

It is often much cheaper to perform statistical analyses on free satellite imagery data to measure SDGs 

compared with directly collecting data in the field or through surveys. However, some amount of directly 

collected data, or ‘ground truth’ data is required to validate results derived from statistical analysis of satellite 

images. To minimise the potential negative impacts of missing or limited ground truth data, methods which 

model spatial relationships in satellite images can be used.  
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In this paper we review spatial approaches for analysing satellite imagery data, emerging spatial machine 

learning methods and outline a minimum set of requirements for measuring SDGs from satellite imagery 

data.  

2. SPATIAL AUTOCORRELATION AND EARTH OBSERVATION DATA 

 

Spatial autocorrelation occurs when a variable is correlated with itself in space, and this correlation exists 

after the effects of other variables have been accounted for (Hefley et al., 2017). Mathematically, spatial 

autocorrelation can be expressed as 

 

Γ𝑖𝑗 = ∑ ∑ 𝑊𝑖𝑗
𝑛
𝑗=1

𝑛
𝑖=1 𝑌𝑖𝑗.    (1) 

 

The spatial autocorrelation, Γij, between location 𝑖 and all other sites 𝑗 is given by two matrices, W and Y 

(Getis, 2010). Wij is a matrix of the spatial relationship between location 𝑖 and other sites 𝑗, and Yij is a matrix 

of non-spatial relationships between observation Y at site 𝑖 and the value of that observation at other sites, 𝑗 

(Getis, 2010). 

 

When spatial autocorrelation is present in data, the values of the dependent variable are influenced by their 

location and proximity to other data. Satellite images are an example of earth observation data that have 

spatial autocorrelation. For satellite images, generally pixels located close to each other are more likely to 

have similar values than pixels spaced further apart (Woodcock, Strahler, & Jupp, 1988). 

 

Modelling spatial autocorrelation is important because, in cases where a spatial relationship exists between 

observations, this provides additional information to inform statistical models. Traditional statistical models 

treat observations as independent, and in cases where there is spatial autocorrelation in the data this is not 

the case; the observations are spatially dependent. By overlooking spatial dependence, traditional models 

exclude useful information from the analysis.  

 

3. APPROACHES FOR SPATIAL ANALYSIS OF EARTH OBSERVATION DATA 

 

The existence, strength and nature of the spatial relationship between observations can be identified and 

quantified using a number of measures. For satellite images there are global measures, which apply to 

autocorrelation across an entire image, and local measures, which assess spatial autocorrelation for individual 

observations or groups of observations (Getis, 2010; Spiker & Warner, 2007). Local measures of spatial 

autocorrelation can identify which observations are contributing to spatial relationships evident at the global 

(whole image) level (Spiker & Warner, 2007). Examples of global measures of spatial autocorrelation 

include semivariance, Geary’s c and Moran’s I, and local measures include local Geary’s c and local Moran’s 

I. These measures can be applied to other spatial data, but are described in the satellite imagery data context 

in this review. 

 

These measures of spatial autocorrelation are defined as follows. Semivariance is the average variance in 

observation values separated by some distance (Cressie, 1989; Peterson & Hoef, 2010). Moran’s I measures 

autocorrelation as a function of covariance between observations, and can take values from -1, indicating 

strong and negative autocorrelation, to +1, indicating strong and positive autocorrelation (Spiker & Warner, 

2007). Geary’s c is a measure of spatial autocorrelation, derived from the squared difference between pixels, 
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divided by the image variance (Spiker & Warner, 2007). Geary’s c takes values between 0 and 2, with 0 

representing maximum positive spatial autocorrelation, 1 no spatial autocorrelation and 2 maximum negative 

spatial autocorrelation (Spiker & Warner, 2007).  

 

These global and local measures of spatial autocorrelation have been implemented for satellite image 

analysis in a number of ways. Examples of these applications are described in terms of global or local 

measures. 

 

Application: Global measures of spatial autocorrelation 

For satellite image analysis, global spatial autocorrelation measures identify spatial relationships at the image 

level and have many applications. For example, Moran’s I and semivariance have been applied to satellite 

imagery analysis to detect landslide events in Myanmar (Mondini & C., 2017) and identify regions with 

higher and lower social heat vulnerability based on derived surface temperature, normalized difference 

vegetation index (NDVI) and socioeconomic data (Sim, 2017).  

 

Das & Ghosh, (2017) used an index based on estimated autocorrelations between neighbourhood pixels to 

classify regions in Landsat satellite imagery of the Kolkata region of India as changed or unchanged in terms 

of land cover. The authors use an extension of Moran’s I to calculate the spatial autocorrelation between two 

Landsat images at time t and t+t’, then produce a binary change index. Gao, Tang, Jing, Li, & Ding, (2017) 

proposed an unsupervised evaluation method for segmenting high resolution remote sensing images for 

geographic object-based image analysis (GEOBIA), combine a measure of spatial stratified heterogeneity, 

the q statistic, with Global Moran’s I statistic, a measure of spatial autocorrelation, to produce a global 

assessment metric.  

 

Application: Local measures of spatial autocorrelation  

For satellite image analysis, local spatial autocorrelation measures apply to the observation level, such as a 

pixel or cluster of pixels within an image. For example, Greene, Robinson, & Millward, (2018) used a spatial 

autocorrelation indicator, bivariate Moran’s I, to evaluate spatial relationships between median household 

income and access to urban tree canopy in Toronto, Canada based on data derived from QuickBird satellite 

imagery classified by the USDA Forestry Service. The method identified statistically significant spatial 

clusters of high and low urban tree canopy.  

 

Based on analysis of data derived from QuickBird panchromatic satellite imagery of Morgantown, West 

Virginia, USA, Spiker & Warner (2007) concluded global autocorrelation measures; semivariance, Geary’s 

c and Moran’s I, are useful to quantify autocorrelation in remote sensing images, but local measures, 

including local Moran’s I and local Geary’s c, are necessary and useful to understand which are the dominant 

contributors to these global metrics. 

 

Other methods for dealing with spatial autocorrelation 

Besides these global and local measures of spatial autocorrelation, other approaches have been implemented 

to address the spatial autocorrelation in satellite images. Other approaches Wang et al (2016) performed a 

review of methods for incorporating spatial information in satellite image classification, covering methods 

under five categories: pre-classification, sample selection, classifiers, post-classification and accuracy 

assessment (Wang, Shi, Diao, Ji, & Yin, (2016)). An example of incorporating spatial information in 
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classification of satellite imagery is object based image analysis (OBIA) which first segments an image into 

homogeneous sections based on some feature e.g. topography and then runs parametric, machine learning or 

fuzzy logic methods on these segments rather than individual pixels to classify them (Wang et al., 2016). 

Geographic object-based image analysis (GEOBIA) builds on OBIA by emphasizing the geographical space 

of the objects in a satellite image (Wang et al., 2016). 

 

An example of addressing spatial autocorrelation at the sample selection stage is Sheffield, Morse-McNabb, 

Clark, Robson, & Lewis, (2015); the authors attempted to address autocorrelation in the data to map 

dominant land use over time in Victoria, Australia by selecting one pixel per parcel of land and selecting 

those pixels that were most representative of the land parcel. Their approach is in data selection rather than 

in specification of their model, which means it was developed specifically for these data and would not 

necessarily apply to other problems and data sources. For more examples of spatial autocorrelation 

approaches within each of the five categories see Wang et al (2016). 

 

Evidently, there are a number of ways spatial autocorrelation is measured in statistical analysis of satellite 

imagery data. Another approach which is emerging is the adaptation of existing machine learning methods, 

which perform faster and often have higher accuracy than other methods, to model spatial relationships. This 

will be described in section 4.  

 

4. SPATIAL MACHINE LEARNING FOR EARTH OBSERVATION DATA 

 

Statistical machine learning methods, also called artificial intelligence methods, use algorithmic models to 

analyse data. These methods treat the way in which the data were generated or relationships between the 

variables as unknown (Breiman, 2001). However, the existence of spatial relationships in satellite images is 

known, and an emerging way of modelling these relationships is to adapt existing machine learning 

algorithms proven to be effective for analysing these types of data. In this paper, we focus on decision tree 

methods. 

 

A decision tree is a classification method which can be used to categorise large numbers of observations, 

such as pixels in satellite images. The classification structure of a decision tree is estimated from training 

data using a statistical procedure (Sharma et al., 2013). The ‘tree’ is made of a root node, internal nodes and 

leaves. Nodes are located where trees branch or split the dataset and terminal nodes are called leaves. Leaves 

contain the most homogeneous classes, or final classifications (Sharma et al., 2013). Due to their 

computational simplicity, decision tree can be applied to large amounts of data, which is useful for satellite 

imagery analysis, that is often performed on thousands or millions of pixels. Examples of decision trees in 

the remote sensing literature include identifying land cover  (Al-Obeidat, Al-Taani, Belacel, Feltrin & 

Banerjee, 2015); mapping forest change globally (Hansen et al., 2013); and identifying land use classes such 

as agriculture, built up areas and water in Surat city, India (Sharma et al., 2013).  

 

Spatial decision trees, then, are a group of statistical machine learning methods which extend on existing 

decision tree algorithms to model spatial relationships.  These methods are suited to estimating spatial 

autocorrelation because they can effectively handle very large numbers of observations and variables, which 

has been a computational barrier to modelling spatial relationships in satellite imagery data (Griffith & Chun, 

2016). Some examples of spatial decision tree methods are as follows.  
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Liu, Cao, Zhao, Mulligan, & Ye, (2018) use a geostatistical random forest approach, which applies regression 

kriging. Regression kriging is a hybrid approach that combines linear regression term of the primary variable 

on auxiliary variables to estimate trend with a kriging term of the regression residuals. The authors apply the 

Random Forest Regression Kriging (RFRK) model created by (Hengl et al., 2015) to measure particulate 

matter concentration derived from satellite imagery and ground measurements. The RFRK is a two-step 

procedure where the random forest is used to simulate non-linear trend between the dependent variable and 

covariates, and at the second step kriging is used to estimate residuals of the random forest trend. The authors 

found the RFRK approach was able to capture non-linear relationships between variables well, as is expected 

with a random forest model, and explicitly model spatial dependence of the particular concentrations.  

 

Hengl et al. (2018) created a random forest for spatial predictions framework (RFsp) which includes 

euclidean buffer distances of observations as covariates to model spatial autocorrelation. The RFsp was 

found to produce estimates as accurate and unbiased as common geostatistical method, kriging, however the 

authors caution using this approach for greater than 1000 observations due to computational difficulties. 

Typical analysis of remote sensing data is performed on thousands or millions of pixels, so this could be a 

challenge for applying the RFsp method to these data. Li, Heap, Potter, & Daniell (2011) investigated 

Support Vector Machine (SVM) and random forest algorithms for spatial modelling of environmental 

variables, in this case Australian seabed mud content. The machine learning methods were compared with a 

number of geostatistical methods, including kriging, co-kriging and universal kriging, in addition to other 

statistical methods such as generalised linear models. The authors found random forest models combined 

with ordinary kriging and random forest combined with inverse distance squared outperformed all other 

methods in terms of predictive accuracy.  

 

These examples demonstrate the implementation of spatial approaches to machine learning methods have 

been explored in the literature and found to have value for modelling environmental variables which have 

underlying spatial autocorrelation. A limitation of spatial random forest approaches is the high computational 

demand. Through evaluations not reported here, spatial implementation of a boosted regression tree method, 

called gradient boosted machine, was found to be more computationally feasible than the same spatial 

implementation of a random forest method.  

 

Spatial decision tree models combine key benefits of statistical machine learning methods for large spatial 

data; ability to fit non-linear relationships, effectively cope with significantly large amounts of data and high 

predictive accuracy, and can further improve this predictive accuracy by modelling the spatial dependence 

that exists between the pixels. However, existing spatial decision tree models have a high computational 

cost, and there is opportunity to explore models that can approximate spatial relationships and efficiently 

handle larger numbers of pixels.  

 

 

5. REQUIREMENTS FOR MEASURING SUSTAINABLE DEVELOPMENT GOALS FROM 

SATELLITE IMAGERY DATA 

 

Some consideration should be given to the minimum resources required in order to measure Sustainable 

Development Goal (SDG) indicators using satellite imagery data. This section describes recommendations 

on some minimum requirements for measuring SDGs using satellite imagery data, based on research, 
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including contributing chapters to the United Nations Satellite Imagery and Geospatial Data Task Team 

report (United Nations, 2017) and practical experience of the authors.  

 

In order to measure sustainable development indicators from satellite images, at the simplest level there are 

three requirements. Firstly, the indicator needs to be identifiable in a satellite image. Secondly, satellite 

images need to be available for the location of interest. Thirdly, some form of validation data is needed to 

verify statistical outputs produced by the model.  These criteria are expanded on here.  

 

1. The indicator is measurable from satellite imagery data. At the simplest level, this means the 

indicator can be seen or extracted from a satellite image. For example, turbidity in water is visible 

from the spectral bands of a satellite image, and this is also an indicator of water quality (Phinn, 

2005). This statistical output links to SDG 6: Clean water and sanitation and indicator 6.3.2 

Percentage of bodies of water with good ambient water quality (United Nations, 2017). Some 

additional examples of sustainable development indicators measurable from remote sensing data are 

in Table 1.   

 

 
Source: (Holloway & Mengersen, 2018) 

 

More extensive description of SDGs measurable from remote sensing data are provided by the Group on 

Earth Observation (GEO, 2018).  
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2. Analysis-ready satellite images are available. Before satellite images can be statistically analysed, 

some pre-processing is required to correct for atmospheric effects such as cloud shadows and 

topographic adjustments (United Nations, 2017). Pre-processing can be performed by the 

practitioner, however this requires earth science domain specific knowledge and skills which are not 

always available. Alternative sources of free analysis ready satellite imagery data include the Digital 

Earth Australia Data Cube (Geoscience Australia, 2018), CEOS Data Cube products (Killough, 

2017) and United States Geological Survey (USGS, 2018). 

 

3. Access to validation data and/or spatial information. Access to validation data, also referred to 

as ‘ground truth’ is auxiliary data that can be used to validate statistical outputs produced by 

modelling satellite imagery data. Examples of ground truth include directly collected field 

measurements, survey results and weather data. In general, directly collected data is thought to have 

higher accuracy than modelled data, however statistics produced from satellite images are useful 

because they can be produced at a larger spatial scale, at lower cost and more frequently than other 

methods such as surveys and field measurements (United Nations, 2017).  

 

Lack of access to directly collected data, often due to prohibitively high costs, is a key motivation to explore 

free big data sources such as satellite images. While ideally there would be large amounts of ground truth 

data available to validate statistical models, in practice when this is not possible modelled estimates with 

some uncertainty around them are useful as an alternative to no measurement of sustainable development 

indicators. The addition of spatial information will only be beneficial if there is a spatial relationship in the 

data, and this is often the case for satellite imagery data (Spiker & Warner, 2007). The global and local 

measures of spatial autocorrelation described in section 3 can be used to determine the existence, strength 

and nature of a spatial relationship in satellite data. When there is a lack of validation data to verify model 

derived statistics, other methods of improving model accuracy can be useful. This is an example of where 

incorporating spatial information can improve predictive accuracy of existing statistical models, such as the 

decision trees described in section 4.  

 

There are many other considerations for producing SDG indicators and official statistics based on satellite 

imagery data. Useful criteria for determining whether earth observation data, such as satellite images, is 

suitable for producing a particular statistical output are provided by the United Nations Satellite Imagery and 

Geospatial Data Task Team report (United Nations, 2017, pp.118-119). Further considerations in terms of a 

cost-benefit analysis for a national statistical office considering using earth observation data for statistical 

production are beyond the scope of this review, but are defined by Tam & Clarke (2015). The cost benefit 

criteria described by Tam & Clarke (2015) include reduction in provider load, sustainability of the data 

source, timeliness and accuracy, and are also discussed in chapter 5 of the United Nations Satellite Imagery 

and Geospatial Data Task Team report (United Nations, 2017).  

 

In terms of statistical methods, there are many which can be applied to remote sensing data to measure 

environmental features relevant to SDGs to produce accurate results (Holloway & Mengersen 2018). There 

is also opportunity to go beyond identifying spatial autocorrelation using local and global measures, and 

further develop existing statistical and machine learning methods to explicitly model spatial autocorrelation 

in satellite imagery data.  
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6. CONCLUSION 

 

The United Nations and World Bank have identified Sustainable Development Goals (SDGs) and set 

priorities for countries to achieve these goals by 2030. Freely available satellite images are a useful data 

source that can be analysed to measure indicators of progress towards the SDGs. One issue with SDG 

indicators produced from satellite images is typically some validation data is needed to verify the accuracy 

of the statistical model results, and this validation data is often expensive to collect or unavailable. By 

including spatial information in analysis of satellite images, it is possible to achieve more accurate estimates 

without additional directly collected data. In this paper, we reviewed how spatial information is currently 

measured for satellite imagery data, described spatial machine learning methods currently in the literature 

and opportunities for further development of spatial methods. Spatial machine learning methods are 

continually being developed and have been used to produce accurate environmental statistics. There is scope 

for further development of spatial machine learning methods.  

 

We also described a minimum set of three requirements to measure SDGs from satellite images; the indicator 

needs to be identifiable in a satellite image, these images need to be available for the location of interest, and 

access to validation data and/or spatial information. We also provided references to other useful sources of 

criteria when considering whether it is advisable to produce official statistics and SDG indicators from earth 

observation data, such as satellite images.  
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