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Executive Summary 
Transportation decisions impact human health at least in three ways, such as traffic 

crashes, environmental impact, and physical activity. While ample efforts to reduce traffic crashes 

and environmental impacts exist, less attention has been paid to transportation decisions and their 

impacts on physical fitness. Recent efforts on the relationship between transportation and physical 

fitness mostly focus on active transportation. The potential benefits of active transportation, 

including savings in mobility costs, benefits from related businesses, community savings in costs, 

etc., are directly and indirectly associated with health and environmental benefits. Although 

predicting how a particular transportation planning decision affects physical fitness remains 

difficult, the total impacts appear likely to be large. Diseases associated with inadequate physical 

fitness cause an order of magnitude of illness and deaths.  Even modest reductions in these illnesses 

could provide significant health benefits. Therefore, a strong need for investigating how 

transportation options affect the physical activity and public health seems clear. This study 

assesses the factors impacting the amount of physical activity and the proportion of an individual’s 

daily activity attributable to transportation activities.  

Literature Review: 

The literature review investigates health impact and outcome modelling, transportation 

data collection and user activity recognition, travel mode detection and associated characteristics, 

and integrated health-transportation impacts.  Physical inactivity represents one of the most serious 

public health concerns facing health organizations worldwide. According to the World Health 

Organization (WHO), physical inactivity accounts for 6% of global deaths, which ranks it as the 

fourth leading cause of global mortality. In addition, physical inactivity contributes to 21-25% of 

breast and colon cancers, 27% of diabetes, and 30% of ischemic heart disease (WHO, 2019). The 

2013 world-wide direct and indirect healthcare costs of physical inactivity reached $53.8 billion. 

Physical activity through active transportation represents a potential solution to physical inactivity 

and these serious healthcare issues and costs. Developed countries, including the United States of 

America, continue to investigate the connections between transportation and public health and the 

environment. 



 

Monitoring Daily Activities and Linking Physical Activity Levels Attributed to Transportation Mobility Choices and Built Environment 

 

2 | P a g e  

 

When measuring and monitoring the effects of the transportation system on health, many 

automatic data collection applications offer more promise than traditional travel diary options. 

Many studies for analyzing daily transportation activities and behaviors applied Smartphone and 

GPS technology to detect the spatial patterns of road users. This method required many researchers 

to use machine learning and classification algorithms. More recent research applied Geohash 

clustering to identify the threshold of change for the activities of road users, which represents a 

significant improvement over any stage-based technique.  

For the detection of transportation mode, many studies applied Machine Learning methods 

either through the use of neural networks, deep learning, or other unsupervised techniques. 

Integrated data about the travel behavior and physical activities of individuals offers the ability to 

determine levels of physical activities (PA) associated with transportation.  

Development of Mobile Application and Integrated “PASTA” Platform: 

The study developed an integrated platform named “PASTA” for automated data collection 

and processing from a mobile application and Fitbit Charge-2. Data collected from the mobile 

application included the GPS locations of participants’ daily trips and activities, while the Fitbit 

charge-2 collected data regarding physical activities, such as walking/running steps, heart rate, 

total calories, active minutes.  The research team processed the minute-by-minute data log to 

determine daily activity (type, location, and duration), travel activity (transportation mode, travel 

time), and physical activity (e.g. heart rates and duration).  

“PASTA” platform included four main components, where the first component was a 

mobile phone application, which collected data from the phone itself and the smartwatch, and 

included the following features: the user authentication process, the activity/trip verification, and 

the location information. The team implemented the mobile application using Ionic 2 cross-

platform technology for collecting travel activities data. The server, which was implemented using 

Spring Framework, received these data via RESTful API and stored the information in the database 

for processing. The server analyzed the data by identifying from the GPS points the visited 

locations and the trips between these locations.  

The back-end server represented the second component and it received the smartphone data 

(e.g.  location information, user authentication) and pulled the physical activity (PA) data from the 

smartwatch. The database management system represented the third elementand handled storage 
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and data recovery. The classifiers, the fourth component, processed raw data within the database 

and extracted the required information. The research platform included a collection of classifiers; 

the classification of activities as a trip or non-trip represented the most important classifier. The 

framework for this classifier used a combined Geohash-GIS technology that clustered the 

locational activity points.   

The integrated approach allowed classification of various activity types and transportation 

modes. The amount of physical activity by activity type and travel mode was quantified by using 

the heart rate and the activity duration. Figure (E.1) depicted the flowchart of the “PASTA” 

platform.   

 

 
Figure E.1 The diagram of the data processing through “PASTA” platform 
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Survey Result: 

The study selected a total of 120 participants to collect daily activity and physical activity 

data in Kalamazoo, Michigan and Arlington, Texas. Each participant received a smartwatch (Fitbit 

charge 2/3) and installed the PASTA mobile app that tracked the activities of the user in the 

background and sent these data to the server. The team recorded In-body composition data for each 

of the participants.  

The research team developed an initial survey for pre-screening that included demographic 

questions, transportation mode choice, and daily commuting travel time.  The initial survey 

showed that those physically active individuals tended to choose active transportation options. 

Based on the initial survey, the research team classified the participants for a stratified recruitment 

based on auto use (inactive), auto use (active), and all other modes. All study participants 

completed the main survey to assess their socio-demographic profile, economic profile, travel 

options, daily activities. The survey responses indicated that over 70% of the participants perceived 

that they have good or excellent health. The research team computed the subject’s physical activity 

based on intensity level (from 1 to 10), and duration (minutes) of their activities. Based on the 

physical activity, both study areas (Kalamazoo vs. Arlington) showed a similar distribution of 

active and highly active participants (45.8% vs. 44.8%).  Based on the body mass index (BMI), 

the obesity rate remained higher at WMU than UTA (33.9% vs. 25.9%).  

The research team combined the transportation modes into three groups and aggregated the 

travel time by mode, such as active travel time (summation of travel times for walking and biking), 

private vehicle travel time (summation of travel times for driving, being a passenger of auto, and 

motorcycle time), and transit travel time (summation of travel times for wait/transfer, bus, rail, and 

taxi). More than 50% of the participants used private vehicles in terms of commuting for both 

study areas.  For Arlington, the second highest transportation mode was active transportation (38% 

participants). Public transit appeared more popular for commuting in Kalamazoo in comparison to 

Arlington because the UTA shuttle bus represented the only fixed-route transit option in Arlington, 

whereas Kalamazoo transit system instead provided fixed-route transit service to Kalamazoo area 

cities including Kalamazoo, Portage, Parchment, Texas, and Osthemo.  In terms of relationship 

between transportation mode users and physical activity levels, Arlington participants appeared 
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more physically active in comparison to the Kalamazoo participants because they frequently used 

bicycle and walking as their transportation mode.  

The researchers conducted a cross tabulation analysis to compare the respondent’s 

perceived health status and their actual physical activity. The overall results of the UTA sample 

showed that perceived health did not always align with objective health measures such as BMI and 

physical activity level. Although, more Kalamazoo participants belonged to the normal weight 

with excellent health category than Arlington (10.2% vs. 1.7%), the relationship between 

perceived health and BMI seemed similar at both study areas.          

Transportation User Activity and Trip Recognition: 

In this study, the research team developed three different approaches to identify user 

activity and trip based on the GPS trajectories of the participants. The research team applied 

different thresholds of spatiotemporal change by developing a Geohash clustering approach and 

the GIS-based approach, forming a combined approach by integrating the Geohash and GIS 

systems. The team developed and implemented approaches for activity only, trip only, and 

sequential activity-trip recognition with GPS data from Kalamazoo, Michigan.  

 

Different 
testing 

Scenarios 

MAPE 
Geohash-6 GIS-based Approach Combined Approach 

5 min 8 min 10 min 5 min 8 min 10 min 5 min 8 min 10 min 

activity/trip  30.16 28.87 33.15 65.91 62.98 67.11 12.70 13.48 18.81 

activity  23.81 22.82 21.22 49.72 58.59 58.29 18.65 20.95 27.83 

trip  42.77 40.97 51.43 44.83 34.88 46.35 15.00 20.01 25.21 

 
Figure E.2 Prediction accuracy in activity/trip recognition based on MAPE 

 

For the Geohash clustering approach, Geohash precision level-6 with a dwell time of 5 

minutes provided better activity/trip recognition accuracy [Figure (E.2)]. For the GIS-based 

approach, a dwell time of 10 minutes worked better than 5 minutes in terms of accurately 

recognizing the activity and trip of the participants. Among the three approaches, the Combined 

Geohash-GIS approach with dwell time of 5 minutes provided the best accuracy, which could 

significantly enhance the efficiency and accuracy of a GPS travel survey by correctly (about 88%) 
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recognizing user activity and trip patterns. This proposed combined approach could serve as a 

foundation for a future system of full-scale travel information identification with GPS data.  

Transportation Mode Detection: 

Transportation mode identification represents another critical output to allow GPS systems 

to replace travel diaries. Therefore, the research team developed algorithms for predicting 

transportation modes using the smartphone and smartwatch data with machine learning techniques. 

This study used four machine learning methods (Extreme Gradient Boosting, Random Forest, 

Support Vector Machine, and Artificial Neural Network) for mode prediction after introducing 

physical activities as a feature not used in previous studies. Figure (E.3) showed the accuracy of 

the predictive methods considered in this study.  

 

  

Figure E.3 Predictive models performances in detecting the transportation mode 

 

The results showed that the Random Forest method worked better than other methods in 

detecting non-motorized modes: walking mode (97.2%) and bicycle mode (90.6%).  However, the 

random forest model performed the most poorly for classifying the bus mode (61.4%) because of 

misclassification cases involved instances where a bus mode was incorrectly classified as an auto 
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mode and vice versa. This study provided the appropriate tools to properly classify most modes, 

but other features may need to be included to more accurately classify bus. 

Exploring the Association Between Individual’s Physical Activity Level with Socio-economic 

and Body-composition Characteristics:  

In this study, the research team explored the statistical association between the physical 

activity levels of individuals, their socioeconomic characteristics, and body composition profiles. 

The physical activity intensity attained from transportation was measured by collecting 

individual’s daily activity, transportation choices, and the amount of physical activity. The in-body 

composition characteristics included the Body Mass Index (BMI), Body Fat Mass (BFM), and 

Percent Body Fat (PBF). In this section, the research team conducted a Path analysis, which 

represents a special case of structural equation modeling (SEM) to explore the causal and non-

causal relationships among variables.  

From the result of the path analysis [Table (E.1)], partcipant’s residing state, body mass 

index (BMI), number of vehicles per household, and total time spent in different transportation 

mode showed a direct effect on the weekly equivalent vigorous PA minutes from transportation. 

On the other hand, the variables with an indirect effect on an individual’s physical activity included 

age and gender. Race and annual income contributed both direct and indirect effects on an 

individual’s physical activity.  
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Table E.1 Summary of the significant variables (total, direct, indirect) related to physical activities 

Variables 
Total  Direct Effects Indirect Effects 

Coef. 
Std. 
Err. 

z P>z  Coef. 
Std. 
Err. 

z P>z  Coef. 
Std. 
Err. 

z P>z  

State =Michigan                         

Gender=Male 0.285 0.024 12.010 0.000 0.285 0.024 12.010 0.000 0 (no path) 

Age Group =26-49 0.188 0.024 8.000 0.000 0.188 0.024 8.000 0.000 0 (no path) 

Race=Black 0.133 0.039 3.430 0.001 0.133 0.039 3.430 0.001 0 (no path) 

Race=Asian 0.327 0.042 7.830 0.000 0.327 0.042 7.830 0.000 0 (no path) 

Race=Hispanic 0.255 0.028 9.160 0.000 0.255 0.028 9.160 0.000 0 (no path) 

Age Group=50-64 -0.144 0.045 -3.170 0.002 -0.144 0.045 -3.170 0.002 0 (no path) 

Constant 0.059 0.030 2.000 0.045                 

Trip-equivalent=PA 
min 

                        

state=Michigan 4.038 1.483 2.720 0.006 4.038 1.483 2.720 0.006 0 (no path) 

BMI-test 0.573 0.145 3.960 0.000 0.573 0.145 3.960 0.000 0 (no path) 

Vehicles No.=2 9.929 2.501 3.970 0.000 9.929 2.501 3.970 0.000 0 (no path) 

Vehicles No.=1 10.383 2.203 4.710 0.000 10.383 2.203 4.710 0.000 0 (no path) 

PBF         0 (no path) 0.092 0.024 3.900 0.000 

Total time 0.040 0.017 2.300 0.022 0.040 0.017 2.300 0.022 0 (no path) 

Gender=Male         0 (no path) 1.150 0.433 2.660 0.008 

Age Group=26-49         0 (no path) 0.759 0.295 2.580 0.010 

Race=Black         0 (no path) 0.536 0.251 2.130 0.033 

Race=Asian -6.751 2.680 -2.520 0.012 -6.751 2.680 -2.520 0.012 1.319 0.513 2.570 0.010 

Race=Hispanic -3.371 1.731 -1.950 0.051 -3.371 1.731 -1.950 0.051 1.031 0.395 2.610 0.009 

Vehicles No.=3+ 8.543 2.574 3.320 0.001 8.543 2.574 3.320 0.001 0.000 (no path) 

Income=30000-50000 -10.815 2.194 -4.930 0.000 
-

10.815 
2.194 -4.930 0.000 2.108 0.808 2.610 0.009 

Health 
Condition=Bad 

-11.386 3.846 -2.960 0.003 
-

11.386 
3.846 -2.960 0.003 0.000 (no path) 

Professional Status: 
Administration 

7.937 2.844 2.790 0.005 7.937 2.844 2.790 0.005 0.000 (no path) 

Age Group =50-64         0 (no path) 
-

0.581 
0.281 

-
2.070 

0.039 

Constant -8.704 4.200 -2.070 0.038                 

BMI Test                          

PBF 0.161 0.007 22.760 0.000 0.161 0.007 22.760 0.000 0.000 (no path)  

Constant 23.232 0.242 95.810 0.000                 

Vehicles No.=2                         

Income=30000-50000 0.357 0.024 14.870 0.000 0.357 0.024 14.870 0.000 0.000 (no path) 

Constant 0.189 0.011 17.310 0.000                 

Vehicles No.=1                         

Income=30000-50000 -0.138 0.028 -4.880 0.000 -0.138 0.028 -4.880 0.000 0.000 (no path)  

Constant 0.452 0.013 35.060 0.000                 

var (State =Michigan)    0.213 0.007                     
var(trip equivalent 
=PA min)    

850.939 28.154                     

var (BMI Test)    26.821 0.887                     

var (Vehicles No.=2)   0.173 0.006                     

var (Vehicles No.=1)   0.241 0.008                     
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Integrated Transportation and Health Impacts Model (ITHIM) with a new approach to 

measuring the relative risk of physical activity related and non-related to travel 

In this study, the research team employed the integrated transportation and health impact 

model (ITHIM) and enhanced the concept of ITHIM by adding the quantitative data obtained from 

PASTA. Mechanisms for collecting data on physical activities (PA) related to or not related to 

transportation in previous studies relied on questionnaires and interviews of specific samples in 

the community. Instead, the PASTA platform provided an automated mechanism for gathering the 

daily activities of people, especially with regard to physical activities and travel behaviors. The 

study introduced the physical activity minute (PAM) (an indicator of changes in activity levels), 

which represented an alternative to the metabolic equivalence of the task (METs).  

 

 

Figure E.4 Shifting from qualitative data to quantitative data for the Physical Activities impact 

factor 

 

Figure (E.4) showed the results obtained from the ITHIM model, where the role of 

transportation can be observed in different levels of physical activity depending on the 

transportation mode.  The outcome explored the speed, the difference between heart rate activity 
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and heart rate rest for each activity (HRact- HRrest), and calories, in each transportation mode, 

respectively. Results showed an increasing trend in physical activity with cycling, less physical 

activity when walking, and then a further decrease when using vehicles. Also, the research team 

verified a relationship between METs calculated from calorie and the PAM values calculated from 

the heart rate (both of the data derived from the smartwatches) for both physical activities (PA) 

related to or not related to transportation.  By coupling the data from PASTA, this research 

substantially reduced the limitations in the previous ITHIM and upgraded the model to conform 

to the current technological advances.  
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Chapter 1 Introduction 

 

1.1 Background and Research Problem 

Humans require physical activity for healthy lives. Increases in physical and cardiovascular 

activities tend to decrease diseases (Adesiyun, 2018). Non-motorized transportation options, like 

walking, running and cycling, deliver natural health benefits and provide one option for increasing 

physical activity. The potential benefits of active transportation include savings in mobility costs, 

benefits from related businesses, community savings in costs associated with health and 

environmental benefits (Cadilhac, 2011). In addition, active transportation provides environmental 

benefits, enhance road safety by reducing the loss of life, improve traffic efficiency by reducing 

congestion, contribute to mood improvement of road users and economic benefits derived from 

many sources (Frank et al., 2006; Leslie et al., 2007; Litman, 2003; ALRMTAT, 2016). 

Transportation mode and path decisions impact human health in at least three ways: traffic crashes, 

environmental impacts, and physical activity. While ample efforts in reducing traffic crashes and 

environmental impacts exist, less attention has been paid to the mode choice impact on physical 

fitness.  

The health benefit of active transportation comes from the participants’ physical activities 

(Ahima and Lazar, 2013). Research related to the health benefits of active transportation represents 

an important research topic because using active transportation to gain health benefits represents 

a strategy for integrating physical activity into a daily routine. Studies show that persons with 

moderate to high levels of physical activity or cardiorespiratory fitness have a lower mortality rate 

rather than those with sedentary habits or low cardiorespiratory fitness (Wagner et al., 2002). 

Furthermore, a significant trend in decreasing the risk of death across increasing categories of 

distance walked, flights of stairs climbed, and degree of intensity of sports played exists (Bouchard 

et al., 2007). Physical activities for cardiorespiratory endurance reduces the risk of developing or 

dying from cardiovascular diseases (CVD), hypertension, colon cancer, and non-insulin-dependent 

diabetes mellitus (NIDDM) and improves mental health while endurance-type physical activity 

may reduce the risk of developing obesity, osteoporosis, and depression and may improve 

psychological well-being and quality of life (Gordon-Larsen et al. 2009). According to a report by 



 

Monitoring Daily Activities and Linking Physical Activity Levels Attributed to Transportation Mobility Choices and Built Environment 

 

12 | P a g e  

 

the Centers for Disease Control and Prevention (CDC), benefits of physical activities include: 1) 

to help build and maintain healthy bones, muscles, and joints; 2) help control weight, build lean 

muscle, and reduce fat; and 3) to prevents or delay the development of high blood pressure and 

helps reduce blood pressure in some adolescents with hypertension (CDC, 2017). Active 

transportation’s magnitude of impact on physical fitness or physical activity requirements remains 

unknown. 

Assessing this impact appears problematic because measuring physical activity directly 

remains difficult. Three types of physical activity measures have been used in observational studies 

over the last 40 years. Most studies rely on a self- reported level of physical activity, as recalled 

by people prompted by a questionnaire or interview (Hatano, 1993). Cardiorespiratory fitness (also 

referred to as cardiorespiratory endurance), which is measured by aerobic power, represents a more 

objectively measured characteristic. Some studies use an occupation to classify people according 

to their likely physical activity at work (Barengo et al., 2004). Although predicting the impact of 

a particular transportation planning decision on physical fitness appears challenging, the total 

impacts seem likely to be large. Diseases associated with inadequate physical fitness cause an 

order of magnitude of more deaths, and cause more deaths than road crashes (HHS, 2018). Even 

modest reductions in these illnesses could provide significant health benefits; therefore, 

investigating the impact of transportation mode choices on physical fitness or physical activity 

levels appears imperative. 

Classic clinical interventions promoting a healthy lifestyle primarily rely on counseling, 

but this requires significant time investments. A structured exercise program based on individual 

characteristics remains complex and costly to maintain. Wearable devices offer an alternative 

approach to improve individual health and support the collection and interpretation of data on 

environments, behaviors, physiology, and well-being. Recent clinical intervention among adults 

using wearable ECG, a smartphone for real-time data transfer on aerobics sessions, and a Global 

Positioning System (GPS) have dramatically improved walking distance and depression (Brichetto 

et al., 2019). Improvements to devices, communication devices, and data analysis tools, make the 

cheap, reliable, wearable sensors available to transport researchers. These devices provide 

solutions for researchers and multiple streams and allow for new forms of research (Machek, et 
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al., 2016).  Using the new data collection devices, researchers may be able to characterize the 

physical activity associated with active transportation choices. 

This study intends to identify and categorize the health outcomes associated with different 

transportation modes. By employing wearable devices with sensing and GPS tracking technology, 

the research team can collect the amount of physical and cardiovascular activity for different travel 

activities and transportation mode choices. The study monitors and documents humans’ activities 

to investigate their travel trajectories. Continuous monitoring and data generation provides raw 

data that can be used by researchers to determine the common physical activity benefits of 

transportation modes. This research seeks to integrate human health into the transportation 

planning process by quantifying the health outcomes associated with transportation modal 

options.  

1.2 Research Goal and Objectives 

The primary goal of the research was to explore the factors impacting the amount of 

physical activity an individual engages in and the proportion of an individual’s daily activity 

attributable to transportation activities.  Specific research objectives include:   

1. To develop a strategy for monitoring and recording the daily physical activity of a 

representative sample of individuals in different urban area contexts. 

2. To develop a mobile application for automatically monitoring and recognizing the user’s 

transportation activity and daily travel trajectories.    

3. To develop a data fusion strategy to combine wearable data (including heart rate) with 

smartphone data and Google Map features/data. 

4. To create a preliminary scheme for using speed patterns/profiles to classify mode choice. 

5. To test the statistical association between the physical activity levels of individuals, their 

socioeconomic and employment profiles, and their associated health outcomes by using 

different transportation modes.  

6. To identify and categorize health outcomes from daily physical activity.  

7. To use the fused data to classify and measure the physical activity for evaluating integrated 

transportation and health impacts. 
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1.3 Research Scope and Overview 

Successful completion of this research should help incorporate human health into the 

transportation planning process by quantifying the health outcomes associated with transportation 

mode choices.  

This report includes the following components: a review of previous relevant studies, 

development and implementation of a mobile application for travel trajectory data collection, 

development of an integrated platform named “PASTA” for combined data collection and storage 

from mobile application in accordance with physical activity monitoring through Fitbit Charge 

2/3, comprehensive data analysis for activity/trip recognition, transportation mode choice analysis, 

and integrated transportation and health impact model assessment. The researchers accomplished 

these objectives during the following tasks:  

Task 1: Literature Review  

Task 2: Mobile Application Development 

Task 3: Data Collection and Integrated Platform Development  

Task 4: Development of User Activity and Trip Recognition 

Task 5: Transportation Mode Detection 

Task 6: Exploring Relationship Between Physical Activity and Individual’s 

Characteristics 

Task 7: Integrated Transportation and Health Impacts Model (ITHIM) Development 

Task 8: Recommendations and Final Report 

 

Figure  1.1 depicts the connectivity of the eight tasks and the overall flow of this research.  
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Figure 1.1 Overall Flow of this Research  

1. Literature Review 
 

 Comprehensive review of publications and reports from U.S. and worldwide practices 
 Articles related to health impact and outcome modelling, transportation data collection and 

user activity recognition, travel mode detection and associated characteristics, and integrated 
health-transportation impacts, etc. 

2. Mobile Application Development  
 

 Develop a mobile app to collect the raw data about the daily activities of the participants from 
wearable devices. 

 Include an algorithm that automatically classifies the transportation activity/mode and 
provide integrated health-transportation impact data.  

 
 

4. Development of User 
Activity and Trip Recognition 

 
 Develop combined Geohash and 

GIS-based approach for 
activity/trip recognition 

5. Transportation Mode 
Detection 
 

 Apply machine learning 
algorithms for travel 
mode detection and 
prediction 

6. Relationship of Physical 
Activity and Individual’s 

Characteristics 
 

 Analyze different socio-economic 
characteristics of different 
transportation mode users and 
associated physical activities 

7. Integrated Transportation and Health Impacts Model (ITHIM) 
Development 

 
 Develop a leading model that measures the health effects associated with transportation 
 Provide a sustainable and integrated health transportation system 
 Promotes suggestion for mitigating the negative impacts of transportation, and enhances its 

positive aspects 

8. Recommendation and Final Report 

PASTA Application 

 Collect daily travel 
activities 

 Obtain locations from 
GPS in the subject’s 
mobile phone 

Fitbit Charge 2 & 3 

 Collect daily physical activity data 
 Data about distance travelled, heart 

rate, active minutes, steps, total 
calories, etc. were collected and 
integrated with location data 

Body Composition and Survey 

 Collect body composition data 
of muscle fat, obesity, and 
segmental lean analysis 

 Design a survey for 
demographic and socio-
economic characteristics.  

3. Data Collection through Integrated PASTA Platform  
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Chapter 2 Literature Review 

 

2.1 Introduction 

Physical activity represents a widely considered solution for many health problems and to 

remain healthier as an older adult. Without increases in physical activity across the broader 

population, the rates of disease, and the decline in life expectancy will continue to increase and 

with these trends the cost of health care will also increase. The active transportation system 

represents an opportunity for an individual to increase physical activity and create a more livable 

community. This section presents a comprehensive literature review. The review focuses on 

models that analyze the health impact and outcomes from physical activity, transportation data 

collection and user activity recognition studies, travel mode detection using GPS data, and 

integrated health-transportation impacts.  

2.2 Health Impacts and Outcomes Modeling  

According to the Centers for Disease Control (CDC), chronic diseases, including heart 

disease, cancer, stroke, and diabetes, account for seven out of ten deaths among Americans and 

represent 75% of the $2 trillion U.S. healthcare spending in 2005 (Tinker, 2017). Although 

physical exercise as part of one’s daily routine, such as walking and biking to mandatory and 

maintenance activities may easily increase physical activity, most areas lack infrastructure that 

encourages active transportation and require long commuting travel distances. This leads to private 

vehicle use for most trips/activities. The sedentary nature of many working environments, a lack 

of motivation and perceived future body pain represent the main primary barriers for individuals 

to engage in physical activity (Netz, 2018).  A solution to the physical inactivity crisis will decrease 

nationwide healthcare costs and improve morbidity and mortality across all age groups while 

enhancing quality of life.  

According to Chapman (2019), if someone walks 30 minutes daily for four days a week, 

he/she will burn an extra 20,000 to 40,000 calories per year, which is equal to a six to twelve-

pound weight loss with the same food diet. According to the 10,000-step goal that originated in 
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Japanese walking clubs1, 10,000 steps per day results in burning 300-400 kcal energy although the 

impact depends on walking speed and body composition (Hatano, 1993). According to the CDC 

(1996), the recommended minimum physical activity (equivalent to 150kcal) can be achieved with 

30-minutes of daily moderate intensity physical activity. The study of Tudor-Locke & Bassett 

(2004) suggests the following thresholds to distinguish different healthy adults based on their 

physical activity: 

- ‘Sedentary lifestyle’: < 5,000 steps/day 

- ‘Low active’: 5,000-7,499 steps/day, which is a typical for daily activity excluding 

volitional sports/exercise 

- ‘Somewhat active’: 7,500-9,999 steps/day, including some volitional activities and or 

elevated occupational activity demands  

- ‘Active’: 10,000 steps/day, which is a threshold for classifying active versus non-active 

people.  

- ‘Highly active’: are the people who travel more than 12,500 steps/day.  

The Department of Health and Human Services (HHS) (2018), indicates about half of the 

U.S. adult population has one or more preventable chronic diseases. Regular physical activity can 

have a positive impact on seven out of ten of the most prevalent chronic diseases. Although half 

of American adults meet the key guidelines for aerobic physical activity, 80% of them do not meet 

the guidelines of both aerobic and muscle-strengthening activities. Physical activity contributes 

$117 billion in annual health care costs and about 10% to premature mortality rates (HHS, 2018). 

Despite some improvements in the physical activity levels of American adults, only 26% of men, 

19% of women, and 20% of adolescents’ report activity levels that meet relevant CDC aerobic and 

muscle-strengthening guidelines [Figure (2.1)].  

 

 

 

 
1 In the 1960s, pedometers in Japan were sold under the trade name of “manpo-kei”, meaning 

“10,000 steps meter” 
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Figure 2.1 Percentage of U.S. Adults Ages 18 Years or Older Who Met the Aerobic and Muscle-

Strengthening Guidelines, 2008–2016 (from Centers for Disease Control and Prevention, National 

Center for Health Statistics, National Health Interview Survey (NHIS).   

 

2.2.1 Physical Activity and Major Health Outcomes 

Significant research regarding the impact of physical activity on health outcomes exists. 

While some studies examine this linkage for one disease or risk factor, other studies address the 

association between physical activity and more than one particular disease. The authors the 

following diseases and risk factors due to their significance in previous studies: 

 Obesity 

 Diabetes 

 Cardiovascular diseases 

 Cancer 

 Bone health/Osteoporosis 

2.2.1.1 Physical Activity and Obesity 

According to the CDC, in 2015-2016, the prevalence of obesity reached 39.8 % in U.S. 

adults, aged 20 and over, and 20.6% among adolescents, aged 12-19 years (CDC, 2017). Since 

physical activity provides between 25% and 50% of total daily energy expenditure, it contributes 

greatly to weight control (Bouchard et al., 2007). Koh-Banerjee et al. (2003) conducts a cohort 

study to examine the 9-year waist circumference change and changes in some interventions (e.g. 
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physical activity, dietary intake, alcohol consumption, and smoking) among U.S. men. The results 

linked an increase of 25 MET-hour/week in vigorous physical activity and more than 0.5 

hour/week in weight training to 0.38 cm and 0.91 cm changes in waist circumference, respectively. 

The high occurrence of obesity and the linkage between physical activity and obesity make the 

encouragement of greater physical activity a critical public health goal. 

Active commuting allows individuals to integrate physical activity into an otherwise 

sedentary lifestyle. A well-established body of literature examines the positive association between 

active (walk/bike) modes and health measures, in which include lower rates of obesity (Samimi et 

al., 2009; Humphreys et al., 2013; Flint et al., 2014; Scheepers et al., 2015; Flint and Cummins, 

2016). Men who commute by car appear about 40% more likely to be overweight and obese than 

those who cycle or use public transit (Wen et al., 2008). Gordon-Larsen et al. (2009) confirm that 

men using active travel choices have a reduced likelihood of obesity (OR = 0.50; 95% CI 0.33, 

0.76). According to Langerudi et al. (2015), a 1% increase in transit use reduces the likelihoods of 

obesity and heart attack by 1.10% and 1.20%, respectively. She et al. (2019) show that a 1% 

increase in public transit riders appears to reduce the county population obesity rates by 0.473%.  

Active transportation and public transit use play a significant role in reducing obesity rates. 

2.2.1.2 Physical Activity and Diabetes 

Diabetes causes blood glucose (sugar) levels to rise higher than normal, and Type 2 

diabetes represents the most common type. The American Diabetes Association shows that 9.4% 

(30.3 million) of USA population had diabetes in 2015 (CDC, 2017). Based on many studies 

(Kriska et al., 2003; Bonora et al., 2004; Jonker et al., 2006; Onat et al., 2007; Fretts et al., 2009; 

Walker et al., 2010; Reis et al., 2011; Fan et al., 2015), an inverse relationship between physical 

activity and the risk of Type 2 diabetes exists; however, other research projects (Waki et al., 2005; 

Burke et al., 2007; Sato et al., 2007; Tonstad et al., 2013) find no association. The linkage between 

physical activity and Type 2 diabetes appears less clear than the link with obesity; however, it still 

represents an important relationship. 

Many studies investigate the relationship between Type 2 diabetes and physical activity. 

Hu et al. (2003) examines the associations between occupational, commuting, and leisure-time 

physical activity and Type 2 diabetes risk and determines the relative risks (RRs) of Type 2 

diabetes for light (1.00), moderate (0.70) and vigorous (0.74) work physical activity. Longer active 
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commuting significantly reduces the RR where no active commute, 1-29 minutes of active 

commute, and more than 30 minutes of active commute generate 1.00, 0.96, and 0.64 relative risk 

values. The benefits of leisure time physical activity appear quickly with RR values of 1.00, 0.67, 

and 0.61 for low, moderate, and high levels. Aune et al. (2015) demonstrate that moderate (RR = 

0.68) and vigorous (RR = 0.61) physical activity reduce the risk of Type 2 diabetes.  Kyu et al. 

(2016) show major gains (19% reduction) in the risk of five diseases including diabetes with an 

increase of physical activity from 600 to 3600-MET minutes/week. Tajalli and Hajbabaie (2017) 

indicate that the change of transportation mode from car to walk reduces obesity by 5.5%, high 

blood pressure by 16.9%, and diabetes by 4.4%. The relationship between physical activity and 

Type 2 diabetes appears largely binary where physical activity must exceed some threshold for 

most of the risk reduction to occur. 

2.2.1.3 Physical Activity and Cardiovascular Disease Risk 

Based on the American Heart Association (AHA) (2018), cardiovascular diseases (CVD) 

account for nearly 836,546 deaths in the U.S., which represents about one out of every three deaths. 

Many studies investigate the positive association between walking/biking and CVD risk. Many 

studies determine the positive effects of leisure time and occupational physical activity on reducing 

CVD risk and mortality (Wagner et al., 2002; Barengo et al., 2004; Hu et al., 2005; Wennberg et 

al., 2006; Hu et al., 2007; Hamer and Chida, 2008; Gordon-Larsen et al., 2009). The risk factors 

include: 

 systolic blood pressure (Barengo et al., 2004; Hu et al., 2007; Murphy et al., 2007; 

Gordon-Larsen et al., 2009) 

 oscillometric blood pressure (Gordon-Larsen et al., 2009)  

 diastolic blood pressure (Murphy et al., 2007; Gordon-Larsen et al., 2009) 

 body mass index or BMI (Barengo et al., 2004; Wagner et al., 2002; Wennberg et al., 

2006; Hu et al., 2007; Hamer & Chida, 2008)  

 body fat (Murphy et al., 2007) 

 cholesterol (Barengo et al., 2004; Wennberg et al., 2006; Hu et al., 2007)  

 cardiovascular fitness in terms of VO2 Max (Murphy et al., 2007)  

 serum measures of lipids, glucose, and insulin (Gordon-Larsen et al., 2009) 
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Hamer and Chida (2008) identify an 11% reduction in cardiovascular risk associated with 

active commuting. Gordon-Larsen et al. (2009) uses multivariate linear and logit regression 

models to determine the associations between self-reported active commuting trip features (time, 

distance, and mode), body weight, obesity (BMI ≥ 30 kg/m2), fitness (symptom-limited exercise 

stress testing), moderate-vigorous physical activity (through accelerometer) and CVD risk factors. 

Their results show that among the four groups of participants (male active and non-active 

commuters, female active and non-active commuters), active men experience a reduced CVD risk 

due to higher levels and intensities of active travel than the other groups. Li and Siegrist (2012) 

show that the high levels of leisure time physical activity (PA) and moderate levels of occupational 

PA could reduce the total risk of coronary heart disease (CHD) and stroke by 20-30%, among men 

and 10-20% among women. Bennett et al. (2017) identify that every four MET-h/day increase in 

total physical activity (equal to one-hour brisk walking per day) reduces the risk major vascular 

events by 6%, main coronary diseases by 9%, ischemic stroke by 5%, intracerebral hemorrhage 

by 6%, and CVD death by 12%. Increases in physical activity (including active commuting) play 

a significant role in reducing the risk of CVD. 

2.2.1.4 Physical Activity and Cancer Risk 

Cancer causes about one in every six deaths worldwide, which exceeds the mortality rate 

of AIDS, tuberculosis, and malaria combined (American Cancer Society, 2018) and makes cancer 

the second-leading cause of death. Based on the International Agency for research on Cancer 

(IARC), 17 million new cases of cancer occur annually worldwide (Bray, 2018). In the U.S., an 

estimated 1,735,350 new cancer cases occur, and cancer causes 609,640 deaths (National Cancer 

Institute, 2018). Physical activity not only reduces the risk of obesity-related cancer development, 

but it also improves quality of life of cancer patients. According to Bhaskaran et al. (2014), leisure 

time physical activity could reduce the risk of thirteen cancers, including liver, lung, kidney, 

colorectal, and esophageal (adenocarcinoma). Colon and breast cancer risk demonstrate the most 

consistent inverse relationship with physical activity (Adesiyun and Russell, 2018). Given cancer’s 

significant mortality risk and the physical and economic costs associated with its treatment, any 

small reduction in cancer risk from physical activity may have significant impact on public health. 

Fortunately, the reduction in cancer risk due to increased level of physical activity can be 

relatively large. Shi et al. (2015) examine the relationship between household physical activity and 
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cancer risk (in general) and find individuals the with greatest levels of household physical activity 

have a 16% lower cancer risk than individuals with the lowest levels of household physical activity. 

Cancer risk decreases by 1% for an additional one hour/week and 2% for a 10 MET-hours/week 

increase in household physical activity. Lynch et al. (2010) shows an average breast cancer 

reduction risk of 25% for physically active women in comparison with the least active women. 

Boyle et al. (2012) report that physical activity provides an average proximal/distal colon cancer 

risk reduction of 26-27%. The relationship between physical activity and prostate cancer appears 

less clear because some studies (Patel et al., 2005; Giovannucci et al., 2005; Nilsen et al., 2006) 

show an inverse relationship and, others show no association (Friedenreich et al., 2004; Zeegers 

et al., 2005; Littman et al., 2006). Other research on the relationship between physical activity 

cancer investigated rectal cancer (Lee et al., 2007), lung cancer (Kruk et al., 2013), and endometrial 

cancer (Voskuil et al., 2007). Table (2.1) shows the epidemiologic evidence on the association 

between physical activity and cancer risk (adapted from Schmid and Leitzmann, 2014). While the 

link between physical activity and cancer risk requires further investigation, no previous research 

indicates that physical activity represents a cancer risk. 

 

Table 2.1 Epidemiologic evidence on the association between physical activity and cancer risk 

(adapted from Schmid and Leitzmann, 2014) 

Cancer site Average risk reduction Level of epidemiologic evidence 

Colon 25% Convincing 
Breast 25% Convincing 

Endometrial 20-30% Probable 
Lung 20-50% Possible 

Pancreatic 25% Possible 
Gastric 30% Possible 
Prostate 10% Insufficient 
Ovarian <10% Insufficient 

 

2.2.1.5 Physical Activity, Bone Health, and Osteoporosis 

Osteoporosis (or porous bone) causes a reduction in the density and quality of bones, and, 

the risk of fracture greatly increases when the bones become more porous and fragile (National 

Osteoporosis Foundation, 2019). The National Institute of Health (NIH) indicates about 54 million 

Americans either have osteoporosis or appear at risk for low bone mass (NIH, 2018). In addition, 
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one in two women and up to one in four men age 50 and older break a bone because of osteoporosis 

(NOF 2019). Also, in 2015, 2.3 million osteoporosis-related bone fractures occurred to two million 

Americans on Medicare (Hansen et al., 2019). Vicente-Rodriguez (2006) and Arab ameri et al. 

(2012) express that exercise remains the most prominent non-pharmacological way to improve or 

maintain bone mass. During physical activity, different stresses on the body result in mechanical 

loading (e.g. jumping, running, resistance training), which enables bones to start the bone 

remodeling process. Physical activity affects the risk of osteoporosis through this bone turnover 

process (Miles, 2007).  Physical activity appears critical for older adults seeking to reduce the risk 

of this disease. 

Previous studies investigate the specific relationship between physical activity and bone 

health. According to some studies (Frost, 2003; Marques et al., 2012; Gregov and Salaj, 2014) 

various intensities and modalities of physical activity have different influences on bone mass; 

however, the role of intensity, duration, and frequency of physical activities yielding an optimal 

osteogenic exercise response remains unclear (Bielemann et al., 2013). However, people of all 

ages and both genders doing sports or physical activity have higher bone mass, bone strength, and 

greater osteogenic potential in comparison with those who are not physically active (Scott et al., 

2008; Arasheben et al., 2011; Quiterio et al., 2011; Gregov and Salaj, 2014). Chastin et al. (2014) 

examines the association between sedentary behavior, physical activity, and bone health in terms 

of bone mineral density (BMD). Their results show larger amounts of time spent on moderate to 

vigorous physical activity (MVPA) increase total bone density.  Therefore, programs and policies 

that keep older adults using active transportation and public transit should improve overall bone 

health. 

2.2.2 Economic Costs of Physical Inactivity 

The previous section showed that regular physical activity can reduce the risks of Type 2 

diabetes, cardiovascular diseases, different cancer types, bone problems, and mortality. Ding et al. 

(2016), estimated the world-wide healthcare costs of physical inactivity in 2013 as $53.8 billion 

where the public sector paid $31.2 billion, the private sector paid $12.9 billion and patients 

(households) paid $9.7 billion. Ding et al. (2017) conducted a systematic review of 40 studies 

about the economic burden of physical inactivity and found that all of the studies measure either 

direct or indirect healthcare costs related to physical inactivity.  
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Kirch (2008) defines direct health care costs or the costs due to resource use as those 

attributable to the use of a healthcare intervention or illness. While the direct non-medical costs 

include transportation and additional paid caregiver time, the direct medical costs include all 

expenses related to interventions, follow-ups in ambulatory, in-patient, and nursing care. Indirect 

health care costs represent the expenses caused by reduction and/or cessation in work productivity 

due to the morbidity and mortality related to a disease (Boccuzzi, 2003). Studies estimating direct 

healthcare expenses use either an econometric or a population attributable fraction (PAF)-based 

approach. 

2.2.2.1 Direct Healthcare Costs by Population Attributable Fraction (PAF) Approach 

This method calculates the physical inactivity-induced health care expenditures by 

applying a PAF to disease-related costs (Ding et al., 2017) where a PAF represents the proportion 

of a disease eliminating by removing physical inactivity. Katzmarzyk et al. (2000) estimates the 

effects of physical inactivity on coronary artery disease, stroke, colon cancer, breast cancer, Type 

2 diabetes, and osteoporosis. Using the computed risk ratio for each disease and prevalence of 

physical activity, the study applied a PAF to the total direct healthcare expenditures in 1999, and 

total number of deaths connected with each disease. The results showed that physical inactivity 

contributed to about $2.1 billion or 2.5% of the total direct healthcare costs in Canada. In addition, 

physical inactivity caused 21,000 premature deaths in 1995 and, a reduction of 10% in physical 

inactivity could save $150 million in annual direct healthcare costs. Stephenson et al. (2000) 

applied a PAF approach to examine the direct healthcare expenditures of six diseases due to 

physical inactivity (with the rate of 44%) among the adult Australian population. They estimate 

the annual direct healthcare expenditures attributable to physical inactivity as $161 million for 

coronary heart disease, $28 million for non-insulin dependent diabetes, $16 million for colon 

cancer, $16 million for breast cancer, $101 million for stroke, and $56 million for depressive 

disorders, which totals more than $370 million per year. Sensitivity analysis suggests that every 

one percent increase in the proportion of sufficiently active population can result to $3.6 million 

savings in the health care expenditures of coronary heart disease, non-insulin dependent diabetes, 

and colon cancer. Garrett et al. (2004) calculates the physical inactivity-related healthcare costs; 

physical inactivity relates to approximately 12% of depression/anxiety, and 31% of colon cancer, 

heart disease, osteoporosis, and stroke. Heart disease represents the most expensive outcome of 
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physical inactivity and costs $35.3 million of the total $83.6 million in direct healthcare costs 

measured during the study. In China, physical inactivity increases the risk of five major non-

communicable diseases (NCDs) of type 2 diabetes, cancer, hypertension, stroke, and CHD by 12% 

to 19% (Zhang and Chaaban, 2013). The results show that physical inactivity accounts for more 

than 15% of the annual medical and non-medical yearly costs of NCDs in China. In the Czech 

Republic, physical inactivity appears to contribute only 0.4% of total healthcare costs (Maresova, 

2014), and in the United Kingdom, physical inactivity accounts for 6.5% of total healthcare costs 

(Scarborough et al., 2011).   Physical inactivity presents a clear economic burden on public health, 

but other factors also impact healthcare costs and outcomes. 

2.2.2.2 Direct Healthcare Costs by Econometric Approach 

An econometric approach links physical inactivity and healthcare costs at the individual 

level (Ding et al., 2017). Pronk et al. (1999) examine the association between modifiable health 

risks including physical inactivity and the subsequent healthcare charges. The results indicate that 

an additional day of physical activity per week reduces an individual’s median healthcare costs 

($600) by 4.7%.  Regularly physically active individuals spend $1,019 on their mean healthcare 

costs while physically inactive individuals spend $1,349 (Pratt et al., 2000). Anderson et al. (2005) 

use multi-variate linear models to estimate health care charges and investigate the effect of physical 

inactivity and overweight or obesity status among the U.S. white population aged 40 years and 

older. This study considers age, gender, physical activity, BMI, chronic disease, and smoking 

status when predicting the average annual health care charges, and the results show that physically 

inactive and overweight (or obese) individuals incur 23% higher health care costs for the state 

health plan and 27% higher national health care costs. Carlson et al. (2015) examines the 

relationship between healthcare expenditures and inadequate levels of physical activity The study 

classifies respondents as 1) active, reporting at least 150 minutes/week of moderate-intensity 

equivalent physical activity; 2) insufficiently active, reporting some moderate-intensity equivalent 

physical activity but not enough to meet active definition; or 3) inactive, reporting no moderate-

intensity equivalent physical activity that lasted at least 10 minutes. According to the results, the 

mean per capita difference between annual healthcare expenditures of inactive versus active adults 

is $1,437 and insufficiently active versus active individuals is $713. After including BMI to control 

for body composition, these differences become $1,313 (inactive vs. active) and $576 
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(insufficiently active vs. active). Min and Min (2016) compare the direct health care costs 

(inpatient, outpatient, and prescription costs) of physically active individuals who exercise at least 

once a week with those of physically inactive people using a propensity score-matching method 

(calculated from multivariable logistic regression) to reduce the bias between the two groups. The 

results show that the mean of total direct costs for inactive individuals is $1110.5, which remains 

11.7% greater than the costs of active individuals. In addition, the specific disease-related medical 

costs vary from 8.7% to 25.3% higher for inactive individuals compared to active ones. Overall, 

the studies using an econometric approach identify larger amounts of healthcare costs than the 

PAF studies (Ding et al., 2017).  The econometric models attempt to control for confounding 

effects and may capture interaction effects. 

2.2.2.3 Indirect Healthcare Costs 

The work productivity losses from absenteeism, presentism, and worker replacement can 

be valued from the perspective of the employer (friction cost approach or FCA by Koopmanschap 

et al., 1995), or individuals (human capital approach or HCA by Koopamanschap and Rutten, 

1996). Moreover, the “value of statistical life (VSL)”, which represents a common approach in 

transportation safety, monetizes an average or statistical life lost (Viscusi and Aldy, 2003). Other 

studies (Katzmarzyk and Janssen, 2004, Cadhilac et al., 2011, and Krueger et al., 2015) provide 

more information about the methodology for calculating the indirect costs of physical inactivity.  

2.3 Transportation User Data Collection and Activity Recognition 

Many recent research studies of daily transportation behaviors use applications to detect 

the spatial travel patterns of road users (Via et al. 2018); the algorithms these studies use to identify 

the activity or trip differ in their data sources. Different mapping techniques, resulting from spatial 

positioning systems and spatial data analysis, represent important technologies for user 

activity/trip recognition (Cho & Choi 2015). However, building algorithms and data analysis tools 

from these technologies remain difficult and very complex (Zong et al., 2015). The monitoring 

process of the travelers' behavior involves dealing with geographic data that can be compatible 

with digital maps, which allows comparison and presentation of data in a visible way (Turner et 

al., 1998). The amount of data recorded, which is based on the rate of sampling taken (in seconds 

or minutes), may require approaches compress the data without reducing the accuracy of the 
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desired results (Patire et al., 2015).  The magnitude of the data collected and the need to analyze it 

in the dimensions of space and time complicates the identification techniques. 

Spatiotemporal data management (STDM), which observes time thresholds, allows 

applications to determine the spatial and temporal state of the road user by identifying changes 

from inside buildings (activity) to exits for travel (trip). Since these thresholds remain difficult to 

recognize, previous studies adopt a variety of strategies to determine these state changes; however, 

most of the algorithms seek greater accuracy and reduced consumption of smart-device batteries.  

This topic remains an active area of on-going research. 

2.3.1 Data Collection with Mobile Application 

Smartphones represent the most popular device for user data acquisition, which records 

and processes daily trips. Smart-devices such as phones, smart-watches, and other wearable 

devices have provided enormous data, many of which have been used in the transportation field. 

Many researchers use machine learning and classification algorithms to monitor the movement of 

individuals and their travel patterns using smart devices (Das & Winter, 2016). In many cases, the 

researchers use only GPS data or speed and acceleration data together with GPS logs to detect the 

activity pattern (Ansari & Golroo, 2015). Many claim the ability to detect the transportation 

activity pattern with accuracy while ignoring some of the problems associated with these 

operations (Ganti et al., 2011, Prelipcean et al., 2016) like, excessive energy consumption and 

battery life.  The limited battery life of smart devices creates additional challenges for researchers 

trying to identify travel and activity patterns. 

Gathering data from the daily activities of travelers paves the way for analyzing other travel 

behaviors such as mode or trip purpose. For years, researchers have tried to develop mechanisms 

for collecting travel activity data because classic methods, such as paper travel diaries, phone 

interviews, or web forms, have significant recall and spatiotemporal errors. The use of GPS has 

facilitated significant leap forward in the study of travel behavior (Rojas et al. 2016). Modern 

studies and their applications rely on the use of GPS to monitor the movement of all modes of road 

users (e.g. pedestrians, cyclists, drivers, and public transport passengers) (Rose, 2009). The use of 

GPS itself has undergone a series of developments that have increased its efficiency, reliability, 

and versatility (Facchinetti, 2016). The use of GPS appears critical for most future travel behavior 

studies. 
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2.3.2 Data Clustering by Geohash Method  

Identifying the threshold of change for traveler activities of road users represents 

significant improvement because the threshold of the spatiotemporal change of any person reveals 

the travel pattern and trip. Clustering algorithms may be used with the Geohash system to compress 

data, reduce storage volume and facilitate the presentation of results (Le-Khac et al., 2010). The 

use of the Geohash system, as a geographic coordinate system, represents a modern method of 

indexing coordinates. The Geohash system relies on a vertical-horizontal coding principle of the 

earth grid divisions (Suwardi et al., 2015), which approximates taking aerial photographs. The 

resolution increases based on the number of Geohashes in each case. Without clustering, the 

Geohash technique has little importance, especially in the topic of spatial-temporal studies. 

Geohash clustering links similar elements of data in groups for the purpose of evaluating and 

diagnosing them (Singh et al., 2017, Nin et al., 2014) for achieving better accuracy. Many different 

sectors, including spatial modelling studies for business (Suwardi et al., 2015), mobile sensing 

(Lee et al., 2016, Environments, 2017), spatial query (He, 2017), and spatiotemporal mapping 

(Deiotte & Valley, 2017) previously used the Geohash technique. The Geohash technique appears 

to be a strong candidate for improving the identification of the threshold of change between 

activities. 

Recently, many transportation researchers have adopted the Geohash method for their 

studies. Singh et al. (2017) uses the Geohash method to investigate the flow orientation in South 

Korea. The study uses smart card data for the bus and subway networks to represent the main 

activity areas for major work and residential areas (Singh et al., 2017). Oh et al. (2017), use the 

Geohash method to assess the spatial movement patterns of smart card transaction data in a multi-

modal transportation network. This method has also been used in New York City to predict the 

density of taxi pickups throughout New York City as it changes from day to day and hour to hour 

(Sdaulton, 2018). Large automated communication and data recording companies also use the 

Geohash technique. Previous research appears to verify the utility of the Geohash technique. 

2.3.3 Data Clustering by GIS Method 

The study of travel behaviors often uses a Geographic Information System (GIS) to study 

the+ spatial relationships for transport modeling. Spatial analysis with GIS technique has evolved 

on a large scale for transportation research, since the movement and activity of people vary 
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geographically over space (Kamruzzaman et al., 2011). Some travel behavior studies Use GIS 

maps to identify origin and destination points that will later determine the path and mode of 

transportation (Lari & Golroo, 2015). Stenneth et al. (2012) explain the possibilities provided by 

GIS maps with GPS data in determining transportation activity, by identifying data for speed and 

acceleration. Kamruzzaman et al. (2011) study the behaviors of the students by developing activity 

spaces for students to determine the nature of participation in activities (or lack thereof); however, 

they rely on a traditional method to record data. In addition, Domènech et al. (2017) develop a 

methodology to assess the effectiveness and spatial coverage of travel patterns in Spanish tourist 

cities through a GIS system. Loidl et al. (2016) attempt to develop a relationship between activity 

and travel pattern through geographic information systems (GIS) by applying geospatial data with 

geo-visualization. Almost all large scale or aggregate traveler behavior studies rely on GIS to help 

describe travel patterns.  

Most of the research uses a certain dwell time for separating activity and trips by setting a 

minimum duration for activities (Gong et al.,2014). Different researchers use different thresholds 

based on the available GPS signal, such as more than 120s (Wolf et al., 2001; Tsui & Shalaby, 

2006; Stopher et al., 2002, 2005, 2008ab; Schuessler & Axhausen, 2009), more than 180s (Bohte 

& Matt, 2009), 200s (Gong et al., 2012) or more than 300s (Axhausen et al., 2004). This threshold 

varies mainly depending on the characteristics of local activities (Gong et al., 2014).  Dwell time 

represents one strategy for integrating GIS and GPS data to separate activities and trips. 

2.4 Transportation Mode Detection and User Physical Activities 

The current land use patterns restrict the viability of active transportation; however, a 

recognition of its health implications may cause modal shifts. Substantial literature indicates the 

importance of easy access to destinations and the diversity of transportation modes as features in 

livable communities. According to US travel data, 11 percent of trips are by foot, 1 percent by 

bicycle, and 2 percent by public transportation, which often involve walking or biking when 

moving to and from transportation terminals (ALRMTAT, 2016). The importance of monitoring 

travel behaviors extends beyond locations and transportation modes to  trip purpose, travel 

experience, and travelling companions. 
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2.4.1 Review of Different Sensors Used for Transportation Mode Detection 

Many studies deal with the subject of detecting transportation modes from the past five 

years (from 2015 to the third quarter of 2019). Table (2.2) summarizes the transportation mode 

detection (TMD) methods in previous studies by identifying the studies’ algorithm, accuracy, 

modes and sensors. Figure (2.2) graphically sumarizes some of the statistics associated with the 

previous research.  

  



 

Monitoring Daily Activities and Linking Physical Activity Levels Attributed to Transportation Mobility Choices and Built Environment 

 

31 | P a g e  

 

   
T

ab
le

 2
.2

 S
um

m
ar

y 
of

 T
ra

ns
p

or
ta

ti
on

 M
od

e 
D

et
ec

ti
on

 in
 p

re
vi

ou
s 

St
ud

ie
s 

(C
on

ti
n

uo
us

) 



 

Monitoring Daily Activities and Linking Physical Activity Levels Attributed to Transportation Mobility Choices and Built Environment 

 

32 | P a g e  

 

T
ab

le
 2

.2
 S

u
m

m
ar

y 
of

 T
ra

ns
po

rt
at

io
n 

M
od

e 
D

et
ec

ti
on

 in
 p

re
vi

ou
s 

S
tu

d
ie

s 
(C

on
ti

n
u

ou
s)

 



Monitoring Daily Activities and Linking Physical Activity Levels Attributed to Transportation Mobility Choices and Built Environment 

 

33 | P a g e  

 

 

     

A                                                                            B 

     

                                   C                                                                               D 

 

E 

Figure 2.2 The diagrams (A, B, C, D, E) about the Summary of Transportation Mode Detection in 

previous Studies 
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2.4.2 Transportation Mode Detection with Human Activity Profile and Machine Learning 

Most of the TMD studies use a phone's sensors and data, while none of these studies 

address sensors like smartwatches that monitor vital human activities. Smartwatches provide 

significant and important information that may contribute to predicting transportation modes as 

well as important information related to road user health. In addition, the literature review shows 

all of the algorithms used to predict transportation modes and identifies the most used algorithms. 

Recent decades have witnessed significant and rapid developments in communications, 

software, and hardware that have enabled computers to spread and become smaller in size and 

lower in cost. Many wearable devices and smartphones include advanced sensors, such as Global 

Positioning System (GPS) devices and physical activity sensors. The development  of these 

devices creates an opportunity for researchers to gather a vast amount of data that requires 

documentating, processing, and analysis. As previously noted, the issue of battery power to 

provide the longest possible data collection time represents a critical issue. Reducing the rate of 

sampling, including reading GPS, represents one of the most effective ways to reduce energy 

depletion (Liu and Li, 2017). Reducing the sampling rate increases the working time of smart 

devices but negatively affects the accuracy of the data and the ability to diagnose the thresholds of 

change in people's activities. Therefore, this study seeks to optimize the tradeoff between accuracy 

and battery consumption when determining the activities of transportation system users.  

For detection of transportation modes, many studies, both conventional and modern, have 

tried to find the best ways to predict transportation modes through the information provided by a 

monitoring procedure. Numerous studies use Machine Learning methods in transportation modes 

detection, either through the use of neural networks, deep learning, or other machine learning 

techniques, such as Random Forest (RF), Adaptive Boosting (AdaBoost), and Support Vector 

Machine (SVM). Most of these studies provide a wide range of performance results due to 

variations in the data in each study. Some limitations have have been associated with several 

previous studies for TMD regarding the inconsistent accuracy of their predictive methods. A 

thorough review must compare the accuracy of previous studies as noted in Table (2.2).   

2.4.3 Relationship of Transportation Mode with User Physical Activities and Characteristics 

Diversification of transportation modes in a community represents an important strategy 

for developing a livable community with more efficient traffic operations and fewer crashes and 

environmental impacts. Active transportation, such as walking and cycling, provides one of the 
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essential elements of transportation diversification, with physical activities that can contribute to 

improved health (Edwards et al., 2008). Public transport also promoties physical activity and 

reduces large traffic volumes (Laverty et al., 2018). Health problems caused by the stable lifestyle 

of all countries, including Europe and North America, have increased recently (Varo et al., 2003). 

In 1996, the American Surgeon General acknowledged the potential role of daily physical activity, 

including walking and cycling, in achieving health benefits (Li et al., 2006).  People place different 

values on their health; some may spend a lot of money to achieve their goals and others may be 

happy with no investment. A global health recommendation for adults expects at least 150 minutes 

a week of moderate physical activity or 75 minutes a week of vigorous physical activity (Oja and 

Titze, 2011). Evaluating and classifying transportation and other activities requires successive 

stages of data logging, detection of transportation modes, and levels of physical activity (Yang et 

al., 2018). Previously studies use traditional methods of questioning people about their daily travel 

activities rather than smart devices (Milne and Watling, 2019). However, the proliferation of smart 

devices from smartphones and smartwatches makes providing data on the trajectories of movement 

and acceleration with information on physical activities (heart rate, calories, number of steps, etc.) 

possible. 

2.5 Integrated Transportation and Health Impacts 

The application of an integrated approach to assessing the health effects of transportation 

may seem complicated because of the different data, the various methods of analysis and then the 

evaluation of the results (Smith et al., 2017). An integrated assessment appears useful for 

evaluating previous studies, which used a non-integrated assessment of health impact. While the 

links between travel behavior and health outcomes appear clear, integrating health impacts into 

transportation decision making remains challenging due to the lack of readily available tools, data, 

and methods familiar to transportation planners (Wu et al., 2017). 

Health assessment includes many confounding effects that complicate the analysis. For this 

reason, health professionals have more problems than others in using "target management" 

guidelines because of the blurry definition of good health (WHO, 2017). This lack of clarity in the 

description of goals and methods of health benefits measurement appears when addressing the 

issue of transportation and health. The cities' built environment and the transportation system 

represent the most effective factors to promote walking and cycling and improve public 

health(WHO, 2017). Support for active transportation through infrastructure investment represents 



Monitoring Daily Activities and Linking Physical Activity Levels Attributed to Transportation Mobility Choices and Built Environment 

 

36 | P a g e  

 

an effective stimulus for improving public health (Procyk et al., 2013). Assessing the health 

benefits of transportation requires controlling for the potentially confounding effects from other 

factors. 

The health outcomes induced by transportation-related physical activities (PA) may reduce 

healthcare costs (Linkages and Heli, 2009). In recent years, diseases related to sedentary life have 

increased, particularly in countries that rely on the use of private cars as the dominant modes of 

transportation (WHO, 2010). Sedentary living represents a significant cause of many deaths, as 

well as many diseases such as cardiovascular disease, respiratory, obesity, colorectal cancer, 

indigestion, blood pressure, fat disorders, depression, and anxiety. The health problems associated 

with people's dependence on private vehicles with an extensive network of roads not only reduces 

PA and thus causes disease, but also increases traffic crashes, emissions, noise and global warming 

problems (Haines and Dora, 2012). More than 30 percent of adults worldwide engage in an 

insufficient level of physical activity; inactivity increases with women more than men with 

increases in age, and inactivity levels rise in high-income countries (Hallal  et al. 2012). The 

Centers for Disease Control and Prevention (CDC) note that PA benefits not only reduce disease 

but also in improve the quality of people's lives by strengthening your bones and muscles, 

improving your mental health and mood, improving one’s ability to do daily activities and prevent 

falls, and increasing your chances of living longer (CDC, 2018). Transportation unfortunately also 

represents one of the primary sources of serious injury and mortality (Christie, 2010). By 2030, 

transportation is expected to become the seventh leading cause of death. Pollution from emissions 

and noise also poses significant risks to physical and mental health because they impact heart 

disease, respiratory disease, and anxiety ( Sitlington, 1999). Fully quantifying the health impacts 

from transportation planning decisions may change the alternative selection process. 

2.5.1 Transportation and Its Associated Links Related to The Health and Environment 

Developed countries, including the United States of America pay significant attention to 

the impact of transportation on public health and the environment.  The integration of all 

transportation factors with health may not be easy because of the inter-related causality for an 

individual or community [Figure (2.3)]. However, both Europe and the United States of America 

have developed methods for measuring and integrating all of the factors of transportation’s impact 

on health. 
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Figure 2.3 Transportation relationship with community health and individual health 

 

2.5.2 Transportation Issues and Associated Health Risk 

The assessment of health risks mainly appears in studies examining the impact of traffic 

noise, vehicle emissions, and traffic accidents. Many of these studies use available data on 

mortality or morbidity to determine the Disability-adjusted life years (DALYs). DALYs are used 

comprehensively for vehicle emissions or traffic noise for the measured group. Meanwhile, 

DALYs may also be calculated as a percentage of the totals involving traffic crashes. However, 

the assessment of the transportation health impacts because the studies collectively diagnose both 
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the risks and benefits. Physical activities from walking or biking provide benefits that oppose crash 

risks and air and noise pollution. Higher benefits than the total risk, in any geographical area, 

encourages the use of active transportation.  

The study of Woodcock et al., 2014 represents a valuable study in the use of the DALYs 

scale in the stages of assessing the health effects of transportation. The study integrates more than 

one scenario (substitutions), such as active transportation, emissions, and crash risk, in London, 

United Kingdom, and Delhi, India by comparing the projection of 2030 with alternative scenarios 

- vehicles with lower carbon emissions and increased active travel and a combination of the two. 

The study found that the combination of active travel and low-emission travel would provide 

benefits by reducing the number of DALYs from ischemic heart disease in the study (Woodcock 

et al. 2014). A study California determines the health benefits of transportation strategies to reduce 

greenhouse gas emissions (GHGE) (Maizlish et al., 2013). The results highlight a significant 

improvement in population health with increased PA associated with active transportation. 

Previous studies appear to confirm the importance of encouraging active transportation, but they 

do not provide a clear and consistent strategy for assessing the benefits. 

2.5.3 Health Benefits Associated with Transportation based on Physical Activity Intensity 

Active transportation (walking and biking) represents one of the most effective ways of 

achieving physical activity. In 1996, the American Surgeon General acknowledged the potential 

role of daily physical activity, including walking and cycling, in achieving health benefits (Dhondt 

et al., 2011). Therefore, determining the levels of physical activities for the individuals and 

communities is a key focus of health institutions (Stewart et al., 2015). Because of different health 

conditions, the level and type of physical activities that provide improvement for each health 

condition vary. But in general, the physical activities of any person certainly achieve health 

benefits in a cumulative way (Schram-bijkerk et al., 2019). The Office of Disease Prevention and 

Health Promotion (ODPHO) mentioned in its second section, that the physical activities must be 

done at least 150 minutes per week of moderate intensity or 75 minutes a week of vigorous-

intensity aerobic physical activity, or an equivalent combination of moderate- and vigorous-

intensity aerobic activity (Chisholm et al., 2012). The 2008 Physical Activity Guidelines for 

Americans provide information for different age groups and gender when seeking appropriate 

physical activities for each category. The "2018 Physical Activity Guidelines Advisory Committee 

Scientific Report" contains a wealth of information about the role of physical activities in health. 
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The reports note that many of the studies on this topic arrive at unclear interpretations and require 

continuing research. Therefore, it is highly needed to conduct extensive research on health 

outcomes and benefits associated with different ways and techniques. Health outcomes related to 

transportation activities could be further analyzed based on physical activity intensity.  

People's concerns may differ in terms of their health goals; however, they likely want to 

achieve these goals. Therefore, people need to determine the necessary steps to achieve their health 

goals (Kruk, 2014). The published literature addresses the evaluation of physical activities and the 

resulting health benefits in two phases. The first phase chooses the method of measuring the 

physical activities suitable for the researcher according to the tools available to him and matching 

his research objectives (Sylvia, 2015). The second phase involves determining whether or not the 

person has achieved health benefits from a physical activity and whether an increase in health 

benefits due to the increased physical activity occurs. Figure (2.4) groups humans based on their 

activity level and their use of active transportation. To examine the methods of measuring physical 

activity, Figure (2.5) shows the most documented methods of measurement within the previous 

research literature (Ndahimana and Kim, 2017; Kowalski et al., 2012). Figure (2.5) shows the 

diversity in the daily activities of individuals from intended to unintended. Also, the correlation 

between Figure (2.4) and Figure (2.5) can be observed. A person may be active because he walks 

or rides a bike as a mode for his movements.  

 

 

Figure 2.4 Groups of human activities in conjunction with the usage of PA 
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Figure 2.5 The most documented methods of measuring PA 

 

The study conducted by Sylvia (2015) provides an extensive explanation of the methods 

of measuring physical activity, the advantages and disadvantages of each method, and some of the 

evidence of use cases (Sylvia 2015). This study includes nearly 125 research papers, as reference 

sources for researchers in this field. Further, Ndahimana et al. (2017) presents a search for methods 

from 94 research sources of the measurement of physical activity and energy expenditure, which 

is close to the presentation style of the Sylvia study and presents the advantages and disadvantages 

of measurement methods.  
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Chapter 3 Data Collection and Methodology 
 

3.1 Introduction 

This research explored the factors impacting the amount of physical activity an individual 

engages in and the proportion of an individual’s daily activity attributable to transportation 

activities. This research study collected body composition data, physical activity data, and travel 

data from wearable devices. This study considered four key dependent variables: total physical 

activity, total physical activity related to transportation, total cardiovascular activity (measured as 

time spent at age-specific levels of exertion), and total cardiovascular activity related to 

transportation. The research team identified, and classified health outcomes impacted by physical 

activities. The effort allowed the research team to incorporate those outcomes into the 

measurement system in the data collection devices.  

3.2 Research Approach and Data Collection Technique 

The research team developed a mobile app and its associated server-side infrastructure to 

collect the raw data about the daily activities of the participants using wearable devices. The app 

included an algorithm that automatically classified the transportation as: walk, run, bike, car, or 

bus. The algorithm used speed, frequency of stops, accelerometer data, weather conditions, 

identification of the source and destination locations, and residence time at intermediate locations 

to identify the transportation mode. Trip length, time of the day, day of the week, and different 

spatial-temporal conditions data were collected to identify the purpose of the trip. The research 

team recruited 120 subjects using a stratified sampling strategy from Kalamazoo, Michigan and 

Arlington, Texas, in order to investigate seasonal variations and locational characteristics in their 

physical activities.  

In terms of data analysis, the research team analyzed a collection of independent variables 

related to socioeconomic factors (e.g. race, gender, and income). The researchers’ hypothesis states 

that “increasing the role of transportation in achieving physical and cardiovascular activity should 

have a positive impact on health outcomes.” Based on the transportation-related physical activity,  

the research team hypothesizes that weather, land use, and site design will all impact the total 

amount of transportation-related physical and cardiovascular activity.  Furthermore, the percentage 
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of activity attributable to transportation will be impacted by these factors as well as employment 

and socioeconomic factors.  This project examined the role that transportation-related activities 

played in an increase of individual’s total physical activity and total cardiovascular activity.   

The research plan relied on data collected over very different time frames.  The study 

gathered body composition data every six months. At the same time, the study collected travel and 

physical activity data from the wearable device and the mobile app developed in this project for 

every 1-minute interval.  The travel and physical activity data include activity locations, activity 

duration, travel distance, heart rate, and total calories during travel and physical activities. 

Although data were collected for individual subjects, the researchers protected individual privacy 

by processing all data in an aggregated format. The location information was used for converting 

their locations into an aggregated format (type of location). 

The research team distributed a pre-survey to subjects during intake prior to installing the 

mobile application and setting up their wearable device. The survey gathered general travel and 

physical activity information (Pre-survey Questionnaire available in Appendix). In additional to 

the pre-survey, the subjects completed the device registration form that includes their contact 

information to assure continuity of data collection during the study period. The research team used 

the contact information after experiencing system failures while collecting data.  

3.3 Approach for the Technical Part  

This part of the study describes the application to collect the daily activity data of the 

subjects using smart devices (smartwatch, smartphone). The mobile application utilizes the 

following Application Programming Interfaces (APIs) to implement its core functionality: 

 Cordova: To build a cross-platform mobile app using HTML5, JavaScript, and CSS3. The use of 

Cordova allows to easily port the app to Android and iOS. 

 Fitbit Web APIs: To retrieve details about the physical activities of participating subjects including 

a time series of their activities, heart rate, and sleep logs.  

 Google Maps or Open Streets APIs:  To retrieve details about visited locations. 

 Accelerometer and GPS APIs: To retrieve acceleration, estimate the number of steps, speed, and 

get details about users’ traveled paths. 

 Web Services: To interface the mobile app with the back-end database and the data analysis and 

reporting services. These services allowed raw data access. 
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The research team uses a server (DELL PowerEdge R210 II) to develop all back-end 

processes and web services required to grant authenticated and secure access to the collected raw 

data. This server is currently available at the NEST research lab at WMU. 

The mobile application sends a notification in case the participating subject stops sharing 

data during the study period. In addition, the mobile application sends a daily verification 

notification for user activity and trip data validation. The research team also developed a 

“transportation mode” classification algorithm and “purpose of trip” classification algorithm by 

mining the raw collected data which automatically classifies the transportation mode choices and 

purpose of activities.  

3.4 Approach for the Physical Activity Part 

This part of the study considers the physical activity data extracted from the smartwatch 

and mobile application.  

3.4.1 Body Composition Data Collection 

The following body composition data were assessed at the beginning of the survey by using 

a non-invasive bioelectrical impedance analyzer (InBody 570; InBody Co., Ltd., Seoul, Korea).  

 Muscle-fat analysis: weight (lbs.), skeletal muscle mass (lbs.), and body fat mass (lbs.) 

 Obesity analysis: body mass index (kg/m2) and percent body fat (%) 

 Segmental lean analysis: right & left arms and legs (lbs.) and trunk (lbs.) 

3.4.2 Physical Activity Data from Fitbit Charge (2 or 3) 

The Fitbit charge 2 and 3 version captures various leisure exercises and physical activities 

including walking, running, aerobic workout, elliptical, outdoor bike, sports, and swimming. The 

Fitbit measures active minutes, daily steps, number of calories burned and taken in, and heart rate 

in 60-sec time interval as health measures when an individual engages in a physical activity. The 

measures include:  

 Distance traveled (km): Distance is calculated by multiplying walking (running) steps by 

walking (running) stride lengths. The stride lengths are estimated using height and gender. 

 Heart rate (beats/min): Both resting heart rate and heart rate with physical activities are 

estimated using a heart rate monitor with photoplethysmography. 

 Activity minutes (min): Active minutes are estimated using metabolic equivalents (MET). 

MET is an indication of how much harder than set a particular activity is. For example, 1-
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MET indicates a body at rest, therefore, 3-MET means three times harder than rest, such 

as stationary cycling or walking at a rate of 4 km/h. MET is estimated in any given minutes 

by calculating the intensity of physical activity. Active minutes are then earned at or above 

3-MET. 

 Total calories (Kcal): Total calories are estimated by taking into account basal metabolic 

rate (BMR) and calories consumed during physical activities in a day. 

a. BMR: BMR is calculated based on gender, age, height, and weight. 

 For men: BMR = 10 × body mass (kg) + 6.25 × height (cm) – 5 age (years) +5 

 For women: BMR = 10 × body mass (kg) + 6.25 × height (cm) – 5 age (years) -161 

b. Calories consumed during physical activities (total calories – BMR): these calories are 

estimated using the above-mentioned heart rate monitor and a three-axis 

accelerometer.  

3.4.3 Analysis Approach for Physical Activity Data  

The individual’s physical activity data was analyzed based on their physical activity level 

(including duration and intensity) and one or more health measures, such as BMI (body-mass 

index), body fat percentage, waist circumference, and waist-to-hip ratio. Physical activity level 

was categorized based on the Physical Activity Guidelines for Americans, by HHS (2018), as 

follows: 

A) Inactive People: those who do not do any moderate or vigorous-intensity physical activity 

beyond basic movement from daily activities. 

B) Insufficiently Active People: those who do some moderate or vigorous-intensity physical 

activity, but they still do not meet the key guidelines target range (150 to 300 minutes a 

week of moderate-intensity physical activity). 

C) Active People: those who already meet the key guidelines target. 

D) Highly Active People: those who do more than the equivalent of 300 minutes a week 

moderate-intensity physical activity. 

The research team used BMI and daily physical activities as initial grouping criteria, and 

grouped all the individuals into 16 categories with a combination of four BMI status -- 

Underweight (BMI less than 18.5), Normal weight (BMI from 18.5 to 24.9), Overweight (BMI 
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from 25 to 29.9), and Obese (BMI equal to 30 or more) and four levels of physical activeness as 

follows.  

Underweight and Inactive ⋯ Underweight and Highly Active
⋮ ⋱ ⋮

Obese and Inactive ⋯ Obese and Highly Active
×

 

The research team estimated the amount of daily transportation-related physical activity 

each group needs to reach the next activity level category, based on their current health (or BMI) 

condition. The team considered both the duration and intensity of the activities. According to the 

HHS (2018), individuals achieve additional health benefits by completing more than an equivalent 

of 300 minutes (5 hours) of moderate-to-vigorous intensity physical activity per week.  

3.5 Integrated Platform Development for Data Aggregation and Analysis 

In this research, the “PASTA” platform integrates mobile application data with an 

individual’s physical activity data. The mobile app collects location information and raw data 

about the daily activities, which it stores, synchronizes and aggregates to the participants’ Fitbit 

data, such as accelerometer, speed, steps, heart rate, and calories. into the “PASTA” platform.  This 

research study collects data for the following categories and analyzed their relationship. 

 Individual characteristics – age, gender, employment, body composition, fitness 

exercise, amount of physical and cardiovascular activities 

 Spatial characteristics – GPS Trajectories and locational information 

 Transportation environment and associated built-environment facilities 

 Travel activity – trip purpose, transportation mode, travel time, etc. 

 Physical activity – amount of physical activity 

By using the integrated data from “PASTA” platform, different analysis and relationship between 

physical activity and transportation options were assessed and evaluated through utilizing the 

above-mentioned categories.  
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Chapter 4 Development of Mobile Application and 

Integrated “PASTA” Platform 
 

4.1 Introduction 

Integrated “PASTA” platform includes four components for data collection and data 

processing. The mobile application provides the user authentication process, activity/trip 

verification, and location information. The back-end server receives data from mobile phones that 

have the location information, user authentication, and pulls the physical activity data from Fitbit. 

The database management system stores and retrieves the data. The final component develops the 

classifiers.  

4.2 Mobile Application Overview 

The mobile application uses an Ionic 2 cross-platform framework so that the app may be 

on Android and iOS, but due to the restrictions of iOS background execution, the iOS version does 

not perform well. The mobile application functionality authenticates the user on Fitbit and grants 

the application all the required permissions to pull Fitbit data from the server and the app sends 

the user’s access token to the PASTA server. Fitbit provides an OAuth2 authentication mechanism. 

PASTA application stores the Fitbit access token internally to exchange it with the PASTA server. 

The mobile app also authenticates the user with the PASTA server, where each user has a 

registration code assigned and the user has to have a valid registration code. After the user enters 

this registration code, the mobile app exchanges the Fitbit access token, Firebase access token, 

mobile device platform, and the time zone. The app and the server do not know anything about the 

user. The user details are de-identified in PASTA database, for example, no email address, phone 

number, personal information is used to identify the user. The only way to identify the participant 

is by the registration code, which is randomly generated, and each user has to have a registration 

code. The mobile application also verifies the user’s activity, where the user receives a notification 

on a daily basis to verify the activities during that day. The user can also see the activities for any 

particular day. 
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4.2.1 Backend Side Overview 

The backend side handles and manages the data that comes from the mobile phone as well 

as managing the export of the data to the user for verification. The application server is written 

using Spring Framework to implement the RESTful APIs, JPA for the persistence layer. The spring 

application is deployed in a Tomcat Server hosted in the Google Cloud. The server has several 

RESTful APIs responsible for authenticating the user, receiving locations from users, processing 

user data, viewing user raw data, etc. The server also hosts static HTML web pages that the team 

uses by to validate user data and for reporting purposes. After validating the data, the server also 

stores and retrieves data from the database. 

4.2.2 Database Management System Overview 

The MySQL database system, which is hosted on the Google Cloud platform, stores both 

raw and processed data using 18 tables. The database schema contains tables for user management, 

which store user data like user_id, registration_code, and fitbit_access_token. Other tables store 

data for location information, such as latitude, longitude, time_captured, and speed. Each record 

in the database is linked with a user_id. Other modules store data for physical activity data, such 

as heart rate values, time_captured, calories, and steps.  

4.2.3 Classifiers Overview 

The classifiers process the raw data in the database and extract the knowledge from the raw 

data. This system uses two classifiers. The Activity/Trip classifier takes GPS points and converts 

them into Activity/Trip segments using a Geohash clustering technique, which encodes 

coordinates into a Geohash string. Increasing the number of characters increases the proximity 

between the points. This classifier finds the appropriate clusters for the points and converts them 

into Activity/Trip segments by validating the duration for each cluster. If the duration is larger 

than the dwelling time, then this is an activity, else, this is trip. The consecutive trips were merged 

into one trip from the source and the destination. After finding these segments, the activity type is 

determined by the Foursquare API that returns the location types. The Physical activity intensity 

classifier classifies the physical activities into six categories using the heart rate ratio. The 

classifiers store this information in the database and notify the user to validate the output from the 

classifiers. 
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4.2.4 Scheduled Jobs Overview 

Data processing and knowledge extraction is done offline. After the data is available for a 

complete day, the scheduled jobs pull the data and manipulate it to become useful. Three scheduled 

jobs tare deployed in the server. The first one pulls Fitbit Data for each user daily and runs 

periodically every one-hour. It pulls the data for each user based on the scheduled sync hour, where 

each user has a scheduled sync hour associated with the user account. The job pulls all the users 

that match the current system time and processes them. This job populates the Heart Rate, Steps, 

and Calories tables in the database. The second one runs the Activity/Trip and Physical activity 

intensity classifiers against the pulled data and the location data. It stores the processed data in the 

database. The third job notifies users if the user has data needing verification by sending 

notifications to mobile phones using the Firebase Notification platform. 

4.3 Integrated “PASTA” System Implementation 

This section describes how the PASTA application has been implemented including all 

application components and technologies. The PASTA application utilizes many technologies; 

Table (4.1) describes the technologies that have been used by component. 

 

Table 4.1 Technologies 

Components Technology 
Mobile Application Ionic 2, Typescript, Java, Objective C 

Backend Side 
Java, Spring Framework, JPA, Spring 

Data, Tomcat Server 
Database Management MySQL 

Classifiers Java, Spring Schedulers 
 

The user needs to install the PASTA Android application on a phone and sign up for a 

Fitbit account and link this account with a Fitbit Charge 2/3. Then, the user has to login to the 

PASTA application using the Fitbit credentials and grant all permissions to the PASTA 

application. After this process, the PASTA server is allowed to pull the physical activity data from 

the Fitbit Server directly without involving the mobile application. The user enters a registration 

code provided by the PASTA administration in the designated text box. After validation, the server 

exchanges the Fitbit access token, Firebase token, and user’s time zone. The server enables the 

user to receive the locations and pull the Fitbit data on a daily basis. The geolocation tracking 



Monitoring Daily Activities and Linking Physical Activity Levels Attributed to Transportation Mobility Choices and Built Environment 

 

49 | P a g e  

 

plugin sends the user’s location every 10 seconds to the server and the server stores these points 

in the database [Figure (4.1)].  

 

 
Figure 4.1 PASTA Ecosystem 

 

4.3.1 Mobile App Design 

This section describes the mobile application implementation, its functionality and its page 

structure. The mobile application authenticates the user with Fitbit, authenticates the user with 

PASTA application, and keeps running the background geolocation tracking plugin to send the 

user’s location to the backend. The user must enable some permissions on the phone in order to 

assure that the app runs in the background mode since this app sends the locations to the server 

[Figure (4.2)]. The next sections describe each page in detail.  
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Figure 4.2 PASTA Mobile App Flowchart 

 

4.3.2 Fitbit Login Page 

When the user opens the app, if still not logged in, the first Fitbit Login page (Figure 4.3) 

appears. The user has to have an account prior to using the PASTA application. The user must 

enter his or her credentials in the designated text boxes, and app authenticates his/her credentials. 

The next page requests the user to check the permissions for the PASTA app to access data. The 

user needs to select and allow all for the PASTA application to pull the fitness data for his/her 
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accounts. The app stores the Fitbit Account Access Token for this user, which permits the server 

to access the fitness data and store them in the SQLite database. This access token can live for one 

year. The application changes its status to FITBIT_AUTH, which means that the app has been 

authenticated from the Fitbit side. The next step is to authenticate from PASTA side. The following 

screenshots [Figure (4.3)] show the style of the Fitbit login and permission page. 

 

 

 Figure 4.3 Fitbit Login Page 

 

4.3.3 PASTA Registration Code Page 

This page authenticates the user with the PASTA application backend. The user has to have 

a PASTA registration code assigned by the system administrator, and without this registration code 

the user will be unable to log in. It should match a registration code in the database. After the user 

enters the registration code, the application sends the user information to the server and enables 

this user. It sends a https request to the server carrying information: 

a. PASTA Registration Code. 

b. Current Time zone. 

c. Mobile Platform (Android/iOS). 

d. Fitbit Access Token. 
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e. Firebase User Token. 

After sending this information, the application receives a 200-status code, and the application 

then will change the status of the application to PASTA_AUTH, which means the user is 

authenticated by PASTA and the app is ready to start tracking the location.  

4.3.4 Status Page 

After the user completed the aforementioned steps, this page will show up. At first, it will 

change the status of the application into PASTA_AUTH_DONE, and it will enable the background 

geolocation tracking plugin to send the user’s location to the server whenever a significant mode 

occurred. If the user closed the application and opened it again, the user will not go through the 

login process again. The user also can log out from the application; after logging out, the 

application will stop sending the location data to the server and it will go back to the Fitbit Login 

page.  

4.3.5 Verification Page 

This page allows the user to view his/her activities from any day. The user can verify the 

locations that he/she visited, and the transportation mode for each trip. It also shows the quantity 

of the physical activities for each transportation activity. This includes the average heart rate, 

calories expenditure, and the number of steps, activity duration and the location type [Figure (4.4)]. 

 

 

Figure 4.4 PASTA Verification Page 
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4.3.6 Background Location Tracking 

This plugin tracks the user location and runs in the background. Each 10 seconds, it checks 

the location and if a significant change in the location occurs, it will report this to the server. This 

plugin is a battery-saving plugin, and it does not consume much battery time. The next table (4.2) 

describes each parameter used to setup this plugin. 
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Table 4.2 Background Geolocation Plugin Parameters Description 

Parameter Description 

desiredAccuracy 

Desired accuracy in meters. Possible values 
[HIGH_ACCURACY, MEDIUM_ACCURACY, 
LOW_ACCURACY, PASSIVE_ACCURACY]. Accuracy has 
direct effect on power drain. Lower accuracy = lower power 
drain. 

stationaryRadius 
Stationary radius in meters. When stopped, the minimum 
distance the device must move beyond the stationary location 
for aggressive background-tracking to engage. 

debug 
When enabled, the plugin will emit sounds for life-cycle events 
of background-geolocation! See debugging sounds table. 

distanceFilter 
The minimum distance (measured in meters) a device must 
move horizontally before an update event is generated. 

stopOnTerminate 
Enable this in order to force a stop() when the application 
terminated (e.g. on iOS, double-tap home button, swipe away 
the app). 

startOnBoot Start background service on device boot. 

interval 
The minimum time interval between location updates in 
milliseconds.  

fastestInterval 
Fastest rate in milliseconds at which your app can handle 
location updates.   

activitiesInterval 
Rate in milliseconds at which activity recognition occurs. 
Larger values will result in fewer activity detections while 
improving battery life. 

notificationTitle Custom notification title in the drawer. 

notificationText Custom notification text in the drawer. 

activityType 
[AutomotiveNavigation, OtherNavigation, Fitness, Other] 
Presumably, this affects iOS GPS algorithm.  

pauseLocationUpdates Pauses location updates when app is paused.  

saveBatteryOnBackground 
Switch to less accurate significant changes and region monitory 
when in background 

url Server url where to send HTTP POST with recorded location.  

syncUrl Server url where to send fail to post locations  

 

4.3.7 Server-Side Design 

This section describes the functionalities of the server for the PASTA application and the 

RESTful APIs and their functionalities. The server utilizes a Spring Framework technology 

deployed in a Tomcat server. The server handles the HTTP requests for the RESTful APIs and 

executes the business logic behind each API. The APIs include: 
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 /api/classify/{userId}/{dateStr} 

The team uses this API to view the data for a particular user for a particular date; it runs the 

classifier against that user specified in the field {userId} and the date specified in {dateStr}. It 

returns a JSON that contains all the activities and the trips. 

 /api/statusReport/{date} 

The team uses this API to view the data available for all active users for a particular date. It takes 

the parameter {date} as date and returns the number of GPS records, a number of Heart Rate 

records, Number of Steps Records, etc. for each active user. 

 /api/{regCode}/locations 

This API posts multiple locations at the same time; this API is necessary when the phone does not 

have Internet access. The application caches the locations internally until the Internet becomes 

available when it sends an array of locations to the server. 

 /api/{regCode}/location 

This API posts one location at a time to the server. 

 /api/mobile/{regCode}/dailyActivities/{dateString} 

This APIs retrieves the daily activity for each user. the mobile application uses this API for the 

verification step, and the mobile application populates the {regCode} field and the {dateString} 

the server will return back the processed activities and trips associated with that user for that 

particular date.  

 /api/{serialNumber}/rowData/{dateString} 

This API retrieves the raw data before processing; it does the data fusion process and joins all of 

the fields together based on the time captured. 

 api/{registrationCode}/verify 

The phone uses this API to post the verified information about the user’s activity and trips. 

 /api/user/{serialNumber}/logout 

This API disables a user from the system, this API is triggered when the user hits logout button on 

the mobile app so that user is no longer available. 

 /api/user 

This API authenticates the user in the PASTA server; this API should have the registration code, 

Fitbit Access Token, Firebase Access Token to enable the user and allow data retrieval. 
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4.3.8 Database Design 

This section describes the database design for the PASTA project, which uses a MySQL 

database to host the data. The database has 18 tables [Table (4.3)].  Figure (4.5) describes the 

database schema. 

 

Table 4.3 Database Schema Details 

Table Description 

ACCELEROMETER Stores accelerometer Intraday data 

API_LOG Stores JSON for each user that contains all physical 
activity and transportation activity data to be 
extracted later on 

CALORIES Stores Calories Intraday Data 

CONFIG Stores Config parameters such that the status of 
each scheduled task 

DAILY_ACTIVITIES_VERIFICATION Stores the processed data from the classifiers 

DISTANCES Stores Distance Intraday data 

ELEVATIONS Stores Elevation Intraday data 

FITBIT_APIS Stores all Fitbit APIs that needs to be called for 
each user. 

FITBIT_DATA_STATUS Stores the status of each day for each user about the 
data that loader and the classifier status 

FLOORS Stores Floor Intraday Data 

GPS_TRACKING Stores GPS points per each user 

HEART_RATES Stores Heart Rate Intraday Data 

LOCATIONS Stores Location Intraday Data and Address 
associated with each point 

PREFERRED_LOCATIONS Stores the preferred locations per each user 

STEPS Stores Steps Intraday Data 

USERS Stores User Profile data such as User_ID, 
Registration code, status, Fitbit Access Token, etc. 
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Figure 4.5 Database Schema 
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4.3.9 Scheduled Job Design 

This section describes the functionalities of the scheduled tasks in the PASTA system. 

These jobs process the raw data offline. The data should be for a complete day, and the job fetches 

all the enabled users and processes their data. Each user has a field for the sync hour, which 

specifies the time to process the user data. This technique helps to overcome the limitation in API 

calls to the third parties, for example, Fitbit does not allow more than 1000 requests each hour, so 

the users are dissimilated over time to minimize the API consumption and to stay under the 

maximum limit. The system uses 3 scheduled tasks. The Fitbit Data Loader pulls Fitbit data from 

the Fitbit Backend and pushes the data to the PASTA database. The second one runs the classifiers 

against the data pulled from the Fitbit and location data. The third one sends notifications to the 

users who have data ready from the aforementioned job. The brief job descriptions describe its 

functionality and frequency: 

Fitbit Data Loader 

• Pull Data from Fitbit for each Participant 

• Convert the Data and Store it in the Database 

• Frequency: 1 Hour (Users are distributed over time; each one has a particular hour) 

Knowledge Extractor and Classifier Driver 

• Pull Row Data from the Database (Fitbit and Location Data) 

• Compute Activity/Trip times. 

• Classify Physical Activity Intensity 

• Frequency: 1 Hour 

Notification Sender 

• Pull Data Processed Data from Database 

• Send Notification to User to Verify Activities by Firebase. 

• Frequency: 1 Hour 

4.3.10 Classifiers Design 

This section describes the classifiers implemented to classify trip/activity from row GPS 

points and to classify the physical activity intensity associated with each activity.  

Quantifying the physical activities associated with the transportation activities requires extracting 

all the trips and activities and identifying the time periods for each activity and trip. The classifier 
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then predicts the transportation mode for each trip and the location type and trip purpose for each 

activity. The classifiers define six physical activity intensity categories: Very Light, Light, 

Moderate, Hard, Very Hard and Maximal. These categories show the intensity of the physical 

activates. These categories can be calculated by the heart rate value and the calories. The classifier 

divides the heart rate time series data into these categories and calculates the duration of each 

category. 

Before running the Geohash clustering and the activity/trip classifier, the data needs to be 

retrieved from the database for a particular user and for a particular day. The data also needs to be 

smoothed and interpolated to provide any missing points due to mobile phone limitations. The 

interpolation identifies the segments that have a lot of missing data and provides the missing data 

by measuring the distance between every two consecutive points. If the distance is more than 1 

mile, the process requests all these points from a GIS system to provide all the points on the street 

applies a Kalman Filter to smooth the GPS error and enhance the accuracy. 

4.3.11 Activity Trip Classifier  

After the Geohash clustering method generates all the clusters, the Activity trip classifier 

generates the list of activities and trips, based on the dwelling time. The dwelling time is the time 

that the participant spends in a certain place. To register as an activity rather than a trip a participant 

has to remain at a location for at least the value of the minimum dwelling time; for example, a visit 

to the supermarket requires a 5-minute dwell time to classify this cluster as an activity. If the 

duration of the cluster is greater than the dwelling time, then the trip/Activity classifier labels this 

cluster as an activity. If the duration is less than the dwelling time, then the classifier labels this as 

a trip. The classifier merges all continuing trips and considers them as one trip.  

The research team set the dwelling time to 5 minutes, based on observations of pilot data 

gathered from team members. This dwelling time is flexible and may be tuned for different testing 

scenarios. The dwelling time threshold only applies to activities; the classifier still identifies a trip 

of less than 5 minutes as a trip. The following diagram [Figure (4.6)] shows the process flowchart. 
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Figure 4.6 Activity/Trip Classifier 

 

4.3.12 Physical Activity Classifier 

This classifier extracts the duration of each physical activity intensity category: Very Light, 

Light, Moderate, Hard, Very Hard and Maximal. It uses the heart rate ratio values for the all of the 

heart rate values for a particular activity and then it calculates the duration of each category. The 

heart rate ratio can be calculated by the following equation: 

 

 %HRR =
𝑯𝑹𝒂𝒄𝒕  𝑯𝑹𝒓𝒆𝒔𝒕

𝑯𝑹𝒎𝒂𝒙  𝑯𝑹𝒓𝒆𝒔𝒕
 (4.1) 

 

Where: 

𝐻𝑅  : Heart Rate 

𝑅𝐻𝑅  : Resting Heart Rate from Fitbit 

HR max = (220 – Age) 

 

This equation should be applied for each heart rate value associated with that activity. After 

that, each heart rate ratio can be classified into the physical activity intensity categories by the 

following function: 
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 𝒇(𝒉𝒓𝒓) =

⎩
⎪
⎨

⎪
⎧

𝒗𝒍,                    𝟎 ≤ 𝒉𝒓𝒓 < 𝟐𝟓
𝒍,                  𝟐𝟓 ≤ 𝒉𝒓𝒓 < 𝟒𝟓
𝒎𝒐,             𝟒𝟓 ≤ 𝒉𝒓𝒓 < 𝟔𝟎
𝒉,                 𝟔𝟎 ≤ 𝒉𝒓𝒓 < 𝟖𝟓 
𝒗𝒉,              𝟖𝟓 ≤ 𝒉𝒓𝒓 ≤ 𝟗𝟗
𝒎𝒂,                  𝒉𝒓𝒓 = 𝟏𝟎𝟎  

 (4.2) 

 

 

Where: 

𝒗𝒍: Very Low 

𝒍: Low 

𝒎𝒐: Moderate 

𝒉: Hard 

𝒗𝒉: Very Hard 

𝒎𝒂: Maximal 

 

After applying this function to each heart rate ratio value, the classifier needs to calculate the 

duration of each intensity category. This uses six counters where each counter counts the number 

of points for each intensity category. The counter value represents the number of minutes since 

Fitbit provides minute by minute heart rate data. 

4.4 Limitations of the Mobile Application 

4.4.1 Background Execution After Terminating the App 

The mobile phone is not designed to keep running processes periodically precisely. After 

closing the app, the operating system (OS) assigns a low priority even with a sampling rate of 

every 10 seconds. Since data acquisition depends on the phone’s status, getting the location data 

every 10 seconds remains challenging. Android uses Alarm Manager to trigger a broadcast 

receiver when the app is closed, but this does not function precisely. Based on the collected data 

to the Android case appears okay with missing data. However, in the iOS case, Apple has a limit 

of a 15-minute sampling rate, which would lead into miscalculating the physical activity intensity. 
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4.4.2 Location Accuracy 

The phone sometimes captures the GPS location with low accuracy (especially inside the 

building), which leads to inaccurate location points. If the GPS location is not available, the phone 

captures the location from the network (i.e. Wi-Fi or Cellular network), which has very low 

accuracy compared with the GPS. In addition, the user has to keep the GPS enabled at all times to 

get the most accurate results, which might lead into battery drain. 

4.4.3 Transportation Mode Using Heart Rate 

Relying on the heart rate to predict the transportation mode represents a difficult task. Heart 

rate characteristics vary from individual to individual. The testing for one participant reveals a 

very low accuracy because creating a machine learning model to predict the transportation mode 

using heart rate data appears difficult. 

4.4.4 iOS Version 

Apple has limitations in running the applications in the background. Once the app is 

terminated, one can execute a task that runs minimum, and every 15 minutes to get a sample of the 

current location. Therefore, feeding this data to the Activity/Trip classifier would lead into an issue 

calculating the duration. Google Timeline provides such information; however, the Google 

timeline results are 2 hours, which leads to another problem calculating the physical activity since 

the time remains critical to the physical activity intensity classifier. 
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Chapter 5: Survey Result 

 

5.1 Introduction 

The research team recruited participants from two different areas, Arlington, Texas and 

Kalamazoo, Michigan. The team expects that these two locations could provide distinct seasonal 

and geographical variations in physical and transportation activities. Figure (5.1) shows the 

location of Arlington and Kalamazoo.  Arlington is located between Fort Worth and Dallas in the 

north Texas region. The Dallas-Fort Worth-Arlington metropolitan statistical area (MSA), is the 

fourth most populated MSA (7,539,711 estimated as of July 1, 2018) in the U.S (Census Bureau 

2018). Kalamazoo is located in southwestern Michigan in the Kalamazoo-Portage MSA, which 

has a population of less than 500,000. Table (5.1) provides the population demographic details of 

these cities. While the gender and age distributions appear similar, the annual household median 

income remains much higher in Arlington ($55,000) than Kalamazoo ($37,000).  

 

 
Figure 5.1 Location of Arlington and Kalamazoo 
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Table 5.1 Socio-demographic characteristics of Arlington and Kalamazoo 

Socio-Demographic Arlington Kalamazoo 

Population estimate (July 1, 2018) 398,112 76,545 
MSA population 7,539,711 340,318 
City Land area (square mile) (2010) 96.50 24.68 
Female population (%) 51.0% 49.7% 
Population under 18 years (%) 26.3% 19.5% 
Population 65 years and over (%) 10.0% 10.0% 
White alone, not Hispanic or Latino origin (%) 40.1% 64.0% 
Hispanic or Latino origin (%) 28.9% 7.1% 
Black or African American alone (%) 21.9% 21.3% 
American Indian and Alaska Native alone (%) 0.4% 0.3% 
Asian alone (%) 6.9% 2.2% 
Native Hawaiian and Other Pacific Islander alone (%) 0.1% 0.0% 
Two or more races (%) 3.1% 6.3% 
High school graduate or higher (persons of 25 years and 
over) (%) 84.7% 90.5% 
Bachelor's degree or higher (persons of 25 years and 
over) (%) 29.4% 34.2% 
Median household income (in 2017 Dollars), 2013-2017 $55,562  $37,438 

 

5.2 Public Transportation in Arlington and Kalamazoo 

Arlington has a unique position in Texas and in the US, because it is the largest (population 

of 398,112) city without public transportation service. Since 2009, the City of Arlington has 

operated a door-to-door paratransit service, called Handitran, for older adults and persons with 

disabilities residing within Arlington. Individuals eligible for Handitran must apply for the service 

with a $10 application fee and receive a certificate to use the service. Customers can use the service 

for a $55 monthly pass or $2 per one-way trip. Handitran operates within the city boundaries from 

Monday to Saturday, and trips can be scheduled up to 14 days in advance. The City of Arlington 

also supports a micro-transit rideshare service, Via, to connect community members to key 

destinations around the city center through a Public Private Partnership (PPP). Unlike Handitran, 

any individual can request the Via service in real time using either Via app or by phone for a $3 

flat fee per ride  

 



Monitoring Daily Activities and Linking Physical Activity Levels Attributed to Transportation Mobility Choices and Built Environment 

 

65 | P a g e  

 

 Kalamazoo provides fixed route transit “KMetro” to the adjacent cities of Portage, 

Parchment, Texas, and Oshtemo (KMetro, 2019). This system includes four sub-systems as 

follows. 

 Bus system: fixed-route and schedule system operation on weekdays (6:00 AM to 12:15 

AM), Saturdays (6:00 AM to 10:15 PM), and Sundays (8:15 AM to 5:15 PM).  

 Metro Connect: a shared origin-destination service for all the passengers of Kalamazoo 

County. In this system, multiple passengers may ride together in the same vehicle.  

 Metro Share: is similar to Metro Connect, but only for approved agencies serving seniors 

and individuals with disabilities at no cost.  

 RideShare:  a ride matching service helping commuters to find carpool, vanpool, transit, or 

bike options to get around Kalamazoo County and southwest Michigan. 

5.3 Initial Survey Development 

The research team developed an initial survey to pre-screen participants. This short survey 

includes questions about age, gender, main daily transportation mode, and approximate daily 

commuting travel time. Respondents also answered about all their physical activities, number of 

times and average duration (minutes) in the seven days prior to the time of survey. Since the 

PASTA app can only be operated with an Android system, the survey asked the type of smart 

phone (iPhone, Android, or other) they use.  The respondents also indicated their willingness to 

share their activity data if they were provided a Fitbit smart watch. The report contains the 

complete survey questionnaire in Appendix. The Institutional Review Board (IRB) approval for 

this survey was accepted in February 2018 for both WMU and UTA. In March 2018, the link of 

the online initial survey (designed in QualtricsXM) was sent to students, faculty, and staff at both 

universities.  The UTA team sent two reminder emails in the second weeks of April and May 2018. 

Initially, UTA and WMU collected 1,160 and 880 survey responses and selected 388 and 250 

Android smart phone users who were willing to share their activity data through Fitbit as a pre-

screened participant pool.  

The team compared the number of survey participants based on two criteria, main 

transportation mode and being physically active (120 minutes or more per week of physical 

activity). The survey participants of UTA showed the following distributions: 

1. Car driver and physically inactive (191 individuals) 
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2. Car driver and physically active (113 individuals) 

3. Non-driver and physically active (78 individuals) 

At UTA, the research team sought to oversample the non-driver and physically active 

group to capture more active transportation data. As a result, they set their target sample sizes for 

the three groups as 25 for the car driver and physically inactive group, 40 for the car driver and 

physically active group, and 60 for the non-driver and physically active group. Within each of 

these subgroups, the research team used simple random sampling to select participants within each 

group. 

5.4 Main Survey 

The main data collection includes three parts: pre-survey, body composition measurement, 

and physical activity measurement through Fitbit. Among the survey respondents, the research 

team recruited 120 individuals (60 from WMU and 60 from UTA) for the Fitbit data collection. 

Starting from the second week of February 2019, WMU participants visited the Biomechanical 

Laboratory (in the Student Recreation Center) at WMU for the main survey, and UTA participants 

visited the Kinesiology Department (in the Maverick Activity Center) at UTA. At the beginning 

of the measurement sessions, participants completed an informed consent form after reading the 

terms and conditions, and the pre-survey. The research team conducted body composition 

measurements for each participant. To facilitate the process, the team sent an email to each 

participant with the following documents:   

1. Link to the online pre-survey  

2. Consent form 

3. User manual (including a brief description about the participants’ responsibilities and how 

to install and sign up for the Fitbit and PASTA apps) 

4. Body composition measurement guidelines and requirements (e.g. dietary restrictions and 

exercise recommendations during the 24 hours before the tests) 

5.4.1 Mobile App Installation and Fitbit Activation 

The team installed and synchronized the Fitbit Charge 2/3 and PASTA apps on the 

participants’ smartphones. The team instructed the participant about the methods to check/validate 

the device and app to maintain data validity from both the PASTA app and a Fitbit tracker. For 

example, the participants had to check the Bluetooth and Location setting daily and keep them 



Monitoring Daily Activities and Linking Physical Activity Levels Attributed to Transportation Mobility Choices and Built Environment 

 

67 | P a g e  

 

running. The research team regularly checked the data from all the participants. During the data 

collection period, eight participants at UTA and five participants at WMU returned their device 

due to their poor participation in the study.  The research team distributed the returned device to 

new recruited subjects from the participant pool.  

5.4.2 Intake Measurements 

The In-body measurements include the following: 

 Height 

 Weight (through traditional and digital scale) 

 Body fat percentage (through a digital scale and a hand-held body fat monitor) 

 BMI (through hand-held body fat monitor) 

 Girth measurements (abdomen as the smallest girth around the abdomen and hip as the 

largest girth around the buttocks) 

The research team provided a few instructions for the in-body measurement to the participants: 

 Well hydrate the day before the test 

 Do not drink caffeine and eat food 3-4 hours prior to test 

 Do not exercise 6-12 hours before the test 

5.5 Survey Data Analysis 

The main survey asked participants about their socio-demographics characteristics, 

physical activities, and transportation activities (see Appendix for the questionnaires). Table (5.2) 

compares the survey findings between UTA and WMU. The team also added the average profiles 

of US population to the table to better understand the distribution of the participants’ 

sociodemographic profiles. UTA has 53% male participants while WMU has 73%. At both 

universities, the majority of participants are young adults (18-25 age group) or students (67.2% at 

UTA and 78% at WMU). Whites and Asians represent the majorities at both universities (UTA 

with 37.9% Whites and 37.9% Asians, WMU with 52.5% Whites and 23.7% Asians).  The 

oversampling of the Asian/Pacific Islander participants primarily reduces the number of white 

participants; however, both the Black and Hispanic populations appear slightly under-sampled. 

The survey responses showed that over 70% of participants perceived that they have good 

or excellent health and only 5% thought they are not healthy.  Regarding physical activity, 

respondents identified the type, intensity level (from 1 to 10), and duration (minutes) of their 
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activities during the week prior to the survey. HHS Physical Activity Guidelines (2018) indicate 

that moderate activities have a relative intensity of 5 or 6 on a scale of 0 to 10, while relatively 

vigorous activity begins at a 7 or 8 on the same scale. Of note, one minute of vigorous physical 

activity is considered as two minutes of moderate physical activity (HHS, 2018).  

Using the suggested criteria, the team estimated each individual’s moderate activity level 

and excluded the light intensity activities, which have the relative intensity of 4 or less. Therefore, 

each activity with the self-reported intensity of equal to 5 or 6 is considered as moderate, while 

higher than 6 is taken as a vigorous intensity level. The researchers added the total minutes of 

moderate-intensity activities for each person and assigned their physical activity level. While the 

proportion of highly active subjects appears much higher at WMU than UTA (37.3% vs. 20.7%), 

both Universities show a similar distribution of active and highly active participants (45.8% vs. 

44.8%).  The National Health Interview Survey (NHIS) (2017) showed that only 51.7% and 21.7% 

of U.S. adults aged 18 and over met the 2008 federal physical activity guidelines for aerobic 

activity, and aerobic muscle strengthening activity, respectively. America’s Health Rankings 

Annual Report also showed that 26.2% of U.S. adults were inactive in 2008. The participant pool 

appears to align relatively well with the national patterns for physical activity, but the inactive 

group may be slightly oversampled. 

The team also investigates the BMI ( ) from the in-body examination. This project 

uses four BMI categories of underweight (less than 18.5), normal (between 18.5 and 24.9), 

overweight (between 25 and 29.9), and obese (30 and higher). Although the rate of being 

overweight is very similar at both schools (37.9% for UTA and 35.6% for WMU), the obesity rate 

remains higher at WMU than UTA (33.9% vs. 25.9%). 
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Table 5.2 Summary of UTA (n=58), WMU (n=59), total respondents (n=117), and US 
characteristics 

Attribute 
Frequency 
(%) UTA 

Frequency 
(%) WMU 

Frequency 
(%) Total 

Relative 
Frequency 
(%) U.S. 

Gender 
male 31 (53.4%) 43 (72.9%) 74 (63.2%) 49.2% 
female 27 (46.6%) 16 (27.1%) 43 (36.8%) 50.8% 

Age 

Under 18 0 (0.0%) 2 (3.4%) 2 (1.7%) 22.8% 
18 - 25 27 (46.6%) 24 (40.7%) 51 (43.6%) 9.6% 
26 - 49 25 (43.1%) 30 (50.8%) 55 (47.0%) 32.8% 
50 - 64 6 (10.3%) 3 (5.1%) 9 (7.7%) 19.6% 
65 and above 0 (0.0%) 0 (0.0%) 0 (0.0%) 15.2% 

Race 

American Indian or Alaskan 
Native 

0 (0.0%) 0 (0.0%) 0 (0.0%) 0.7% 

Asian / Pacific Islander 22 (37.9%) 14 (23.7%) 36 (30.8%) 5.3% 
Black or African American 7 (12.1%) 5 (8.5%) 12 (10.3%) 12.3% 
Hispanic American 6 (10.3%) 9 (15.3%) 15 (12.8%) 17.3% 
White / Caucasian 22 (37.9%) 31 (52.5%) 53 (45.3%) 62.0% 
Other 1 (1.7%) 0 (0.0%) 1 (0.9%) 2.5% 

Education 

some high school education, 
but no diploma 

0 (0.0%) 4 (6.8%) 4 (3.4%) 12.6% 

high school graduate with a 
diploma or equivalent (for 
example: GED) 

1 (1.7%) 3 (5.1%) 4 (3.4%) 27.7% 

some college credits, but no 
bachelor’s degree 

13 (22.4%) 11 (18.6%) 24 (20.5%) 31.0% 

bachelor’s degree or higher 44 (75.9%) 41 (69.5%) 85 (72.6%) 28.7% 

Status (Position) 

Student 39 (67.2%) 46 (78.0%) 85 (72.6%) N/A 
Administration position 6 (10.3%) 3 (5.1%) 9 (7.7%) N/A 
University faculty 6 (10.3%) 3 (5.1%) 9 (7.7%) N/A 
Office worker 7 (12.1%) 4 (6.8%) 11 (9.4%) N/A 
Outdoor worker 0 (0.0%) 2 (3.4%) 2 (1.7%) N/A 
Not currently employed / 
home with family 

0 (0.0%) 1 (1.7%) 1 (0.9%) N/A 

Income 

Less than $30,000 37 (63.8%) 42 (71.2%) 79 (67.5%) 27.2% 
$30,000 - $50,000 14 (24.1%) 10 (16.9%) 24 (20.5%) 18.2% 
$50,000 - $100,000 7 (12.1%) 7 (11.9%) 14 (12.0%) 30.0% 
More than $100,000 0 (0.0%) 0 (0.0%) 0 (0.0%) 24.6% 

Having Driver's 
License 

Yes 47 (81.0%) 49 (83.1%) 96 (82.1%) 68.6% 
No 11 (19.0%) 10 (16.9%) 21 (17.9%) 31.4% 

No. of household 
motorized vehicles 

0 10 (17.2%) 8 (13.6%) 18 (15.4%) 8.7% 
1 21 (36.2%) 32 (54.2%) 53 (45.3%) 33.2% 
2 18 (31.0%) 12 (20.3%) 30 (25.6%) 37.1% 
3+ 9 (15.5%) 7 (11.9%) 16 (13.7%) 21.0% 

Weight Status 

underweight 1 (1.7%) 2 (3.4%) 3 (2.6%) 1.5% 
normal 20 (34.5%) 16 (27.1%) 36 (30.8%) 27.7% 
overweight 22 (37.9%) 21 (35.6%) 43 (36.8%) 31.8% 
obese 15 (25.9%) 20 (33.9%) 35 (29.9%) 39.8% 

Moderate/Vigorous 
Physical Activity 
Level 

inactive 20 (34.5%) 22 (37.5%) 42 (35.9%) ----- 
insufficiently active 12 (20.7%) 10 (16.9%) 22 (18.8%) ----- 
active 14 (24.1%) 5 (8.5%) 19 (16.2%) ----- 
highly active 12 (20.7%) 22 (37.3%) 34 (29.1%) ----- 

Perceived Health 

very bad 0 (0.0%) 0 (0.0%) 0 (0.0%) 2.2% poor 
bad 4 (6.9%) 2 (3.4%) 6 (5.1%) 7.7% fair 
fair 15 (25.9%) 13 (22.0%) 28 (23.9%) 23.7% good 

good 35 (60.3%) 34 (57.6%) 69 (59.0%) 
31.1% very 

good 
excellent 4 (6.9%) 10 (16.9%) 14 (12.0%) 35.3% excellent 
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The participants also identified the travel time they spent using each transportation mode 

when they traveled from home to work. The travel options include walk, bike, auto (as driver), 

auto (as passenger), wait/transfer, bus, rail, taxi, motorcycle, and other. They also marked their 

primary mode. The research team combined the transportation modes into three groups and 

aggregated the travel time by mode as follows: 

 Active travel time (summation of travel times for walking and biking) 

 Private vehicle travel time (summation of travel times for driving, being a passenger of 

auto, and motorcycle time) 

 Transit travel time (summation of travel times for wait/transfer, bus, rail, and taxi) 

Figure (5.2) compares the proportion of active, private, and transit use.  A majority of the 

participants from both UTA (53%) and WMU (51%) primarily use (> 50%) private vehicles for 

commuting. A few UTA (3%) participants primarily use transit while almost 38% of UTA 

participants primarily use active transportation modes.  At WMU, 22% of the participants 

primarily use transit while 17% primarily use active transportation modes. At UTA (35%) and 

WMU (54%), active transportation represents the primary secondary mode (10-50% use). 

Furthermore, transit represents the infrequent mode (<10% use) for most UTA (86%) and WMU 

(66%) participants. Public transit appears more popular for commuting in Kalamazoo than 

Arlington because the UTA shuttle bus represents the only fixed-route transit option in Arlington. 

In Kalamazoo, the transit system (called “KMetro”) instead provides fixed-route transit service to 

Kalamazoo area cities including Kalamazoo, Portage, Parchment, Texas, and Oshtemo.  
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Arlington, Texas Kalamazoo, Michigan 

  

  

  

Figure 5.2 Relative frequency of active, private, and public transportation use for the proportions 

of commuting time at Arlington (UTA) and Kalamazoo (WMU) 

 

5.6 Discussion and Cross Tabulation Analysis 

Tables (5.3), (5.4), and (5.5) compare the perceived health, objective health (BMI), 

physical activity level, and main transport mode collected from the survey and in-body 

examination in a cross-tabulation format. Overall, the majority of the participants (59%) have a 

good assessment of health, followed by the fair (23.9%) and excellent (12%) groups. In addition, 

higher BMI appears to relate to lower perceived health.  Highly active individuals show an 
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excellent perception of health. Furthermore, active commuters show better perceived health than 

car commuters. 

At UTA, the highest proportion of the participants (29.3%) has normal weight and good 

health, followed by overweight and good health (22.4%). Among the survey participants, 34% are 

overweight and 26% are obese; however, 68% of overweight participants believe their health is 

good or excellent, which is much higher than those who answered bad (0%) or fair (32%). In 

addition, only 27% of obese participants perceive their health is bad.  

 

Table 5.3 Comparisons among self-assessed health, weight, physical activity, and main transport 

mode for total population 

  Perceived Health 
Total(%)  

  Bad Fair Good Excellent 

BMI           

Underweight 0(0.0%) 0(0.0%) 3(2.6%) 0(0.0%) 3(2.6%) 
Normal 0(0.0%) 3(2.6%) 26(22.2%) 7(6.0%) 7(6.0%) 
Overweight 0(0.0%) 12(10.3%) 26(22.2%) 5(4.3%) 43(36.8%) 
Obese 6(5.1%) 13(11.1%) 14(12.0%) 2(1.7%) 35(29.9%) 
Total(%) 6(5.1%) 28(23.9%) 69(59.0%) 14(12.0%) 117(100.0%) 

Physical Activity           
Inactive 5(4.3%) 13(11.1%) 23(19.7%) 1(0.9%) 42(35.9%) 
Insufficiently 
Active  

0(0.0%) 7(6.0%) 13(11.1%) 2(1.7%) 
22(18.8%) 

Active 0(0.0%) 4(3.4%) 12(10.3%) 3(2.6%) 19(16.2%) 
Highly Active 1(0.9%) 4(3.4%) 21(17.9%) 8(6.8%) 34(29.1%) 
Total(%) 6(5.1%) 28(23.9%) 69(59.0%) 14(12.0%) 117(100.0%) 

Transport Mode           
Walk/Bike 1(0.9%) 8(6.8%) 22(18.8%) 5(4.3%) 36(30.8%) 
Transit 0(0.0%) 4(3.4%) 7(6.0%) 4(3.4%) 15(12.8%) 
Car 5(4.3%) 16(13.7%) 40(34.2%) 5(4.3%) 66(56.4%) 
Total(%) 6(5.1%) 28(23.9%) 69(59.0%) 14(12.0%) 117(100.0%) 

 
 

The researchers compare the perceived health and their physical activity. Overall, 20% and 

12% of population has inactive and insufficiently active physical activity, respectively. Among 

them, 60% indicate that their health is good or excellent, which is much higher than those who 

answered that their health is bad or fair. The results show that 79% of the active and 75% of the 

highly active individuals indicate a good or excellent health condition. The percentage of people 
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who engage with the lowest level of physical activity and indicate good perception of health (19%) 

is almost four times higher than those who perceive bad health with the same activity level (5.2%). 

While 62.5% of car commuters have good/excellent perceived health, 75% of active commuters 

evaluate their health to be good and excellent. The overall results of the UTA sample show that 

perceived health does not always align with objective health measures such as BMI and physical 

activity level. However, the sample also shows that transportation-related physical activity relates 

to better perceived health. 

 

Table 5.4 Comparisons among self-assessed health, weight, physical activity, and main transport 

mode for UTA 

  Perceived Health 
Total(%)  

  Bad Fair Good Excellent 

BMI           

Underweight 0(0.0%) 0(0.0%) 1(1.7%) 0(0.0%) 1(1.7%) 
Normal 0(0.0%) 2(3.4%) 17(29.3%) 1(1.7%) 20(34.5%) 
Overweight 0(0.0%) 7(12.1%) 13(22.4%) 2(3.4%) 22(37.9%) 
Obese 4(6.9%) 6(10.3%) 4(6.9%) 1(1.7%) 15(25.9%) 
Total(%) 4(6.9%) 15(25.9%) 35(60.3%) 4(6.9%) 58(100.0%) 
Physical Activity           
Inactive 3(5.2%) 6(10.3%) 11(19.0%) 0(0.0%) 20(34.5%) 
Insufficiently 
Active  

0(0.0%) 4(6.9%) 6(10.3%) 2(3.4%) 
12(20.7%) 

Active 0(0.0%) 3(5.2%) 9(15.5%) 2(3.4%) 14(24.1%) 
Highly Active 1(1.7%) 2(3.4%) 9(15.5%) 0(0.0%) 12(20.7%) 
Total(%) 4(6.9%) 15(25.9%) 35(60.3%) 4(6.9%) 58(100.0%) 

Transport Mode           
Walk/Bike 1(1.7%) 5(8.6%) 15(25.9%) 3(5.2%) 24(41.4%) 
Transit 0(0.0%) 1(1.7%) 1(1.7%) 0(0.0%) 2(3.4%) 
Car 3(5.2%) 9(15.5%) 19(32.8%) 1(1.7%) 32(55.2%) 
Total(%) 4(6.9%) 15(25.9%) 35(60.3%) 4(6.9%) 58(100.0%) 
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Table 5.5 Comparisons among self-assessed health, weight, physical activity, and main transport 

mode for WMU 

  Perceived Health 
Total(%)  

  Bad Fair Good Excellent 

BMI           

Underweight 0(0.0%) 0(0.0%) 2(3.4%) 0(0.0%) 2(3.4%) 
Normal 0(0.0%) 1(1.7%) 9(15.3%) 6(10.2%) 16(27.1%) 
Overweight 0(0.0%) 5(8.5%) 13(22.0%) 3(5.1%) 21(35.6%) 
Obese 2(3.4%) 7(11.9%) 10(16.9%) 1(1.7%) 20(33.9%) 
Total(%) 2(3.4%) 13(22.0%) 34(57.6%) 10(16.9%) 59(100.0%) 

Physical Activity           
Inactive 2(3.4%) 7(11.9%) 12(20.3%) 1(1.7%) 22(37.3%) 
Insufficiently 
Active  

0(0.0%) 3(5.1%) 7(11.9%) 0(0.0%) 
10(16.9%) 

Active 0(0.0%) 1(1.7%) 3(5.1%) 1(1.7%) 5(8.5%) 
Highly Active 0(0.0%) 2(3.4%) 12(20.3%) 8(13.6%) 22(37.3%) 
Total(%) 2(3.4%) 13(22.0%) 34(57.6%) 10(16.9%) 59(100.0%) 

Transport Mode           
Walk/Bike 0(0.0%) 3(5.1%) 7(11.9%) 2(3.4%) 12(20.3%) 
Transit 0(0.0%) 3(5.1%) 6(10.2%) 4(6.8%) 13(22.0%) 
Car 2(3.4%) 7(11.9%) 21(35.6%) 4(6.8%) 34(57.6%) 
Total(%) 2(3.4%) 13(22.0%) 34(57.6%) 10(16.9%) 59(100.0%) 

 

WMU participants feature fewer people with bad perceived health but more people with 

excellent perceived health, compared to UTA. The number of people having an excellent health 

perception and normal weight is two and six times higher than the overweight and obese people in 

the same health category. The relationship between perceived health and BMI seems similar at 

both schools. For example, 94% and 90% of the WMU and UTA respondents in the normal weight 

category have a good or excellent assessment of health. Nevertheless, more WMU participants 

belong to the normal weight with excellent health category than UTA (10.2% vs. 1.7%). While the 

UTA sample has almost three times more active participants than WMU (24.1% vs. 8.5%), more 

WMU participants fall in the highly active category. Tables (5.4) and (5.5) indicate that 41.4% of 

UTA participants are active commuters while 22% of the WMU participants use public transit. 

The percentage of active commuters having a good/excellent health perception is two times higher 

in Arlington than Kalamazoo (31.1% vs. 15.3%).  
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Chapter 6: Transportation User Activity and Trip 

Recognition 

 

6.1 Introduction 

Traveler behavior research requires identifying individuals’ activity and trip information. 

Automatic and digital methods with Global Positioning System (GPS) data logs offer the promise 

of higher quality data than traditional traveler behavior data collection. Therefore, this section 

develops and evaluates strategies that recognize the activity and trip with different thresholds of 

spatiotemporal change by applying a Geohash clustering approach, a GIS-based approach, and a 

combined approach by integrating the Geohash and GIS systems. The study develops and 

implements these approaches for activity only, trip only, and sequential activity-trip recognition 

with GPS data as a case study in Kalamazoo, Michigan. 

6.2 Data and Methodology 

This section discusses the major data collection methods and the approaches this study 

applies to recognize activity/trip information.   

6.2.1 Data Collection 

This research collected a GPS dataset of more than thirty users’ daily activities over a 12-

month period from January to December of 2018. Each respondent had an average of about 

100,000 records for the study period. With missing values being eliminated from the records, the 

final sample included nearly 10 million GPS records. Each record in the dataset represented a GPS 

signal that was captured consecutively in every 1-second interval by the Android GPS device and 

contained information on index, date and time (ET), latitude, longitude, altitude (m), speed (m/h), 

distance (m), and satellite information. The researchers used a moderate GPS accuracy (100) for 

user trip/activity recognition.  

6.2.2 Research Methodology 

This research developed three different approaches to recognize user activity/trip from GPS 

data logs, including a Geohash Clustering Approach, a GIS-based Approach, and a Combined 
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Geohash-GIS Approach. The research team developed different models based on dwelling times 

of 5, 8, and 10 minutes for each of the approaches. 

6.2.2.1 Geohash Clustering Approach: 

Geohash is a public domain geocoding system that encodes a geographic location into a 

short string of letters and digits (Wikipedia Contributors, 2018). It maintains a hierarchical spatial 

data structure that subdivides space into buckets of grid shape by using latitude and longitude 

points (Sing el al. 2017). This research clusters the GPS points based on the Geohash approach. A 

Geohash algorithm hashes all points during a day to cluster the adjacent GPS points. Increasing 

the number of Geohash string characters (precision) increases the neighboring points that 

incorporate into the same cluster. Based on the geographic extent of the user data, the researchers 

test 5, 6, and 7-character precision at a spatial resolution level to cluster the adjacent points. 

Therefore, the 5-character precision develops a 4.9 km × 4.9 km area as a cluster, 6-character 

precision creates a 1.22 km × 0.61 km area as a cluster, and 7-character precision uses a 152.9 m 

× 152.3 m area as a cluster. Figure (6.1) shows an example of the Geohash clustering technique 

where the data include the latitude, longitude, time, and activity type.  

 

 
Figure 6.1 Geohash clustering example 
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The technique converts and hashes the latitude and longitude points into a Geohash format using 

a specific Geohash length. The clustering technique aggregates all similar points with the same 

Geohash and adds them to a cluster labeled by the Geohash string. the process calculates the 

duration by subtracting the start and the end times of the corresponding trip/activity.  

6.2.2.2 GIS-based Approach 

This approach uses a GIS-based boundary shapefile to detect and recognize a user’s daily 

activity/trip. The research team uses the boundary shapefile from open street map for this analysis, 

which is readily available on the Web. The ArcPy code in the Python language environment can 

reverse geocoding to get spatial boundary information from GPS points. Each of the GPS points 

in the user’s trajectory return the spatial location information, which may be aggregated to get the 

duration of each activity or trip. The study tests the dwelling time as 5, 8, and 10 minutes to keep 

consistent analysis with other approaches. During this approach, the researchers develop the code 

based on “identity analysis tool” using ArcGIS 10.5.  

This GIS-based method uses a Kalman Filter to smooth the GPS data and applies a 10-foot 

(3 meter) buffer for polygon and line features to incorporate the outlier points. If the spatial points 

for a user appear inside the boundary (e.g., home, school, or market) for more than the specified 

dwelling time, the GIS-based approach defines the data point cluster as an activity rather than a 

trip. The method calculates the activity duration by calculating the difference between the first and 

last points of any specific boundary feature. After this step, the activity/trip classifier aggregates 

every duration and generates the final outcome of the activity or trip classification. 

6.2.2.3 Combined Geohash-GIS Approach 

This study develops a Combined Geohash-GIS approach by integrating the GIS-based and 

Geohash Clustering approaches. Figure (6.2) shows a schematic diagram for the combined 

approach. Geohash alone could not explain the internal activity/trip analysis within each cluster if 

the Geohash precision level is too big; correspondingly, it generates multiple sub-sections for a 

single trip/activity if it considers a minimal Geohash precision level. The GIS-based approach 

lacks the flexibility to incorporate all of the points into the boundary shapefile because of GPS 

data outliers. The combined approach seeks to overcome these problems. This method uses a two-

stage algorithm. For the first stage, a Geohash clustering algorithm uses the approach methodology 

described in section 6.2.2.1. The research team uses a Geohash precision level-6 to hash the entire 
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study area with a Geohash precision level-7 inside each block of level-6 precision to identify and 

check the inner activities among them. The identification of the internal activities triggers the 

second stage of the algorithm by applying the GIS-based approach inside each internal hashed 

activity. This stage applies a reverse geocoding algorithm with shapefile (e.g., object boundary, 

line features, etc.) information to accurately identify the user activity or trip information. This 

combined approach detects the inner activities/trip with the correct precision level and validates 

the activity/trip by applying the GIS-based boundary shapefiles. The researchers also reduce the 

outlier effect since the Geohash considers those outliers by cluster aggregation at the final stage. 

Thus, the combined approach minimizes the errors to identify the user activity/trip accurately. 

 

 
Figure 6.2 Schematic diagram for Combined Geohash and GIS-based approaches 

 

6.2.2.4 Sample Dataset 

The testing dataset randomly collects 90 samples (90 different days/dates of user activities) 

from all users for the study period of 12 months. The testing dataset contained about 50,000 GPS 
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data records. The study considers three different testing scenarios based on specific tolerance 

levels, including simple, moderate, and critical testing to identify trip only, activity only, and 

sequential activity-trip recognition analysis. From the sample data, the research team randomly 

selects 20% for simple testing, 30% for moderate testing, and 50% for critical testing.  The three 

different testing scenarios identify the accuracy of activity/trip recognition using the following 

standard and tolerance levels: 

 Simple testing with 99.7% confidence bounds (tolerance range = ±3E from true mean 

value) 

 Moderate testing with 95% confidence bounds (tolerance range = ±1.96E from true mean 

value) 

 Critical testing with 68.3% confidence bounds (tolerance range = ±E from true mean value) 

 Where, E=σ/(√N) …. σ is for standard deviation and N is sample size. 

The research team prepares the true dataset based on the actual duration of activities and 

trips performed by users. The user’s feedback data together with GPS tracking logs were displayed 

and carefully observed in a GIS map to identify the true data. The activity or trip duration usually 

varies because of the user’s behavioral pattern for different activity types, which seems somewhat 

problematic for calculating the true mean value for the observed dataset. For example, in terms of 

a mean value of trip duration, some of the trips were very long (e.g., 1 hr. or 2 hrs.) and some were 

very short (e.g., 10-15 minutes). So, it is inappropriate to calculating the mean value by combining 

those long and short trips, which will make our results incorrect. Therefore, we sorted the sample 

data with similar types of duration times and considering some group criteria (e.g., less than 15 

minutes, 15-30 minutes, 31-45 minutes, 46-60 minutes, 61-80 minutes, more than 80 minutes, etc.) 

and calculated the mean value for that sample group.  

The accuracy for user’s activity/trip recognition was calculated based on equation (6.1) for 

different scenario i, as critical, moderate, and simple testing. Here, the accuracy means that the 

defined model accurately recognizes the user trip or activity in such a way that the test/observe 

value is within 68%, 95%, and 99% confidence bounds of true mean value for critical testing, 

moderate testing, and simple testing, respectively.  

 

 A𝒄𝒄𝒖𝒓𝒂𝒄𝒚 𝒊𝒏 𝒂𝒄𝒕𝒊𝒗𝒊𝒕𝒚/𝒕𝒓𝒊𝒑 𝒓𝒆𝒄𝒐𝒈𝒏𝒊𝒕𝒊𝒐𝒏 (𝑨𝒊)  =
𝒂𝒄𝒄𝒖𝒓𝒂𝒕𝒆𝒍𝒚 𝒄𝒍𝒂𝒔𝒔𝒊𝒇𝒊𝒆𝒅 𝒅𝒂𝒕𝒂 𝒇𝒐𝒓 𝒔𝒄𝒆𝒏𝒆𝒓𝒊𝒐 𝒊

𝒕𝒐𝒕𝒂𝒍 𝒅𝒂𝒕𝒂 𝒇𝒐𝒓 𝒔𝒄𝒆𝒏𝒆𝒓𝒊𝒐 𝒊
∗ 𝟏𝟎𝟎 (6.1) 
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In addition to the testing data and accuracy measurement for activity/trip recognition, the 

study evaluates the approaches based on model training and prediction accuracy for the whole 

dataset. The training accuracy checks the misclassification error rate (MER) and calculates the 

accuracy based on equation (6.2). The misclassification error rate checks whether the model 

accurately classifies the trip as a trip and an activity as an activity, or vice versa. 

 

 𝑴𝒐𝒅𝒆𝒍 𝑻𝒓𝒂𝒊𝒏𝒊𝒏𝒈 𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚, 𝑨𝒕𝒓𝒂𝒊𝒏𝒊𝒏𝒈 = (𝟏 − 𝑴𝑬𝑹) ∗ 𝟏𝟎𝟎 (6.2) 

 

The study compares the different approaches based on model prediction accuracy and 

evaluates the prediction accuracy based on equation (6.3) by calculating the Mean Absolute 

Percentage Error (MAPE) by observing the absolute differences between the actual and predicted 

user’s activity duration.  

 

 𝑴𝒐𝒅𝒆𝒍 𝑷𝒓𝒆𝒅𝒊𝒄𝒕𝒊𝒐𝒏 𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚, 𝑨_𝒑𝒓𝒆𝒅𝒊𝒄𝒕𝒊𝒐𝒏 = 𝟏 − 𝑴𝑨𝑷𝑬 (6.3) 

 

Where: 

 𝑴𝑨𝑷𝑬 =  
𝟏

𝑵

𝒐𝒃𝒔𝒆𝒓𝒗𝒆𝒅 𝒂𝒄𝒕𝒊𝒗𝒊𝒕𝒚
𝒕𝒓𝒊𝒑 𝒅𝒖𝒓𝒂𝒕𝒊𝒐𝒏

 − 
𝒑𝒓𝒆𝒅𝒊𝒄𝒕𝒆𝒅 𝒂𝒄𝒕𝒊𝒗𝒊𝒕𝒚

𝒕𝒓𝒊𝒑 𝒅𝒖𝒓𝒂𝒕𝒊𝒐𝒏
𝒐𝒃𝒔𝒆𝒓𝒗𝒆𝒅 𝒂𝒄𝒕𝒊𝒗𝒊𝒕𝒚

𝒕𝒓𝒊𝒑 𝒅𝒖𝒓𝒂𝒕𝒊𝒐𝒏
 

∗ 𝟏𝟎𝟎

𝑵

𝒊 𝟏

 (6.4) 

Where: 

N: is the total number of observations. 

6.3 Analysis and Numerical Results 

The researchers analyzed the individual approach outputs and compare the three proposed 

approaches across the 15 models based on different dwell times (5, 8, and 10 minutes) and geohash 

levels.  The model evaluation analyzes the accuracy of the user activity/trip recognition.  

6.3.1 Geohash Clustering Approach 

This study develops nine models using three Geohash character levels (character sizes 5, 

6, and 7) and three different dwelling times (5, 8, and 10 minutes). The researchers compute the 

confusion matrix based on the output for each of the nine models to identify the misclassification 

between trip and activity. The confusion matrix shows the accuracy as to whether the predicted 

activity is actually an activity, or the predicted trip is actually a trip for the specific model. For 



Monitoring Daily Activities and Linking Physical Activity Levels Attributed to Transportation Mobility Choices and Built Environment 

 

81 | P a g e  

 

example, Geohash-5 with Dwell-5 minute model returns the following result: 

𝒂𝒄𝒕𝒊𝒗𝒊𝒕𝒚 𝒕𝒓𝒊𝒑
𝒂𝒄𝒕𝒊𝒗𝒊𝒕𝒚 123 11

𝒕𝒓𝒊𝒑 52 102
 , which translates into the model accurately classifying the activity as 

activity and trip as trip with an accuracy of 78.1%.  

Table (6.1) indicates that the Geohash-6 and Geohash-7 clustering shows better accuracy 

in comparison to the Geohash-5 clustering. The Geohash-5 clustering does not deliver a good 

outcome since it covers a larger block of geographical area to cluster the GPS data where some of 

the trip/activities were overlooked and misclassified. The Geohash-6 clustering model with a dwell 

time of 5 minutes provides the best accuracy (89.23%). 

 

Table 6.1 Accuracy in activity/trip recognition for Geohash clustering approach 

 Activity/trip Recognition Accuracy (Percentage) 

Geohash-5 Geohash-6 Geohash-7 

Dwell 
5 min 

Dwell 
8 min 

Dwell 
10 

min 

Dwell 
5 min 

Dwell 
8 min 

Dwell 
10 

min 

Dwell 
5 min 

Dwell 
8 min 

Dwell 
10 

min 

Model Accuracy (𝑨𝒕𝒓𝒂𝒊𝒏𝒊𝒏𝒈) 
based on misclassification error 
rate of training data  

78.11 77.71 78.74 89.23 85.71 83.63 80.91 80.92 77.08 

Accuracy (𝑨𝒊) of different 
testing scenarios based on 
sample dataset  

 

Critical 
testing 

Sequential activity-
trip 

34.62 38.46 37.18 46.15 38.46 33.33 20.51 17.95 16.67 

Activity 53.85 46.15 43.59 51.28 43.59 41.03 17.95 15.38 12.82 

Trip 15.38 30.77 30.77 41.03 33.33 25.64 23.08 20.51 20.51 

Moderate 
testing 

Sequential activity-
trip 

50.68 52.05 50.68 57.53 56.16 49.32 52.05 50.68 43.84 

Activity 69.70 69.70 63.64 60.61 63.64 51.52 51.52 48.48 45.45 

Trip 33.33 35.90 38.46 53.85 48.72 46.15 53.85 53.85 43.59 

Simple 
testing 

Sequential activity-
trip 

75.18 75.64 73.08 80.77 75.64 75.64 67.95 67.95 67.95 

Activity 73.77 73.77 73.77 77.05 75.41 77.05 65.57 65.57 65.57 

Trip 76.32 75.00 72.37 80.26 75.00 75.00 68.42 68.42 68.42 

 

The evaluation tests the accuracy for three different classifications (i.e. activity only, trip 

only, and sequential activity/trip) based on different Geohash character clustering levels and dwell 

times. Table (6.1) shows the outcome of the models based on different testing scenarios. Overall, 

the Geohash-6 with dwell time 5 min shows the best result with about 50% accuracy for critical 
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testing, 60% accuracy for moderate testing, and 80% accuracy for simple testing. Since the critical 

testing (68% confidence interval from mean value) considers a narrow interval from mean value, 

it shows less accuracy in activity/trip recognition in comparison to other testing scenarios. Table 

6.1 indicates that the activity recognition accuracy appears better than trip recognition accuracy 

for all testing scenarios except simple testing. The Geohash-6 clustering with dwell time 5 min 

showed higher accuracy (more than 80%) to recognize the user activity successfully based on 

simple testing scenario.  

6.3.2 GIS-based Approach 

The study develops three different models to recognize activity/trip by applying the GIS-

based approach with 5, 8, and 10-minute dwell times. Table (6.2) shows the model Accuracy 

(Atraining) based on the misclassification error rate of the training data. The GIS-based model with 

a dwell time of 5 minutes shows good accuracy (70.41%) in comparison to the other GIS-based 

models. The classification accuracy for the GIS-based models remains lower than the Geohash 

models.  

 

Table 6.2 Accuracy in activity/trip recognition for GIS-based approach 

 Activity/trip Recognition Accuracy (Percentage) 

Dwell-5 min Dwell-8 min Dwell-10 min 

Model Accuracy (𝑨𝒕𝒓𝒂𝒊𝒏𝒊𝒏𝒈) based 
on misclassification error rate of 
training data  

70.41 69.72 70.15 

Accuracy (𝑨𝒊) of different testing 
scenarios based on sample dataset  

 

Critical 
testing 

Sequential activity-trip 26.92 33.33 34.62 

Activity 35.90 38.46 41.03 
Trip 17.95 28.21 28.21 

Moderate 
testing 

Sequential activity-trip 26.03 31.51 35.62 
Activity 42.42 48.48 51.52 

Trip 10.26 15.38 20.51 

Simple 
testing 

Sequential activity-trip 63.50 51.28 51.28 
Activity 60.66 52.46 54.10 

Trip 65.79 51.32 51.32 

 
 

The model evaluation assesses the outcome accuracy for the three GIS-based models for 

the activity only, trip only, and sequential activity/trip recognition testing scenarios. Table (6.2) 
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shows that the dwell time 10 minutes’ model outperforms the other models for the critical and 

moderate testing; however, the dwell time 5-minute model shows better accuracy for the simple 

testing case. In general, the dwell time 10-minute model works better than the other GIS-based 

approaches with an overall accuracy of about 50% for simple testing scenarios, which was less 

than the accuracy of the Geohash clustering approach.  

6.3.3 Combined GIS and Geohash Approach 

The study proposes three combined approach by using different dwell times. Table (6.3) 

shows the accuracy based on a confusion matrix, where all models have good accuracy (above 

90%), which outperforms the previous models.  

Table (6.3) shows the accuracy of the models based on a combined approach, and they all 

show very good accuracy to recognize activity only, trip only, and sequential activity/trip for all 

testing scenarios in comparison to other approaches. Among these models, the dwell time 5-minute 

model shows the best accuracy (above 90%) for critical, moderate, and simple testing.  

 

Table 6.3 Accuracy in activity/trip recognition for Combined Geohash-GIS approach 

 Activity/trip recognition Accuracy (Percentage) 
Dwell-5 min Dwell-8 min Dwell-10 min 

Model Accuracy (𝑨𝒕𝒓𝒂𝒊𝒏𝒊𝒏𝒈) 
based on misclassification error 
rate of training data  

94.10 92.12 92.01 

Accuracy (𝑨𝒊) of different testing 
scenarios based on sample 
dataset  

 

Critical 
testing 

Sequential activity-
trip 

93.59 93.59 89.74 

Activity 87.18 87.18 79.49 

Trip 100.0 100.0 100.0 

Moderat
e testing 

Sequential activity-
trip 

91.78 87.67 89.04 

Activity 81.82 72.73 75.76 

Trip 100.0 100.0 100.0 

Simple 
testing 

Sequential activity-
trip 

91.97 91.44 91.44 

Activity 83.61 72.13 77.05 
Trip 98.68 98.68 98.68 
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6.4 Discussion and Comparison of Different Approaches 

This section discusses the predicted values (duration in minutes) of user activity/trip based 

using different approaches. The analysis compares models based on the Geohash-6 clustering 

approach, GIS-based and combined Geohash-GIS approach under different dwell time scenarios. 

The comparison uses the Geohash-6 approach because it shows better accuracy than the other 

Geohash precision levels. The evaluation also considers dwell time because it remains a key 

feature to identify the activity/trip. 

The research team compares the predicted sequential activity-trip duration values with the 

true duration values by developing a scatter plot diagram in Figure (6.3). The dwell time 5-minute 

models show a good relationship between the true and predicted values with a r-square value of 

above 0.8 for all models, but the combined approach shows the best accuracy with a higher r-

square value (above 0.9). Therefore, the combined approach can explain more than 90% of the 

data variability of the predicted activity-trip duration. 

 

 



Monitoring Daily Activities and Linking Physical Activity Levels Attributed to Transportation Mobility Choices and Built Environment 

 

85 | P a g e  

 

 
Figure 6.3 Predicted accuracy comparisons for different approaches 
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The Mean Absolute Percentage Error (MAPE) shows the actual deviation of predicted 

activity/trip duration from the true value. Figure 6.4 shows the MAPE values for the activity only, 

trip only, and sequential activity-trip accuracy-based cases. All of the models based on the GIS-

based approach show poor accuracy for predicting the activity/trip duration. The Geohash-6 

clustering shows better accuracy in the sequential activity-trip duration in comparison to GIS-

based methods. However, the combined approach with a dwell time of 5 minutes shows the best 

accuracy, where the MAPE values remain less than 19 percent.  

 

Different 
testing 

Scenarios 

MAPE 
Geohash-6 GIS-based Approach Combined Approach 

5 min 8 min 10 min 5 min 8 min 10 min 5 min 8 min 10 min 

activity/trip 30.16 28.87 33.15 65.91 62.98 67.11 12.70 13.48 
 

18.81  

activity 23.81 22.82 21.22 49.72889 58.59237 58.29276 18.65 20.95 
 

27.83  

trip 42.77 40.97 51.43 44.83809 34.885 46.35985 15.00 20.01 
 

25.21  
Figure 6.4 Prediction accuracy in activity/trip recognition based on MAPE 

 
 

This research also compares the accuracy in user activity/trip recognition by developing 

individual Receiver Operating Characteristics (ROC) for different models on different approaches. 

Figure (6.5) shows the diagnostic test based on ROC curves, where the relationship between 

sensitivity and false-positive rate (FPR) are explained for the predicted activity/trip values by 

different models. The study also calculates the area under curve (AUC) based on different dwell 

times for different approaches. The combined approach with a dwell time 5 minutes shows the 

highest AUC value with 0.878.  
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Dwell Time: 5 minutes 
 

 
      Geohash Approach                  GIS Approach             Combined Approach               
        AUC = 0.806                           AUC = 0.391                 AUC = 0.878 
 

Dwell Time: 8 minutes 
 

 
           Geohash Approach       GIS Approach            Combined Approach 
              AUC = 0.693                AUC = 0.207                 AUC = 0.873 

 
Dwell Time: 10 minutes 

 

 
          Geohash Approach       GIS Approach                 Combined Approach 
              AUC = 0.637             AUC = 0.211                        AUC = 0.849 

 
Figure 6.5 Predicted accuracy comparisons based on ROC curve 
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6.5 Summary and Concluding Remarks 

This research studies three different approaches for user activity and trip recognition based 

on GPS log data. For Geohash clustering analysis, Geohash precision level-6 with dwell time 5 

min shows the best accuracy for user activity/trip detection. For the GIS-based approach, a dwell 

time of 10 minutes has the best performance. However, the Combined Geohash-GIS approach with 

a dwell time of 5 minutes achieves the best overall accuracy. The proposed combined approach 

may significantly enhance the efficiency and accuracy of GPS travel survey data by correctly 

recognizing user activity and trip patterns. This approach can serve as a foundation for a future 

system of full-scale travel information identification with GPS data. The combined approach could 

contribute to improvements in the modeling and analysis of travel behavior. The proposed 

approach seems easy to replicate and could contribute to transportation and city planning research 

by replacing the traditional survey methods with automatic recognition of user travel patterns.  
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Chapter 7: Transportation Mode Detection 
 

7.1 Introduction 

This section describes strategies to detect different transportation modes from smartphone and 

smartwatch data. The study develops a series of different machine learning algorithms to predict and 

detect transportation modes. This section highlights the benefits of monitoring human vital activities 

for mode detection. 

7.2 Data and Methodology 

7.2.1 Data Description 

The study uses data from a total of 120 participants to predict the transportation mode. The 

PASTA application transfers the data, which includes information about the date, time, latitude, 

longitude, altitude, heart rate (HR), calories, steps, elevation, and metabolic equivalent tasks (METs), 

from the phone and the watch to a server.  

7.2.2 Measurement of Physical Activity 

This study relies on the heart rate as a method to measure physical activity. This study uses a 

smartwatch (Fitbit Charge 2 or Charge 3 for measuring and recording physical activity data. The study 

requires knowing the values of the: 1) resting heart rate; 2) age-predicted maximum heart rate (i.e. 

[220-age]); 3) and heart rates with physical activities recorded each minute. The Fitbit smartwatch 

provides each participant’s resting heart rate once per day, and it records the heart rate of physical 

activity every minute.  

The study adapts the Karvonen equation or “Heart rate (HR) Reserve Method” to automate 

the measurement for the changes that may occur in the physical activities of the person and is known 

as the. The original equation of the Karvonen method, shown in equation (7.1), presents the target 

range of HR based on the predetermined value of a person's percent intensity for physical activity. 

 

 𝑻𝒂𝒓𝒈𝒆𝒕 𝑯𝑹𝒓𝒂𝒏𝒈𝒆 = ([𝑯𝑹𝒎𝒂𝒙 − 𝑯𝑹𝒓𝒆𝒔𝒕] × 𝑷𝒆𝒓𝒄𝒆𝒏𝒕 𝒊𝒏𝒕𝒆𝒏𝒔𝒊𝒕𝒚) + 𝑯𝑹𝒓𝒆𝒔𝒕 (7.1) 
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The researchers adjust the Karvonen equation formula by substituting the real value of the 

%HRR recorded from the Fitbit smartwatch, which changes in each minute, for the target HR range. 

Equation (7.2) illustrates the modified formula for measuring the physical activity intensity per 

minute: 

 

 %𝑯𝑹𝑹 =  
(𝑯𝑹𝒂𝒄𝒕. − 𝑯𝑹𝒓𝒆𝒔𝒕)

(𝑯𝑹𝒎𝒂𝒙 −  𝑯𝑹𝒓𝒆𝒔𝒕)
× 𝟏𝟎𝟎 (7.2) 

 

Where:  

𝐻𝑅 .: Actual Heart Rate (from Fitbit) 

HRrest: Resting Heart Rate (from Fitbit) 

HRmax= (220 – Age) 

 

The physical activity intensity value when calculated per minute (PAM) uses Equation (7.3): 

 

 𝑷𝑨𝑴𝒊 = %𝑯𝑹𝑹 . 𝒅𝒕

𝒊𝒆𝒏𝒅

𝒊𝒔𝒕𝒂𝒓𝒕

 (7.3) 

 

7.2.3 Training and Verification Algorithms 

This study uses four algorithms (Extreme Gradient Boosting, Random Forest, Support Vector 

Machine, and Artificial Neural Network) to extract the classification models and compares their 

performance. The following provides a brief explanation of these algorithms: 

Extreme Gradient Boosting (XGBoost): 

The XGboost is a machine learning algorithm, which can be used for supervised learning tasks 

such as Regression, Classification, and Ranking. XGBoost produces a predictive model in a set of 

weak prediction models, usually decision trees. XGBoost constructs the model in a stage-wise fashion 

as other boosting methods do, and it generalizes them by enabling optimization of an arbitrary 

differentiable loss function (Chen et al., 2016). 
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Basically, the training is done using an “additive strategy”: Given a molecule i with a vector of 

descriptors 𝑥  , a tree ensemble model uses 𝐾 additive functions to predict the output (Sheridan et al., 

2016 ). 

 

 𝒚 = 𝝓(𝒙𝒊) =  𝒇𝒌(𝒙𝒊),            𝒇𝒌 ∈

𝒌

𝒌 𝟏

𝓕  (7.4) 

 

Where: 

𝓕: is the set of all possible regression trees.  

𝒇𝒌: is a function at each of the k steps maps the descriptor values in 𝒙𝒊 to a certain output  

 

Random Forest (RF) algorithm:  

The RF is a method designed for classification, which creates a forest of trees where each tree 

represents a set of training data. Every tree in the forest is given the opportunity to grow as far as 

possible and without pruning. The fruits of the prediction attempts are then harvested for the purpose 

of evaluating the accuracy provided by the algorithm. Therefore, the number of trees and the number 

of variables is the two most important parameters in RF (Zhang et al., 2018).  

Random forest using bagging ensemble algorithim to produce unbiased models with low variance. 

The random forest procedure can be summarized as follows (Akinkunmi et al. 2019); 

1. For 𝑏 =  1 to B: 

(a) A bootstrap sample 𝒁∗ of size N from the training data is drawn. 

(b) Grow a random-forest tree 𝑇  to the bootstrapped data, by recursively repeating the following 

steps for each terminal node of the tree, until the minimum node size 𝑛  is reached. 

i. Select 𝑚 variables at random from the 𝑝 variables. 

ii. Pick the best split-point among the m. 

iii. Split the node into two daughter nodes. 

2. Output the ensemble of trees {𝑇 }  

A prediction at a new point 𝑥 can be accomplished by; 

Let 𝐶 (𝑥) be the class prediction of the bth random-forest tree. 

Then      𝐶 (𝑥) = 𝑚𝑎𝑗𝑜𝑟𝑖𝑡𝑦 𝑣𝑜𝑡𝑒 𝐶 (𝑥)  
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Support Vector Machine (SVM): 

SVM is a method of supervised machine learning, which explores data sets to determine results. 

SVM is widely used for binary classification and prediction. In addition, SVM can use the "kernel 

trick", which sets instances in high-dimensional space to provide non-linear prediction or 

classification (Alanazi et al., 2017). Given the training data (𝑥 , 𝑦 ) ,……..( 𝑥 ⃗, 𝑦⃗), we wish to to find 

maximum margin hyperplane that devides the group of points xi for which 𝑦 = 1 from the other 

group with 𝑦 = −1. The hyperplane can be represented as (Leskovec et  al. 2014 ) : 

 

 𝒘. 𝒙 − 𝒃 = 𝟎 (7.5) 

 

With 𝑤 running parpendicular to the hyperplane. The two parallel hyperplanes at edge of the two data 

sets are defined as; 

 

 𝒘. 𝒙 − 𝒃 = 𝟏 (7.6) 

 

 𝒘. 𝒙 − 𝒃 = −𝟏 (7.7) 

 

Whereby the objective function is to minimize ‖𝑤‖ from the equation (7.6) and equation (7.7). 

 

Artificial Neural Network (ANN):  

ANN is a widely used machine learning method that classifies and predicts. ANN is a 

computational model derived by the connectivity of neurons to animate nervous systems. Any 

function of assignment from training inputs to training outputs can be used if nonlinear functions are 

used in the network. ANN requires enough neurons in the network and enough training examples 

(Alanazi et al. 2017). Inputs of flow signals are 𝑥 , . . . , 𝑥  and it is unidirectional (Parida et al., 

2012), while outputs of flow signals for neurons are referred to as (𝑂). The output of neuron signals 

is as follows: 

 𝑶 = 𝒇(𝒏𝒆𝒕) = 𝒇( 𝒘𝒋𝒙𝒋)

𝒏

𝒋 𝟏

 (7.8) 
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Where: 

𝑤 = The weight vectors 

𝑓(𝑛𝑒𝑡) = The activation functions 

Also, the variable net is defined as a scalar product of the weight and input vectors by 

 

 𝒏𝒆𝒕 = 𝒘𝑻𝒙 = 𝒘 𝟏𝒙𝟏 + ⋯ + 𝒘𝒏 𝒙𝒏 (7.9) 

 

Where: 

𝑇 = Is the transpose of a matrix. 

The output value 𝑂 is computed as 

 

 𝑶 =  𝒇(𝒏𝒆𝒕)  =  𝟏    𝒊𝒇 𝒘𝑻𝒙 ≥  𝜽
𝟎     𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆 

 (7.10) 

 

The (𝜃) is called the threshold level; also, this type of node is also called a linear threshold 

unit. The internal activity of the model of neurons is given by 

 

 𝒗𝒌 =  𝒘𝒌𝒋𝒙𝒋 

𝒑

𝒋 𝟏

 (7.11) 

 

Then the output of the neuron would be the outcome of some activation function on the value of 𝑣 . 

 

7.3 Results and Discussions  

7.3.1 Descriptive Statistics 

The results section provides the descriptive statistics of variables used in developing a machine 

learning tool for detecting the transportation mode. The selected features for each trip duration include 

the HRact, HRrest, speed (mph), and energy expenditure expressed in calories. The PAM and MET 

values are derived from heart rate and calorie information, respectively. Personal information, such 

as age, gender, weight, and height, may also be used by the machine learning algorithms. The study 

also calculates the body mass index (BMI) of each participant from the weight and height information.  
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Figure 7.1 shows the distribution of speed, energy expenditure, PAM, and deviation of actual 

heart rate from the resting heart rate for each transportation mode type.  

 
Figure 7.1 Distribution of classifiers/features by transportation mode type 

 

Table (7.1) shows the ANOVA test results, which explores the significance level of any 

observed differences of the selected features across transportation modes. The study uses the post-

hoc Tukey test for pairwise comparisons of means as shown in Table (7.2). 

On average, auto speeds were 34±13.9 mph, bus speeds were 26±12.3 mph, bicycle speeds 

were 12±6.6 mph and walking speeds were 2±1.1 mph. The ANOVA test (F (3,8768) =1744.8, 

p=0.000) indicated a significant difference in the observed speeds across transportation modes. The 

post hoc Tukey test showed a significant difference in speed for each pair of transportation modes.  

The analysis calculates the difference between the HRact and HRrest and (PAM) for each 

transportation mode. The bicycle mode has the highest HRact-HRrest (51±18.4) and PAM value 
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(0.36±0.15) followed by walking, which has a HRact-HRrest of 32±18.8 and PAM value of 

0.22±0.15. The ANOVA test denotes a significant difference in the observed HRact-HRrest and PAM 

values across the transportation modes. However, the Tukey test indicates an insignificant difference 

in HRact-HRrest and PAM value between the bus and auto modes. 

The BMI represented the physical characteristics of participants for each mode. The 

participants using a bicycle had the lowest BMI (24.7±7.1) and those walking had the second lowest 

(25.9±7.4). Participants who used the automobile for most of their trips had the highest BMI (29±6.4). 

The ANOVA test and post-hoc Tukey test showed a significant difference in participants’ BMI across 

all transportation modes. A pairwise comparison of BMI means for the transportation modes appeared 

significant for all modes except walk and bus.  

 

Table 7.1 ANOVA Test for the Selected Features by Transportation Mode 

Feature Source SS df MS F Prob > F 

Speed (mph) Between groups 876981.326 3 292327.109 1744.48 0.000 
Within groups 1469273.82 8768 167.572288 

HRact-HRrest Between groups 272799.901 3 90933.3004 659.81 0.000 

Within groups 1208383.2 8768 137.817427 

PAM Between groups 14.4698168 3 4.82327227 445.23 0.000 

Within groups 94.985774 8768 0.01083323 

BMI Between groups 12478.1398 3 4159.37992 95.7 0.000 

Within groups 381086.261 8768 43.4633053 
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Table 7.2 A Tukey Post Hoc Test 

Feature Transportation Mode Contrast Std. Err. t P>t 
S

pe
ed

 (
m

ph
) Bicycle vs Auto -22.080 0.760 -29.060 0.000 

Bus vs Auto -8.209 0.896 -9.170 0.000 
Walk vs Auto -31.958 0.472 -67.780 0.000 
Bus vs Bicycle 13.871 1.155 12.010 0.000 

Walk vs Bicycle -9.878 0.869 -11.370 0.000 
Walk vs Bus -23.749 0.990 -24.000 0.000 

H
R

ac
t-

H
R

re
st

 Bicycle vs Auto 27.873 0.689 40.450 0.000 
Bus vs Auto 0.667 0.812 0.820 0.844 

Walk vs Auto 8.976 0.428 20.990 0.000 
Bus vs Bicycle -27.206 1.048 -25.970 0.000 

Walk vs Bicycle -18.898 0.788 -23.990 0.000 
Walk vs Bus 8.308 0.897 9.260 0.000 

P
A

M
 

Bicycle vs Auto 0.202 0.006 33.110 0.000 
Bus vs Auto -0.012 0.007 -1.660 0.346 

Walk vs Auto 0.065 0.004 17.130 0.000 
Bus vs Bicycle -0.214 0.009 -23.070 0.000 

Walk vs Bicycle -0.137 0.007 -19.670 0.000 
Walk vs Bus 0.077 0.008 9.660 0.000 

B
M

I 

Bicycle vs Auto -4.279 0.387 -11.060 0.000 
Bus vs Auto -2.547 0.456 -5.580 0.000 

Walk vs Auto -3.040 0.240 -12.660 0.000 
Bus vs Bicycle 1.732 0.588 2.940 0.017 

Walk vs Bicycle 1.239 0.442 2.800 0.026 
Walk vs Bus -0.493 0.504 -0.980 0.762 

 

7.3.2 Machine learning-based transportation mode detection tool 

The study uses features generated from smartwatch and smartphones devices to develop a machine 

learning-based transportation mode detection tool. The procedure involves two steps: (1) Model 

calibration, and (2) Model validation. The research team uses accuracy, which represents the 

percentage of correctly classified observations, to test the performance of each model. It provides by 

the model. The present study compares four machine learning models (Extreme Gradient Boosting 

(xgboost), Random Forest (RF), Support Vector Machine (SVM), and Artificial Neural Network 

(ANN)). The dataset uses a ratio of 80% to 20% for model calibration and model validation, 

respectively.  
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7.3.2.1 Model Calibration 

The research team determines the optimum tuning parameters for each machine learning model using 

a cross-validation approach. Figure (7.2) provides the optimal tuning parameters for Extreme Gradient 

Boosting, RF, SVMS, and ANN. The tuning parameters that yielded the highest accuracy are used to 

calibrate the final model. For Gradient boosting, the final values used for the model are nrounds =50, 

max_depth =2, eta =0.3, gamma =0, colsample_bytree = 0.8, min_child_weight = 1 and subsample = 

0.5. The final ANN values are hidden units = 7 and decay = 0.1. A cost value C, of 0.5 is optimal for 

SVM. The number of features (mtry=2) yields the optimal results for the RF model. 

 

 
Figure 7.2 Model tuning parameters for XGBoost, RF, SVMS, and ANN 
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7.3.2.2 Model Validation 

Random forest outperforms the other competing models in detecting each transportation model using 

features generated from smartwatches and smartphones [Figure (7.3)]. The RF model yields the 

highest accuracy in detecting non-motorized modes, namely, walking mode (97.2%) and bicycle 

mode (90.6%). The lowest accuracy occurs when classifying the bus mode (61.4%). The previous 

statistical testing indicates an insignificant difference in the heart rate information expressed as 

HRact-HRrest and PAM between the bus and auto mode. As a result, the bus mode has the lowest 

accuracy and most of the misclassification cases involve instances with misclassifications between 

the auto and bus modes. 

 

 
Figure 7.3 Predictive models performances in detecting the transportation mode 

 

7.4 Conclusion 

The study uses data collected from smartphones and smartwatches to predict transportation modes. 

The study does not compare the performance of predictive models with previous studies because this 

study uses PA as a new feature in predicting transportation modes. The study seeks to address some 

of the most important limitations of previous predictive processes, such as the problem of battery 

consumption and the continuity of predictive processes for as long as possible. The study introduces 
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the PASTA platform, which works as a mobile application linked to servers that conduct a process of 

compiling, classifying and analyzing data from both the phone and the watch. The PASTA platform 

shows high potential to monitor people's activities and classify these activities into trips and non-trips. 

The PASTA platform also provides daily reports of the spatial and temporal data associated with these 

trips and the accompanying PA. The researchers investigate several Machine learning methods to 

predict the transportation modes. The Random Forest method appears to be the most accurate in terms 

of detecting different modes of transport. 
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Chapter 8: Exploring the Association Between Individual’s 

Physical Activity Level with Socio-economic and Body-

composition characteristics 

 

8.1 Introduction 

The study tests the statistical association between an individual’s physical activity level, 

socioeconomic characteristics, and body composition profiles. This study incorporates the actual 

measurement of physical activity intensity and body composition through the PASTA platform for 

data collection.  The research team measures the more accurate parameters of body composition 

characteristics, such as Body Mass Index (BMI), Body Fat Mass (BFM), and Percent Body Fat (PBF), 

using InBody Test equipment. 

8.2 Research Methodology 

This analysis uses data from the PASTA platform, data from the questionnaire (pre-survey/main 

survey), and data from the body composition test of the study participants.  

Figure (8.1) shows the framework for the study of the transportation modes associated with 

physical activities. This diagram shows that the final outputs of the study required a series of steps. 

 

Figure 8.1 A framework for the study of the transportation modes association with physical activities 
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The research team creates six physical activity levels using heart rate or Metabolic Equivalent of Task 

(MET) values [Table (8.1)], adopted from Sirven and Varrato (1999). 

 

Table 8.1 Classification of physical activity intensity, based on physical activity lasting up to 60 

minutes  

 Intensity 

Endurance-type activity 
Strength-type 

exercise 

Relative intensity Absolute intensity (METs) 
Relative 

intensity 

VO2 max 

(%) heart 

rate reserve 

(%) 

Maxima

l heart 

rate (%) 

PRE 
Young 

(20-39) 

Middle- 

aged 

(40-39) 

Old 

(65-79) 

Very 

old 

(80+) 

PRE 

Maximal 

voluntary 

contraction 

(%) 

Very Light <25 <30 < 9 <3.0 <2.5 <2.0 ≤1.25 <10 <30 

Light 25-44 30-49 9-10 3.0-4.7 2.5-4.4 2.0-3.5 1.26-2.2 10-11 30-49 

Moderate 45-59 50-69 11-12 4.8-7.1 4.5-4.4 3.6-4.7 2.3-2.95 12-13 50-69 

Hard 60-84 70-89 13-16 7.2-10.1 6.0-8.4 4.8-6.7 3.0-4.25 14-16 70-84 

Very Hard ≥85 ≥ 90 ≥16 ≥10.2 ≥8.5 ≥6.8 ≥4.25 17-19 >85 

Maximal 100 100 20 12 10 8 5 20 100 

Maximal values are mean values achieved during maximal exercise by healthy adults. Absolute intensity (METs) values are approximate 

mean values for men. Mean values for women are approximately 1–2 METs lower than those for men. 

 

 8.2.1 Data Collection 

The data collection period lasted for nearly six months from March 2019 to August 2019. Most of the 

research participants were students, staff, and faculty members at Western Michigan University (60 

participants) and the University of Texas at Arlington (60 participants). The study collected the 

minutes of PA for a week and determined the PA level of intensity to determine the impacts of daily 

activities and transportation on health. The research team excluded PA that fell within the light and 

very light levels. 

The researchers reorganize several of the data fields; the vigorous physical activities include 

values from the hard, very hard, and maximal categories. The research team classify moderate or more 

intense physical activities into trips or non-trips. Table (8.2) shows a sample of the results provided 

by the PASTA platform through a computerized interface, which provides data for any week over the 

study duration. The equivalent minutes of vigorous PA is computed by dividing the total minutes of 

moderate PA by two and adding the minutes to vigorous PA minutes as shown in equation (8.1), (8.2). 
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 𝐄𝐪𝐮𝐢𝐯𝐚𝐥𝐞𝐧𝐭 𝐭𝐨 𝐦𝐨𝐝𝐞𝐫𝐚𝐭𝐞 𝐏𝐀 𝐦𝐢𝐧𝐮𝐭𝐞𝐬 =   𝐦𝐨𝐝𝐞𝐫𝐚𝐭𝐞 +  𝐯𝐢𝐠𝐨𝐫𝐨𝐮𝐬 × 𝟐 (8.1) 
 

Or  
 

 𝐄𝐪𝐮𝐢𝐯𝐚𝐥𝐞𝐧𝐭 𝐭𝐨 𝐯𝐢𝐠𝐨𝐫𝐨𝐮𝐬 𝐏𝐀 𝐦𝐢𝐧𝐮𝐭𝐞𝐬 =   𝐯𝐢𝐠𝐨𝐫𝐨𝐮𝐬 + 
𝒎𝒐𝒅𝒆𝒓𝒂𝒕𝒆

𝟐
 

 
(8.2) 

 

The red and green colors in Table (8.2) indicate the level of PA intensity. The green color indicates 

that a person weekly PA minutes met the required standard value to achieve health benefits for a given 

category while the red color indicate otherwise. 

 

Table 8.2 Sample of the weekly report for PASTA application about the PA intensity achieved for each 

participant (from 3/25/2019 to 3/31/2019) 

User ID 
Trip 

Moderate 
Trip 

Vigorous 
Trip 

Equivalent 
Non-Trip 
Moderate 

Non-Trip 
Vigorous 

Non-Trip 
Equivalent 

Total Equivalent 
(Trip + Non-Trip) 

76 0 1 1 37 122 140.5 141.5 

77 2 2 3 94 86 133 136 

78 8 6 10 111 95 150.5 160.5 

79 0 6 6 12 66 72 78 

80 0 1 1 43 129 150.5 151.5 

81 0 2 2 7 41 44.5 46.5 

82 0 2 2 6 64 67 69 

83 0 0 0 1 16 16.5 16.5 

84 82 35 76 401 170 370.5 446.5 

85 126 92 155 35 64 81.5 236.5 

86 0 2 2 33 104 120.5 122.5 

87 3 14 15.5 9 45 49.5 65 

88 0 4 4 20 53 63 67 

89 3 34 35.5 30 166 181 216.5 

90 0 2 2 1 17 17.5 19.5 

91 0 17 17 1 66 66.5 83.5 

92 0 3 3 4 60 62 65 

93 0 7 7 2 49 50 57 

94 0 9 9 18 74 83 92 

95 103 47 98.5 401 215 415.5 514 

96 3 9 10.5 180 415 505 515.5 
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Overall, a person can look into the total equivalent PA minutes (sum of trip and non-trip 

equivalent) to see if he/she has achieved the health benefits. A person may have less than required  

trip or non-trip PA minutes but have total equivalent PA minutes which meets the required PA minutes 

that provide health benefits [see UserID 79 and 91 in Table (8.2)]. A person can look into the category 

where he/she can increase his/her  PA weekly minutes if the total equivalent PA minutes is less than 

the required minimum PA minutes to achieve the health benefits. 

The other two sources of data of the study, the survey, as well as body composition tests, are 

intended to form a vision of the demographic and social characteristics of the participants. The results 

obtained from the questionnaire and body composition test specified the number and types of 

variables, determining the shape of the relationships between the variables with the physical activities 

of people. 

The questionnaire (pre-survey) which it is paper-based, involved twelve questions, including 

general questions about gender, age, race/ethnicities, etc., with other questions related to physical 

activities. The pre-survey was completed by 120 participants distributed among 60 participants in 

Kalamazoo-Michigan, and 60 other participants in Arlington-Texas. The summary of the participants 

in the pre-survey is shown in table (8.3). Each participant signed the consent form document to 

participate in the study before participating in the study. Therefore, each participant that received a 

Fitbit smartwatch (charge 2 or 3) was asked to download Fitbit and PASTA application on their phone.  
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Table 8.3 Characteristics' Summary of participants in pre-survey 

Variables Details 
Michigan Texas Grand 

Total Female Male Female Male 

Race and 
ethnicity 

Asian  11 3 15 29 
Black 1 4 3  8 

Hispanic 4 2 2 4 12 
White 9 20 15 5 49 

Education 
level 

Some high school 1 2   3 
High school graduate 1 1  1 3 
Some college credits 3 8 7 6 24 

Bachelor’s degree or higher 8 26 16 18 68 

Professional 
status 

Administration position 2 1 4 1 8 
Not currently employed 1  1 1 3 

Office worker 2 1 4 1 8 
Outdoor worker 1 1   2 

Student 8 32 12 18 70 
University faculty  2 2 4 8 

Age 
group 

<18 1    1 
18 - 25 4 16 11 14 45 
26 - 49 8 18 8 10 44 
50 - 64 1 3 4 1 9 

Annual 
income 

<30000 8 28 10 20 66 
30000 - 50000 3 5 9 2 19 

50,000 - 100,000 3 3 4 3 13 
100000-150000  1   1 

Health 
condition 

Excellent 2 6 1 3 12 
Good 7 22 13 16 58 
Fair 4 8 8 4 24 
Bad 1 1 1 2 5 

driving license 
No 2 5 3 6 16 
yes 12 32 20 19 83 

Number of 
vehicles 

0  6 2 7 15 
1 6 22 5 10 43 
2 5 4 11 6 26 

3 + 2 5 5 2 14 

 

Also, the study uses a device named "InBody 570," which provides complete printed results 

for each body composition test. Figure (8.2) shows the sample results of the InBody test. The body 

composition information includes the Body Mass Index (BMI), Body Fat Mass (BFM), Percent Body 

Fat (PBF), and Skeleton Muscle Mass (SMM) as shown in Table (8.4). The researchers also collect 

the waist and hip circumference manually, using a tape measure, to find the waist to hip ratio, which 

represents a good indicator of the level of obesity in people. 
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Figure 8.2 The InBody test report  
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Table 8.4 Characteristics' Summary of participants in the InBody test 
S

ta
te

 

Variable 
Female 
Average 

Male 
Average 

Female 
Max 

Male 
Max 

Female 
Min 

Male 
Min 

Female 
SD 

Male 
SD 

M
ic

h
ig

an
 

Age 38.08 29.55 52 57 17 20 10.91 9.74 
Weight 169.52 195.83 285 300 108 115 40.98 42.47 
Height 64.23 68.51 69 77 56 61 2.77 2.97 
BMI 29.36 29.19 42.90 40.70 18.00 17.70 7.02 6.37 
PBF 38.19 31.60 53.80 244.00 23.70 6.80 10.08 29.20 
LBM 102.79 144.98 140.00 222.00 67.70 103.40 13.07 22.16 
Waist 90.20 97.51 126.00 130.00 49.00 68.00 16.14 16.03 
Hip 109.48 108.78 140.00 134.00 90.00 85.00 13.51 11.57 

waist-hip ratio 0.82 0.89 1.04 1.05 0.52 0.78 0.07 0.07 

T
ex

as
 

Age 34.17 27.63 60 52 18 19 12.79 8.72 
Weight 168.28 177.75 237 317 117 124 39.15 33.35 
Height 65.08 67.63 71 73 61 59 2.87 2.36 
BMI 28.11 27.32 40.78 42.01 17.52 19.53 6.56 4.97 
PBF 33.24 21.07 45.10 37.00 9.80 10.30 7.97 6.51 
LBM 110.04 138.58 140.22 199.73 0.00 0.00 17.23 18.54 
Waist 85.33 88.97 120.00 124.00 65.00 68.00 17.61 11.53 
Hip 109.01 101.36 169.00 128.00 90.00 88.00 14.97 7.79 

waist-hip ratio 0.78 0.88 0.96 0.97 0.44 0.75 0.10 0.06 

Figure (8.3) illustrates the relationships proposed by the study for variables associated with 

physical activities; these relationships include several variables from the survey, others extracted from 

the PASTA platform, and the body composition test data. 

 
Figure 8.3 The relationship of transportation with PA and the most important variables that may 

determine physical activity intensity 
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8.3 Results and Discussion  

This study links the data (PASTA application data, questionnaire data, and body composition test 

data) together in both Stata and Excel for data analysis. 

8.3.1 Descriptive Analysis 

Figure (8.4) shows the amount of physical activity (average PAM per minute) by gender for each 

type of transport mode. For a given transportation mode, females exert higher physical activity 

intensity than males except for the auto and walk modes. The largest difference in physical activity 

intensity between female and male participants occurs with the bicycle mode. 

 

Figure 8.4 PAM distribution by gender by  mode 

Figure (8.5) shows the amount of physical activity (PAM per minute) by age group for each 

transportation mode. The study does not capture any bus users for the over 50 age group. Those 50-

64 appear to achieve greater PA from the walk mode while those 26-49 exert the greatest overall PA 

for the bike mode. 
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Figfure 8.5 PAM distribution by age group by  mode 

Figure (8.6) shows the amount of physical activity (PAM per minute) by race/ethnic group for each 

transportation mode. Whites achieve high levels of physical activity when using bicycles and walking, 

but they achieve much less when using the bus. None of the Black study participants use bicycles. 

The Hispanics participants achieve their highest PAM when bicycling. The Asian subjects seem to be 

within normal measurements of the diversity of transportation modes and good limits for physical 

activity. 

 

Figure 8.6 PAM distribution by race/ethnicity by mode  
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Figure (8.7) shows the amount of physical activity (PAM per minute) by the level of education with 

each mode of transportation. The result shows that university students and graduates from different 

levels of the university achieve higher physical activities levels. 

 

Figure 8.7 PAM distribution by level of education by mode  

Figure (8.8) shows the amount of physical activity (PAM per minute) according to professional status 

with each mode of transportation. The result shows that outdoor jobs are the most frequent user of 

auto with low physical activities. None of the study subjects who are professionals in administrative 

positions or office workers use buses. Students and university faculty achieve good levels of diversity 

in transportation modes and physical activities. 
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Figure 8.8 PAM distribution by professional status by  mode  

 

Figure (8.9) shows the amount of physical activity (PAM per minute) according to the self-perceived 

health condition of the study participants for each transportation mode. The figure shows that most 

mode by mode outcomes appear relatively similar; however, those with bad health appear to exert a 

higher PAM when walking. 

 

Figure 8.9 PAM distribution by health condition by  mode 
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In Figure (8.10), it was evident that vehicle ownership appears to have little impact on the use of 

bicycles in American society when one or two vehicles are owned. However, this situation is much 

less when they have three or more vehicles. This is also reflected in the desire to achieve physical 

activities. As for walking, it seems clear that people who do not own any vehicle were mostly using 

walking mode. 

 

Figure 8.10 PAM distribution by number of vehicles by  mode 

 

In Figure (8.11), the use of the bus is reduced, with income exceeding $ 50,000 per year significantly. 

Distribution is also normal in the variety of transport patterns in groups with annual incomes below 

$ 50,000 per year. 
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Figure 8.11 PAM distribution by annual income by  mode 

 

Figure (8.12-A) shows the distribution of the average weekly minutes of equivalent vigorous physical 

activity for trips for each month of study duration, and for the states of Michigan and Texas. It is 

obvious from the figure that the physical activities achieved in the state of Michigan were more than 

those achieved in Texas in all months except March. Typically, Michigan experiences cold weather 

between November to March. The cold weather may reduce people’s desire to use active 

transportation modes. Figure (8.12-B) relates to the distribution of the average weekly minutes of 

equivalent vigorous physical activity for non-trips and for each month of the study period. This figure 

shows the convergence in the distribution of the values of physical activities in both states in the form 

that may increase one from the other in one month and then decrease in the following month. 
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A 

  

B 
Figure 8.12 Distribution of average weekly minutes to the equivalent of a vigorous PA in trip and non-

trip activities for each month of study. 
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Figure (8.13) shows the distribution of physical activity for each transportation mode of in each state 

(Michigan and TexasThe physical activities from the non-motorized transportation clearly exceed 

those achieved by motorized transportation, as expected. This may be attributed to the fact that the 

overall atmosphere in Texas tends to be moderate, which helps to achieve comfortable physical 

activities for its users. The weather in Michigan is colder in the months of the study, which may lead 

road users to reduce their dependence on walking or cycling. 

 

 
Figure 8.13 Distribution of average weekly minutes to the equivalent of a vigorous PA in Michigan and 

Texas. 

 

  

Physical Activity Minutes (PAM) 
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8.3.2 Path Analysis 

Path analysis is a special case of structural equation modeling (SEM) whereby it shows how 

the set of specified causal and non-causal relationships attributes to the observed relationships among 

variables. Unlike the simple regression model, path analysis can be used to find the mediation effect 

among variables, thus decomposing the total effect of given exogenous variables to direct and indirect 

effect. Path analysis was selected in this study because the predictor variables were assumed to be 

correlated to one another. An additional advantage of path analysis over a normal regression equations 

is that it allows for a researcher to run a simultaneous regression equation at once, thus allowing for 

the estimation of overall model goodness of fit.The path analysis also estimates the proportion of 

variance that was not accounted for in the model (Hox et al., 2003; Jihye et al., 2015; Savalei et al., 

2006). 

For this study, the visualization of possible causations among exogeneous and endogeneous 

variables is stipulated in figure (8.14). The path analysis was used to discern the factors that influence 

the persons' physical activities. The measure of physical activities was weekly equivalent vigorous 

PA minutes from transportation collected using PASTA application. The path diagram shows 

different socioeconomic and demographic variables that were obtained from the survey of participants 

as already discussed in the data section. 

 

Figure 8.14 Predictor model of the Physical Activity related to transportation (PA minutes for the 
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It includes variables such as race, gender, state that a participant resides, professional status, and 

health conditions. The body composition test was also included in the model. The direct and indirect 

effect of different exogenous variables on equivalent PA minutes were specified by drawing an arrow 

that shows the direction of causation. 

Table (12) shows the results of path analysis separated into total, direct, and indirect effects 

of different variables. Variables that were significant at 95 confidence level (i.e. p<0.05) were retained 

in the model. Variables that had an only direct effect to the weekly equivalent vigorous PA minutes 

from transportation were the state where the participant is residing, body mass index (BMI), number 

of vehicles per household and total time spent in different transportation mode as reported by the 

participants in the survey.. The coefficients that were obtained after running the path analysis were 

all intuitively correct. On average, participants in Michigan had 4 minutes of weekly equivalent 

vigorous PA minutes from transportation higher than participants in Texas. A unit increase in total 

minutes time spent in transportation increased the weekly equivalent vigorous PA minutes from 

transportation by 0.4. A participants who reported have only one vehicle per household were likely 

to have higher  weekly equivalent vigorous PA minutes from transportation than participants who 

reported to own more than one vehicles per household. An increase in BMI of a person increased the 

weekly equivalent vigorous PA minutes from transportation by 0.57. Participants who reported in 

survey to have bad health condition had 11 minutes decrease of weekly equivalent vigorous PA 

minutes from transportation compared to participants who had fair to excellent health condition. The 

professional status of the participants had direct effect on weekly PA minutes. Participants who were 

working at administrations were likely to have higher weekly equivalent vigorous PA minutes from 

transportation by 7.9 minutes compared to participants that had another professional status. 

Variables that had both direct and indirect effects were race and annual income (in dollars) of the 

participants. The change in income from earning less than $30,000 a year to $30000-$50,000 a year 

is likely to decrease the participants’ weekly equivalent vigorous PA minutes from transportation by 

11 minutes. Income also had an indirect effect moderated by number of vehicles. Higher income was 

negatively associated with  number of vehicles, which in turn reduces the participants’ weekly 

equivalent vigorous PA minutes from transportation. 
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Table 8.5 Summary of the significant variables (total, direct, indirect) related to physical activities 

Variables 
Total  Direct Effects Indirect Effects 

Coef. 
Std. 
Err. 

z P>z  Coef. 
Std. 
Err. 

z P>z  Coef. 
Std. 
Err. 

z P>z  

State =Michigan                         

Gender=Male 0.285 0.024 12.010 0.000 0.285 0.024 12.010 0.000 0 (no path) 

Age Group =26-49 0.188 0.024 8.000 0.000 0.188 0.024 8.000 0.000 0 (no path) 

Race=Black 0.133 0.039 3.430 0.001 0.133 0.039 3.430 0.001 0 (no path) 

Race=Asian 0.327 0.042 7.830 0.000 0.327 0.042 7.830 0.000 0 (no path) 

Race=Hispanic 0.255 0.028 9.160 0.000 0.255 0.028 9.160 0.000 0 (no path) 

Age Group=50-64 -0.144 0.045 -3.170 0.002 -0.144 0.045 -3.170 0.002 0 (no path) 

Constant 0.059 0.030 2.000 0.045                 

Trip-equivalent=PA 
min 

                        

state=Michigan 4.038 1.483 2.720 0.006 4.038 1.483 2.720 0.006 0 (no path) 

BMI-test 0.573 0.145 3.960 0.000 0.573 0.145 3.960 0.000 0 (no path) 

Vehicles No.=2 9.929 2.501 3.970 0.000 9.929 2.501 3.970 0.000 0 (no path) 

Vehicles No.=1 10.383 2.203 4.710 0.000 10.383 2.203 4.710 0.000 0 (no path) 

PBF         0 (no path) 0.092 0.024 3.900 0.000 

Total time 0.040 0.017 2.300 0.022 0.040 0.017 2.300 0.022 0 (no path) 

Gender=Male         0 (no path) 1.150 0.433 2.660 0.008 

Age Group=26-49         0 (no path) 0.759 0.295 2.580 0.010 

Race=Black         0 (no path) 0.536 0.251 2.130 0.033 

Race=Asian -6.751 2.680 -2.520 0.012 -6.751 2.680 -2.520 0.012 1.319 0.513 2.570 0.010 

Race=Hispanic -3.371 1.731 -1.950 0.051 -3.371 1.731 -1.950 0.051 1.031 0.395 2.610 0.009 

Vehicles No.=3+ 8.543 2.574 3.320 0.001 8.543 2.574 3.320 0.001 0.000 (no path) 

Income=30000-50000 -10.815 2.194 -4.930 0.000 
-

10.815 
2.194 -4.930 0.000 2.108 0.808 2.610 0.009 

Health 
Condition=Bad 

-11.386 3.846 -2.960 0.003 
-

11.386 
3.846 -2.960 0.003 0.000 (no path) 

Professional Status: 
Administration 

7.937 2.844 2.790 0.005 7.937 2.844 2.790 0.005 0.000 (no path) 

Age Group =50-64         0 (no path) 
-

0.581 
0.281 

-
2.070 

0.039 

Constant -8.704 4.200 -2.070 0.038                 

BMI Test                          

PBF 0.161 0.007 22.760 0.000 0.161 0.007 22.760 0.000 0.000 (no path)  

Constant 23.232 0.242 95.810 0.000                 

Vehicles No.=2                         

Income=30000-50000 0.357 0.024 14.870 0.000 0.357 0.024 14.870 0.000 0.000 (no path) 

Constant 0.189 0.011 17.310 0.000                 

Vehicles No.=1                         

Income=30000-50000 -0.138 0.028 -4.880 0.000 -0.138 0.028 -4.880 0.000 0.000 (no path)  

Constant 0.452 0.013 35.060 0.000                 

var (State =Michigan)    0.213 0.007                     
var(trip equivalent 
=PA min)    

850.939 28.154                     

var (BMI Test)    26.821 0.887                     

var (Vehicles No.=2)   0.173 0.006                     

var (Vehicles No.=1)   0.241 0.008                     
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Variables that had only indirect effects to weekly equivalent vigorous PA minutes from transportation 

include age  and gender which was mediated by participant’s state and percent of body fat (PBF) 

which was mediated by the BMI. As for the age, the results showed that older participants aged 50-

64 years had less weekly equivalent vigorous PA minutes from transportation compared to young 

participants aged 26-49 years. Further, males were found to have more weekly equivalent vigorous 

PA minutes from transportation compared to females. 

 

8.4 Conclusion 

This study includes three data sources: questionnaire, InBody test, and daily physical from 

smartphones and smartwatches. The factors influencing the amount of weekly equivalent vigorous 

PA minutes from transportation require further investigation because infrastructure and other 

geospatial factors may play a role as well as trip purpose.  This modeling represents a first step in 

developing more sophisticated mode choice models that seek to include phical activity achieved in 

the utility function.  
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Chapter 9: Integrated Transportation and Health Impacts 

Model (ITHIM) with a new approach to measuring the 

relative risk of physical activity related and non-related to 

travel 

 

9.1 Introduction 

This section seeks a leading model that measures the health effects associated with transportation. 

This model may permit more effective coordination public health and transportation planners. A clear 

vision of a sustainable and integrated transportation system grounded in public health can support 

health benefits for all. 

9.2 Research Methodology 

This study implements two directions in the research and investigation process. The first reviews the 

relevant literature, which discusses the integrated transportation and health impact model. The second 

direction focuses on the development of measurement methods for physical activities related or non-

related to transportation. Figure 9.1 shows the mechanism to implement the study and achieve the 

desired objectives.  

The topic of the health effects of transportation includes literature that covers a variety of 

topics: the environmental impacts of air pollution and noise, the impact of traffic crashes, and the 

impact of physical activities related to transportation. The literature often uses the disability-adjusted 

life years (DALYs) as an essential measurement tool for risk or benefit assessment. The research also 

focuses on studies that involve more than one factor of influence because the research objectives focus 

on integrated measurement or evaluation methods. The researchers removed many articles by 

requiring the research articles to include "DALYs" as a robust criterion for examination and review.  

For the second direction of the study, the study adopts an assessment process known as the 

comparative risk assessment (CRA) for the identification of integrated transportation and health 

effects (ITHIM). In the CRA method, the population attributable fraction (PAF) formula is applied to 

each of the factors influencing health, that come from transportation (e.g. level of community physical 
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activity, level of crashes, and level of air pollution and noise). The CRA method identifies changes in 

the disease burden (DB) when exposed to the risks and benefits of different transportation. Relative 

risk (RR) determines the value of the PAF, which is defined as "the probability of a situation if a 

particular variable is exposed to risk if not detected". To complete this part of the study, the research 

team use one-week data from the Kalamazoo participants.  

 

 

Figure 9.1 A framework for the Study of Integrated measurement methods for health effects of 

transportation 
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9.3 Results and Discussion  

9.3.1 Identify Literature Relevant to The Impact of Transportation on Health 

Figure 9.2 shows the flow of the literature research process. of the review identifies 3373 articles on 

the health effects of transportation, including the "DALYs" model as a measurement tool, and through 

the databases of the Engineering Village and the PubMed. The review process excludes 22 duplicate 

articles, as well as the exclusion of 1,373 articles when determining the "Subject/Title/Abstract." The 

process excludes 167 articles that do not appear as conference papers, papers, or reports and 1,193 

articles during the abstract review due to mismatch with the subject of the study. The procedure also 

excludes 29 articles written in languages other than English and 545 articles published before 2000.  

 

Figure 9.2 Diagram illustrating the number of articles excluded through the title and abstract analyses. 

 

Table 9-1 presents a list of the remaining (31) studies that relate to the health effects of transportation. 

In general, the studies include nineteen on traffic safety risks were identified, fifteen on air pollution, 

seven n noise pollution, one on climate effects, and twelve on physical activity. These studies may be 

classified into four categories (benefit assessment, cost-benefit assessment, risk assessment, and 

comparative risk) for assessing the health effects of transportation.  
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Table 9.1 Details of relevant reviews and detailed information for each study. 

   Author, date, and Location The title for each study 

The focus of the study 

methods used to assess 
HIT 

T
ra

ff
ic

 
A

cc
id

en
t 

A
ir

 
po

ll
ut

io
n 

N
oi

se
 

C
li

m
at

e 

PA
 

1 Ria et al., 2008, Belgium 
Environmental burden of disease due to 
transportation noise in Flanders (Belgium) 

    ●     Risk assessment 

2 
Suzanne et al., 2015, 
Netherlands 

Burden of road traffic injuries: Disability-
adjusted life years in relation to 
hospitalization and the maximum 
abbreviated injury scale 

●         Risk assessment 

3 Stijn et al., 2011, Vietnam 
Environmental health impacts of mobility 
and transport in Hai Phong, Vietnam 

● ● ●   ● 
Review without 
DAYLs  as a tool 
measurement 

4 Ting et al., 2015, Australia 
Traffic-related air pollution and health co-
benefits of alternative transport in 
Adelaide, South Australia 

  ●     ● Benefit assessment 

5 
Natalie et al., 2017, 
Switzerland 

Health impacts related to urban and 
transport planning: A burden of disease 
assessment 

  ● ● ● ● Risk assessment 

6 
Rodrigues, Rui Calejo, 
2018, Portugal 

Quiet areas and urban sustainability     ●     Risk assessment 

7 
Tunde O et al., 2017, United 
States 

The health burden and economic costs 
averted by ambient PM2.5pollution 
reductions in Nagpur, India 

  ●       Risk assessment 

8 
Hérick de et al., 2017, 
Brazil 

Health impact modelling of different 
travel patterns on physical activity, air 
pollution and road injuries for São Paulo, 
Brazil 

● ●     ● Risk assessment 

9 
Nilsson  et al., 2017,  
Sweden 

Modelling the effect on injuries and 
fatalities when changing mode of transport 
from car to bicycle. 

●         Risk assessment 

10 Marko Tainio 2015, Poland 
Burden of disease caused by local 
transport in Warsaw, Poland. 

● ● ●   ● Review 

11 
Woodcock et al., 2017,  
United Kingdom 

Health effects of the London bicycle 
sharing system: health impact modelling 
study. 

● ●     ● 
Risk assessment using 
MET for Physical 
Activity 

12 
Woodcock et al., 2013,  
United Kingdom 

Health impact modelling of active travel 
visions for England and Wales using an 
Integrated Transport and Health Impact 
Modelling Tool (ITHIM). 

● ●     ● 
Risk assessment using 
MET for Physical 
Activity 

13 
Eriksson et al., 2017,  
Sweden 

Burden of disease from road traffic and 
railway noise - a quantification of healthy 
life years lost in Sweden. 

    ●     Risk assessment 

14 
Tetreault et al., 2018,  
Canada 

Estimating the health benefits of planned 
public transit investments in Montreal. 

● ●     ● 
risk assessment 
framework (CRA) 
using MET 

15 
Furberg et al., 2018,  
Sweden 

Live and Let Die? Life Cycle Human 
Health Impacts from the Use of Tire 
Studs. 

● ●       

Risk assessment, but 
the study not 
concerned to active 
transportation 

16 
Chapman et al., 2018,  New 
Zealand 

A Cost Benefit Analysis of an Active 
Travel Intervention with Health and 
Carbon Emission Reduction Benefits. 

● ●     ● Cost-effectiveness 

17 
Paunovic et al., 2014,  
Belgrade 

Burden of myocardial infarction 
attributable to road-traffic noise: a pilot 
study in Belgrade. 

    ●     Risk assessment 
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Table 9.1 Details of relevant reviews and detailed information for each study. (Cont.)  

   
Author, date, and 
Location 

The title for each study 

The focus of the study 

The focus of the 
study 

T
ra

ff
ic

 
A

cc
id

en
t 

A
ir

 
po

ll
ut

io
n 

N
oi

se
 

C
li

m
at

e 

PA
 

18 
Jarjour et al., 2014,  
United States 

Cyclist route choice, traffic-related 
air pollution, and lung function: a 
scripted exposure study. 

  ●       Risk assessment 

19 
Rojas-Rueda et al., 2013,  
Spain 

Health impact assessment of 
increasing public transport and 
cycling use in Barcelona: a 
morbidity and burden of disease 
approach. 

● ●     ● Risk assessment 

20 
Tainio et al., 2014,  
Swedish 

Severity of injuries in different 
modes of transport, expressed with 
disability-adjusted life years 
(DALYs). 

●         Risk assessment 

21 
Perez et al., 2015,  
Switzerland 

Transport-related measures to 
mitigate climate change in Basel, 
Switzerland: A health-effectiveness 
comparison study. 

  ●       Risk assessment 

22 
Dhondt et al., 2013,  
Belgium 

Integrated health impact assessment 
of travel behaviour: model 
exploration and application to a fuel 
price increase. 

  ●     ● 
Comparative Risk 
Assessment (CRA) 

23 

GBD 2015 Eastern 
Mediterranean Region 
Transportation Injuries 
Collaborators 

Transport injuries and deaths in the 
Eastern Mediterranean Region: 
findings from the Global Burden of 
Disease 2015 Study. 

●         
Overview the 
burden of Transport 
injuries 

24 

Banstola et al., 2016,  
Low- and Middle-
Income Countries 
(LMICs) 

Cost-effectiveness of interventions 
to prevent road traffic injuries in 
low- and middle-income countries: 
A literature review. 

●         

There is no 
measurement 
method for 
assessment 

25 
Stewart et al., 2015,  
Solomon Islands 

Extent, causes and impact of road 
traffic crashes in the Solomon 
Islands 1993-2012: data from the 
orthopaedic department at the 
National Referral Hospital, Honiara. 

●         

There is no 
measurement 
method for 
assessment 

26 
Moodie et al., 2009,  
Australia 

Cost-effectiveness of active 
transport for primary school 
children - Walking School Bus 
program. 

        ● Cost-effectiveness 

27 
Chong et al., 2010,  
Australia 

Relative injury severity among 
vulnerable non-motorized road 
users: comparative analysis of injury 
arising from bicycle-motor vehicle 
and bicycle-pedestrian collisions. 

●         Risk assessment 

28 
Bijkerk et al., 2019,  
Netherland 

Quantitative health impact 
assessment of transport policies: 
two simulations related to speed 
limit reduction and traffic re-
allocation in the Netherlands. 

●         Risk assessment 

29 
Margie Peden 2007, 
Switzerland 

Global collaboration on road traffic 
injury prevention. 

●         Cost-effectiveness 

30 

Chisholm et al., 2012,  
sub-Saharan Africa and 

Cost effectiveness of strategies to 
combat road traffic injuries in sub-
Saharan Africa and South East Asia: 
mathematical modelling study. 

●         Cost-effectiveness 
South East Asia 

 

Two particular studies discuss the comparative risk assessment (CRA) involving integrated 

transportation modeling and health impacts (ITHIM). The term integration appears to be expressed 
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through studies that include two or more transportation impacts on health in one study. The ITHIM 

framework provides a balance against most studies that emphasize transportation risks by focusing 

on transportation benefits. 

9.3.2 Physical Activities Related and Non-Related to Transportation 

Figure 9.3 shows a sample of the display interfaces in the PASTA platform, which provides 

reports on the transportation (trip) or non-trip activity of the participants. Previous  research 

demonstrates the importance of monitoring physical activities as a crucial factor in the application of 

ITHIM, and  

 

Figure 9.3 Sample of the results from the PASTA application 

 

Figure (9.4 shows this study’s contribution to move the monitoring physical activities from the 

qualitative data used by Wu et al. (2019) to quantitative data. 

 



Monitoring Daily Activities and Linking Physical Activity Levels Attributed to Transportation Mobility Choices and Built Environment 

 

125 | P a g e  

 

 

Figure 9.4 Shifting from qualitative data to quantitative data for the Physical Activities impact factor 

 

The previous studies represent the starting point for a new concept of automatic PA related or 

non-related to transportation data assembly. The first part of the diagram, which is adopted in Wu et 

al. (2019), most of the data derive from questionnaires and interviews. They seek to redesign the 

mathematical model used in calculating the Relative Risks (RRs) of PA. The main element of the RRs 

model is METs [equation (9.1)] for both types of physical activities (travels related physical activities 

and non-travel related physical activities).  

 

 𝑹𝑹𝒔 =  𝟎. 𝟗𝟒√𝑴𝑬𝑻𝒔 (9.1) 

 

They use recorded data from surveys, questionnaires, and interviews, which depend on the 

subject's memory to provide the METs data; As a result, the METs data are often characterized by 

inaccuracy, bias, discontinuity, and high cost. Wu et al. (2019) identify the need to use two types of 
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smart devices that ensure the availability of data that define the features of physical activities, namely 

smartphones and smartwatches. Therefore, a shift to automated data collection to provide PA data 

seems to be the most appropriate solution, through continuous, accurate, inexpensive, and 

geographically unlimited data. This transformation can also be described as a shift from qualitative 

to quantitative data. A second shift must also appear because the MET has a constant value for each 

transportation mode (e.g. bus, driving, bike, and walking). The new data collection approach accounts 

for the PA directly, which is variable within each travel mode, as illustrated in the second part of the 

Figure 9.4 using the Physical Activity Minutes (PAM) value. The PAM value is calculated by the 

relationship shown in Equation (9.2), which collects the percentage heart rate reserve (%HRR) shown 

in equation (9.2). 

 𝑷𝑨𝑴 =  %𝑯𝑹𝑹 ∙  𝒅𝒕

𝑬𝒏𝒅

𝑺𝒕𝒂𝒓𝒕

 (9.2) 

 

Where: 

PAM = Physical Activity Minutes 

%HRR = Percentage heart rate reserve  

 

Note that, %HRR value was calculated [shown in equation (9.3)] based on (Nakanishi et al. 

2018)  

 

 %HRR =
𝑯𝑹𝒂𝒄𝒕  𝑯𝑹𝒓𝒆𝒔𝒕

𝑯𝑹𝒎𝒂𝒙  𝑯𝑹𝒓𝒆𝒔𝒕
 (9.3) 

 

Where: 

HRact = Heart rate during activity 

HRrest = Resting heart rate  

HRmax = Maximum heart rate  

 

Figure (9.5) shows some of the most important results from the overall study, which show the 

speed, the difference between heart rate activity and heart rate rest for each activity (HRact- HRrest), 

calories and PAM, for different transportation modes. The transportation mode choice results in 
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different levels of physical activity, which certainly produces different health outcomes. Physical 

activity appears highest with cycling, it appears lower with walking, and it decreases further when 

using vehicles. 

 

 

Figure 9.5 Shifting from qualitative data to quantitative data for the Physical Activities impact factor 

 

Also, the researchers evaluate the relationship between the METs calculated from calories and 

the PAM values calculated from the heart rate (both of the data derived from the smartwatches). Table 

(9.2) shows the linear regression results for the relationship between METs and PAM. 
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Table 9.2 Relationship between PAM and METs in (A) and (B) for travel related and non-travel 

related PA 

Relationship between PAM and METs  for travel related to PA 

Travel Related METs Coef. Std. Err. t P>t [95% Conf. Interval] 

PAM -average 6.244 0.477 13.1 0 5.306 7.182 

Constant 0.834 0.092 9.03 0 0.653 1.016 

Auxiliary Statistics 

  

Number of obs    =    284 

F(1, 282)             =    171.66 

Prob > F              =    0.0000 

R-squared            =    0.3784 

Adj R-squared     =    0.3762 

Root MSE           =    0.90736 

Relationship between PAM and METs  for travel non-travel related to PA  

Non-Travel Related METs Coef. Std. Err. t P>t [95% Conf. Interval] 

PAM -average 3.148 0.294 10.7 0 2.569 3.726 

Constant 1.421 0.048 29.51 0 1.326 1.515 

Auxiliary Statistics 

  

Number of obs    =    344 

F(1, 342)             =    114.58 

Prob > F              =    0.0000 

R-squared            =    0.2509 

Adj R-squared     =    0.2488 

Root MSE           =    0.56794 

 

Figure 9.6 shows a comparative sample of the MET values obtained for real samples using different 

transportation modes with standard METs values. The study and through the data recorded by the 

PASTA platform proved the opportunities provided by the study to overcome the limitations faced 

by previous studies in determining the values of METs. It is difficult to guess the levels of physical 

activity of people through different modes of transportation by questionnaires, interviews or even 

self-logging. 
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Figure 9.6. A comparison of the standard MET values for the four common Physical Activities related 

to transportation with the actual measured MET 

 

9.4 Conclusion 

The study reviews research on the assessment of the health impacts of transportation through the 

assessment of health risks or benefits. In addition, this study tries to identify the measurement methods 

used in the evaluation processes to produce an integrated assessment system. Considerable emphasis 

had been placed on review studies, as well as on studies linking more than one source on the impact 

of transportation on health. The study reveals through the literature the health risks of air pollution 

and noise pollution and traffic crashes caused by transportation. In addition, the health benefits of 

active transportation, which stem from physical activity, yield health benefits. 

Previous studies identify four ways to assess the health impacts of transportation: benefit 

assessment, cost-benefit assessment, risk assessment, and comparative risk assessment. The 

comparative risk assessment method reveals the level of risk or benefit according to the differentiation 

of the influencing factors, and the ITHIM model adopts this approach. The ITHIM evaluation model 
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produces tools that promote transportation policies to encourage the use of active transportation to 

increase its health benefits, with the potential to improve the environment, diversify transportation 

patterns, and reduce crashes. The study also presents an enhanced approach to improving the 

assessment mechanism for the physical activity of individuals in the ITHIM model. This study reveals 

the limitations within the previous evaluation mechanisms, which may be overcome by the spread of 

smart devices. 
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Chapter 10: Conclusion and Recommendation 
Public health importance of physical activity continues to attract attention, and the lack of physical 

activities may cause health problems. Travel activities provide a certain amount of physical activity, 

and active transportation, such as walking and cycling, may represent an essential tool for both 

transportation planners and public health officials. Active transportation may contribute to improving 

human health by reducing cardiovascular disease, obesity, and premature death; however, the detailed 

relationship between transportation mode choices and human health remains poorly understood. 

Therefore, the need to investigate traveler behaviors and their effect on physical activity and public 

health seems critical. This study analyzes and quantifies participants’ actual physical activity by using 

wearable devices with sensing and GPS tracking technology. The study seeks to characterize the 

health outcomes from the physical activity associated with transportation options.  

The research team develops a mobile application platform named Physical Activity through 

Smart Travel Activity (PASTA) to monitor the travel and physical activities of transportation users. 

The mobile app collects daily travel activities including locations from the GPS in the subject’s mobile 

phone and physical activity data from a wearable device (Fitbit Charge 2 and 3). The PASTA platform 

includes mobile data communication, big data analysis, activity classification, transportation mode 

detection, and physical activity quantification on different interfaces, such as smartphones, cloud 

databases, and computers. The platform provides data to compare physical activities attributable to 

transportation across different geographical areas.  

The study tests the PASTA platform in Texas and Michigan using a total of 120 participants 

and proved to be useful in apportioning the total physical activity into travel-related physical activities 

and non-travel related physical activities. The survey gathers participants’ demographic, social, 

economic, travel acitivity pattern, and associated physical activy characteristics. From the survey 

responses, a similar distribution of active and highly active participants appear in Kalamazoo (45.8%) 

and Arlington (44.8%); however, the obesity rate remains higher at WMU than UTA (33.9% vs. 

25.9%) based on BMI. Based on the travel mode usage, more than 50% of the participants use private 

vehicles for commuting for both study areas. Arlington subjects use active transportation (38% 

participants) as their second highest transportation mode usage while Kalamazoo participants use 

public transit. Since the Arlington participants frequently use bicycle and walking as their 
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transportation mode, they seem more physically active in comparison to Kalamazoo participants. The 

researchers conduct a cross tabulation analysis to compare the perceived health and their physical 

activity, where the overall results show that perceived health does not always align with objective 

health measures such as BMI and physical activity level.  

This study develops three different approaches to identify and recognize transportation user 

activities and trips based on GPS trajectories. The approaches apply different thresholds of 

spatiotemporal change by developing Geohash clustering, GIS-based approach, and an integrated 

Geohash-GIS system for activity only, trip only, and sequential activity-trip recognition with GPS 

data. The Combined Geohash-GIS approach with a dwell time of 5 minutes produces the best 

accuracy, which could significantly enhance the efficiency and accuracy of GPS travel survey by 

correctly (about 88%) recognizing user activity and trip patterns. This proposed combined approach 

could serve as a foundation for a future data collection of full-scale traveler information identification 

with GPS data. The study develops machine learning models to predict transportation mode from 

smartphone and smartwatch data. The models distinguish between transportation activities (trips) and 

non-related to transportation activities (e.g. home, work, and shopping). Among the four machine 

learning models, Random Forest (RF) outperforms the other models in detecting non-motorized 

modes: walking (97.2%) and bicycle (90.6%).  

This study conducts a comprehensive descriptive and path analysis to explore the relationship 

between the levels of physical activity of individuals, their socio-economic features and body shapes 

by using questionnaire, in-body composition tests, and physical activity data. The BMI, baseline 

active transportation time, age and gender have a direct effect to the weekly equivalent vigorous PA 

minutes from transportation, while PBF has only an indirect effect. Race and annual income have 

both direct and indirect effects. This research also develops an  enhancement to the existing integrated 

transportation and health impact model (ITHIM) by adding the quantitative PA data obtained from 

PASTA, which substantially reduces the previous ITHIM limitations.  

The findings of this study help in incorporating human health into transportation planning by 

addressing health outcomes from the physical activity associated with transportation choices. 

However, there are some limitations of this study. Although the research team successfully developed 

and collected data from the mobile application, the GPS accuracy was very poor at inside the building 
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structures. The mobile application was unable to capture data for the iOS-enabled phone users. The 

research team also faced the problem of determining the in-between walking trips from home to 

parking-lot or between two buildings. In terms of physical activity computation, there were some 

error occurred due to the misleading step value calculation while driving/resting (Fitbit considers a 

step at the time of moving your hand over driving wheel) position. In the study area, majority of the 

peoople are auto users and therefore, it was really a challenging issue to collect data for other 

transportation modes which could enhance the comprehensive health analysis outcomes from 

different transportation choices.  

This study provides information that can be used to enhance community awareness of the 

health benefits that result from different transportation mode choices. This research contributes to 

integrating human health into transportation planning by addressing health outcomes impacted by the 

physical and cardiovascular activities associated with transportation options. As the future direction 

of this research, the resaerch team could upgrade their mobile application by incorporating iOS users 

and enhance the accuracy of monitoring transportation activity/trip in a greater scale.  Different 

environmental characteristics (e.g. weather, temperature, etc.), and built-environmental 

characteristics (e.g. landuse, accessibility to physical activity facilities, park accessibility, etc.) could 

be incorporated to assess the physical activity level or health outcome for using different 

transportation options. In addition, different attributes of active travel environment (e.g. bikeability, 

walkability, transit accessibility, etc.) could be incorporated to evaluate the integrated transportation 

and health outcome modelling. In overall, there is a strong need for further assessment of health 

outcome modelling based on different emerging active transportation modes and facilities by 

incorporating other attributes related or non-related to transportation.  
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APPENDIX 

Appendix A. HSIRB Protocol 

 

Western Michigan University 
HSIRB Application 

Monitoring Daily Activities and Linking Physical Activity Levels Attributed to Transportation Mobility Choices and 
Built Environment (Mobile App) 

 
Principal Investigator: Jun-Seok Oh Civil and Construction Engineering 

Co- Principal Investigator: Ala I Al-Fuqaha Computer Science 

Co- Principal Investigator: Sangwoo Lee Human Performance and Health Education 

Student Investigator: Raed Hasan Civil and Construction Engineering 

Student Investigator: Hafez Irshaid Computer Science 

Student Investigator: Md Mehedi hasan Civil and Construction Engineering 

 
 

1. ABSTRACT 
Physical activities become an importance part of human lives for healthy living. Research has shown that increase in 
physical and cardiovascular activities tends to decrease in diseases. Although there are several types of physical activities, 
non-motorized transportation options like walking, running and cycling provide natural ways of being physically active. 
Accordingly, non-motorized transportation options began being attracted thanks to their natural health benefits. The health 
benefit of the active transportation comes from participants’ physical activities; however, there has been very limited 
effort in analyzing and quantifying participants’ actual physical activities. This study proposes to identify and categorize 
health outcomes impacted by daily physical activity and quantify the amount of physical activities by different 
transportation mode users in different areas associated with their daily travel activities. By employing recent wearable 
devices with sensing and GPS tracking technology, the amount of physical and cardiovascular activities will be quantified 
by travel activities and transportation mode used. This research will help in incorporating human health into transportation 
planning by addressing health outcomes impacted by physical and cardiovascular activities associated with transportation 
options. 

2. BACKGROUND INFORMATION 
Transportation decisions impact human health at least in three ways, such as traffic crashes, environmental impact, and 
physical fitness. While there have been ample efforts in reducing traffic crashes and environmental impacts, less attention 
has been paid to their impacts on physical fitness. Recent efforts on the relationship between transportation and physical 
fitness were mostly from the context of active transportation. Potential benefits of active transportation include saving in 
mobility costs, benefits from related businesses, community savings in costs associated with health and environmental 
benefits. 
The health benefit of the active transportation comes from participants’ physical activities. Increase in physical activities 
tends to decrease in diseases. Studies have shown that persons with moderate to high levels of physical activity or 
cardiorespiratory fitness have a lower mortality rate than those with sedentary habits or low cardiorespiratory fitness. 
Furthermore, there was a significant trend of decreasing risk of death across increasing categories of distance walked, 
trips of stairs climbed, and degree of intensity of sports play. Physical activities for cardiorespiratory endurance reduces 
the risk of developing or dying from cardiovascular diseases (CVD), hypertension, colon cancer, and non-insulin-
dependent diabetes mellitus (NIDDM) and improves mental health while endurance-type physical activity may reduce 
the risk of developing obesity, osteoporosis, and depression and may improve psychological well-being and quality of 
life. According to a report by the Centers for Disease Control and Prevention (CDC), benefits of physical activities are 
known 1) to help build and maintain healthy bones, muscles, and joints; 2) help control weight, build lean muscle, and 
reduce fat; and to prevents or delay the development of high blood pressure and helps reduce blood pressure in some 
adolescents with hypertension. However, it is still difficult to observe how transportation decisions affect physical fitness. 
Physical activity is difficult to measure directly. Three types of physical activity measures have been used in observational 
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studies over the last 40 years. Most studies have relied on self- reported level of physical activity, as recalled by people 
prompted by a questionnaire or interview. A more objectively measured characteristic is cardiorespiratory fitness (also 
referred to as cardiorespiratory endurance) which is measured by aerobic power. Some studies have relied on occupation 
to classify people according to how likely they were to be physically active at work. 
Although it is difficult to predict how a particular transportation planning decision affects physical fitness, total impacts 
are likely to be large. Diseases associated with inadequate physical fitness cause an order of magnitude of more deaths, 
and more than road crashes. Even modest reductions in these illnesses could provide significant health benefits. Therefore, 
there is a strong need for investigating how transportation options affect the physical activities. 
 

3. PROPOSED RESEARCH GOALS AND OBJECTIVES 
The primary goal of the research is to explore the factors impacting the amount of physical activity an individual engages 
in and the proportion of an individual’s daily activity attributable to transportation activities. Specific research objectives 
include: 

a. To develop a strategy for monitoring and recording the daily physical activity of a representative sample of 200 
individuals in a small urban area and a large metropolitan area. 

b. To develop data fusion strategy to combine data from Fitbit (including heart rate) with smart phone data. 
c. To identify and categorize health outcomes impacted by daily physical activity. 
d. To develop techniques for categorizing the location types by considering their relationship with transportation-

related physical activity. 
e. To use the fused data to classify a physical activity as recreational, activity-related (e.g. employment or 

shopping), or transportation-related 
f. To create a preliminary scheme for using speed patterns/profiles to classify mode choice. 
g. To test the statistical association between the physical activity levels of individuals, their socioeconomic and 

employment profiles and the nearby land use and site design based on a set of predetermined hypotheses. 
h. To develop performance measures that include both physical activity (based on potential health impact) and 

travel time for evaluating transportation system, land use, and site design decisions 
4. SUBJECT RECRUITMENT 

Subjects will be recruited among those whose expressed their interests in a previous questionnaire survey (HSIRB 17-10-
16). Only in Michigan, there are more than 200 subjects expressed their interests in participating in this main data 
collection. Subjects will be selected after evaluating individual’s physical and transportation activities obtained from the 
previous survey. The criteria for selecting participants are the diversity of daily physical and transportation activities to 
cover wide range of population. 
In this research, we will select a total of 200 subjects: 100 subjects from Michigan and the other 100 from Texas. The 
research team will contact selected participants and inform detailed tasks and commitments. 

5. INFORMED CONSENT PROCESS 
Once the interested participants are successfully recruited, they will be informed again of this project, and an informed 
consent form must be filled out, instructions on the experience at the Community Transport Research Center (TRCLC). 
After signing the consent form, the participant will be given a wearable Fitbit device and a unique identification ID to be 
used for further data collection and analysis. Finally, the participant will be asked to install the application prepared by 
the study team on the participant's phone. The application contains the terms and conditions which need to approval by 
the user. (See Appendix 1 for the Informed Consent Form) 

6. RESEARCH PROCEDURE 
6.1. Identify health outcomes impacted by physical activities 

The research team will identify and classify health outcomes impacted by physical activities. The effort will allow the 
research team to incorporate those outcomes into the measurement system in our data collection devices. 

6.2. Development of mobile application for data collection from wearable devices 
The research team will develop a mobile app and its associated server-side infrastructure to collect the raw data about the 
daily activities of the participants from wearable devices. The app will include an algorithm that automatically classifies 
the transportation mode to one of the following: walk, run, bike, car, bus. Speed, frequency of stops, accelerometer data,  
and  weather conditions, identity of the source and destination locations, and residence time at intermediate locations can 
help to identify the transportation mode. We hope the algorithm allows us to classify purpose of trip by mining the raw 
collected data. Regularity (repeatability), length, time of the day, day of the week, and weather conditions will help us to 
identify the purpose of the trip. We believe that machine learning techniques and potentially deep learning can help in 
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creating better purpose of trip classifiers. The following details show the Information Technology (IT) infrastructure that 
will be utilized in this project to collect and analyze the raw data. 
Underlying Software Technologies: 
The mobile application will utilize the following Application Programming Interfaces (APIs) to implement its core 
functionality: 

a. Cordova: To build a cross-platform mobile app using HTML5, JavaScript, and  CSS3.  The use of Cordova will allow 
to easily port the app to Android and iOS. 

b. Fitbit Web APIs: To retrieve details about the physical activities of participating subjects including: a time series of 
their activities, heart rate, steps, calories, METs, and sleep logs. 

c. Google Maps, Open Streets, or foursquare APIs: To retrieve details about visited locations. 
d. Accelerometer and GPS APIs: To retrieve acceleration, estimate the number of steps, speed, and get details about 

users’ traveled paths. 
e. Web Services: To interface the mobile app with the back-end database and the data analysis and reporting services. 

These services will also allow for raw data access. 
6.3. Recruitment of subjects 

The research team will recruit subjects from two different areas, Michigan, Chicago, and Texas, in order to investigate 
seasonal variations and locational characteristics in their physical activities. Based on the survey, subjects for further data 
collection will be chosen by their characteristics. A stratified sampling technique will be employed to cover range of 
differences among subjects. 

6.4. Data collection and analysis 
1) Pre-survey 

A pre-survey will be implanted at the first meeting with participants. The survey is to understand general travel and 
physical activities (Pre-survey Questionnaire available in Appendix 1). In additional to pre-survey, individual subjects 
will be asked to fill in the device registration form that includes their contact information to assure continuation of the 
data collection during the study period as well as locations they typically visit. The contact information will only be used 
when the research team needs to contact the subject because of the system failure in collecting data. The location 
information will be used for converting their locations into an aggregated format (type of location). 

2) Body Composition Data Collection 
The following body composition data will be assessed three times (at the beginning, six month later, and one year later) 
using a non-invasive bioelectrical impedance analyzer (InBody 570; InBody Co., Ltd., Seoul, Korea). 

 Muscle-fat analysis: weight (lbs.), skeletal muscle mass (lbs.), and body fat mass (lbs.) 
 Obesity analysis: body mass index (kg/m2) and percent body fat (%) 
 Segmental lean analysis: right & left arms and legs (lbs.) and trunk (lbs.) 

 
3) Travel and Physical Activity Data Collection 

Travel and physical activity data will be collected using a wearable device (Fitbit Charge 2/3) and a mobile app to be 
installed in the subject’s mobile phone. 
 
Travel Activity Data 
The mobile app developed will collect daily travel activities including locations from GPS in the subject’s mobile phone. 
Physical Activity Data from wearables 
The physical activity data will be collected by the wearable device (Fitbit Charge 2/3) and the data will be accessed by 
the mobile app developed by the research team. The subjects will be required to install the mobile app developed to 
transmit the data to a cloud server. Wearable devices will be distributed to the subjects as an appreciation of participation. 
 
Physical activity data from typical wearables includes: 

 Distance traveled (km): distance is calculated by multiplying walking (running) steps by walking (running) 
stride lengths. The stride lengths are estimated using height and gender. 

 Heart rate (beats/min): both resting heart rate and heart rate with physical activities are estimated using a heart 
rate monitor with photo plethysmography. 

 Activity minutes (min): active minutes are estimated using metabolic equivalents (MET). MET is an 
indication of how much harder than set a particular activity is. For example, 1- MET indicates a body at rest, 
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therefore, 3-MET means three times harder than rest, such as stationary cycling or walking at a rate of 4 km/h. 
MET is estimated in any given minutes by calculating the intensity of physical activity. Active minutes are 
then earned at or above 3- MET. 

 Total calories (Kcal): total calories are estimated by taking into account basal metabolic rate (BMR) and 
calories consumed during physical activities in a day. 
- BMR: BMR is calculated based on gender, age, height, and weight. 

o For men: BMR = 10 × body mass (kg) + 6.25 × height (cm) – 5 age (years) +5 
o For women: BMR = 10 × body mass (kg) + 6.25 × height (cm) – 5 age (years) - 161 

- Calories consumed during physical activities (total calories – BMR): these calories are estimated using 
the above-mentioned heart rate monitor and a three-axis accelerometer. 

4) Data Analysis 
The recorded data will be analyzed anonymously. Data collected in this research will be sorted out into following five 
categories and analyzed their relationship. 

 Individual characteristics – age, gender, employment, body composition, fitness exercise, amount of 
physical and cardiovascular activities, etc. 

 Environment characteristics – weather, temperature 
 Built Environment – area type, land use, accessibility to physical activity facilities, park accessibility 
 Transportation Environment – public transit accessibility, automobile availability, walkability, Bikeability 
 Travel activity – trip purpose, transportation mode, travel time 
 Physical activity – amount of physical activity 

 
Through the data analysis, the research team aims to develop models quantifying the amount of physical activities 
associated with various conditions listed above. 

7. LOCATION OF DATA COLLECTION 
The data will be collect from all locations where subjects are traveling. Subjects are recruited from Michigan and Texas, 
but the data could be collected wherever the subjects are traveling. The data from all participants will be stored in the 
TRCLC Laboratory (G-208 and/or F-212). 

8. DURATION OF THE STUDY 
Participants' daily activity data will be collected for one year from the dissemination of wearable devices. The data 
collection period is expected to be from May 1, 2018 to April 30, 2019. After the data collection, the research team will 
analyze the data for another two months. Therefore, the total duration of the study is 15 months from May 1, 2018 to June 
31, 2019. 

9. METHODOLOGY 
The research design uses a mixed-methods approach that utilizes quantitative techniques to analyze qualitative, coded 
data related to socioeconomic factors, physical characteristics, employment characteristics, seasonal effects, land use, and 
site design. This study has four key dependent variables to consider: total physical activity, total physical activity related 
to transportation, total cardiovascular activity (measured as time spent at age specific levels of exertion), and total 
cardiovascular activity related to transportation. Differentiating between recreational physical activity and transportation 
related physical activity requires an app that fuses activity data from a wearable with the GPS tracking from a smartphone. 
The research team will need to select and code a collection of independent variables related to employment type (e.g. 
service, office, construction, and manufacturing), socioeconomic factors (e.g. race, gender, and income), physical 
characteristics (e.g. age, body mass index, resting heart rate), seasonal effects (e.g. mean temperature), land use (e.g. 
walkability, density, urban vs. suburban), and site design (e.g. walking time to parking, walking time to transit). In 
particular, this project seeks to examine the roles that seasonal effects, land use and site design play in activity levels while 
controlling for employment, physical characteristics, and socioeconomic effects. Regression and logistic regression 
analyses will be used to test several hypotheses about the relationships between total physical activity, total physical 
activity related to transportation, total cardiovascular activity (measured as time spent at age specific levels of exertion), 
and total cardiovascular activity related to transportation with the independent variables. 
The researchers expect that increasing the role of transportation in achieving physical and cardiovascular activity will 
have a positive impact on health outcomes. For this set of hypotheses, the activity levels become independent variables 
and health outcomes becomes the dependent variable; pertinent control variables from the first set of analyses will be 
included as independent control variables. The conclusions from the modeling and consideration of the hypotheses 
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presented below will enable the research team to develop performance measures to evaluate health and travel time 
tradeoffs. 

10. OUTCOME DISSEMINATION PLAN 
The outcome dissemination plan aims to target three types described below: 

a. Report submission: the final research report will be published on the TRCLC website 
b. The report will be also disseminated to followings: 

a. Transportation Research Board through the TRB’s Transportation Research International 
Documentation Database (TRID) 

b. National Transportation Library 
c. U.S. Department of Transportation Research Hub 
d. Transportation Library at Northwestern University 
e. Volpe National Transportation Systems Center 
f. FHWA Research Library, Turner-Fairbank Highway Research Center 
g. U.S. Department of Commerce, National Technical Information Service 

c. Academic and Research Community: Conference outlets include the Transportation Research Board Annual 
meeting, the International Conference for Transport and Health, the American Society of Public Administration 
(ASPA) Annual Conference; Journals include Transportation Research Record, Public Administration Review, 
Public Works and Management Policy, Transportation Research Record and Transport Policy. 

11. RISKS AND COST TO AND PROTECTIONS FOR SUBJECTS 
There are no known risks in this study. All participant information, as well as collected physical activity data, will remain 
confidential and available only to the research team. In order to protect privacy, person information and activity data will 
be separately stored. 

12. BENEFITS OF RESEARCH 
Successful completion of this research may enable to help in incorporating human health into transportation planning by 
addressing health outcomes impacted by physical and cardiovascular activities associated with transportation options. 

13. CONFIDENTIALITY DATA 
Data for participants who consent to participate will be anonymized since participants will be assigned unique IDs that do 
not contain or link to personal information. Since no personal information is needed nor will be collected, confidentiality 
is not an issue. The data will be retained in the Principal Investigator’s office for at least three years after experiment 
completion. 
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A.1 Informed Consent Form 

 
Western Michigan University 

Department of Civil and Construction Engineering 
 
Principal Investigator: Jun-Seok Oh Civil and Construction Engineering 

Co- Principal Investigator: Ala I Al-Fuqaha Computer Science 

Co- Principal Investigator: Sangwoo Lee Human Performance and Health Education 

Student Investigator: Raed Hasan Civil and Construction Engineering 

Student Investigator: Hafez Irshaid Computer Science 

Student Investigator: Md Mehedi Hasan Civil and Construction Engineering 

Title of Study: Monitoring Daily Activities and Linking Physical Activity Levels Attributed to 
Transportation Mobility Choices and Built Environment 
 

 
You have been invited to participate in an experiment for a research project, “Monitoring Daily Activities and Linking 
Physical Activity Levels Attributed to Transportation Mobility Choices and Built Environment” funded by the U.S. 
Department of Transportation through the Transportation Research Center for Livable Communities (TRCLC) at Western 
Michigan University. This consent document will explain the purpose of this research project and will go over your 
commitments, the procedures used in the study, and the risks and benefits of participating in this research project. Please 
read this consent form carefully and completely and please ask any questions if you need more clarification. 
What are we trying to find out in this study? 
This research is to explore the factors impacting the amount of physical activity an individual engages in and the 
proportion of an individual’s daily activity attributable to transportation activities. This research will be performed data 
analysis for body composition data, physical activity data, and travel data using wearable device. This research will help 
in incorporating human health into transportation planning by addressing health outcomes impacted by physical and 
cardiovascular activities associated with transportation options. 
Who can participate in this study? 
Anyone can participate in this study. 
Where will this study take place? 
There is no specific place, as a participant, be free in your movements and habits. All you need to do is live as usual with 
Fitbit Charge 2/3 during the duration of the project. Data will be transmitted to the server in the lab and monitored by the 
research team at the WMU’s Transportation Research Center for Livable Communities (TRCLC), located at Parkview 
campus room number G-208/F- 212. 
What is the time commitment for participating in this study? 
The data collection duration is 12 months from the reception of Fitbit Charge 2/3 
What will you be asked to do if you choose to participate in this study? 
After being introduced to the experiment, you will be asked to 1) sign the informed consent form after reading the terms 
and conditions, 2) install a mobile app developed, 3) activate the wearable device, and 4) perform a trial run using wearable 
device. After the trial run is successful, you simply turn on the mobile app and wear the wearable device during your daily 
life. In case you do not receive the data, we will contact you to verify your wearable devices and smart phone. In addition, 
we will measure your body composition in our lab every three months to see the changes. 
What information is being measured during the study? 
Data collection will be conducted in two ways: measuring body composition and measuring travel and physical activity. 
The body composition data will be assessed every six months (at the beginning, six month later, and one year later) using 
a non-invasive bioelectrical impedance analyzer (InBody 770; InBody Co., Ltd., Seoul, Korea), such as muscle-fat data 
(weight, skeletal muscle mass and bidy fat mass), obesity-related data (body mass index and percent body fat) and 
segmental lean analysis (two arms, two legs and trunk). 
The travel and physical activity data will be collected by the wearable device and the mobile app developed in this project. 
Data will be transmitted to the server in our lab and analyzed by the research team. The travel and physical activity data 
include activity locations, activity duration, travel distance, heart rate, and total calories during travel and physical 
activities. Although individuals’ data are collected, individuals’ privacy will be protected by processing all data in an 
aggregated format. 
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What are the risks of participating in this study and how will these risks be minimized? 
There is no risk in this research other than a potential that your travel locations are identified. The research team will not 
disclose the information and data collected in this research to any party. The data will only be used for the purposes of the 
research and securely stored. As data will be used in an aggregated format, it will not reveal the identity of participants or 
information that affect their privacy. 
What are the benefits of participating in this study? 
The participants will own the Fitbit Charge 2/3 after the end of this study and will be able to receive her/his body 
composition data upon requested. 
Are there any costs associated with participating in this study? 
There are no costs of participating in this study. 
Is there any compensation for participating in this study? 
The participants will own the Fitbit Charge 2/3 after the end of this study. 
 
Who will have access to the information collected during this study? 
The data collected will be analyzed only by the research team members. No others will have access to the data collected. 
The results of the study are expected to be disseminated on an aggregate basis through a report to the US Department of 
Transportation as well as possible journal/conference publications. 
What if you want to stop participating in this study? 
You can stop participating in the study at any stage if you feel uncomfortable. There are no legal or financial consequences 
as a result of this decision other than an obligation of returning the wearable device provided. The research team may also 
decide to suspend your participation without your consent if deemed necessary. If your participation is cancelled for any 
reason within a six-month period, you must return the wearable device to the research team in a week. 
 
Should you have any questions prior to or during the study, you can contact the principal investigator, Dr. Jun-Seok Oh, 
by e-mail at jun.oh@wmich.edu, You may also contact the Chair, Human Subjects Institutional Review Board at (269) 
387-8293 or the Vice President for Research at 269387-8298 if questions arise during the course of the study. 
 
This consent document has been approved for use for one year by the Human Subjects Institutional Review Board 
(HSIRB) as indicated by the stamped date and signature of the board chair in the upper right corner. Do not participate in 
this study if the stamped date is older than one year. 
 
------------------------------------------------------------------------------------------------------------------- 
 
I have read this informed consent document. The risks and benefits have been explained to me. I agree to take part in this 
study. 
 
 

Please Print Your Name 

Participant’s signature                                                                      Date
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 Appendix B. Initial Survey 

You are invited to a survey intended to ask your general travel and physical activities in order to select research 
participants who will receive a wearable device, possibly Fitbit Charge 2/3, for physical activity data collection. This 
research titled, “Monitoring Daily Activities and Linking Physical Activity Levels Attributed to Transportation 
Mobility Choices and Built Environment” is sponsored by the U.S. Department of Transportation through the 
Transportation Research Center for Livable Communities (TRCC) at Western Michigan University. We would like 
to understand individuals’ physical activities associated with their travel patterns for a sampling purpose. This 
survey will take less than 5 minutes to complete. Your participation in this study is voluntary. There are no known 
risks associated with this project. However, if you feel uncomfortable answering any question(s), you can withdraw 
from the survey at any point. It is very important for us to learn your opinions. 
The data collected will be used in an aggregated format and your personal information in case you provide for the 
next data collection will only be used only when contacting you as a research participant. If you have questions 
about the survey or the research, you may contact the Principal Investigator, Dr. Stephen Mattingly, by calling at 
(817) 272-2630 or emailing at mattingly@uta.edu at any time.  Thank you again for your time and support. You can 
now start answering the survey questions by click on the button below.  
 
1. What is your age? 

18 - 29 

30 - 39 

40 - 49 

50 - 59 

60 - 69 

70+ 
 
2. What is your gender? 

Female        Male 
 
3. What are your transportation modes and approximate duration (minutes) for each transportation mode in a typical 

day? 
(exclude unusual long-distance trips)? 

o Motor Vehicle (driving)   Duration __________ minutes 
o Motor Vehicle ( as a passenger)  Duration__________ minutes 
o Bus     Duration__________ minutes 
o Rail/Subway    Duration__________ minutes 
o Bicycle     Duration__________ minutes 
o Walk     Duration__________ minutes 
o Other__________   Duration__________ minutes 

 
  

4. Would you list all physical activities you did during last seven days? Physical activities include aerobic activities 
(walking, running, swimming, bicycling, tennis, soccer, and etc), muscle-strengthening (lifting weight, push-ups, etc), 
and Toning/Stretching (yoga, etc) 
 

 Activity Number of time per week 
Average 
duration (minutes) 

1 
   

2 
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3 
   

4 
   

5 
   

 

 
* 5. Are you using a smartphone? 
 

No 

Yes, I use iPhone 

Yes, I use an Android Phone 

Yes, I use other types of smart phone 
  

  
  

  

* 6. If we provide a wearable device (Fitbit Charge 2/3), would you be willing to share your activity data from the 
device?  
 

  No 

  Yes (Please provide your contact information) 
  

  
  
7. If you answered yes to the previous question, please provide your information. 
 

First name :  
 

Last name :  
 

Phone :  
 

Email Address : 
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Appendix C: Main Survey  

This research titled, “Monitoring Daily Activities and Linking Physical Activity Levels Attributed to Transportation 
Mobility Choices and Built Environment” is sponsored by the U.S. Department of Transportation through the 
Transportation Research Center for Livable Communities (TRCLC) at Western Michigan University. As a part of this 
research, we would like to know your general travel and physical activities. There are no known risks associated with 
this project. However, if you feel uncomfortable answering any question(s), you can withdraw from the survey at any 
point. 
This survey will take approximately five minutes to complete. Your participation in this study is completely voluntary. 
However, in order to participate in the data collection with Fitbit Charge, you must participate in this survey. Even 
though we are asking your contact information in this survey, your personal information will neither be used other 
than contacting you nor be shared with anyone. Your contact information will be strictly confidential and stored 
securely. Thank you so much for your participation in this survey.  
 
Please answer the following questions by filling or circling as required. 
 
1. What is your gender? 

a) Female 
b) Male 
c) Other 

2. What is your age group? 
a) Under 18 
b) 18 - 25 
c) 26 – 49 
d) 50 – 64 
e) 65 – 75 
f) More than 75 

3. Which race/ethnicity best describes you? (Please choose only one) 
a) American Indian or Alaskan Native 
b) Asian / Pacific Islander  
c) Black or African American 
d) Hispanic American  
e) White / Caucasian  
f) Other (please specify): (                      ) 

4. What is your highest level of education? 
a) Some high school education, but no diploma  
b) High school graduate with a diploma or equivalent (for example: GED) 
c) Some college credits, but no Bachelor’s degree  
d) Bachelor’s degree or higher 

5. What is your currently professional status? 
g) Student 
h) Administration position 
i) University faculty 
j) Office worker 
k) Outdoor worker 
l) Not currently employed / home with family 

6. What is your annual income? 
a) Less than $30,000 
b) $30,000 - $50,000 
c) $50,000 - $100,000 
d) $100,000 - $150,000 
e) More than $150,000 

7. How would you rate your general health condition?  
a) Excellent 
b) Good 
c) Fair 
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d) Bad 
e) Very bad 

8. Do you have a driver’s license? 
a) No 
b) Yes 

9. How many motorized vehicles (including motorcycles, mopeds, cars, vans and trucks) does your household 
have? It can include owned, leased or any available vehicle for regular use. 

a) 0 
b) 1 
c) 2 
d) 3+ 

10. Is any public transit system available in your living area? 
a) No 
b) Yes 

11. Would you tell us your fitness activity (activity only for fitness purpose not for travel purpose) during past week? 
 

 Type of fitness activities 
(list all applicable)1) 

Average estimated level of 
intensity (1 – 10)2) 

Total amount of time in a 
day (in minutes) 

Sunday     
Monday    
Tuesday    
Wednesday    
Thursday    
Friday    
Saturday    

1) Example of fitness activities: Slow walking, Brisk (fast) walking, Jogging, Running, Cycling, Weight 
training, Group exercise, Basketball, Soccer, Tennis, etc. 

2) Estimated level of intensity: 1 being very light, 10 being extremely hard 
 
12. How long do you typically spend your time for your travel from home to work / school? (Please provide all 

modes that you use for the commute.) 
 

Mode you use Time (in minute) Check a primary mode 
Walk   
Bicycle   
Drive   
Passenger of auto   
Wait/transfer   
Bus   
Rail   
Taxi   
Motorcycle   
Other (                                          )   
Total   
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Appendix D: Device Registration Form 

 
Name Registration Code Serial Number (Fitbit Charge 2/3) 

   

 
 

 
Cell Phone Number 

Secondary Phone 
Number 

Email 
Secondary Email 

Address 

    

 
 
List five places you visit frequently (home, work, ……, etc.) 
 

 Location Address 

1 Home  

2 Work  

3   

4   

5   

 This information will only be used for aggregating your activity data. 
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Appendix E: User Manual 

1. Installing Fitbit Charge 2/3  
 

 
After you receive the Fitbit Charge 2/3, open the box and make sure that the Fitbit works properly and make sure it’s 
fully charged by pressing the side button of the smart-watch for several seconds. If the watch is not charged, it must 
be connected to the charger which exists in the same box for the smart-watch 
 

 
 
Create Account in Fitbit using this link. https://www.fitbit.com/signup 
Enter your email and password. Then click Continue 

 
 
Enter the following information, then click save profile. 
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 Install Fitbit App in your phone using Play store, then login using your Fitbit account that you created.  
 Follow this video to connect Fitbit watch with your phone. (when you press to start the video, wait few 

second till you see the video is working) Or you can use the like: 
https://www.youtube.com/watch?v=mH4KHlNuKWQ 

 When the registration information for the Fitbit application installed on your phone is complete, you must 
make sure that you have completed the verification of your email and the password. If you do not complete 
the verification step, PASTA application will not be able to enter your email and password to activate it. 

 
2. Install PASTA application in your phone. Search for “WMU PASTA”  
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3. User’s responsibilities 
1) Wear a Fitbit watch daily 
2) Check the charge of the Fitbit watch battery periodically 
3) Check periodically that the PASTA application is running 
4) Verify that the activities when requested by the application 
5) Respond to the investigation team when receiving a call or email (to resolve any study problem) 
6) If the participant wants to change the phone, he or she must repeat the steps again as described in this manual 

or contact the research team 
 

The following body composition assessments will be conducted twice (before and after): 
 BMI (kg/m2): body mass/height2; Percent body fat (%); Lean body mass (kg) 
o (This information can get from the InBody device directly)   

 

 

 
 Waist-to-hip girth ratio 
o Divide the waist circumference by the hip circumference 

 


