
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE 

Engineering an Intelligent Essay Scoring and 
Feedback System: An Experience Report  

Akriti Chadda, Kelly Song, Raman Chandrasekar, Ian Gorton 
Khoury College Of Computer Sciences 

Northeastern University 
Seattle, USA 

{chadda.ak, song.ke, r.chandrasekar, i.gorton}@northeastern.edu 

 

Abstract— Artificial Intelligence (AI) / Machine Learning 

(ML)-based systems are widely sought-after commercial 

solutions that can automate and augment core business services. 

Intelligent systems can improve the quality of services offered 

and support scalability through automation. In this paper we 

describe our experience in engineering an exploratory system 

for assessing the quality of essays supplied by customers of a 

specialized recruitment support service. The problem domain is 

challenging because the open-ended customer-supplied source 

text has considerable scope for ambiguity and error, making 

models for analysis hard to build. There is also a need to 

incorporate specialized business domain knowledge into the 

intelligent processing systems. To address these challenges, we 

experimented with and exploited a number of cloud-based 

machine learning models and composed them into an 

application-specific processing pipeline. This design allows for 

modification of the underlying algorithms as more data and 

improved techniques become available. We describe our design, 

and the main challenges we faced, namely keeping a check on 

the quality control of the models, testing the software and 

deploying the computationally expensive ML models on the 

cloud. 

Keywords—software engineering, machine learning, software 

architecture, cloud-based systems, essay grading 

I. INTRODUCTION 

Recent advancements in AI and ML, the availability of 
open-source tools and libraries, and the decreasing costs of 
hosting applications on the cloud have created opportunities 
for small and big businesses alike [1]. However, the 
engineering challenges surrounding AI/ML based 
applications prove to be significant [11], especially when a 
transition from prototype to production occurs [12]. This 
paper describes our work in engineering a prototype 
intelligent business system with the aim to make evolution and 
transition to production as frictionless as possible. We 
describe our experience in translating complex business 
requirements from our client into an initial version of a cloud-
based ML application. Adding automated, intelligent 
processing is fundamental to the future scalability and hence 
success of our client.  

Some of the biggest challenges faced by developers for 
small companies embarking on ML projects are following an 
experimental process, the difficulty of identifying customer 
business metrics and designing the database architecture [2]. 
To this end, we loosely followed the development process 
described by Hill et al [13]. This involves iterative activities 
centered on problem definition and refinement, data 
collection, algorithm and feature selection, and model 
evaluation. 

In the following sections, we describe the business 
requirements and their realization into a cloud-based software 

framework. We describe the solution architecture adopted, 
and the challenges faced in deployment – both technical and 
managerial.  

We also recognized the looming complexities of managing 
source and derived data, metadata and other common artefacts 
[14]. To this end, we decoupled the design and evolution of 
the ML and database subsystems through a well-defined 
interface that supports interactions between the two. The 
detailed database design is however beyond the scope of this 
paper.  

II. BUSINESS PROBLEM REQUIREMENTS 

Our client is a small business with a rapidly growing 
customer base. The business allows customers to send in 
recruitment-related essays which are then graded by the 
employees on a number of dimensions based on a 
predetermined rubric. The scores 0 (unsatisfactory), 1 
(improvements needed) or 2 (satisfactory) are given for each 
of the dimensions and then a weighted average of these scores 
is provided. This score is taken as a proxy for the quality and 
completeness of the knowledge and sentiments expressed in 
the essay.  

In addition, textual feedback is given for each of the 
dimensions. This contains both constructive comments when 
more work is needed as well as appreciation for a point that is 
well written.  

Our client came to us with a set of primary requirements, 
namely: 

• the ability to streamline the collection of data from 
customers,  

• automatic scoring of essays based on a set of rubrics, 

• automatic feedback generation for different sections 
of the essays, 

• generation of a final report for the customer,  

• managing the data and process in a persistent store, 
and 

• a cloud-based deployment  

In essence, the requirements revolve around replacing the 
expert knowledge of the essay scorers with an intelligent 
software system [15][16]. From a machine learning 
perspective, this is a challenging scientific problem, requiring 
significant domain knowledge to be embedded in machine 
learning models.  

Hence, given the time-boxed nature of this initial project 
engagement, we agreed with the client to take an architectural 
approach to design and development. The resulting 



architectural framework will then serve as a foundation for 
experimentation with the models to improve quality of outputs 
over time.  

To this end, the focus of our work was: 

• creating an extensible, modifiable, scalable cloud-
based framework for the application 

• developing initial ML models for the various 
dimensions of essay scoring, deployed within the 
framework. 

For model development, we were provided with a dataset 
consisting of 1000 essays from the business’ existing 
customers. Each of these had been manually scored and hence 
individual scores per dimension, aggregated scores and textual 
feedback was available for training purposes. There were 13 
dimensions for which scores had to be calculated. This meant 
13 different ML models would be needed, each trained to 
provide insights and feedback on a single dimension. 

From an ML perspective, 1000 documents is a small data 
set for training purposes [17, 18] This is especially true for 
problems involving language models, where every word could 
be a feature, leading to high-variance issues; more data helps 
in reducing overfitting. Hence, we did not at this stage of the 
development have access to enough training data to build 
highly effective models. It was therefore a requirement for our 
system to evolve downstream as larger volumes of training 
data became available. This means the models should be 
capable of either online training or provide a straightforward 
mechanism to update the models when subsequent offline 
training had been performed.  

III. SOFTWARE ARCHITECTURE 

The application processing pipeline follows three logical 
phases, which are illustrated in Figure 1. 

 

 

Fig. 1. Flow of control through the system, starting with the preprocessing 
of the input essay, followed by the data going to all the experts in parallel, 
and then a “MasterObject” for the experts to store the final scores and 
generate feedback. 

Preprocessing of essay text: The first step is to normalize 
the client-provided textual inputs for the downstream ML 
algorithms. This preprocessing includes taking care of 
punctuations, performing named entity recognition for certain 
kinds of words, removal of unnecessary stop words and 
formatting of the input to lower case. The output of this 

preprocessing is transformed into a custom datatype and then 
passed onto the next phase of processing. 

Essay processing: A copy of the normalized essay is 
passed to multiple decoupled MLExpert, which operate in 
parallel to process a particular essay dimension. This 
architecture exploits the fact that dimensions are orthogonal 
and require a specific ML model each to provide the necessary 
automation. It also supports modifiability in that models can 
be independently updated, and new models can be added if 
new dimensions are added to the business problem. 

Results aggregation: Each model stores its outputs, 
namely a score and textual feedback, in a MasterObject 
abstraction. This object has elements for the outputs of each 
model. We built a simple user interface to display the 
suggested scores for each dimension as well as the final 
cumulative score. The user interface incorporates templates to 
enable the machine-generated comments to be edited by essay 
assessors. Finally, once all the scores and feedback are 
approved, the application generates a PDF file with the details 
about the customer, scores and feedback that can be sent as a 
report to the customer.  

Algorithmically, we decided to address the ML problem 
as a classification problem. Open-ended free text used in the 
input essays is hard to analyze since there is considerable 
scope for ambiguity, and therefore error, in the text. We 
therefore tried a variety of models including deep learning 
methods and more classical machine learning methods. 

Even though the amount of training data was small, for 
some dimensions, we first tried using two popular word 
embeddings, BERT [19] and ELMo  [20, 10]. These were used 
with simple  neural network classifiers to understand the 
difference in evaluation of the models. For other dimensions 
we tried the Word2Vec [21] representation as well as different 
variants of BERT. The idea of these methods is not to use 
individual words as such, but to take into account the context 
of the word, so as to get better representations of each word, 
and hence of segments of text.  Such language models come 
pre-trained on large text corpora, meaning these learned 
models can directly be applied to a variety of text problems 
which require rich representations. However, this comes with 
a disadvantage: the language models tend to be huge and pose 
challenges in deployment, as we describe below. 

In addition, we developed and evaluated classifiers for all 
dimensions based on standard ML methods including 
Multinomial Bayes, and Support Vector Machines (SVM). In 
these systems, we used a much simpler Bag of Words (BOW) 
representation. Thus these models did not need any large 
language models and were more resource efficient. We fine-
tuned the models using a grid search over a number of hyper-
parameters.  

Each model was trained and saved offline, significantly 
reducing the run time of each model. The deployed models 
used text classification algorithms using statistical methods 
for calculating the final results, along with a Support Vector 
Machines  based on the  Bag Of Words representation.  

We also built the system so the basic architecture could 
be executed in two modes. Local invocation from a 
command line supported testing and evaluation purposes. 
This mode supported the development team and was 
especially important for model refinement. The architecture 
could also be deployed on a cloud platform to facilitate 



operations and integrate with the data management system 
we built. 

IV. CLOUD DEPLOYMENT 

The cloud infrastructure we created to run the application 
is hosted on AWS (Amazon Web Services). It was designed 
to accommodate the size and processing time of the ML/AI 
models used. The final cloud architecture (see Figure 2) is 
contained in a single Virtual Private Cloud (VPC) and consists 
of an Elastic Load Balancer (ELB), AWS Lambda, Elastic 
File System (EFS), and Elastic Compute Cloud (EC2) 
instances that execute models.  

 

 

Fig. 2. Overview of Cloud infrastructure for the application 

The system is invoked by sending the input essay as a web 
request, which triggers the application code housed in a AWS 
lambda function. The application dependencies, which are 
stored in the EC2 instance, are then accessed through the EFS 
access point, and the models, which reside on a collection of 
EC2 instances, are invoked.  

V. CHALLENGES 

Certain AI and cloud specific challenges arose during the 
design and construction of the application. These ultimately 
influenced the final architecture, as we discuss in the 
following. 

We strived for strong modularity through the use of 
abstract classes and interfaces. The intent was that all of our 
MLExperts could be uniformly abstracted and implement the 
same interfaces. However, since the models we deployed were 
highly heterogeneous - built by different people on different 
operating systems with different dependencies - bringing them 
all together during deployment exposed us to the challenge of 
package versioning. This is an ongoing problem in the 
industry, especially because of the lack of complex logging 
mechanisms for AI systems. [3]. Due to the short project 
duration, tracking of our versions was done via informal 
methods, such as Slack and Github, with most of us keeping 
configurations locally until the model was trained and 
evaluated. As the project evolves, we need to address this 
issue with rigorous, repeatable approaches. 

We also had issues with scalability. Developing large-
sized models was relatively straightforward on our powerful 
development machines. We soon discovered deploying the 
same models on the cloud incurred high hosting costs to 
ensure adequate performance. Thus, to build an efficient 

cloud-based AI system, developers need to be aware of the 
difference between the development and deployment 
environments, and design the system accordingly to create an 
efficient and cost-effective ML/AI application. [4]  

Testing of ML/AI based systems is challenging. Testing 
includes the verification of software to see if it behaves as 
expected. However, performing tests on ML systems is not 
straightforward because the procedures to perform the tests 
are different from the traditional techniques applied in non-
ML systems. Traditional testing techniques aim to increase the 
coverage towards the exploration of diverse software states. 
[6] However, the understanding about errors found in ML 
models is currently limited, thus leading to arbitrary bug 
detection and repair approaches. [7] Owing to the amount of 
data and resources available in the industry, it is possible to 
employ combinatorial tests [8] and stress tests to measure the 
end-to-end performance of ML/AI web-based services. [9]. 
Exploiting these strategies is however not a straightforward 
exercise. 

Additionally, interpretation of the model results is not 
always clear or straight forward. This is especially true when 
working with text data and using contextual word embeddings 
to vectorize the data.  As mentioned earlier, we built and 
evaluated classifiers based on both rich representations such 
as ElMO and BERT, and using more standard ML methods on 
simple BOW representations.  

For a variety of reasons, we did not choose these more 
complex models over the BOW models. Firstly, it was 
difficult to efficiently deploy these resource-hungry models 
without increasing the computing power and system cost 
significantly. Secondly, the difference in precision in the two 
models was  insignificant, and hence insufficient to warrant 
these costs. Our test cases were admittedly limited. With 
textual classification problems, the input domain is essentially 
infinite and hence we need to design much deeper testing and 
evaluation strategies for our model downstream. 

In addition, the long execution times of our models caused 
another architecture modification. We at first deployed an API 
Gateway, which acted as the client access point to our 
application business logic. However, the processing times of 
some of the ML models exceeded the 30 second timeout time 
of the API Gateway. We avoided this timeout by replacing the 
API Gateway with an Application Load Balancer, which will 
help with performance in the long term. 

A final challenge was due to the cloud components we 
selected for implementing the architecture. Originally, we 
pursued a pure serverless compute infrastructure due to its cost 
efficiency and low ongoing maintenance requirements. To this 
end, we wanted to contain the application code in its entirety 
in a single AWS Lambda function. However, this proved to 
be impossible, as the size of the classifiers and long list of 
model dependencies vastly exceeded the maximum allowed 
deployment package size for a Lambda function.  

Thus, we added an EFS instance as an application specific 
access point in tandem with an EC2 instance. The Lambda 
function still contained the ML pipeline code but was able to 
access the dependencies via the EFS access point to bypass 
the Lambda storage issue.  



VI. CONCLUSION 

In our experience from this project, the transition from 
open-ended client requirements to an initial implementation of 
an intelligent system is not straightforward to achieve. In our 
case, the client wanted automation of the scoring of customer-
submitted essays. To achieve this aim, we designed a modular 
software architecture that contains components for deploying 
and executing ML models. The individual ML model results 
are then combined together to get the final result. In this way, 
it is much easier to remove any unwanted models, change and 
evolve the algorithms of the existing models as well as add 
new criteria, without affecting how the application runs.  

The development of this application is still in its infancy. 
The initial system we have built is being used as the basis for 
further developing the application capabilities and adding 
usability features. Considerable further model validation and 
enhancement is needed before all the dimensions of essay 
scoring can be adequately automated. However, we hope that 
a first operational version that can add busines value can be 
deployed later in 2021.  

VII. ACKNOWLEDGEMENTS 

We acknowledge our deep gratitude to our client who 
brought us this interesting problem and participated actively 
in the development of this system. The client remains 
anonymous for commercial and confidentiality reasons. We 
are also extremely grateful to Chetna Khanna, Gabriel Rada, 
Matthew Gates-Dehn, Nicholas Nemetz, Philip Butler, Roopa 
Uma Shiv and Shucheng Chao from Khoury College of 
Computer Sciences for their input and work towards the 
application. 

REFERENCES 

[1] M. S. Rahman, E. Rivera, F. Khomh, Y.-G. Guéhéneuc, and B. Lehnert, 
“Machine Learning software Engineering in practice: An industrial 
case study,” arXiv [cs.SE], 2019. 

[2] E. Nascimento, A. Nguyen-Duc, I. Sundbø, and T. Conte, “Software 
engineering for artificial intelligence and machine learning software: A 
systematic literature review,” arXiv [cs.SE], 2020. 

[3] C. Hill, R. Bellamy, T. Erickson, and M. Burnett, “Trials and 
tribulations of developers of intelligent systems: A field study,” in 2016 
IEEE Symposium on Visual Languages and Human-Centric Computing 
(VL/HCC), 2016. 

[4] Q. Guo et al., “An empirical study towards characterizing deep learning 
development and deployment across different frameworks and 
platforms,” in 2019 34th IEEE/ACM International Conference on 
Automated Software Engineering (ASE), 2019. 

[5] A. Moreira Nascimento, L. F. Vismari, P. S. Cugnasca, J. B. Camargo 
Junior, and J. Rady de Almeira Junior, “A cost-sensitive approach to 
enhance the use of ML classifiers in software testing efforts,” in 2019 

18th IEEE International Conference On Machine Learning And 
Applications (ICMLA), 2019. 

[6] J. Kim, R. Feldt, and S. Yoo, “Guiding deep learning system testing 
using surprise adequacy,” in 2019 IEEE/ACM 41st International 
Conference on Software Engineering (ICSE), 2019. 

[7] F. Thung, S. Wang, D. Lo, and L. Jiang, “An empirical study of bugs 
in machine learning systems,” in 2012 IEEE 23rd International 
Symposium on Software Reliability Engineering, 2012. 

[8] A. Munappy, J. Bosch, H. H. Olsson, A. Arpteg, and B. Brinne, “Data 
Management Challenges for Deep Learning,” in 2019 45th Euromicro 
Conference on Software Engineering and Advanced Applications 
(SEAA), 2019. 

[9] A. Chakravarty, “Stress testing an AI based web service: A case study,” 
in 2010 Seventh International Conference on Information Technology: 
New Generations, 2010. 

[10]  Bensen_Press, “ELMo meet BERT: Recent advances in natural 
language embeddings - Bensen AI,” Bensen.ai, 26-Feb-2019. [Online]. 
Available: https://bensen.ai/elmo-meet-bert-recent-advances-in-
natural-language-embeddings/. [Accessed: 15-Jan-2021]. 

[11] Bosch, J., Olsson, H. H., & Crnkovic, I. (2020). Engineering AI 
Systems: A Research Agenda. In Artificial Intelligence Paradigms for 
Smart Cyber-Physical Systems (pp. 1-19). IGI Global. 

[12] Lwakatare L.E., Raj A., Bosch J., Olsson H.H., Crnkovic I. (2019) A 
Taxonomy of Software Engineering Challenges for Machine Learning 
Systems: An Empirical Investigation. In: Kruchten P., Fraser S., 
Coallier F. (eds) Agile Processes in Software Engineering and Extreme 
Programming. XP 2019. Lecture Notes in Business Information 
Processing, vol 355. Springer, Cham. 

[13] Hill, C., Bellamy, R., Erickson, T., Burnett, M.: Trials and tribulations 
of developers of intelligent systems: a field study. In: Symposium on 
Visual Languages and Human-Centric Computing, pp. 162–170. IEEE 
(2016). 

[14] Schelter, S., Böse, J.H., Kirschnick, J., Klein, T., Seufert, S.: 
Automatically tracking metadata and provenance of machine learning 
experiments. In: NIPS Workshop on Machine Learning Systems (2017) 

[15] Kumar, V.S., Boulanger, D. Automated Essay Scoring and the Deep 
Learning Black Box: How Are Rubric Scores Determined?. Int J Artif 
Intell Educ (2020). 

[16] Hussein MA, Hassan H, Nassef M. 2019. Automated language essay 
scoring systems: a literature review. PeerJ Computer Science 5:e208 

[17]  Banko M, Brill E (2001) Scaling to very very large corpora for natural 
language disambiguation. In Proceedings of the 39th Annual Meeting 
on Association for Computational Linguistics (ACL '01). Association 
for Computational Linguistics, USA, 26–33. 

[18]  Halevy A., Norvig P., and Pereira F, "The Unreasonable Effectiveness 
of Data," in IEEE Intelligent Systems, vol. 24, no. 2, pp. 8-12, March-
April 2009, doi: 10.1109/MIS.2009.36. 

[19] Devlin, J., Chang, M., Lee, K., & Toutanova, K. (2019). BERT: Pre-
training of Deep Bidirectional Transformers for Language 
Understanding. NAACL-HLT 

[20] Peters, M.E., Neumann, M., Iyyer, M., Gardner, M., Clark, C., Lee, K., 
& Zettlemoyer, L. (2018). Deep contextualized word representations. 
NAACL-HLT. 

[21]  Mikolov, T., Chen, K., Corrado, G.S., & Dean, J. (2013). Efficient 
Estimation of Word Representations in Vector Space. ICLR. 

 


