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Meta-analysis, funnel plots and sensitivity analysis
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SUMMARY

Publication bias is a major problem, perhaps the major problem, in meta-analysis (or systematic re-
views). Small studies are more likely to be published if their results are ‘significant’ than if their results
are negative or inconclusive, and so the studies available for review are biased in favour of those with
positive outcomes. Correcting for this bias is not possible without making untestable assumptions. In
this paper, a sensitivity analysis is suggested which is based on fitting a model to the funnel plot. Some
examples are discussed.
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1. INTRODUCTION

Because of a rapidly expanding volume of scientific research, meta-analysis is becoming increasingly
important as a way of collecting and synthesizing results from individual studies. Examples abound in
medical research—particularly in systematic reviews of clinical trials and epidemiological studies. Many
of these studies are reporting small experimental or epidemiological investigations which, individually,
may fail to come to any very firm conclusion about the treatments or risk factors being compared, but
collectively may suggest a clear overall result.

Two important statistical difficulties in combining such research studies are heterogeneity and publica-
tion bias. As our initial example, we consider the problem of assessing the relationship between passive
smoking and lung cancer, a topic of much current debate (see, e.g. Givens et al., 1997; Hackshaw et al.,
1997; Poswillo et al., 1998). Hackshaw’s paper (Hackshaw et al., 1997) reviewed 37 published epidemi-
ological studies of the risk of lung cancer in female non-smokers whose spouses/partners did or did not
smoke. Each of these studies reported an estimate of the relative risk (odds ratio) and a 95% confidence
interval. Most of the 37 studies found an increased risk in the exposed group, but a few came to the
opposite conclusion. The points in Figure 1 plot the log odds ratio yi against the standard error si , the
so-called ‘funnel plot’ for these 37 studies. We have taken the values of si as simply one-quarter of the
widths of the log-transformed confidence intervals.

If µ is the overall log odds ratio, then the crude (fixed effects) estimate of µ is the weighted (pooled)
average of the log odds ratios for all 37 studies, which comes to 0.19 (relative risk is 1.21). If there is
no heterogeneity, we should expect a majority of studies (about 70% of them) to report values of y in
the range (µ − s, µ + s) (the dotted lines in Figure 1). The variation of the points for the large studies
in Figure 1 is larger than expected; there is clear evidence of heterogeneity. Hackshaw et al. (1997)
recognized this by using a random effects, rather than a fixed effects, analysis—this has the effect of
giving more weight to the smaller studies, raising the log odds ratio from 0.19 to 0.22.
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Fig. 1. Passive smoking and lung cancer data: funnel plot; the solid line represents µ̂ = 0.22, the estimate without
selectivity; the dotted lines represent µ ± s.

Clearly the results from the smaller studies will be more widely spread around the average effect
because of their larger standard errors, but they should also be symmetrically placed about the line y = µ,
to form the shape of a ‘funnel’. Figure 1 however shows a clear tendency for the smaller studies to give
more positive results than the larger studies—this is a sign of publication bias. The suspicion is that there
are other small studies which have been carried out but which have not been published, and that those
selected for review are biased in favour of those with positive outcomes. In practice, publication bias is
a very common and very serious problem. Sutton et al. (1999), for example, assessed 48 meta-analyses
and found that about half showed signs of potential publication bias similar to that evident in our example
here.

Several methods for ‘correcting’ publication bias have been proposed in the literature. These include
selection models using weighting functions (e.g. Hedges, 1984, 1992; Iyengar and Greenhouse, 1988;
Dear and Begg, 1992; Silliman, 1997a), Bayesian methods (e.g. Givens et al., 1997; Silliman, 1997b)
and the ‘trim and fill’ method (Taylor and Tweedie, 1998a,b). Necessarily such methods make unveri-
fiable assumptions, for example the Bayesian approach by assuming a prior distribution on the number
of unpublished studies, and the trim and fill method by making strong symmetry assumptions. An al-
ternative, more cautious, approach is sensitivity analysis—we draw conclusions from the meta-analysis
under a variety of plausible possibilities for the extent of publication bias, and assess how different these
conclusions are from one another and from the results of standard approaches. A rather general method-
ology for doing this will be proposed in Section 2 following the earlier work by Copas and Li (1997) and
Copas (1999). A detailed procedure for sensitivity analysis is presented in Section 3, illustrated on the
example of passive smoking and lung cancer. A non-technical account of our reanalysis of these data is in
Copas and Shi (2000), where we conclude that the published estimate of the increased risk of lung cancer
associated with environmental tobacco smoke may be overestimated. Some more examples are presented
in Section 4, and some final comments included in Section 5.
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The aim of a sensitivity analysis is to embed the standard model (here the usual random effects method)
within a class of alternative models which are at least plausible in the context of the data, and to compare
the range of inferences given by this class. Of course the details will depend on which class is chosen—
we do not claim that the class suggested in Section 2 contains all possible models or contains the ‘true’
model in any absolute sense. Other classes could be taken, for example the Bayesian approach of Silliman
(1997b) can be used in this way. Our idea is to keep as closely as possible to the usual maximum likelihood
random effects model, but to add two further parameters which describe the study selection in a fairly
transparent way. The specification of this in equation (2) below is a bit arbitrary, but some different
versions of this equation have been tried and are found to make rather little difference to the range of
inferences obtained.

2. FUNNEL PLOTS AND PUBLICATION BIAS

2.1. Model with heterogeneity and selection

Suppose that, of m studies to be reviewed, yi is the estimated treatment effect (e.g. a log odds ratio)
observed in the i th study. We assume that yi is reported with standard error si . Allowing for between-
study heterogeneity, we assume the variance components model

yi = µi + σiεi , εi ∼ N (0, 1), µi ∼ N (µ, τ 2), i = 1, . . . , m. (1)

Here, µ is the overall mean effect, τ 2 is the heterogeneity variance, σ 2
i is the within-study sampling

variance, and εi and µi are assumed to be independent. We also assume that yi and si are independent—
this is exactly true if yi is the sample mean of normally distributed observations, but only approximately
true in other cases such as when yi and si are estimated from a 2 × 2 table.

A familiar approach to meta-analysis (e.g. Whitehead and Whitehead, 1991) is to assume that model
(1) describes the studies in the review, and to estimate the parameters in the usual way. The problem of
publication bias, however, arises when there are also other studies which have been carried out but which
have not been published, or at least not included in the review. We model this by assuming that model (1)
describes all the studies that have been done in the particular area of interest, but only some of them have
been selected for review. Following Copas and Li (1997) and Copas (1999), we use a separate selection
equation with a single correlation to model the selection (publication) process:

zi = a + b/si + δi δi ∼ N (0, 1), corr(εi , δi ) = ρ, (2)

where the residuals (εi , δi ) are assumed to be jointly normal. The role of (2) is that

yi is observed only when the latent variable zi > 0.

The observed treatment effects are therefore modelled by the conditional distribution of yi in (1), given
that zi in (2) is positive. For this reason we need to distinguish between σ 2

i = var(yi |µi ) and s2
i , which is

an estimate of the conditional variance of yi given that the study is published.
If ρ = 0, this is the model without publication bias; yi and zi are independent and so the outcome yi

has no effect on whether the paper is published or not. Notice that si appears on the right-hand side of the
zi equation, so we are explicitly using the assumption that yi and si are independent. But when ρ > 0,
selected studies will have z > 0 and so δ, and consequently ε, are more likely to be positive, leading to a
positive bias in y. Explicitly,

E(yi |zi > 0, si ) = µ + ρσiλ(a + b/si ), (3)
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where λ(·) is Mill’s ratio φ(·)/�(·), φ and � being the density and distribution functions respectively of
the standard normal distribution. The shape of the points in Figure 1 suggests that this is what may be
happening in the passive smoking example.

The parameters a and b in (2) control the marginal probability that a study with within-study standard
deviation s is published. Parameter a controls the overall proportion published; parameter b controls how
the chance of publication depends on study size. We expect b to be positive, so that very large studies
(very small s) are almost bound to be accepted for publication, but only a proportion of the smaller ones
will be accepted. And if ρ > 0 then those smaller studies that are accepted will tend to be those with large
values of y. Since we cannot observe how many unpublished studies there may have been, it is obvious
that we cannot estimate a and b as unknown parameters in the usual way. We will show how a and b can
be treated as free parameters in the sensitivity analysis.

Note that the models (1) and (2) are equivalent to the models

yi = µ + (σ 2
i + τ 2)1/2ε∗

i , ε∗
i ∼ N (0, 1),

zi = a + b/si + δi δi ∼ N (0, 1), corr(ε∗
i , δi ) = ρ̃i = σi

(τ 2 + σ 2
i )1/2

ρ.

This notation makes clear that as there is only a single observation from each study the between- and
within-study residuals can be combined into a single residual. It is now easy to write down the likelihood
function as

L(µ, ρ, τ, a, b) =
m∑

i=1

[log p(yi |zi > 0, si )]

=
m∑

i=1

[log p(yi ) + log p(zi > 0|yi , si ) − log p(zi > 0|si )]

=
m∑

i=1

[
−1

2
log(τ 2 + σ 2

i ) − (yi − µ)2

2(τ 2 + σ 2
i )

− log �(ui ) + log �(vi )

]
, (4)

where

ui = a + b

si

and we have evaluated p(zi > 0|yi , si ) as �(vi ), with

vi =
ui + ρ̃i

yi −µ

(τ 2 + σ 2
i )1/2

(1 − ρ̃i
2)1/2

.

If we have sufficiently large sample sizes in each study, we can replace the nuisance parameters σ 2
i by

their sample estimates based on s2
i . Since

var(yi |si , zi > 0) = σ 2
i (1 − c2

i ρ
2)

where
c2

i = λ(ui )(ui + λ(ui )),

we replace σ 2
i in (4) by

σ̂ 2
i = s2

i

1 − c2
i ρ

2
.
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Note that σ̂i is not fixed, but depends on the other model parameters.
We can use (4) to find the profile likelihood for (a, b). We will find that this likelihood takes its

maximum over a very flat plateau, confirming that there is not enough information to estimate the values of
these parameters. However, for given (a, b), maximum likelihood estimates of (µ, ρ, τ ) can be obtained
by direct numerical maximization of (4).

The overall mean µ is the main parameter of interest in meta-analysis. For given (a, b), asymptotic
inference about µ is summarized in the profile likelihood

La,b(µ) = max
ρ,τ |µ,a,b

L(µ, ρ, τ, a, b).

Equating 2(La,b(µ̂) − La,b(µ)) to a percentile of the χ2 distribution on one degree of freedom gives an
approximate confidence interval for µ. If yi is a log odds ratio, the natural null hypothesis is that µ = 0.
The corresponding P-value in the asymptotic likelihood ratio test is:

2�(−[2(La,b(µ̂) − La,b(0))] 1
2 ).

Alternatively, the score test of this hypothesis is given by:

t = µ̂
√

(I11 − I12 I −1
22 I21), (5)

where I is the Hessian matrix of the log likelihood function (4) with respect to (µ, ρ, τ ) given (a, b), and
Ii j is the related partition of I in terms of µ and (ρ, τ ) respectively. The reciprocal of the quantity in
the square root in (5) is the standard error of µ̂, which can be used to give a corresponding score-based
confidence interval for µ. All these quantities are defined at (µ̂, ρ̂, τ̂ ), and can be evaluated numerically
from the likelihood (4). Table 1 lists the confidence intervals based on the likelihood ratio and score test
for all three examples discussed in this paper—as expected, the two methods give quite similar results.

2.2. A goodness of fit test for the funnel plot

If a specific (a, b) is to be entertained as a possible pair of parameters for the selection model, we need
to check that the resulting model gives a reasonable fit to the funnel plot. We suggest testing this against
the alternative that the some other pair (a∗, b∗) is better. If ρ or c2

i is small, it is easy to see from (3) that

E(yi |zi > 0, si , a∗, b∗) − E(yi |zi > 0, si , a, b) ≈ c∗ + ρ[λ(a∗) − λ(a)]si ,

for some constant c∗. This suggests that local departures will be similar to adding a linear term in si to the
expected value of yi , and so testing a specific pair (a, b) is similar to testing H0 : β = 0 versus H1 : β �= 0
with restriction ρ ≥ 0 in the model

yi = µi + βsi + σiεi , (6)

zi = a + b/si + δi , corr(δi , εi ) = ρ. (7)

This can be done directly by a likelihood ratio test similar to that discussed at the end of Section 2.1. For
any given (a, b), write down the extended likelihood as expression (4) with the term βsi added to µ, and
evaluate the standardized likelihood ratio test for β = 0 in the usual way.

The naive model for meta-analysis without allowing for publication bias is equivalent to the original
model (1) only, without the selection model (2), or to the full model with ρ = 0 or a = ∞. Thus the
evidence for publication bias in the funnel plot can be tested as a special case of the above likelihood ratio
test by setting a = ∞. This is equivalent to testing β = 0 in model (6). The likelihood ratio statistic is:

χ2 = 2[max
µ,τ,β

L̃(µ, τ, β) − max
µ,τ

L̃(µ, τ, 0)] (8)
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Table 1. The estimates of µ, 95% confidence intervals of µ from
likelihood ratio (CI1) and score functions (CI2), the P-value for
fit to the funnel plot, and estimated numbers (#) of unpublished

studies for different canonical probabilities (CP)

CP µ̂ CI1 CI2 P-value #

Passive smoking and lung cancer data

0.6 0.11 (−0.02, 0.23) (0.00, 0.21) 0.594 42

0.7 0.12 (0.00, 0.25) (0.02, 0.22) 0.508 28

P0.2 0.8 0.14 (0.02, 0.26) (0.04, 0.23) 0.355 15

0.9 0.16 (0.05, 0.28) (0.06, 0.26) 0.203 8

1.0 0.22 (0.12, 0.31) (0.12, 0.32) 0.037

Passive smoking and coronary heart disease data

0.6 0.17 (0.11, 0.25) (0.11, 0.24) 0.515 51

0.7 0.17 (0.11, 0.26) (0.12, 0.24) 0.404 27

P0.125 0.8 0.18 (0.11, 0.26) (0.12, 0.24) 0.316 18

0.9 0.20 (0.13, 0.25) (0.13, 0.26) 0.471 9

1.0 0.25 (0.16, 0.41) (0.07, 0.43) 0.001

Respiratory tract infection data

0.6 0.67 (0.40, .99) (0.40, .95) 0.098 54

0.7 0.71 (0.43, 1.04) (0.41, 1.00) 0.058 35

P0.4 0.8 0.77 (0.47, 1.12) (0.45, 1.10) 0.022 18

0.9 0.95 (0.61, 1.27) (0.57, 1.23) 0.004 8

1.0 1.28 (0.92, 1.73) (0.89, 1.68) < 0.001

where

L̃(µ, τ, β) = −1

2

m∑
i=1

[
log(τ 2 + σ 2

i ) + (yi − µ − βsi )
2

(τ 2 + σ 2
i )

]
.

For the passive smoking example this gives χ2 = 4.35 on one degree of freedom or a P-value of 0.037,
confirming the reasonably strong evidence for the presence of publication bias in this systematic review.
Easier to calculate is the related score statistic

t = β̂
√

( Ĩ11 − Ĩ12 Ĩ −1
22 Ĩ21)

where Ĩ is the Hessian matrix of L̃(µ, τ, β) and Ĩi j is the related partition of Ĩ in terms of β and (µ, τ).
The formulae for Ĩ are listed in Appendix 1. For the passive smoking data, t = 2.13 or a P-value of
0.033, almost the same as the likelihood ratio test.

Egger et al. (1997) proposed a simpler test for trend in a funnel plot, based on a simple regression of
yi on si . The above test with a = ∞ is equivalent to Egger’s test in the special case of no heterogeneity,
i.e. assuming that τ 2 = 0 so that µi = µ for all i .

The test we have proposed is motivated by local departures within the assumptions of the model, but
may fail to detect misspecification in the model itself. For a more general test, we could estimate the
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Fig. 2. Passive smoking and lung cancer data: the selection probability for (a, b) = (0, 2) (the top curve), (a, b) =
(−1, 0.5) (the middle curve) and (a, b) = (−3, 0.1) (the bottom curve).

residuals

ri (a, b) = yi − E(yi |zi > 0, si , a, b)√
(τ 2 + s2

i )
.

Under the model ri (a, b) is uncorrelated with si , and this could be tested non-parametrically. However,
our examples suggest that this approach is not sufficiently powerful to be useful with the sample sizes
(size of m) usually encountered in practice.

3. SENSITIVITY ANALYSIS

Our idea is to develop a sensitivity analysis for inference about µ, allowing for a range of possible
values of a and b. Let Ps be the marginal selection probability of a typical study with standard error s, so
that

Ps = P(z > 0|s, a, b) = �(a + b/s).

For example, if we set (a, b) = (−1, .5), Ps takes values 37.46% and 99.99% for the smallest and largest
observed studies in the passive smoking review. This means that almost all studies similar to the largest
one in the review will be published, but only one-third of studies similar to the smallest one will be
published. More generally, the relationship between Ps and s is illustrated in Figure 2. The range of
values of s used in this graph is the range observed in the 37 studies, from 0.10 (most accurate study) to
0.73 (least accurate study). The top curve has a = 0 and b = 2.0, showing that almost all studies will
be published (Ps close to 1). The bottom curve has a = −3 and b = 0.1. Here, the published studies
are highly selective, with a low publication probability even for small values of s. These curves seem
rather extreme, more plausible curves probably lie somewhere in between, e.g. the curve for a = −1 and
b = 0.5 discussed above. This suggests that our analysis should look at values of a in the range −3 to 0,
and values of b in the range 0.1 to 2.0.

For any pair of given values of (a, b), µ can be estimated by maximum likelihood as in Section 2. A
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Fig. 3. Passive smoking and lung cancer data: (i) contours of µ̂; (ii) contours of P-values of H0 : β = 0 from
likelihood ratio test; (iii) µ̂ against the P-value; (iv) µ̂ against canonical probability P.2.

contour diagram of µ̂ over these ranges of a and b is presented in Figure 3(i). At the top right (corre-
sponding to the top curve in Figure 2, meaning very little selection bias) the estimate µ̂ is 0.22 (relative
risk is 1.24), which is the same estimate as the one estimated from the model without selectivity. But
as we move away from this corner of the graph the log odds ratio falls sharply, down to only 0.04 (i.e.
only a 4% excess risk) at the lower left (corresponding to the lower curve in Figure 2, high potential for
publication bias).

The values of µ̂ in Figure 3(i) have to be judged in the light of the goodness of fit to the funnel plot.
Minus one times the profile likelihood for (a, b) is shown in Figure 4 (the perspective diagram is easier
to see this way up). Maximum likelihood is achieved towards the ‘front’ of the plot, but in this region
the likelihood is very flat, suggesting a wide range of values of (a, b) which give an equally good fit. But
towards the ‘back’ of the plot the likelihood falls quite sharply, suggesting that values of (a, b) which
give publication probabilities close to one are not acceptable. These are just the values of (a, b) which
give µ̂ close to the crude weighted average estimate. There is a narrow diagonal band across the middle
of the (a, b) range where ρ̂ is close to 1, leading to numerical difficulties in the evaluation of this profile
likelihood—this explains the irregularities apparent in Figure 4.

An alternative approach is to use the likelihood ratio test proposed in the last section, and calculate
the P-value as a function of (a, b). Contours of these P-values are shown in Figure 3(ii). Using 5% as
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Fig. 4. Passive smoking and lung cancer data: perspective diagram of negative profile log-likelihood for (a, b).

a conventional threshold, this identifies an area to the upper right corner within which the model gives a
significantly poor fit. Again these are the values of (a, b) giving high publication probabilities. Comparing
Figures 3(i) and 3(ii) we see that these systems of contours are very roughly parallel, suggesting that µ̂

can be plotted directly against the P-value. This is in Figure 3(iii). The points in this plot correspond to
a rectangular grid of values of (a, b) over the chosen range. Of course they do not exactly lie on a single
curve as the contours are not exactly parallel, but this plot does indicate how µ̂ decreases as the quality
of fit improves. The estimated log odds ratio is always less than 0.20 when the P-value is greater then
0.05, i.e. for an acceptable fit to the funnel plot the estimate of excess risk is at most 22%. Now if a null
hypothesis is true, the P-values are uniformly distributed between 0 and 1, and so have expectation 0.5.
For this ‘average P-value’, the risk excess is only 14%.

The fit to the funnel plot given by different values of (a, b) is also illustrated by the dashed lines in
Figure 5. These curves are the fitted values calculated from (3). Two values of (a, b) give a good, and
almost indistinguishable, fit. The third is clearly unacceptable, consistent with the above profile likelihood
and P-value plots.

In order to interpret this information further, and to aid its description in tabular form, it is useful to try
to calibrate (a, b) into a single and more interpretable parameter. The fact that the contours in Figure 3(i)
are roughly parallel lines means that µ̂ depends only on a single linear combination of a and b. Calculating
the slope of the contours near the centre of the plot gives the best such combination to be approximately

a + 5b = a + b/0.2.

But Ps = �(a + b/s), and so µ̂ depends on P0.2, the marginal publication probability for a study with
s = 0.2 (an accuracy within the observed range). We call P0.2 the canonical probability. The relationship
between P0.2 and µ̂ is shown in Figure 3(iv). The crude estimate of 24% excess risk is given only when
P0.2 = 1, but if P0.2 = 0.7 (70% of studies with s = 0.2 published) the risk excess is roughly halved. The
value of s defining the canonical probability can be estimated directly from the Hessian of the likelihood,
as pointed out in Appendix 2.

Table 1 summarizes the sensitivity analysis for the passive smoking review. For each value of the
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Fig. 5. Passive smoking and lung cancer data: funnel plot; the solid line represents µ̂ = .22, the estimate without
selectivity; the dashed lines represent fitted values for given (a, b), when (a, b, µ̂) are equal to (−0.5, 1.5, 0.22),
(−1, 0.5, 0.17) and (−2.5, 0.2, 0.07) respectively.

canonical probability the table shows µ̂ along with its approximate 95% confidence limits. The limits are
calculated by both methods discussed in Section 2.1. Also shown are the P-values for the fit to the funnel
plot. Since, as explained, these quantities are not exactly functions of P0.2, some judgement has been used
in choosing the inference for a single value of (a, b) along the appropriate contour. The last line in the
first panel of Table 1 shows that the standard random effects estimate of 0.22 is not acceptable on account
of the small P-value in the penultimate column. As commented earlier, µ̂ needs to be at most 0.20 for the
P-value to rise above 5%.

The smaller the value of Psi the larger the number of unpublished studies being imputed by the model.
A rough estimate of the total number of unpublished studies is:

m∑
i=1

1 − Psi

Psi

.

The last column of Table 1 gives these estimates for the values of (a, b) we have selected. These numbers
should not be interpreted too literally, but may help in a subjective assessment of the different values of a
and b.

This way of looking at systematic reviews is a sensitivity analysis and does not claim to produce a
definitive estimate of µ. However, the conclusion that the crude weighted average relative risk in the
passive smoking review is an overestimate, possibly a substantial overestimate, seems inescapable. If the
use of the ‘expected P-value’ is accepted, then the analysis suggests that the most plausible value of the
excess risk may be around 14%, down to almost half the published estimate. The evidence for whether
there is a risk increase at all then becomes questionable, as the confidence interval then just includes zero.
This is a very different result from the standard analysis, and yet the predicted 28 unpublished studies
(last column of Table 1) is surely not excessive, implying that this systematic review has captured about
35/(35 + 28) = 56% of all studies that have been attempted in this area.
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Fig. 6. Passive smoking and coronary heart disease data: funnel plot; the dotted line represents the estimate without
selectivity µ̂ = .25; the dashed lines represent fitted values given (a, b) = (−0.76, 0.2); the related estimate is
µ̂ = 0.18.

4. MORE NUMERICAL EXAMPLES

He et al. (1999) reported another systematic review on the risks of passive smoking, but looking at
coronary heart disease rather than lung cancer. In this review there were ten cohort and eight case-control
epidemiological studies. Figure 6 is the funnel plot of the log odds ratio against the standard error. Again,
there is a clear sign of publication bias, even if we disregard the study with the largest standard error as an
outlier (this study is much smaller than the others and in fact is given very little weight in the analysis).
The likelihood ratio test for the presence of publication bias gives a P-value of 0.001 (or 0.002 if the
smallest study is excluded).

The conventional estimate of µ (ignoring selection bias) is 0.25, or an estimated excess risk of 28%.
The sensitivity analysis again suggests that this is an overestimate. With 5% as a conventional threshold
for the fit to the funnel plot, the estimate of µ is at most 0.20 (excess risk 22%); see Figure 7. The fall in
the value of µ̂ as the P-value increases from zero is more marked in this example, reflecting the greater
evidence for publication bias shown in the funnel plot. Table 1 summarizes the sensitivity analysis. It
shows that the estimate of µ is only about 0.17 (excess risk 18%) when the canonical probability P0.125 is
0.7.

Our third example is a systematic review considering the effect of selective decontamination of the
digestive tract on the risk of respiratory tract infection; patients in intensive care units were randomized to
receive treatment by a combination of non-absorbable antibiotics or to receive no treatment (Smith et al.,
1995). Here 22 trails are reviewed. The funnel plot in Figure 8 shows a very strong trend for publication
bias. The likelihood ratio statistic gives χ2 = 20.9. The results of our sensitivity analysis are summarized
in Table 1 and Figure 9. Here the fall in µ̂ as the P-value increases is even more marked. The crude
estimate of µ is 1.28, but it is at most 0.8 if we require an acceptable fit to the funnel plot in the sense that
the P-value be not less than 0.05.
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Fig. 7. Passive smoking and coronary heart disease data: µ̂ against the P-value.
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µ̂ = 1.28; the dashed lines represent fitted values for given (a, b), when (a, b, µ̂) are equal to (−0.5, 1.5, 1.16),
(−0.5, 0.5, 0.81) and (−2.5, 0.5, 0.34) respectively.
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Fig. 9. Respiratory tract infection data: µ̂ against the P-value.

5. DISCUSSION

In our examples we have illustrated the data by plotting y against s, but other graphs are possible.
Funnel plots are often shown with the axes the other way round, or with s replaced by study sample size
shown on a log scale. The Galbraith plot (plot of yi/si against 1/si —see Galbraith, 1988) is a good
alternative—the standard fixed effect model then gives a constant scatter and the estimate of µ is just least
squares through the origin. We have chosen to plot y against s since we want to superimpose the fitted
values given by equation (3) which are more naturally thought of as a function of s.

We have used the examples in the paper as illustrations of our method, and have ignored other aspects
of data quality which in practice can and should be examined. It is not uncommon to find inconsistencies
when the same study is used by different reviewers. Lee (1999) discusses some simple data checks,
and points out inconsistencies in at least one of the passive smoking studies. In systematic reviews of
epidemiological studies there can be major problems in ensuring comparability in measures of exposure
and outcome. Hackshaw et al. (1997) give a careful discussion of several possible confounding factors.

Publication bias is a special case of the problem of non-ignorable missing data. In the jargon of the
missing data literature (e.g. Little and Rubin, 1987), observations are ‘missing at random’ if the event that
an observation is missing is conditionally independent of the actual value of that observation, given all
information that has been observed on that individual or experimental unit. If the research studies being
reviewed are thought of as the observations, then in our model the unpublished studies are missing at
random only if ρ = 0. There is a very large literature on missing data problems, and some of the ideas
and discussion are very relevant to meta-analysis.

We commented in Section 1 that correcting for publication bias is only possible if we are prepared to
make unverifiable assumptions. Even sensitivity analyses are based on assumptions—here we have made
the crucially important assumption implicit in (1), that there is no intrinsic connection between yi and si .
Only with this assumption can we conclude that a trend in the funnel plot is indicative of publication bias.
This assumption cannot be checked from the data themselves, but needs to be assessed in the context of
the subject matter. Conceivably, the studies with small s, being the larger trials, may be better organized
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and controlled and so may tend to give better results (larger y). Conversely, perhaps studies with large
s, being the smaller trials, may be run by a smaller and more committed staff and so may give the better
results for that reason. This assumption is essentially the null hypothesis that β = 0 in model (6), and
so corresponds to the test for the presence of publication bias which we have proposed in Section 2. If
there are other reasons why β �= 0 then it is seems impossible to say anything very useful at all about the
effects of publication bias.

The estimates in Table 1 of the number of unpublished studies are in a sense the minimum number of
unselected studies needed to explain the degree of publication bias being entertained. The crucial question
is not how many unpublished studies are in the pool from which the ones for review are sampled, but how
this sampling is done. If the selection is done in two stages, first model (1) selects a set of candidate
studies and then the actual studies in the review are sampled randomly from this set, then the sampling
fraction used at the second stage is of course irrelevant.

We have assumed standard asymptotic properties of maximum likelihood throughout. The normality
of y and its independence from s is at best an approximation, and the fact that the maximum likelihood
estimate of ρ can be attained at a boundary point of the parameter space raises doubts about the likelihood
ratio and score tests proposed in Section 2. However, because of the essential indeterminacy in (a, b),
we would argue that numerical accuracy at any given (a, b) is not important. All we have attempted to
do is to suggest that meta-analysis needs a model which explicitly allows for publication bias, and to see
if a substantially lower estimate of µ is needed for such a model to give a reasonable fit to the funnel
plot. Arguably, the question of whether this selection model is ‘correct’ is not the issue—the fact that a
reasonably plausible model exists is enough to cast doubt on the conventional analysis.
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APPENDIX

A1. FORMULA FOR THE HESSIAN MATRIX Ĩ IN SECTION 2.2

The 3 × 3 matrix Ĩ is

Ĩ =
[ Lββ Lβµ Lβτ

Lµβ Lµµ Lµτ

Lτβ Lτµ Lττ

]

where

Lββ =
m∑

i=1

s2
i

τ 2 + s2
i

, Lβµ =
m∑

i=1

si

τ 2 + s2
i

, Lβτ = 2
m∑

i=1

(yi − µ − βsi )τ si

(τ 2 + s2
i )2

,

Lµµ =
m∑

i=1

1

τ 2 + s2
i

, Lµτ = 2
m∑

i=1

(yi − µ − βsi )τ

(τ 2 + s2
i )2

, Lττ =
m∑

i=1

τ 2 − s2
i

(τ 2 + s2
i )2

.

A2. IDENTIFYING THE CANONICAL PROBABILITY Ps

Let γT = (a, b) and θT = (µ, τ, ρ), and let L(γ, θ) be the log likelihood in (4). Choose a represen-
tative value of γ near the centre of the chosen range of (a, b), and denote this by γT

0 = (a0, b0). Let θ0
be the corresponding MLE given by Lθ (γ0, θ0) = 0, where Lθ is the first derivative of L with respect to
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θ. Expanding the log likelihood we have:

L(γ, θ) = L(γ0, θ0) + Lγ (γ0, θ0) − 1

2
[(γ − γ0)

T H11(γ − γ0)

+2(θ − θ0)
T H21(γ − γ0) + (θ − θ0)

T H22(θ − θ0)]
where Lγ is the first derivative of L with respect to γ, H is the Hessian matrix with respect to (γ, θ), and
Hi j is the related partition of H in terms of γ and θ respectively. The MLE of θ for an arbitrary γ close
to γ0 is therefore given by:

θ̂ � θ0 − H−1
22 H21(γ − γ0)

T .

Let (g0, g1) be the first row of H−1
22 H21. Then,

µ̂ � µ0 − [g0(a − a0) + g1(b − b0)]
= µ0 + g0a0 + g1b0 − g0

(
a + g1

g0
b

)

and so µ̂ depends on Ps where s = g0/g1.

REFERENCES

COPAS, J. B. (1999). What works?: selectivity models and meta-analysis. Journal of the Royal Statistical Society,
Series A 162, 95–109.

COPAS, J. B. AND LI, H. G. (1997). Inference for non-random sample (with discussion). Journal of the Royal
Statistical Society, Series B 59, 55–95.

COPAS, J. B. AND SHI, J. Q. (2000). Reanalysis of epidemiological evidence on lung cancer and passive smoking.
British Medical Journal 320, 417–418.

DEAR, H. B. G. AND BEGG, C. B. (1992). An approach for assessing publication bias prior to performing a meta-
analysis. Statistical Science 7, 237–245.

EGGER, M., SMITH, G. D., SCHNEIDER, M. AND MINDER, C. (1997). Bias in meta-analysis detected by a simple,
graphical test. British Medical Journal 315, 629–634.

GALBRAITH, R. (1988). A note on graphical presentation of estimated odds ratios from several clinical trials. Statis-
tics in Medicine 8, 889–894.

GIVENS, G. H., SMITH, D. D. AND TWEEDIE, R. L. (1997). Publication bias in meta-analysis: a Bayesian data-
augmentation approach to account for issues exemplified in the passive smoking debate (with discussion). Statisti-
cal Science 12, 244–245.

HACKSHAW, A. K., LAW, M. R. AND WALD, N. J. (1997). The accumulated evidence on lung cancer and environ-
mental tobacco smoke. British Medical Journal 315, 980–988.

HE, J. et al. (1999). Passive smoking and the risk of coronary heart disease—a meta analysis of epidemiologic studies.
The New England Journal of Medicine 340, 920–926.

HEDGES, L. V. (1984). Estimation of effect size under nonrandom sampling: the effects of censoring studies yielding
statistically insignificant mean differences. Journal of Educational Statistics 9, 61–85.

HEDGES, L. V. (1992). Modeling publication selection effects in meta-analysis. Statistical Science 7, 227–236.

IYENGAR, S. AND GREENHOUSE, J. B. (1988). Selection models and the file drawer problems (with discussion).
Statistical Science 3, 109–135.



262 J. COPAS AND J. Q. SHI

LEE, P. (1999). Simple methods for checking for possible errors in reported odds ratios, relative risks and confidence
intervals. Statistics in Medicine 18, 1973–1981.

LITTLE, R. J. A. AND RUBIN, D. B. (1987). Statistical Analysis with Missing Data. New York: Wiley.

POSWILLO, D. et al. (1998). Report of the Scientific Committee on Tobacco and Health, Department of Health, et al.
London: The Stationery Office.

SILLIMAN, N. P. (1997a). Nonparametric classes of weight functions to model publication bias. Biometrika 84,
909–918.

SILLIMAN, N. P. (1997b). Hierarchical selection models with applications in meta-analysis. Journal of American
Statistical Association 92, 926–936.

SMITH, T. C., SPIEGELHALTER, D. J. AND THOMAS, A. (1995). Bayesian approaches to random-effects meta-
analysis: a comparative study. Statistics in Medicine 14, 2685–2699.

SUTTON, A. J., DUVAL, S. J., TWEEDIE, R. L., ABRAMS, K. R. AND JONES, D. R. (1999). The impact of publi-
cation bias on meta-analyses within the cochrane database of systematic review. Technical Report, Department of
Epidemiology and Public Health, University of Leicester, UK.

TAYLOR, S. J. AND TWEEDIE, R. L. (1998a). A non-parametric ‘trim and fill’ method of assessing publication bias
in meta-analysis. Technical Report, Department of Statistics, Colorado State University, USA.

TAYLOR, S. J. AND TWEEDIE, R. L. (1998b). Trim and fill: a simple funnel plot based methods of testing and adjust-
ing for publication bias in meta-analysis. Technical Report, Department of Statistics, Colorado State University,
USA.

WHITEHEAD, A. AND WHITEHEAD, J. (1991). A general parametric approach to the meta analysis of randomized
clinical trials. Statistics in Medicine 10, 1665–1677.

[Received November 22, 1999; first revision March 6, 2000; second revision March 23, 2000;
accepted for publication March 29, 2000]


